ON SIMPLE PROGRAMS WITH PRIMITIVE
CONDITIONAL STATEMENTS

Ogcar H. Ibarra and Louis E. Rosier

Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712

TR~232 September 1983

ON SIMPLE PROGRAMS WITH PRIMITIVE
CONDITIONAL STATEMENTS!

Oscar H. Ibarra
Department of Computer Science
University of Minnesota

BT

Minneapolis, MIN 554556
and

Louis B. Rosier
Department of Computer Sciences
University of Texas at Austin
Austin, TX 78712

in part by NSF Grants MC3 81-02853 and RICS 83-04756, The University Research

1This research was supported
in and the IBM Corporation.

Institute, The University of Texas at Aust

Table of Contents

1. INTRODUCTION
2. L,(BB)-Programs
3. L,(BB)-Programs
References

14
18

ABSTRACT

This paper is concerned with the semantics (or computational power} of very simple loop programs
over different sets of primitive instructions. In addition to mew results, the paper clarifies and corrects
some of the claims made in [10]. The new results improve earlier results in the literature. In particular, it
is shown that an {x«0, x+x+1, x+y, do x ... end, if x=0 then y<«z}-program which contains no nested
loops can be transformed into an equivalent {x«0, x+x+1, x+y, do x .. end}-program (also without nested
loops) in exponential time and space. This translation was earlier claimed to be doable in polynomial time,
but this was subsequently shown to imply that PSPACE=PTIME. Consequently, the guestion of trans-
latability was left unanswered. Also it is shown that the class of functions computable by {x+0, x+x+1,
x+y, x+x:1, do x ... end, if x==0 then x+c}-programs is exactly the class of Presburger functions. When the
conditional instruction is changed to ®if x=0 then x+y-+1", then the class of computable functions is
significantly enlarged, enough so, in fact, as to render many decision problems (e.g. equivalence) undecid-
able.

3]

1. INTRODUCTION

An important area in computer science concerns itsell with the semantics of programs. This topic
covers the development of semantics for programs of varying complexity. In this paper we concern our-
selves with the semantics of very simple loop programs over different sets of primitive instructions. The
computational power of simple loop programs has been studied before as have some of the related decision
problems (e.g. the equivalence problem) [1-3, 7-8, 10-12]. Let BB denote a set of primitive {non-looping)
instructions, e.g. {x+0, x*x+1, x+y}. An L,(BB)-program is a program of the form:

input(x,,....x,);

A;

output(z,,...,2}};
where A is a block of instructions using only the constructs in BB and the construct "loop x ... end;".
Furthermore the level of nesting allowed in the nested loop structures of A is at most i. The interpreta-
tion given to the "loop x ... end;® construct is that altering the contents of the loop control variable x
inside the loop does not change the number of iterations executed. Let BB1={x+0, x+x+1, x+y}. The
hierarchy of L,(BB1}-programs is the subrecursive hierarchy of Meyer and Richie [11]. In [11] it was shown
that Lz(BBl)-programs compute exactly the class of elementary recursive functions. LI{BBI}-programs
define the class of simple functions [12], a proper subclass of the Presburger functions [1,3]. Certain deci-
sion problems, e.g. the equivalence problem, were first shown to be decidable for the class of
L,(BB1)-programs in [12]. Subsequently, it was shown that L,(BB1 U {x+x:1}}-programs compute exactly
the functions definable in Presburger arithmetic {and therefore the equivalence problem for this extension
of L,(BB1) remains decidable) [1,3]. Later the validity of simple correctness formulas of the form {p}S{q}
were also shown to be decidable [2], where S is an L,(BB1 U {x+x:1})-program and p and q are logical
(Presburger) assertions about the variables in S. The formula {p}S{q} is said to be valid if for every input
to S which satisfies p, it is the case that g is true following the execution of S. Other extemsions of
L,(BB1) have also been studied [3, 10]. For example, Kfoury [10] considered variations of L,(BB1), where
the primitive instructions were to be drawn from the set {x+0, x+x+1, x*x:1, x+y, if x=0 then A else B},
where A and B are ({inite blocks) of the other primitive instructions in the set.

In this paper we investigate claims made (without proof) in {10, concerning L,(BB)-programs where
BB C {x«0, x+x+1, x+x:1, x+y, if x=0 then A else B}. Ve paraphrase the following definitions from [10].
Let L and L’ be classes of programs, and L and L' the corresponding closses of functions they compute. L
is effectively tramslatable into L’ if for every program P in L there is a constructive way to obtain 2
program P’ in L’ such that P and P’ compute the same function. If there is such a translation we write L
~*..> L’ where the "** may be replaced by *C*, ®I", "p* or "e”, according to whether the translation is
the trivial inclusion map or produces a program P’ in L’ which is of length at most *linear®, "polynomial®,
or "exponential®, in the length of P. Also for our results as well for the claims made in [10], whenever the
translation procedure given is "1%, "p®, or "e®, it is also the case that it will take at most "linear”,
*polynomial®, or *exponential® time, respectively (as a function of the size of the source program P}.

Let *if* denote the instruction "if x==0 then A else B". Let BB2 denote the set BB1 U {x+x:1}. The
following theorem was claimed without proof in [10].

Theorem. Let 7, and 7, be subsets of {x+y, x+x:1, if}. All possible translations from L,{{x+0, x+x+1} U
7,) to L {{x<0, x+x+1} U 7,) can be read off the following diagram:

ﬁLi{{x«O, xex 41, x+x:1})

N
y
& \o
/ \
/) X
Ly({x+0, xex+1}) Ly(BB2) &~
> /ﬁ i .y
™~ i
&
< ~ - [\\
o men s i
j i} 3 144”4_7%‘.%1?‘,‘&’;;’, Y
ﬁ 1(| } 1\{}’! Yy K4 1}}
/o g
{ e n /
¥ ¥ ~
LBB2 U (i)

P L, {({x+0, xex+1, if})
!

\

n
\ ¥
L,(BB1 U {if})

If an omitted arrow in the above diagram cannot be obtained by composition froim the arrows already
drawn, then it is the case of non-transiatabiity, which also requires some prool. B

This theorem probably contains an error concerning the translations:
L,(BB1) —e->
L ({x+0, xex+1, if})
L(BRL U {if}) =p->
L,(BB1)

and definitely contained an error concerning:
L,(BB2) —e-->
L {{x+0, xex+1, xexs1, if}} ~C--2>
L,(BB2) U {if}} ~p—->
L,(BB2)

The remaining claims of the theorem are correct. From results in [7], it can be noted that L(BB1 U {if})

C-->

—p-> L,{BB1) implies PSPACE=PTRMLE. In [9], it was noted that L {{x*0, xex+1, x+x:1, if})-programs
were computationally more powerful than Li(BBZ}»pmga ms. This is an important jump in terms of com-
putational power for two reasons. First the class of functions computable by such programs is no longer
Presburger. Secondly, the jump is so great that most decision problems for such programs are now un-
decidable, e.g. the equivalence problem is undecidable and hence there no longer exists a decision
procedure to decide the validity of even very simple correctness formulas. For example, the validity of
correctness formulas of the form {true}S{x==y} is no longer decidable. Left upanswered then is the gues-
tion of translatability betwecn L (BB1 U {if}} and L,(BBI1).

In this paper we consider this problem as well as examine the computational gap between
L,(BB2}-programs and L,(BB2 U {if})-programs. e concentrate on allowing the instructions "y<«c® and
fy+y:1® to be conditionally ececuted. That is, we introduce the constructs *if x=0 then y«y+1%, "if x=0
then y+y=1° and *if x==0 then y+c®, where ¢ is any nonnegative integer constant. We are then able to
show that:

L,(BB1 U {if}) --e--> L, (BB1)

which is perhaps not surprising but nevertheless had not been confirmed. This should be contrasted with

»

the corresponding situntion for BBZ, where the inclusion of the *if¥ construct provides nu increase in com-
puistional power. We also show that:

L,(BB2 U {if x==0 then y+c}} e L (BB2).
This should be contrasted with the result in [9], showing that L, {BB2 U {if x=0 then y+y+1}] is strictly
more powerful than L {BB2). L (BB2 U {i{ x==0 then y«y-+1 }l-programs were shown to be computation-
ally equivalent to L ({x+0, x+x-+1, x#x:1, if}}-programs, in [0]. If both constructs, *if x==0 then y+c" and
*If x==0 then y+y21" are concurrently considered it is easy to show that LI(BBQ U {if x=0 then y+1, if
x==0 then y+y:1}) is computationally equivalent to L (BB2 U {if x=0 then y«y+1}}. Unfortunately, we
are unable to resolve the computational power of L {82 U {if x==0 then y+y:1}}-programs. The *if x=0
then y+y:1® construct seems similar to the "if x=0 then y+«y+1* consiruct, but as pointed out in [7],
functions of one variable computed over BB2 U {if x==0 then y+y:1} are monotonic. Thus the proof tech-
niques used in [9] do not seem to work with this language. This same problem was apparent in 7], where
the authors were able to show that the G-evaluation problem for this language is PSPACE-complete. Un-
fortunately, these techniques do not seem to work ecither. Lastly we note that the addition of the construct
#if x==0 then y«z" to the set BB2 poses a difficult question. {1t is easy to show that LE(BBQ U {if x=0
then y+z})-programs are computationally equivalent to L (BB2 U {if}}-programs.) If L,(BB2 U {if x=
then y<«z})-programs are computationally more powerful than ?XRQBB‘E U {if x==0 then y+y-+1}}-programs,
then it would imply that 0{n) space bounded Turing machines are more powerful than Turing machines
operating simultaneously in 0{n} space and Q{‘Z"\“} time, A<C1. This problem seems very difficult. The
answer is not known even for the case when the time resiriction is reduced to a polynomial. (See [9])
Other corrections to errors in [10] are presented in the last section.

@t

2. L (BB)-Programs

In this section we consider the computational power of LI{BB}pmgrams over different sets of primi-
tive instructions, BB. Most of our results consider problems considered in [7-10].

Our first result shows that L,(BB1) and L,{BB2}-programs can be converted into L,{{x«0, xex+1, if
x=0 then y+y-+1})-programs and L {x«0, xex+1, x+xf1, if x=0 then y<+y-+1}}-programs, respectively, in
polynomial time. This is an improvement over the exponential time needed in [10].

Theorem 1. Given a L (BB1}-program P, one can construct in polynomial time, a L {({x<0, x=x+1, if
x==0 then y+y-+1})-program P’ such that P’ is equivalent to P.
Proof. Let P be a L, (BB1}-program. Using techniques in [3,6] one can construct a straight-line program
Q, in polynomial time, over the instructions:

x«0

xex-+1

XeX+y

x+x:1

y+x/k

y+remainder(x k)

x+(1:y)x,
where k represents o positive integer constant expressed in unary, such that Q is equivalent to P. The
result now follows since each of the Q instructions can be simulated by L,({x+0, x=x+1, if x=0 then
y+y+1})-programs. Most of the encodings are straightforward. To illustrate the idea we provide the en-
coding for the y+x/k instruction. The remaining encodings are similar and are left to the reader.

Let vy,....Vy, U, W, T and s be new variables. Suppose that v, (1<i<k) are 0/1 valued. Now v can be
considered to be a 0/1 valued vector of length k. The function SHIFT(v,j), 1<]i|<k is defined to be a
circular shift of the values in v by j places. For example, let k=3, v,=1, v,==1 and v,=0. Then
SHIFT(v,-1) sets v,;=1, vo=0 and v,=1. Now if r and s are 0/1 valued varinbles, then res is simulated
by:

we()
if s==0 then wew-+1
r+0

if w==0 then rer+1
Now SHIFT(v,-1) can be computed in the usual fashion. Now then y+x/k can be computed by the follow-
ing segment of code:
"1"'1;"'5"1(-1*1; vk*{}; y+0
do x
if v;=0 then y+y-+1
SHIFT(v,-1)
end 8

The proof for Lg{iﬁBﬁ)—pragmms is similar. One merely allows the intcrmediate program (the use

of the additional instruction x+x=y. The rest of the theorem is the same.

Our next result conmsiders whether Ly(BB1 U {if})-programs can be converted into equivalent
L,(BB1}-programs. In [10] it was claimed without proof that this cculd be done in polynomial time.

6

However in [7], it was shown that this was only possible if PSPACE=PTIME. Thus the question of con-
vertibility seems to be in doubt. Here we provide an exponential algorithm. This result should be con-
trasted with the corresponding case for the set BDZ, where the addition of the *if*® construct provided an
increase in the computational power of the language.

Theorem 2. Let P be an L,(BB1 U {if}}-program. Then an equivalent L, (BB1)-program P’ can be con-
structed in exponential tinie {and space).

Proof. Without loss of generality we can consider P to be the program ®do t A end”, where only instruc-
tions of the form ®if x==0 then y+z® and "x+x-+1" appear in A and the variable t is not referred to in
A Let v,..,v, where each I, (1<j<m) is an
instruction. Let d, p; (1<i<n} and u be new variables.

be the only variables referred to in A and let A=l ;I |

First we construct a new segment of code A'==I;. ;T |

where each % depends on the form of Ej.
Case 1. Ij is "v;ev,+1" then IJ? is:

di <+ 1;

vo+ v+ 1;
Case 2. Ij is "if v,=0 then v v * then §§ 15:

u<«1;

if d;=0 thenu = G;

if u==0 then Vo* Vg

if u==0 then d_<d;

if u=0 then p, « p;

Difv, =0

If initially d; = { \ ! and py==i (1<i<n) the execution of A’ is equivalent to the execution of A with
1 otherwise T

respect to the outcome of the values of variables v ,...,v . The value of d; merely keeps track of whether

v is currently zero or positive {(1<ign). The p;’s keep track of the exchanges made among the variables.
The value of p; is j whenever the value of v; is derived from the original value of vy

Consider the form of A’ If there are k "if* statements in A’, then there are 2¥ computational paths

in A, since each conditional statement can either be executed or not depending on the truth of the con-
dition. We first note that the computational path taken upon the execution of A’ is entirely dependent on
the initial values of the d.’s and p;'s (1<i<n). This is the case since variables may only be exchanged and

increased. The p;’s keep track of the exchanges while the d,’s keep track of whether a variable is zero or
positive. (Note there is no way for 2 variable to decrease other then through an exchange.)

Let the settings of the d.'s and p;’s (1.<i<(n) be called the states of execution. The state at any time
then is <d,,...d;, py,-,p,>. (Note that there are on * pB op 922 108 140 geates of execution.) For any
initial setting of the d.'s where each p;=i, 1<i<(n, we can execute A’ 2 number of times in succession
until a state is repeated. This must occur before 2% * n" executions of A’. Let q denote the state which
gets repeated. Let I be the number of times A’ was executed before g appeared for the {irst time, and let
I, be the number of times A’ was exccuted after that until g reappeared. (Hence A’ was executed a total of

1t .
I + 1, times.) 1, times
Consider the execution of {A’}lzl\zA’;A’;...;A’} beginning in state ¢ and ending in state q. The com-

putational path taken upon execution is totally determined by q. Hence we can construct a segment of
code B, which contains only instructions of the form *x+y* and "x+x-+1% which is equivalent to (A’)lz

=

H

when executing on any initi! values of v,..v beginning in state q. The length of B is less than or equal
to the length of {A')2.

Define d-state {(<d,,..d,, g}l,m,pn>) = <d,,..d > and p-state {<dy,nd, pi,_‘_,pn>’} —
<Py Py Now for each possible initial state, q, where p-state (qh} = <<1,2,...,0>> {there are 2" such
Eh h
1

states, hence 1<h<2") we can find the respective constants and 13 denoting the number of executions

of A’ necessary until the first repeating state, say g, occurs and then reoccurs again, respectively. I'rom
{A’)}Q and gy, the code segment without *if* statements, B, is then constructed.

The program P’ can now be described. P’ is basically divided into three sections which perform the
initialization, the state determination and the actual simulation respectively. P’ then has the form:
P': Initialization
State determination
Actual simulation

The initialization segment is of length %)(nﬁ} and is composed of n segments of the instructions:
P+ i
di + 1;
if v, =0 then d; « 0;

for 1<i<{n.

The state determination segment is of length 0{n*2"} and is composed of 2" segments of the instruc-
tion:
if d-state (<d,....d , Dby >) == d-state {q,) goto label b

for 1<h<C2™.

The actual simulation portion is composed of the seginents labeled *label 1% through ¥label 27%.
There is also o label "end® at the very end of this section. The form then is:

fabel 1:

label 2

label 2°:

end:

The instructions at *label h* {1 <h<(2") are now described. Let wy, W, w, be new variables.

Tahel he o _ih.
label hi wy « s 1]

. {ih.
w, o+ wo/l

w, + rem(wy, Lo}

i |
(A
do w,
By

end

(AT}

goto end
The length of this segment is 0{m * 2° *). There are 0{2"} such segments in P'. The total length of P’
then is O(?.C1 log]), where I==length{P}.

Two things still need to be mentioned. First it should be clear from the earlier discussion that P and
P’ are equivalent. Second it is still perhaps not clear that P’ can be represented by a Li{{x*ﬁ, x+x+1,
x+y }}-program. In order to see that it can, the reader should consult [12], to see that integer division by a
constant and the remainder of an integer division by a constant can be computed by such programs. The
fact that such programs can simulate forward goto statements which are outside the scope of any do-loop
(and whose target is also outside the scope of any do-loop} is straightforward. ‘ 2

Next we consider the computational power of LﬁBBQ%progrmns when allowing the instructions
Pyec® and "y+y:1" to be conditionally executed, where ¢ can be any nonnegative constant. In our next
result we show that L, (BB2 U {if x=0 then y+c})*programs compute Presburger functions. For such a
program we construct a nondeterministic reversal bounded multicounter machine (hereafter CM) to in
some sense simulate the programs con}gaiatio?. If the program has m input variables and p output vari-

H H
ables then the CM will on input #3!3#.;.#a§§§f, accept if and only if the program on input ij,..i_
outputs im+1""’im+n' The result now follows from the results concerning nondeterministic reversal
bounded CM of [5]. See [5] for precise definitions. ‘

Theorem 3. Every L, (BB2 U {if x==0 then y+c}}program computes a Presburger function.

Without loss of generality we need only consider functions computed by programs of the form "do z
A end®, where A s an arbitrary sequence of instructions over BB2 U {if x==0 then y+c}. Using techniques
from [3], it can be shown that one can find a code segment BA {over the same set of instructions) that is
equivalent to A where the following is true. BA = ?3?*, E:;‘, where Bf‘ contains only instructions of the form
sx+y* and B;;} contains no instructions of the form "x«y®. Furthermore it is the case that no variable
appears on the left hand side of a statement in Bg‘ more than once. The construction of B can be ac-
complished in polynomial time in a straightforward manner and its details are leflt to the reader.

Define the function g:{set of variable names} x {set of code segments over BB2 U {if x=0 then
yec}} = {set of variable names}, as follows. Let B be a {possibly null) segment of code and z a variable
name:

glz, B; x+y) = [EW.B)ifx=
g{z,B) otherwise

glzh) = 1

2 - 3 I »
“Any constant can be substituted for . In fact each instance of such a statement can have a different constant.

Create the directed graph G with a node for each variable mentioned in BA, which contains the
edge u»v, if and only if g{%z,i?‘@}zs’: The reader can verify that G® is actually a collection of comnected
subgraphs G?,...,Gg where each subgraph {;‘::} 1=<i<m, has at most one cycle. The variables in (}f‘*gm
then be partitioned into two sets, those which are contained within the cycle which we denote as x.,...%;

1

and those not contained in the cycle which we shall denote o

€4

. },i

R S For case of illustration let the
1

statements, in Bf_;‘ of the form ¥if x==0 then y<c" be iabeled 1,....k. Let N be a constant greater than n;

and k; for 1<i<m [eg. N=1+ !!g‘i{ﬂini’ k,} will do). LetD=2*N¥ max{|B2|, max{the constants

used in B5}}.

We will construct a CM, M, that will {(in a2 way) simulate the program "do z BA end". If the

. i i)
program has m input variables and n output variables, then M will on input #a;#.‘.#agjnn#, accept if

and only if the program on inputs iy,..,i outpuls 1,0y,

M will have the following counters;

c<Cx 1,j> 1<i<<m, 1<j<n;
c<y 1> 1<i<m, 1<j<k,
e <X 1,],5,t> I<i<m, 1< t<n,, 1<s<<k

c<O> (the zero counter which is always set to zero),
each initially set to zero. In the finite state control of M there will be the following bulfers;

b<x,1,ij> 1<i<<m, 1<i<ny

b<y,i,i> 1<i<m, 1<j<k;

each capable of coptaining any binary number between zero and a constant d which we will determine
later. Also there are the following pointers {or indicatorsj;

p<x,Li> 1<i<m, 1<j<n,

1

p<y.Li> 1<i<m, 1<i<k;

PR |

 f

each capable of having a value denoting any of the aforementioned counters or the special value h. Thus,
it is possible for the value of p<x,i,j> {for some i,j) to be <x,1,},5t> {for some 1,j,8,t}, for example.

In addition, the finite state control contains the entities;

root<<{x,i,i> 1<i<m, 1<j<n;

B<xijst> 1<i<m, 1<jt<n, 1<s<k

Since the variables in a cycle can be switched about by instructions of the form "x<+y?", it is important to
the simulation which variable is operating under what name {or alias). Thus root<{x,i,j> ==t means that
X5 is acting for x;, on this pass of the loop. Also at this time p<x,ij> must equal <xit>, unless the
execution of a conditional statement has chuiged the value of a variable acting for i, earlier in the
simulation. In this case the value of p<{x,i,j> will either he <> or <x,ih,56>, where in the latler case
the variable acting for x;, at the time the aforementioned conditional statement was executed, was x;,. S0
at that time, root<{x,,h> was ¢t

B<x,i,j,5t> is 2 bounded counter, maintained in the finite state control, capable of containing any
pumber between zero and N. Before M simulates the loop of the program, the contents of B<Ix,1,],5t>
will be "guessed®. Let the statement labeled s be "if u==0 then Xjee If the initial value of B<x,Lis t>
is not N, the M has guessed that the statement labeled s will cause the variable Xy to be set to the value
¢, while root<<x,i,j> = t, exactly B<x,ij5,t> times. If B<{x,1],5t> is initially N, then M has guessed
the aforementioned conditional execution will happen at least N times and so M maust also "guess® {at a
later time) the last N times this action takes place. If we are only concerned with the final values of all
the variables then only the last N times the statement labeled s causes x;; to be set to ¢, for a certain
value of root<x,1,j> is of consequence. The other occurrences are i *}seriagsi only in determining which
conditional statements are actually executed (i.e. cause n variable to be set to a constant). But we shall
see that M need not remember the exact value of a variable to determine whether or not it will be zero at
any given time.
We will now describe the simulation performed by M, which can be viewed in three stages. In the

Ay

first stage M reads in the programs inputs and initinlizes M as follows:

1. p<x,i,j> and p<y.ij> are set to <x,ij> and <y.1j>, respectively {for appropriate values
of i and j}.

o

_b<x,i,j> and c<x,i,j> are set so that the input value of X is equal to the value in b<{x1,j>
plus the value in ¢<x,1,j>, in a way such that b<x1j> = min{2 * D, the input value of Xij}'

3. b<y,i,i> and c<x,1,j> are initialized similarly

Intuitively st each instant of the program’s execution the current value of variable Xy (yu} is at the cor-
responding instant in the simulation, the value contained in b<x,L,j> {b<y,i,j>} plus the value contained
in the counter indicated by p<x,i,i> {p<y,,i>} In reality this is not always the case, but it will be the
case that Xj; can only have a value of zero at some instant, in the program’s execution, if and only if at
the corresponding instant of the simulation x;; has the value zero. The second stage will simulate the
execution of the loop structure, which is the progmm If M has not rejected at the end of this stage, the
current values of each variable correspond exactly to their values when the program terminates. Hence the
third stage of M merely checks these values zgainst the corresponding ouiput va!ues given for the
program as input to M. If they match M accepts othe erwise M rejects.

We now deseribe the simulation performed in stage two. First 1 coples the value represented by the
loop control variable z, into a distinet counter {that is not mentioned above} to be used exclusively for the
number of iterations of the loop. The value of root<{xi,j> is set to |, 1<<i<m, 1<j<{n;. A value between
zero and N, inclusive, is "guessed® for each B<x ij,5,0>, 1<i<m, 1<{s<k, 1<jt<n,

The simulation is then performed instruction by instruction us follows depending of course on the
type of instruction involved.

ue v The contents of the buffer, pointer and root for the variable v are copied
into the respective locations for variable u {(if they exist).

ey
hort

w4+l The buffer for variable u is incremented by 1 unless the buffer contains
the value d {ard the pointer value is)) in which case do nothing.

is decremented.

fet
4
o
19
=]
el
o
o
o
oo
e
sy
o
g
i
&
ot
G
=
&
et

st if u== 0 then x;; + ¢ The buffer for variable u is checked for zero. If it is not zero then do

nothing. If it is zero the following steps are performed.

(1) b<x,ij> isset toc
{(2) if b<x,pjx root<xj>> =0 then reject;

/* M has previously "gucssed” that the conditional statement s will not
alter Xi; again for this value of root<{x1j>. However, since the simula-
tion now requires this action, M has *guessed” incorrectly. Hence M
must reject. ¥/
{3} if b<lx,ijsroot<xij>> = N thea do

either

sef p<x 1L,i>> to A

/¥ Here M "gucsses” that during the simulation there will be at least N
more times when statement s alters X for this value of root<x,i,i> */

or
set p<x,i,i> to <x.1,j5 root<lx1Lj>>,
decrement B<x,1,i,8,ro0t<Cx,1,j>> > by one and
reset ¢ << x,1,},8, 100t <X 1] > > to zero.

/¥ Here M has previously “guessed® that this is the
B<i.j,s root<x,1,j> > -th to the last time statement s will alter x;. for
o

s: if u==0 then Ve The buffer for variable u is checked for zero. If it is not zero then do
nothing otherwise perform the following.

{1) b<yii> isset toc.
{2) p<y i1j> is set to <O>.

/¥ No variable will depend on the exact value of this variable after the
next k; passes, hence the buffer is sufficient to hold this value. *f

After M simulates cach pass of the loop the following is deme, for each variable X3 whose root is j

(i.e. root<x,,}> =). {This will happen to all varizbles in a cycle at the same time.) Consider all vari-

ables whose pointer contents are egual to those of p<Ix,i,j>>. The reader should note that the current
value of any two of these variables can differ by at most D, {unless p<x,i,j> is A}. The counter pointed
to by p<x,i,j> and the buffer b<lx,i,j>> are adjusted so that their combined value is the same but that
b<x,i,j> = min{2*D, the current value of Xij}' Note that this step appears to require a counter reversal.
We will show later that this is not the case, For any other pointer p<{y,i,i> that poinis to the same
counter {other than)}, changes are made to b<<y,ij> reflecting the change. These values are not so
important, since within the next N passes of the loop, they will be replaced. Also since they differ in value
by at most D from the current value of Xij this just entails updating the correct buffer.

Now we wish to make the following claims:

1. M is reversal bounded for the constant d = 4 * D.

j)

. That upon termination of the simulation of the loop {stage two), whenever M has not already
rejected and B<x,List> = 0, 1<i<m, 1<{s<k, 1<j,t<n;, that the linal values of X5 and
¥; ean be obtained by addition of the respective buffer and the counter indicated by the
respective pointer.

We first must consider what ¢ranspires during a pass of the loop. The name of a variable is mislead-
ing due to the exchanges in B";\ The root<x,i,i> keeps track of exactly what variable X represents with-
out regard to the variable being set to a constant by a conditional statement. Whenever root<x,i,j> == j
the loop has been exccuted 0 mod n; times. The reader can show that from one time this is true to the
next the value of X5 will always increase or always not increase. The only exception to this is when 2
conditional statement affected the value of x;, at a point in'between at a time when root<x,it> =
j. Hence if d is large enough to hold any changes to X5 for n; passes the only counter reversals necessary
will be caused by the simulation of conditional statements. But the execution of each conditional state-
ment causes either the use of a new counter or the reversal of a fixed counter no more than N times.
Hence M is N reversal bounded.

1t is the case, however, that when root<x,i,j>> == } that some pointer p<y,r,s> might be the same
as p<x,ij>. {The reader should note that this is not possible for another x variable in the cycle, unless
the value of p<x,i,j>> is X.) If this is the case the reader can show that the ourrent values of the respec-

tive variables can differ by at most 2 * N ¥ |B%}, which is less than D.

Now the simulation of the program is faithiul except when a variable, say Xp is set to o constant by

one of the conditional statements, and p<{x,1,1>> 1s set to . Even in this case the simulation of all vari-
ables which utilize this value will be simulated faithfully until the value exceeds 4¥D. Now if such 2 vari-
2ble belongs to a cycle {which it must), and it is not reset by another conditional statement, then the
value must have increased since it was last reset. Thus ‘he value must increase during n; passes of the
loop. The reader should be able to show that any variable {either in or out of the cycle) which utilizes this
value can never again be zero {when utilizing this value}, unless another conditional statement intervenes.
Thus the execution of the conditional statements depending on the value of these variables will be {aith-
fully simulated in spite of perhaps not *knowing® the exact values.

Lastly, the reader should note that the final value of a variable can depend not only on the faithful
execution of the conditional statements, but that value itself may actually only depend on the execution of
a conditional statement, Inbeled 1, which either:

1. changes the value of a variable ¥ and the computation ends after at most k; passes. Hence
the final value of the variable in question is less than d.
or

2. changes the value ol 2 variable X5 However, for the final value of apy variable to depend on
this it must be the case that this change caused by statement | mny happen at most N-1 more

times for the same value of root <x,1,j>.

But these are exactly the cases where a counter is keeping track of the exact value. Hence the final values
3

are correct, whenever the last N such times are "guessed"” correctly.

Now it is the case that if M either does not "guess® the last N {or fewer) times such a conditional
statement sets a variable, M rejects. Note that M will terminate the sccond stage {without rejecting) with
only a unique set of final values for the variables, which can be reconstructed from a variables buffer and

the counter indicated by the variables pointer.

This result should be contrasted with the result in [9], showing that L,(BB2 U {if x==0 then y<y-+1})
is strictly more powerful than L (BB2). If both constructs, #if x==0 then y+c* and "if x=0 then y+y-1"
are concurrently considered it is easy to show that L (BBZ U {if x=0 then y<«c, if x=0 then y+y=1}} is
computationally equivalent to L,(BB2 U {if x=0 then y+y+1}), since the instruction "if x=0 then
y+y+1% can be simulated by the following sequence of instructions from BB2 U {if x=0 then y+c, if x=0
then yy1}:

.

w e {
ﬁx:{)thenw*i
yey +1

i_{w:()theny+y41,

where w is a new variable. (The converse was shown in [9].} Unfortunately we have been unable to resclve
the computational power of L {BB2 U {if x=0 then y+y:1}). The "if x==0 then y+y:1" construct seems
similar to the "if x==0 then y+y+1* construct, but as pointed out in [7] functions of one variable com-
puted over BB2 U {if x==0 then y+y:1} are monotcnic. Thus the proof techniques used in [9] {as well as
those presented in the last theorem) do not seem to work with this language. This same problem arose in
[7], where the authors were able to show that the O-evaluation problem for this language is PSPACE-

complete.

[
i

3. L(BB)-Programs

In this section we consider other problems that arose with the claims in [10]. In [10] the following
eleven primitive instructions were allowed. In what follows, the sccomnanying abbreviations are used in
place of the instructions.

Assignment Statement Abbreviation

(I}x<«0 0 {the constant zero)
(2)x+y id {the identity operator}
Byxex+1 suce (successor)
(4)x+ex=1 pred (predecessor)

{5} x + suce¥(x) suce? {the y'P successor)
{6} x + pred¥{x) pred” {the y*? predecessor)
(7} x « max(y,z) max

(8) x + minfy,a) min

Q) x+y+z +

(10)x+y=2 2

(11) if x=0 then A else B if

The following are theorems given in [10] along with cur accompanying comments. The numbering of
the theorems corresponds to that in [10] {e.g. Theorem 114 in this paper corresponds to Theorem 4 in
Section 11l of [10]). To make the potation less cumbersome the set brackets have been dropped in express-
ing the sets BB, of primitive instructions.

Theorem IIL1. Let v be any subset of {id pred succ¥,pred” max,min,+2,if}. Then for all i>3,
//C ™y

e
where the degree of the polynomial translation depends on v and never exceeds 2.

Li({),succ} L,{0,suce,v),

Comments:

This is not true when the operation of "+% is in 7. For a proof sce Section 3 of [7].

Theorem IIL2. Let 77, and 7, be non-empty subsets of {idjpfed;SUCcy9pred3",max,min,+,=’if}_ Then
TN Vi

) L,(0,succ,y L, ﬁ,succqg},

\//

Ly(0,5uce 4 ol
N

where the degrees of the polynemial translations depend on 7, and 7,, but never exceed 2.

o
(gl

Comments:

This is not true for all possible choices of 7, and 7,. Ior example it is not true when v, = {id} and

B3

= {id,+}. For a proof see Section 3 of [7]. The above theorem also states that Lo

s 0,succ)
~=;/° LQ(O,succ,qi) for any nonompty 7. Although the result seems likely we have been unable to prove this

result and would like to see more details.

Theorem II1.4.
Ly(0,suce.pred)

in
L&O,sucv,ps‘cdéd}

3,

N

Q

&
/ N\

/ N
LO(O,succ} Lgiﬁ,sscc,preé;if}
rln \ /E Tin
Ly(0,succ,id) / Lg{0suce,pred,if)

i\ %

\ /

\ /
L,(0,suce,if)
tin

LO(O,szscc,id,%f}

1

Again here, if an omitted arrow is not obtainable by composition from the arrows in the diagram, then it
is a case of non-translatability.
Comments:

This theorem has {wo basic errors in the diagram. The following two translations are claimed.
-~ C
~

/ X
LQ(O,succyif} K y Léﬁ,saacﬁd?éf}

LO{O,succ,pred,if}k\ y E;Q{{B,suﬁc,@zed,id,if}
R

The first is false since an Lg(0suce,if}-program over inputs x,,...,%, computes a function f{x,,...,%;}

= cx; + d, where ¢ is 0 or 1, 1<i<k is fixed for 2 given program, and d belongs to a finite set of integers.
It follows that such a program cannot compute the function f{x,y,2) = {‘; i"g The function { can clearly
be computed by an LG(G,SGC{‘,Mtii‘}—ymgmm, however. The second fails for a similar reason.

To finish the diagram it can be shown that Lg{0succ,id,if)-programs 2nd
LO(O,succ,pred,id,if)—pmgmms are incomparable and that LQ{&suce,pred,%d,if}«programs are more powerful
than LO(O,succ,id,if)-progr&ms*

Let f,,f,,..., be number-theoretic functions. The class of all functions obtained through composition
from f,f,,..., will be denoted by: [fy:f0,]

For the next theorem we need to define special functions 0%, uf} [./k], and w:
on(xx,...,xu} ==)
ﬂ?(xl,,..,xn} = x;, with 1<i<n;

[x/k] = integer division of x by constant k;
w(xl’x‘z) 2 {Xl, if XQ ==
0,if x, £ 0.
Theorem IV.1. We have the following algebraic characterizations:

(3) L,(0,5uce,pred,if) = [o" ull suce,w + 2,1 fk]].

Comments:

This was shown to be in crror in [9]. If we substitute Ll(ﬂ,sucs,pred,id} for Ll{O,succ,pred;if) then
the theorem is true. In fact this was shown in [3] (see also [1,2,6}).

Theorem V.1. Let v be any subset of {0,id,succ,pred,suce’ pred? ;meaxmin,+ 5}, Then for all i>2, the
equivalence problem of Li{{,).suca,“;'} is recursively unsolvable
Comments:

This theorem says that the equivalence problem for Lz{{},succ) is unsolvable. We have been unable to
show this result ourselves and would therefore like to inquire about the details.

Theorem V.2. Let P, P'cL (0,succ) and [P| and [P] be the respective lengths of P and P’. Then whether
P is equivalent to P’ is solvable in time proportional to [P| + [P’]; that is, the equivalence problem of
L,(0,succ) is solvable in linear time.

Comments:

For such programs over n-inputs, the problem can easily be seen to be NP-hard {use a reduction
from satisfiability).

17

Theorem V.5. The equivalence problem of Liiﬂ,succ,prcd,id}»an(i thus, by Theorem 113, that of
Ll((},succ,pred,if) and that of Ll(O,succ,pred,id,i{) too--are cach solvable im time exponential in the time
required by the decision procedure for Presburger arithmetic. (Proved by reduction to Presburger
arithmetic.)

Using the best known bound for a decision procedure of Presburger arithmetic, the time complexity
of the procedure in Theorem V.5 is:

Le(PHHPD
Of22).

Although this complexity makes the decision procedure impractical, it improves by one exponential level a
similar result in Cherniavsky [1]. The next result shows that, if this beund can be improved further, then
it cannot be improved by more than one additional exponential level.

Theorem V.6. The problem of deciding the truth of Presburger formulas is polynomially reducible to the
equivalence problem of Ll((),succ,pred,id). {(Proved by using the characterization of part {3} in Theorem
.1

Comments:

The discussion between Theorems 5 and 6 is also taken from [10]. Due to the errors in Theorem
1113 this theorem needs to be recomsidered. {The portion of Theorem 1113 referred to here claimed that
Ll(O,succ,pred,id)—programs and Ll(O,smc,pred,id,if}-programs computed identical classes of functions.) In
[9] it was shown that if 2 function is computable by an 0{n) space bounded TM that runs in 0{2*") time,
for some A< 1, then the function is also computable by an Ll(pred,g x==0 then y+y~+1)-program. It follows
that the equivalence problem for LI(O,succ,pred}if) {and Li(i},s&cc,pred,id,if)) is undecidable. Also note that
Ll(O,succ,pred,if) is equivalent to the language UL in [3]. Then Theorem 14 of [3] is exactly this result.
The discussion following Theorem 5 also needs attention. The bound mentioned can be improved by 4
levels of exponentiation (see [3}}, and thus Theorem 0 i3 in error.

Other incorrect claims appear in [10], but they precipitate from those already mentioned. A full
accounting can be found in 18]

i&

References

[1] Cherniavsky, J., Simple Programs Realize Exactly Presburger Formulas, Siam J. Comput., 5
{1976}, pp. 666-677.

[2] Cherniavsky, J. and Kamin, S., A Complete and Consistent Hoare Axiomatics for a Simple
Programming Language, J. ACM, 26 {1979), pp. 119-128.

[3] Gurari, E. and Ibarra, O., The Complexity of the Equivalence Problem for Simple Programs,
JACM. Vol. 28, No. 3, July 1981, pp. 535-560.

[4] Gurari, E. and Ibarra, O., The Complexity of the Equivalence Problem for Two Characteriza-
tions of Presburger Sets, Theor. Computer Science, 13 (1981} pp. 295-314.

[5] Ibarra, O, Reversal-Bounded Multicounter Machines and their Decision Problems, J. ACM,
Vol. 25, No. 1, January 1978, pp. 116-133.

[6] Ibarra, O., and Leininger, B., Characteristics of Presburger Functions, STAM J. Comput., Vol.
10, No. 1, February 1981, pp. 22-39.

[7] Ibarra, O., Leininger, B. and Rosier, L., The Complexity of Evaluating Simple Programs Over
Different Sets of Primitives, University of Minnesota, Department of Computer Science, Tech.
Rep. No. 82-10 {1982}

[8] Ibarra, O. and Rosier, L., Some Comments Concerning the Analysis of Simple Programs over
Different Sets of Primitives, University of Minnesota, Department of Computer Science, Tech.
Rep. No. 82-10 {1982).

[9] Ibarra, O. and Rosier, L., Simple Programming Languages and Restricted Classes of Turing
Machines, to appear in Theor. Computer Science.

[10] Kfoury, A., Analysis of Simple Programs Over Different Sets of Primitives, 7th ACM
SIGACT-SIGPLAN Conference Record, 1980, pp. 56-61.

[11] Meyer, A. and Richie, D., The Complexity of Loop Programs, in Proc. 22nd Nat. Conf. of the
AC'M, Thompson Book Co., Washington DC, 1967, pp. 465-469.

[12] Tsichritzis, D., The Lquivalence of Simple Programs, J. ACM 17, 4 {Oct. 1970), pp. 729-738.

