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ABSTRACT

Many communication protocols can be observed to go through different phases
performing a distinct function in each phase. We present a multi'p_hase model for such
protocols. A phase is formally defined to Be a network of communicating f{inite state
machines with certain desirable correctness properties; these include proper termination,
and freedom from deadlocks and unspecified receptions. A multifunetion protocol is
constructed by first constructing separate phases to perform its different functions. We
show how to connect these phases together to realize the multifunction protocol such
that the resulting network of communicating finite state machines is also a phase (i.e., it

possesses the desirable properties defined for phases).

The modularity inherent in multiphase protocols facilitates not only their construction
but also their understanding and modification. We found an abundance of protocols in
the literature that ean be constructed as multiphase protocols, Three examples are

presented herein: two versions of IBM’s BSC protocol for data link control and a token

ring network protocol.

Categories and Subject. Descriptors: B.4.4 [Input/_Output and Data
Communications]:  Performance Analysis and Design Aids - formal models,
vert fication; C.2.2 [Computer-Communication Networks|: Network Protocols -
protocol architecture, protocol werification; D.1.1 [Programming Techniques):
Concurrent Programming; D.2.2 [Software Engineering]: Tools and Techniques -
modules and interfaces, structured programming; D.2.4 [Software Engineering]:

Program Verification - correctness proofs, validation.
General Terms: Algorithms, Design, Theory, Verification.

dditional Key Words and Phrases: Communication protocols, “protocol design,
modularity, data link control, BSC protocol,\ﬁ)ken ring protocol, multiphase protocols,

Vﬂroper termination, deadlock freedom,. communicating processes, finite state machines.
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1. Introduction

A layered communications architecture facilitates the construction of networking
software in a modular fashion. Nevertheless each protocol layer is a set of complex
parallel programs. Several distinet functions can usually be identified among the tasks
designated for a protocol -layer to perform. For example, a data link control protocol
may be thought of as having at least three functions: connection management and one-
way data transfers in opposite directions. In both the analysis and the construction of
protocols, however, it is preferable tc_). think about the individual ‘functions of a
multifunction protocol one at a time. In fact, most protocol analyses published in the
literature have been illustrated with single-function protocols. For examples, both the
alternating-bit protocol analyzed by Bochmann [4] and Stenning’s protocol analyzed by
Stenning [31] and Hailpern and Owicki [17] are concerned with a one-way data transfer
function only. The protocol analyses of Kurose and Yemini [20] and Razouk [27] are

concerned with the connection management function only.

Of interest to us are methods for reducing the analysis/construction of a
multifunction protocol to the analysis/construction of smaller single-function protocols.
Lam and Shankar [21] presented a method for constructing "image protocols” from a
given multifunction protocol. An image protocol is an abstraction of the original
protocol but is specified like any real protocol. It is comstructed to preserve all safety
and liveness properties of the original protocol concerning one of its functions. Thus,
their method reduces the analysis of a multifunction. protocol to the analyses of several
smaller single-function protocols. An application of their method to verify a version of

the HDLC protocol is presented in [30].

This paper is concerned with the construction of a multifunction protocol from 2
composition of single-function protocols. In general, this is a difficult problem.
However, many real-life protocols can be observed to go through different phases of
behavior. In particular, these protocols go through their phases one at a time with a
distinct function performed in each phase. For protocols characterized by this model of

-multiphase behavior, the following three-step, methodology for = constructing =



multifunction protocol is proposed:

(1) Divide the protocol’s functionality into separate functions.

(2) Construct and verify a phase to perform each such function. (A phase, to be
- formally defined in Section 3 below, is a4 network of communicating finite
state machines that satisfies certain general properties of correctness,
including proper termination, and freedom from deadlocks and unspecified
receptions.)

(3) Connect individual phases together to form the required protocol. - The
resulting protocol should satisfy the same general properties of correctness as
the individual phases.

Step (1) of the above methodology is straightforward; a protocol’s functions can
often be divided quite naturally. For example, a half-duplex data link control protocol
such as IBM’s BSC protocol has three distinet functions [18,22]: a call setup function, a

data transfer function, and a call clear function.

To carry out step (2) of the methodology, there are two basic apprbaches.. In the
first approach, each phase is constructed based on the designer’s knowledge and -
- experience. It is then verified using available verification' techniques, e.g., the
reachability analysis techniques of Bochmann {4], Rubin and West [28], Yu and Gouda
[33,34], and Gouda and Yu {16], the proof methods of Good [12], Hailpern and Owicki
[17], and Misra and Chandy [24,25], the symbolic execution method of Brand and
- Joyner [2], ete. If an error is found in a phase, the phase is modified and the
verification repeated. .This procedure goes on umntil a provably correct phase is
obtained. In the second approach, éach phase is constructed according to some design
rules that automatically result in correct phases. See, for examples, Bochmann and

Sunshine {5], Zafiropulo et al. [35], Merlin and Bochmann [23], and Gouda and Yu {15].

Step (3) of the methodology has received little attention so far, although both
Razouk and Bstrin [26] and West and Zafiropulo [32] observed that many errors in a
protocol are caused by improper conmnections between different phases of the protocol.
In this paper, we formally characterize the concept of a phase, and present 3

methodology to carry out step (3). We shall also de_moﬁsﬁrate how some realistic




protocols can be constructed (and understood) using the three-step methodology.

The model of communicating finite state machines has been used successfully to
model and analyze many existing protocols [4,14,26,32]. For simplicity, our results will
be developed using such a model, although these results can be extended to other

models as well.

This paper is organized as follows. In Section 2, the model of communicating
finite state machines is presented. The concept of phases is formally defined in Section
3. The modeling of errors and timeouts is discussed in Section 4. Our method for
constructing multiphase protocols is presented in Section 5; the construction method
guarantees that the resulting multiphase protocol terminates properly and is free from
deadlocks and unspecified receptions. In Section 8, we discuss a sufficient condition for
multiphase protocols to be bounded. A version of IBM’s BSC protocol for data link
control [18,22] is used as a running example in Sections 3, 4, 5, and 6 for illustration.
In Sections 7 and 8, we present two multiphase protocdi examples, nain-ely a token ring
network protocol [1] and a modified BSC protocol with fair call connection. The
advantages of our construction methodology are discusséd in Section 8, and concluding
remarks are in Section 9. In Appendix I, we present the method of closed covers that‘
can be used to verify that a network of communicating finite state machines satisfies

“the properties of a phase. Proofs of all our theorems are in Appendix II.

2. Networks of Communicating Finite State Machines _

A communicating finite state machine M is a directed labelled graph with two
types of edges, namely sending and recez'bz'ng edges. A sending {or receiving) edge is
labelled -g (or +g, respectively) for some message g in a finite set G of messages. A
node in M whose outgoing edges are all sending (or all receiving) edges is called a
sending (or recesving, respectively) node. A node in M whose outgoing edges include
both sending and receiving edges is called a mized node, and a node in M that has no
outgoing edges is called a final node. One of the nodes in M is identified as its initial

node; and each node in M is reachable by a directed path from the initial node.



Let M and N be two communicating finite state machines with the same set G of

messages; the pair (M,N) is called a network of M and N.

A state of network (M,N) is a four-tuple [v,w,x,y], where v and w are nodes in M
and N respectively, and x and y are strings over the messages in G. Informally, a state
[v,w,x,y] means that the executions of M and N have reached nodes v and w

respectively, while the input channels of M and N store the strings x and y respectively.

The initial state of network (M,N) is [vy,wo,E,E] where v, and w,, are the initial

nodes in M and N respectively, and E is the empty string.

Let s=={v,w,x,y] be a state of network (M,N); and let e be an outgoing edge of
node v or w. A state s’ is said to follow s over e iff exactly one of the following four

conditions is satisfied:
e e is a sending edge, labelled -g, from v to v’ in M, and s'={v’,wx,y.g], where "."
ris the concatenation operator.

e ¢ is a sending edge, labelled -g, from w to w’ in N, and s'=[v,w’x.g,y].

e e is a receiving edge, la.belled +g, from v to v’ in M, and s'=[v’,w,x’,y|, where
X=g.x’.

¢ eisa recelvmg edge, labelled +g, from w to w’ in N, and s'=[v,w’x,y’], where
y=g.y'.

Let s and & be two states of network (M N), s follows s iff there is a directed

edge einMor N such that s’ follows s over e.

-Let s and s’ be two states of (M,N), s’ is reachable from s iff s=s’ or there exist

S LE P ' \ p— _
states s;,...,8_ such that s==s8,, 8'=s_and s 41 follows s, for i=1,...,r 1

A state s of network (M,N) is said to be reachable iff it is reachable from the
initial state of (M,N). Next, we use the concept of reachable states to define what it

means for the communication of a network (M,N) to terminate properly and to be free




from deadlocks and unspecified receptions, and to be bounded.

The communication of a network (M,N) is said to terminate properly iff the

following two conditions are satisfied:

e For any reachable state [v,w,x,y] of (M,N), if v is a final node of M, then x must
be the empty string and there must be a directed path of all receiving edges from
node w to a final node w’ in N, such that the string v is received.

e For any reachable state [v,w,x,y] of (M,N), if w is a final node of N, then y must _
be the empty string and there must be a directed path of all receiving edges from
node v to a final node v’ in M, such that the string x is received.

A reachable state [v,w,E,E| of (M,N) is called a proper terminating state iff both node v

and w are final nodes.

A reachable state {v,w,x,y] of a network (M,N) is a deadlock state iff (i) both v
and w. are receiving nodes, and (ii) x=y==E (the empty string). If no reachable state of
network (M,N) is a deadlock state, then the communication of (M,N) is said to be
deadlock-free. ' : o ‘ S

A reachable state [v,w,x,y] of a network (M,N) is an unspeci fied reception state iff
one of the following two conditions is satisfied:

¢ X=E Lo e B (k>1), and v is a receiving node and none of its outgoing edges is
labelled +g;.

¢ V=8,.8g: +r By (k>1), and w is a receiving node and none of its oﬁtgoiﬁg edges
is labelled +g,. ' :
If no reachable state of (M,N) is an unspecified reception state, then the communication

of (M,N) is said to be free from unspecified receptions.

The communication of a network (M,N) is said to be bounded by'K., where K is a
nonnegative integer, iff for every' reachable state {v,w,x,y] of (M,N), |x|<K and |y|<K
where [x| is the number of messages in string x. The communication is said to be

~ bounded iff it is bounded by some nonnegative integer K; otherwise it is unbounded.



3. Phases
Let M and N be two communicating finite state machines. The network (M,N) is
called safe iff its communication terminates properly and is free from deadlocks and

unspecified receptions.

Let (M,N) be a safe network, and let v and w be two final nodes in machines M
and N respectively. The node pair (v,w) is called an exit node pasr of (M,N) iff the
state [v,w,E,E] of (M,N) is reachable.

The exit set of a safe network (M,N) is the set of all exit node pairs of (M,N).

A safe network (M,N) is called a phase iff every final node in M or N appears in

exactly one exit node pair in the exit set of (M,N).

Is it decidab‘_le' whether an arbitrary network is a phase? In general, the answer is
negative as discussed by Brand and Zafiropulo [3]. However, the problem can be
decided in some special cases: For instance, if the communication of the given network
(M,N) is bounded, then the problem can be decided by generating and checking all the
reachable states of (M,N). Further, we discuss a te.chni'Que in Appendix I that can be
used to verify that a given network is a phase even if the number of its reachable states

is infinite. The technique is based upon the concept of closed covers of Gouda [13].

Example 1 (A Call Setup Phase): Consider the two communicating finite state
machines M1 and N1 in Figure 1; they model the call setup procedure in the BSC
protocol [18,22}: M, models the primary station, N, models the secondary station, and

the messages have the following meanings:

ENQ denotes an "enquiry" message.

ACKG .denotes an "affirmative acknowledgement" message.
NAK denotes a "negative acknowledgement" message.
WACK denotes a "temporarily not ready to receive" message.

Starting from node 1, if M1 wants to set up a eall with Nl,'it sends an ENQ

message to N; and waits at node 3. There are four possibilities:




e N, accepts the request with an ACKO message; then each of M and N reaches
1ts final node 7, and exits the Call Setup Phase.

¢ N, rejects the request with a NAK message; then each of M, and N, returns to
node 1.

e N, replies with a WACK message, asking M, to try again later, then each of M,
and N, returns to node 1. ' '

¢ M, receives an ENQ message Thls is a message colhslon situation 1mply1ng that

both machines want to set up a call. In this case, accordlng to the BSC protocol,
the primary M, .is given priority to set up its call, and the secondary N; has to

relinquish its request and decide whether or not it is ready to accept the call from
M

. 1'_
To show that the network (MPNI) is a phase, it is sufficient to prove the

following three propositions:
i. The communication of (M|,N,) terminates properly.

ii. None of the reachable states of (M;,N,} is a deadlock state or an unspecified
reception state.

iii. The exit set of (M;,N,) is {(5,5),(6,6),(7,7)}, where each final node in M, or
N, appears exactly once.’ ' ‘
These three propositions can be pi'oved by generating and examining all the reachable
states of network (M,,N,); there are 32 of them. Alternatively, we can prove that
((M,Ny) is a phase using the closed cover technique in Appendix I: It is straightforward
to show that the set {[1,1,E,E],[5,5,E,EL(6,6,E,E], [7,7,E,E]} is a closed cover for the
network (Ml’Nl)’ hence (M,N,) is a safe network by Theorem Al of Appendix I. It is
also straightforward to show that this closed cover satisfies the condition in Theorem A2

of Appendix I; therefore (M,,N,) is a phase.

Example 2 (A Data Transfer Phase): Consider the two communicating finite
state machines M2 and N, in Figure 2; they model the data transfer procedure in BSC:

M, models a sender, N2 models a receiver, and the.messages have the following



meanings:

D denotes a data message.
ACKO denotes an "affirmative acknowledgement zero" message;
it is used to acknowledge the reception of an odd-numbered message.
ACK1 denotes an "affirmative acknowledgement one" message;
it is used to acknowledge the reception of an even-numbered message.
ENQ denotes an "enquiry" message. :
WACK denotes a "temporarily not ready to receive® message.
RVI denotes a "reverse interrupt” message.
EOT denotes an "end of transmission* message.

“Er is a special message that models a corrupted data message.
Ls is a virtual message that models a message loss.

Tm - is a virtual message that models a time-out occurrence.

Starting from node 1, the sender M2 can send a data message to the receiver Ny; it

then waits at node 2. There are three possibilities:

The data message is correctly delivered: This is modeled by M, sending a data
message D. The receiver acknowledges the reception with an ACK1 message; then
the sender and receiver will each reach node 3. At node 2, the receiver may

request the end of transmission by sending back WACK or RVI instead of ACK1.
We discuss this feature later.

The data message is corrupted: This is modeled by M, sending a corrupted

message Er. The receiver indicates this data corruption W1th an ACKO message;.

then the receiver and sender will each return to node 1

The data message 18 lost: This is modeled by M sending a virtual message Ls

and the receiver sending back a virtual message Tm. (The reception of Tm
models the occurrence of a timeout event in the sender. These messages are not
transmitted or received in reality.) The sender then sends an ENQ message to
the receiver. The receiver responds with ACKO since the data message has not
been received. When the sender gets ACKO, both the sender and receiver are
back at node 1.

The above mechanism models the delivery of odd-numbered data messages. Delivery of

even-numbered data messages starts at node 3 in M,. The mechanism is similar to the

above except that ACKO is used to acknowledge the correct dehvery of the data

message, while ACK1 is used to acknowledge a message corruption.

3
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After delivering its data messages, the sender M, (at node 1 or 3) can send an
EOT message (indicating an end of transmission) to the receiver N,; both sender and

receiver will then exit the data transfer phase.

There are two ways by which the receiver can request the sender to terminate its
transmission; one is via sending WACK messages; the other is via sending RVI
messages. The difference between using WACK and RVI messages is as follows. By
repeatedly sending WACK messages, the receiver prevents the progress of data
transmission, and eventually forces the sender to send EOT. On the other hé.nd after
sending RVI, the receiver is still ready to receive the next data messa.ge from the sender,

and the data transmission ean ‘still proceed effectlvely

- To show that network (M,,N,) is a phase, it is sufficient to prove the following

three propositions:

i. The communication of (MZ,N2) terminates properly.

ii. None of the reachable states of (M,y,N,) is a deadlock state or an unspemfied _
reception state.

iii. The exit set of (M,,N,) is {(9,9),(10,10),(11,11),(12,12)}, where each final
node in M, or_N2 appears exactly once.
These three propositions can be proved by generating and examining all the reachable
states of (M,,N,); there are 40 of them. Alternatively, we can prove that (M,,N,) is a
phase using the closed cover technique in Appendix I: It is straightforward to show that

the following set is a closed cover for (Mg, N, ):
{[1,1,E,E],[2,2,E,E],[2,14,E,E],[2,13,E,E],[9,9,E,E],[3,3,E,E],[5,3,E E],
[5,7,E,E],[7,7,E,E},[5,1,E,E;[4,4,E,E|,[4,16,E,E],[4,17 E,E],[11,11,E,E,],
(2,6,E,E],2,16,E,E],[2,17 E,E},[2,15,E,E},[10,10,E,E],[2,5,E,E],[6,1,E,E],
8,8,E,E],[6,8,E,E],6,3,E,E],[4,5,E,E],[4,13,E,E],[4,14,E,E|,[12,12,E E],
[4,18,E,E],[4,6,E,E]}.

Moreover, this closed cover satisfies the condition in Theorem A2 of Appendix

I. Therefore, (Mz,Né) is a phase.

Example 3 (A Call Clear Phase): Consider the two communicating finite state
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machines M3 -and -N3 in' Figure 3; they model the call clear procedure in BSC. It is

trivial to show that (Mj,N,) is a phase and that S,={(2,2)} is its exit set.
_ : O

Examples 1, 2, and 3 show the three basic phases of the BSC protocol for data
link control. In Section 5, we will show how to connect together five instances of these

three phases to form the BSC protocol.

4. Modeling Errors and Timeouts | N

In the phases presented in Section 3, we have followed a peculiarity of the BSC
protocol and ass'umed. that only data messages, but not control messages, can be
corrupted or lost by the communication channels. In fact, BSC control messages are
very short, consisting of one or two control characters, and do not even have CRC
checksums for error detection [18]. (This is often cited as one of the weaknesses of BSC
(22].) The BSC manual does not specify recovery procedures for handling corruption or
loss of control messages. Since the intent of these examples is to illustrate the
multiphase protocol model, we decided to present them as they are described in the

manual and not to add our own versions of recovery procedures to them.

In general, if messages received can have undetected errors, there is no good
- recovery procedure that we are aware of. If errors are always detected, timeouts ean be
used to recover from the loss of messages due to errors. In the data transfer phase
presentedin Section 3, we use virtual messages to model (simulate) the logical behavior
that a timeout for a data message occurs only if the message (or its acknowledgment) is
lost. This same trick can be extended to specify BSC phases that include timeouts for
recovery from the loss bf control messages; iril this case, the finite state machines shown

in Figures 1, 2 and 3 would be substa.ntially' i-a_,r:ger.

- Timeouts modeled as described above are said to be nonpremature timeouts. In a
recent technical report, Joseph, Raeuchle and Toueg [19] employed essentially the same
idea as ours to model nonpremature timeouts. Their model also allows the occurrence

- of premature timeouts. However, they found that an alternating bit protocol can be
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proved correct only if timeout occurrences are always nonpremature. Instead of
simulating the oceurrences of timeouts, Shankar and Lam [29,30] model timers and
clocks explicitly in distributed systems. Given timers and clocks, timeout events and

real-time constraints of protocol systems can be specified in a straightforward manner.

8. Constructing Multiphase Networks

In this section we discuss a discipline to connect a number of phases together to
construct a multiphase network that is also a phase .(t]ius gu.aranteeing that its
communication terminates properly and is free from deadlocks and unspecified
receptions). Phases are connected by joining the exit node pairs of one phase to the

initial node pair of another phase, or the same phase.

- Let p,=(M,;,N,) and Po=(M,,N,;) be two phases, with exit sets S, and S,
respectively, and let C be a subset of of 'Sl. We define a compositq network of Py G,

and p,, denoted by <p;sC;py>, to be the network (M,N) where

¢ M is the communicating finite state machine constructed (from M,, C, and M,)
by joining all the final nodes of M, in C to the initial node of M The initial
node of M; becomes the initial node of M.

e Nis the communicating finite state machine constructed (from N, C, and N,)
by joining all the final nodes of N in C to the 1n1t1a1 node of N The mltlal
node of N becomes the initial node of N.

The. two phases p1=(M1,N1) and pzz(Mz,Nz) are called the constituent phases of the
composite network <p1,C,p2>.“‘ In this case, machine_s M1 and M, are called the
constituent machines of M, and machines N, and N, are called the constituent

machines of N.

As an example, Figure 4(a) shows two phases. i)l#(Ml,Nl) and p2=(M2;N2). In
phase p,, the node pair (1,1) is its initial node pair and {(2,2),(3,3)} is its exit set. In
phase p, the node pair (4,4) is its initial node pair and {(5,5)} is its exit set. By joining
the exit node pair (2,2) of pi to the initial node pair (4,4), we have the composite
‘network Py a=<P;:{(2,2)},p,> shown in Figure 4(b).
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.Theorem 1: Let p, and Py be two phases, with exit sets S, and 82 respectively, and
let C be a subset of Sl' Then, the composite network <p;,C:py> is a phase whose exit
set is (8; U 8,) - C. '

W]
By theorem 1, network p, , in Figure 4(b) is also a phase whose exit set is {(3,3),(5,5)}.

So fa.r we have dlscussed how to connect one phase to another Next, we discuss

how to connect a phase to 1tself

Let plw(Ml,Nl) be a .phase whose exit set is S,» and let C be a subset of Sl. _The
composite network of p; and C, denoted <p;,C>, is a network (M,N) where

e M is the communicating finite state machine constructed (from M, and C)j by
joining all the final nodes of M, in C to the initial node of M,. The initial node
of M, becomes the initial node of M

e N is the communicating finite state machine constructed (from N, and C} by
Jjoining all the final nodes of N, in C to the initial node of N The 1n1t1a1 node of
Ny becomes the initial node of _N

Phase p1=(M1,N1) is called the constituent phase of the composite network
<p;;C>=(M,N). - In this case, machines _‘M1> and N, are' called the constituent

machines of M and N respectively.

For example, consider phase Py, 2 in Figure 4(b), if we join'the exit node pair (5,5)
of p, g to its initial node pair, then we get the composite phase <p, 2,{(5 5)}> shown
in Figure 4(c).

Theorem 2: Let p be a phase whose exit set is S, and let C be a subset of S. Then,

the composite network <p,C>> is a phase whose exit set is § - C.
_ _ a
By theorem 2, network <p1 2,{(5 5)}> in Flgure 4(c) is also 5 phase whose ex1t set is

{(3,3)}.
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The process of constructing the multiphase network p* in Figure 4(c) from the
two phases P; and P, in Figure 4(a) can be represented by the following sequence of
equations:

‘pj_ =(M1’N1)

Py ==(M,,N,)

P1,2 =<p1,{(2,2)},p2>
p* =<p1,23{(5’5)}>

This equation sequence clearly provides all the information needed to construct p* from

P, and Py; moreover it is a more concise notation than the graphical representations in

Figures 4(b) and 4(c).

Example 4 (A BSC Protocol): Figure 5 shows a version of the BSC protocol [18,22]
modeled as a composite network that consists of five phases (namely one call setup
phase, two data transfer phases, and two call clear phases). The constituent phases are
those defined in Section 3; they are représeﬁted in .'Fi.g'ure 5 by'theif‘i‘nitial and exit
nodes only. The dash lines identify the individual phases. The bold lines show how the
‘phases are connected. Machine M models the primary station, and machine N models

the secondary station of BSC.

An equation sequence that specifies the construction sequence of this version of
BSC is as follows: | |

| Py ‘4 =(M15N1)

Ps ' =(M2’N;) -

P3 =(N2sM2)

by =(N3’M3)

Ps. =(M,,N;)

Pi2 =<ppCppy>
Piag  =<PyCyps>

P1234 —<P193C3P>

P123,45 — <Pyg34CepPs>
P =<Py,2345C5>

where ‘M, and N1 are defined in Figure 1
M2 and N2 are defined in Figure 2
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M, and N are defined in Figure 3
C;={(6,6) in p,,(7,7) in p,}
02={(515) in Pl} _
C;={(9,9) in Py,(10,10) in py,(11,11) in Py,(12,12) in p,}
C,={(9,9) in P3,(10,10) in Pgs(11,11) in Py:(12,12) in Pg}
Cy={(2,2) in p,,(2,2) in p,}
where (1,j) in p,= the node pair (i,j) in phase p,.
Notice that this equation sequence is not unique for coﬁstructing the BSC protocol in
Figure 5.

O

From Theorems 1 and 2, the communication of the composite network (M,N) in
Figure 5 is free from deadlocks and unspecified receptions. In the next section, we shall

show that this communication is also bounded.

6. Boundedness of Multiphase Networks .. _
| In this section we present a sufficient condition for the: communication of a
composite network to be bounded provided that all its constituent phases are bounded.

Before doing so, some definitions are in order.

Let (M,N) be a composite network, and let M; be a constituent machine in M. A
final node in Mi is called a plus node iff all its incoming edges are receiving edges. A
final node in Mi is called a minus node if all its incoming edges are sending edges. A
final node in Mi is called a zero node iff its incoming edges include both sending and

receiving edges.

Let (M,N) be a composite network, and assume that machine M consists of r (r >
1) constituent machines Ml’Mz""’Mr' The abstract chhéne M of M is a directed

labelled graph constructed from M as follows:

i. For each constituent machine Mi in M, add a node lab.elled Mi to I\ﬁ;I

ii. If only plus nodes of a constituent machine Mi ‘are joined with the initial
node of some constituent machine Mj (which may be the same as M,), then
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add a directed edge, labelled +, from node M, to node M.i in IT/I

ili. If only minus nodes of a constxtuent machine M, are joined with the initial
node of some constituent machme M, (Whlch may be the same as M), then

add a directed edge, labelled -, from node M, to node Mj in M.

iv. If the nodes of:a constituent machine M,, joined with the initial node of
some. constituent machine M, (which may be the same as M), include one
zero node or include both plus nodes and minus nodes, then add two
directed edges, one labelled -, the other labelled +, from node Mi to node Mj

in M.

A directed edge labelled + (or -} in Mis called a plus (or minus) edge.

As an example, Figure 6 shows the abstract machine of the communicating

machine M in Figure 5.

Theorem 3: Let (M,N) be a composite network whose constituent phases are all
bounded; and let I\ﬁ/dI be the abstract machine of M. If each directed cycle in.i\y/l has at
least one plus edge and one minus edge, then the communication of (M,N) is bounded.
O
Notice that M satisfies this condition iff N satisfies the same condition; hence checking

one abstract machine is sufficient.

_ Assume that the communication of (M,N) is known to be bounded after checking
the condition in Theorem 3. From the proof of Theorem 3 {in Appendix II), the
communication of (M,N) is bounded by K = lzr; . K; where K;,..,K are the
-communication bounds for the r constituent phases of (M,N). K is not necessarily a
tight communication bound of (M,N); it is merely an upper bound. A tighter upper

bound can be obtained by executing the following four steps on the abstract machine M
of M:

i. Label each node M, in M with the communication bound of its'corresponding
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constituent phase.

ii. Remove all plus edges from ﬁ (The resulting graph is acyclic by Theorem
3.) An upper bound m for the number of messages in the output channel of

M is the length of the longest directed path in the modified ﬁ, where the
length of a path is computed by adding all the labels of its nodes.

iii. From the original 1\71, remove all minus edges from §I (The resulting graph
is acyclic by Theorem 3.) An upper bound n for the number of messages in
the output channel of N is the length of the longest directed path in the

modified ﬁ, where the length of a path is computed by adding all the labels
of its nodes.

iv. The communication bound of (M,N) < max(m,n).

A correctness proof that the above four steps give a communication bound for (M,N) is

similar to that of Theorem 3.

Executing these steps on the abstract machine M in Figure 6, we found that the
communication of the BSC protocol in Figure 5 is bounded by -5.' The actual bound for
this network is 3; therefore the upper bound computed by the above four steps is still

not very tight. -

7. A Token Ring Protocol Example

The method of phases and the theorems in this paper can be extended in 2
straightforward manner to networks with n (n>2) communicating finite state machines.
For example, a high-level session control protocol modeled after one in IBM’s Systems
Network ' Architecture[11l] can be constructed as a multiphase network of three
machines[9]. This method. can also be extended to networks whose topology is
characterized by one or more parameters. As an example, we construct in this section a

token ring protocol as a multiphase network of n machines, where n is'a pai‘ameter.,.'

Consider a ring network of n communicating finite state machines'Mo,Ml,.,..,,Mn_1

which communicate via n unidirectional channels as shown in Figure 7. Clearly, each
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maclnne M receives messages only from its upstream neighbor M( and sends

i-1) mod.n

messages only to its downstream ne1ghbor M The communieation protocol
| { | |

‘ i+1) mod n°
can be defined as folIows

i. When a machine has the token, it can send its data messages, one by one,
downstream.

il. When a machine M receives a data message (generated by M,, i54j) from its

upstream nelghbor, it examines the message to decide whether it wants to
keep a copy of it. The message is then sent to its downstream neighbor.

iii.. A data message generated by M; is subsequently removed by M, after the
message has travelled once around the ring. ' ' B

iv. When Mi has removed all its data messages from the ring, and has no more
data message to send, it sends the token to its downstream neighbor.

This protocol ean be viewed as consisting of n phases PgPyses-sPy_q» Where phase P;
defines the communication among the n machines when machine M; has the token. For
example, the n machines Mg,M(I),...,Mg_l in phase Po can be defined as shown in Figure
8(a), where the messages have the following meanings: -

D denotes a data message.
T denotes the token. .

Similarly, the n machines in phase p 1 are shown in Figure S(b)

Two comments concerning P, are in order:

1. To prove that network p, is indeed a phase whose exit set is {[3,6,7,7,...,7]},
one can use induction over n. Moreover, since each of the networks PysPasees
and p_, is identical to Py (except for the order of the machines in the
network) this same lnductlve proof shows that each of PysPgysy 20d p_ | is
also a phase

iil. Phase Py has one "exit tuple® namely [3,6,7,7,...,7], where nodes labelled 7

are not final nodes; rather they are recelvmg nodes. This requires a slight
extension to the definition of exit node pairs (or tuples). For this extension

- to be valid (i.e., for the results in Theorems 1 and 2 to continue to hold), the
receiving nodes in an exit tuple can be joined only with initial nodes that are
recesving nodes when we construct composite networks.
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To construct the composite network (M MM, ) from these phases, we need
to join all the M1 machines to form MO’ join all the 1\/11 machlnes to form Ml, and so
on. For example, Figure 9(a) shows the construction of M, from its constltuent
machines MB, i=0,...,n-1. (In Figure 9(a), an undirected edge between two nodes means
that these two nodes should be joined into one.) The resulting M, after joining nodes,
is showg in Figure 9(b). Similarly, the resulting M:i (jél,,..,n-l), after joining nodes, is
shown in Figure 9(c). We have assumed, without any loss of generality, that initially
M, has the token.

8. Achieving Mordularity _

This paper presents a method for the modular comstruction of protocols. First,
individual phases are conét_ructed. Each phase is Vériﬁed to sat'isfy certain desirable
properties. Second, phases are connected together using the method described in
Section 4. The resulting protocol is guaranteed to terminate properly and to be free
from deadlocks and unspecified receptions.. Under some additional conditions, the

resulting protocol is also bounded.:

Advantages of this construction methodology are as follows.

i. Ease of construction and reasoning: The methodology allows us to focus
on one phase of a complex protocol at a time. By ensuring that each phase
satisfies some desirable properties, we are guaranteed that the phases can be

later connected together to form a multiphase protocol with the same
desirable properties.

ii. Parallel construction and verification: Construction and verification of the
different phases of a protocol can proceed mdependenﬂy and hopefully in
parallel, :

tii. Flexibility for modifying a phase: After construeting a protoecol by
connecting a number of phases together, it is possible to modify one of the
phases without affecting the others. This is done by preserving the exit set
in the modified phase. As an example, consider the data transfer phase in
Figure 2. Assume that each sending edge labelled ~D in M, is replaced by

the structure in Figure 10(a) whose message labels ha.ve the followmg
meanings: _

SOH  denotes a "start-of-header" message._
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H denotes a byte in the header.
STX  denotes a "start-of-text" message.
T denotes a text byte.

ETX denotes an "end-of-text" message followed by a check sum.

Assume also that each receiving edge labelled +D in N is replaced by the
structure in Figure 10(b). The resulting network (M, N’) is a phase, and has
the same exit set as (M N ) Therefore, (M;,N,) can replace (M,,N,) in any
composite protocol. (Notlce however that the communication of (M,N) is.
unbounded and so the resulting composite protocol is unbounded.)

Flexibility for rearranging phases: After constructing a protocol by
connecting a number of phases together, it is possible to add more copies of

the existing phases and rearrange the connections between phases to make

the protocol satisfy some additional desirable properties (fairness, robustness,
etc.). For example the BSC protocol in Figure 5 is unfair. This is because
whenever the primary M and the secondary N compete to become the
sender, the primary M always wins. This unfairness is intentional in the
original BSC protocol [18,22]. It is possible to make this protocol fair by
adding one call setup phase, four data transfer phases, and four call clear
phases and rearranging the phase connections to obtain the protocol ( Np)

as shown in Figure 11. (In Figure 11, each rectangular node labelled M.
represents machine M in some phase Also, each directed edge from node

: M to M} means that all the exit nodes of M are joined with the initial node

of M Thls convention, however, is not: followed in the case of M, and N

-Where each of their final nodes is joined with the initial node of a different

machine.)

Notice that initially M; behaves as a primary and N behaves as a secondary.

They change roles each time after they compete to become the sender a,nd
the prlmary wins.

Efficient validation: As demonstrated by the BSC protocol example, many

.copies of the same phase may be used in a protocol. The method of phases

requires such a phase to be validated only once regardless of how many
copies of it are used in the protocol. Table 1 shows the number of generated
states and the required execution time to validate the BSC protocol (in
Figure 5) and the modified BSC protocol (in Figure 11). By using the
method of phases, the number of generated states is reduced by factors of
1.5 and 4.0 respectively, and the execution time is reduced by factors of 1.4
and 4.8 respectively. (Notice that these gains are accomphshed Wlthout
relying on any parallel vahda,tlon chscussed in ii.)
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9. Concluding Remarks | _

* We have described a methodology for constructing large multiphase
communication protocols, and demonstrated that this methodology can be used to
construet (and understand) some realistic .protocols., The protocols constructed are
guaranteed to terminate properly and to be free from deadlocks and unspecified
receptions. In addition to the exarﬁples presented in this paper, we have also shown
that a session management protocol modeled after one in IBM’s System Network
Architecture [9] and the call establishment/clear protoeol of X.25 [10] can be

constructed as multiphase protocols.

Although the multiphase concept and our construction methodology have been
developed . using the model of commuﬁicating finite state machines, it should be
straightforward to extend the results herein to facilitate protocol construction using

other models as well.

Our methodology can be viewed as a bottom-up approach to the protocol
construction probleni. A top-down approach for p_rbt.o.col" cdﬁstruction was recently 7
propose.d by Gouda [14]. _Both approaches need to,.-be examined and. compared so that
the protocol construction  problem can be better understood. An integrated approach,
which employs both bottom-up and top-down strategies, for protocol construction seems

attractive.

In the BSC data transfer phase, we have demonstrated the use of virtual messages
to model message losses and nonpremature timeouts. This techﬁique seems promisiilg,
and using it we have managed to specify several protocols to our satisfaction. In reality,
protbcol systems are proned to other types of: errors (e.g.,‘re_orde_ring of messages), as
well as premature timeouts and crashes. - Further research is needed to develop

speciﬁcatibn and verification techniques for these problems.

We are currently developing an interactive protocol design system to support,
among other things, the multiphase éonstruction_ methodology herein and the projection

method in [21]. The system is called PROSPEC. It is-implemented in C, runs on a
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SUN workstation, and has a multi~window graphical interface.

After writing this paper, it came to our attention that Raymond Miller and Tat
Y. Choi at Georgia Institute of Technology had independently obtained results [7,8]
similar to those reported in this paper. They have also applied the multiphase concept
to simplify the analysis of certain protocols. The reader can find in their work another

interesting multiphase protocol example, namely the call establishment/clear protocol of
X.21.

APPENDIX I: USING CLOSED COVERS TO PROVE PHASES

The technique of closed covers has been proposed in [13] to prove that the
communication of a network (M,N), where M and N have no final nodes, is free from
deadlocks and unspecified receptions. Here we extend this technique to prove that a

network (M,N), where M and N may have final nodes, is a phase.

Let M and N be two communicating finite state machines possibly with final
nodes. A closed cover C of network (M,N) is a finite set of state schemas

[vl,wl,Xl,Yl],..., [vr,wr,Xr,Yr] such that the following three conditions are satisfied.

1. For each state schema [v,w,X,Y] in C, v is a node in M, w is a node in N,
and X and Y are two sets of (possibly infinite) message sequences. Each
state schema can be viewed as a set of network states. A state [v,w,x,y] is in
some state schema [v,w,X,Y] of C iff the message sequences x and y are in
sets X and Y respectively. : ' : .‘ '

ii. The initial state of (M,N) is in some state schema of C.

iii. For every state s in some state schema of C, there ex1st two states s’ and s"
" such that :

¢ s" isin a state schema of C, and

e either (s’ follows over an edge in M and s" follows s’ over an edge in
- N) or (s’ follows over an edge in N and s" follows s’ over an edge in

M).

iv. if [v,w,X,Y] is in C where v (w) is a final node, then w (v) is a final node and
X—Y—E (the empty strmg)
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Theorem Al: If a network (M,N) has a closed cover C, then (M,N) is a safe network.
(The proof is in Appendix IL.)

From Theorem Al, the existence of a closed cover C for a network (M,N)
guaranteés that the communication of (M,N) terminates properly and is free from
deadlocks and unspecified receptions. In order to guarantee that (M,N) is a phase, an

additional condition on its closed cover C is needed.

Theorem A2: Let (M,N) be a network whose closed cover C satisfies the following
condition. For any final node v (w) in M (N}, there exists exactly one final node w (v)
in N (M) such that [v,w,EE] isin C. Then, (M,N) is a phase |

(The proof is in Appendix IL.) '

Example A: Consider the two communicating finite state machines M and N in
Figure Al; they model a full-duplex data transfer procedure with flow control. The

exchanged messages have the following mea.mngs

F denotes a "flow contro]” message

D denotes a data message.

A denotes an "acknowledgment" message.
DI denotes a "disconnect" message..

The followmg set C of state schemas of network (M N) is an mfimt.e closed cover for
(M,N):.

C={[1,1,F*,F¥,[2,1,F**} F2D],[1,2,F°D,F**1],[2,3,E,E],[3,2,E.E],

-~ [2,2F"D,F"D],[2,2,A,A],[5,6,E,E],[8,5,E,E|}.
The first state schema [1,1,F"F®| represents the.  following infinite set of states
{[1_,1,E,E],[1,l,F,F],[1,1,F2,F2],....}, where E denotes the empty string, and each state
has an equal number of F' messages in its two channels. The other state schemas should
be interpreted in the same way; in particular, the schema [2,3,E,E| represents the set
{[2,3;E.E]}. It is straightforward to check that the set C satisfies the conditions of a

closed cover; hence C is a closed cover for network (M,N.) Moreover, this closed cover
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satisfies the condition of Theorem A2; hence (M,N) is a phase. (Notice that the
communication of (M,N) is unbounded, and so network {M,N) cannot be proven to be a
phase using state exploration.)

]
APPENDIX II: PROOFS OF THEOREMS
Proof of Theorem 1:
Let p,=(M,,N;}, py=(M,,N,), and (M,N)=<p,C,p,>. To prove that (M,N) is a
‘phase, we first prove that (M,N) is a safe network; i.e., it terminates properly and is free
from deadlocks and unspecified receptions; then, we prove that (S_1 -CQ)u S, is its exit
set where every final node of M or N appears exactly once. We begin by proving that

(M,N) terminates properly. (The proof is by contradiction. The proofs for freedom of

deadlocks and unspecified receptions are similar.)

Assume that s=[v,w,x,y] is a reachable improper terminating state of (M,N).

Then there are four cases to consider:

i. v is a final node and x#E, where E is the empty string.
ii. wis a final node and ys£E.

iif. v is a final node a.nd x=E, but there does not exist a dlrected path of all

receiving edges from node w to a final node w’ in N where the string y is
received.

iv. w is a final node and y=E, but there does not exist a directed path of all

receiving edges from node v to a final node v' in N where the string x is
received.

and iv also lead to contradictions.)

Let o and g be the two directed paths in M and N respectively that lead (M,N)

from its initial state to state [v,w,x,y]- There are four cases to consider.

Case 1 (All edges of path o are in M, and all edges of path B are in N)
This implies that (Ml’Nl) does not terminate properly; hence it contradlcts ‘the
assumption that (M,N ) is a phase. -
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Case i1 (Path o ends at a final node v in M, and path g ends at node w in N,

Let (v,w’) be an exit node pair of (M,,N,). One of the nodes in « must be a final node
v* of M, , which appears in exactly one exit node pair (v*,w*) in C. Assume that node w
7% w*. (The proof for the case w==w* is similar.) The network (M,N) must have
reached state [v*,w"x",y"] before it reaches [v,w,x,y]. Since (MI’NI) terminates
properly, x"=E and machine Nl can only follow a directed path of all receiving edges
from node w* via node w to node w*, where y" is received. It implies that the input
Vchannel of M is kept empty from state [v*,w" x",y"] to state [v,w,x,y]; in other words
- x=E. Therefore in machine M, the path from node v* (for that matter the initial node
of M2) to node v must be a path of all sending edges. Let ¥, be the string sent by M,
from node v* to node v. Since (Mz’Nz) terminates properly, there exists a directed path
of all receiving edges from the initial node of N, to node w’, where string ¥q Is received.
Let Y=Y,y It is easy to see that there exists a directed path of all receiving edges
from node w via node w* to node w’ in N, where string y is received. This contradicts

the assumption that condition i is true.

Case 317 (All edges of path a are in M P and path @ end.s_at node w in Nz,).
Using a similar argument to that of case ii, it can __bé showﬁ "jthat"thils case also leads to a

contradiction.

Case iv (Pafh « ends at @ final node v in M, and path f§ ends at a node w in Ny). )
Path « should have a node v* and path g should have a node w*, where (v¥,w*) is an
exit node pair of (MI,NI). By the definition of proper termination, each message sent
along path a« before node v* should be received along péfoh B before node W*, and each
message sent along path g before node w* shou_ld b(_e received along path « before node

| v*. Since the exit node pair (v*,w*) of (Ml’Nl) joins the initial node ‘p_air (VgrWg) of

(M,,N,), the state [v,w,x,y] can be reached from the state [VO,WO,E,E] of ‘(Mz.’Nz)' This

implies that (Mz,N2) does not terminate properly; hence, it contradicts the assumption

that (M,,N,) is a pha_sé. |
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This completes the proof that (M,N) terminates properly. Similar arguments can
be used to prove that (M,N) is free from deadlocks and -unspecified receptions.
Therefore, (M,N) is a safe network.

To show that (8; - C) U 8, is the exit set of (M,N), it is necessary and sufficient
to show that (i) each node pair in (S, ~ C) U S, is an exit node pair of (M,N), and (ii)
each exit node pair of (M,N) is in (S, - C) U S,. | .

1. Each node pair in (S, - C)U S, s an exit node pair of (M,N).

For each node pair (v,w) in Sy [vwW,EE] of (M,N) is reachable, since
[v,w,E,E] of (Ml’NI) is reachable and (Ml,Nl) is a subgraph of (M,N). Let -
(v*,w*) be an exit node pair in C. [v*,w*,E,E] of (M,N) is reachable, since C
is a subset of S,. Since (v*,w*) joins the initial node pair (i},i,) of (M,,N,),
[il,iz,E,E] and [v*,w*E,E| are the same states. Therefore, [il,iQ,E,E] of
(M,N) is reachable. For any node pair (v,w) in S,, [v,w,E,E] of (M,N) is
reachable from [i ,i,,B,E] because (M,,N,) is a subgraph of (M,N). Since
[i,:io,E,E] is reachable, [v,w,E,E] is reachable. Therefore, by definition of
exit node pair, the node pairs of (8,-C) U S, are exit node pairs of (M,N).

il. Each exit node pair (v,w) of (M,N)isin (S, - C)U S,
If both v and w are in subgraph (M,,N,) of (M,N), (v,w) must be in 8, - C;
otherwise, it contradicts the assumption that (M,;,N,) is a phase. F_or the
same reasons, if v and w are both in subgraph (Mz’Nz) of (M,N), then (v,w)
must be in 8'2. It is impossible that one node of v and w is in (Ml’Nl) and
~the other node is in (M,,N,), since it implies that (M,N,) and (M,,N,) do

not terminate properly. Therefore no other node pair (v w) of (M, N) can be:
an exit node pair of (M,N).

This complete the proof that (S, - C) U S, is the exit set of the safe network
(M,N). Clearly, every final node in M or N appears in exactly one ex1t node pair in the
exit set of (M,N). Therefore (M, N) is a phase.

d
Proof of Theorem 2:

‘Let p=(M,N) and <p,C>=(M*N*). As illustrated in Figure A2, (M*,N*) is
equivalent to an infinite chain of identical phases, PysPgs--., connected by joining the exit

node pairs of C. to the initial node pair of p., ,, (i > 1), such that:
1 1+1
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i. each phase Py is isomorphic to phase (M,N), and

ii. each G, is isomorphic to C.

Notice that the first n phases in this chain, along with the connections Cl,.,,.,C
constitute a phase (by theorem 1.) We denote this phase (M™,N?).

n-1

Now, to show that (M*,N*) is a phase, we first prove, by .contra.diction, that
(M*,N*) terminates properly. Assume that {M*,N*) does not terminate properly; i.e., it
can reach a state s which satisfies condition i, ii, iii, or iv in the proof of theorem 1. Let
paths « and g be the two paths that lead the execution of (M*,N*) from initial state to
state s. Assume that o ends at a node in machine M, and that # ends at a node in
machine Nj; without loss of generality, assume that i is greater than or equal to j. Since
both paths o« and g are in (M'N'), the network (M!,N') can reach state s. This
contradicts the fact that (MLN!) is a phase. Therefore (M*,N*) must terminate
prdperly. By similar arguments, we can prdve'that (M*,N*) is free from deadlocks and

unspecified réceptions. This ecompletes the proof that (M*,N*) is a safe network.

We now prove that S - C is the exit set of (M*,N*). Ref_erring to the infinite
chain of phases in Figﬁre A2, let 81,82,._.. be the exit sets for phasés DysPgsese
respectively. Since each p; Is isomorphic to (M,N), then select each S; to be isomorphic
to the exit set S of (M,N) and select each C; to be isomorphic to C. From Theorem 1, .
(8,=Cy) U (8,-C,) U...u (8,-C_) is the exit set for (M®,N®), for any n. By folding the
infinite chain into (M*,N*), the exit set of (M*,N*) becomes S — C.

| It is easy to see that every final node in M#* of_N* appears in exactly one exit node
pair in the exit set of (M*N*). Therefore (M*,N*) is a phase.
|
Proof of Theorem 3:

Let Kl,...,Kl_ be the communication bounds for the constituent phases of (M,N),

- and assume that each directed cycle in M has at least one plus edge and one minus
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edge We prove, by contradiction, that the communication of (M,N) is bounded by K

—Z‘ K
=1

Assume that there exists a reachable state [v,w,x,;y| where |y|=K+1; i.e

3
Y=Y {-Yip1° Assume that the messages in y are sent during the execution of a
sequence of phases, p,,...,p . Since |y| > 2 K,, at least two of these phases in the
phase sequence must be the same. Without loss generality, assume ‘that phase p; occurs
Let p==( i,Ni-), i==1,...,n

Since phase p; occurs twice in the phase sequence, it implies that there ex-ists a directed

twice and the phase sequence becomes PyseeesD P yseeesPy

cyele in M Let f be the last du'ected edge that is executed by machine M, R

 According to the assumptlon that each directed cycle of M has at least one plus edge
~ and one minus edge, one edge in the edge sequence, fl,...,fm must be a receiving edge.
(See Figure A3 for the relationship between string y, the phase sequence and the edge

sequence.) By the definition of proper termination, the following proposition is true.

Let p=(M,N) be a phase. If the last executed edge f of a machine M is 2
receiving edge, then all the messages sent by machine M in phase p must
have already been received by machine N when the receiving edge f is
executed.

Based on this proposition, if edge fi is a receiving edge, then all the messages in y, which
have been sent out before f, is executed, must have already been received by machine N
when f; is executed. Therefore, |y|7£K+1 since some of the messages in y must have

already been received; contradiction.

O
Proof of Theorem Al:

Let (M,N) be a network with a closed cover C. From [13], the communication of
(M,N) is free from deadlocks and unspecified receptions. It remains now to show that

the communication of (M,N) terminates 'pr'operl)ﬁ The proof is by contradiction.

Assume that s=[v,w,x,y] is a reachable improper terminating state of (M,N).

Then there are four cases to consider:
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i. vis a final node and x£E.
il. visa final node and ys£E.

iii. v is a final node and x=E, but there does not exist a directed path of all
receiving edges from node w to a final node w’ in N where the string y is
received.

iv. w is a final node and y=E, but there does not exist a directed path of all
receiving edges from node v to a final node v’ in N where the string x is
received.

and iv also lead to contradictions.)

Since s=[v,w,x,y] is reachable, there is a sequence SgSpreeesSy of reachable states of
(M,N) such that s, is the initial state, s =S, and for i=0,1,...,;r-1, 5, _ follows S;e “This
state sequence corresponds to two directed paths a and g in machmes M a,nd N
respectively, such that the following condition is satisfied: Path o (8) starts with the
initial node v, (WO) and ends with node v (w) in M (N).

" Let the nodes in path o referenced in some state in the closed cover C be
Viseen Vs and let the nodes in path g referenced in some state in C be Wos W geees W
There are two cases to consider:

1. m<n.

2. m>n.

We prove that case 1 leads to a contradiction. (A similar proof can show that case 2

also leads to a contradiction.)

From conditions i,ii, iii and iv of closed covers, the closed cover C must have the
states SO=[V0,WO,x0,yO], sl=[vl,wl,xl,yl],...?sm=[vm,'wm,xm,ym], where x0=y0=E,‘ and
for i=1,2,...m, x, (y;) is the string x, | (y;,) after adding to its right side the string of
sent messages along path g from node w. | (v; ;) to w, (v.), and after removing from its

left side the string of received messages along path « (8) from node v, | (w, ,) to v, {w,).

If v,=V, then by condition iv of closed covers, w. is a final node and



29

X, =Y,=E. In this case, the network cannot reach any other state after reaching the
state sm=[vm,wm,xm,ym]. Since s==[v,w,x,y] is not reached before Sy then s=s_ and

x=x_==E, confradicting the assumption that x5£E.

On the other hand, if v _s4v, then the network (M,N) starting at the state
sm=[vm,wm,xm,ym] must reach a state s'=[v,w’x",y’], where x’s£E, after which no
other state is reachable. However state s’ cannot be in C since x'£E contradicting

condition iii of closed covers.
O
Proof of Theorem AZ2:

Let (M,N) be a network whose closed cover C satisfies the following condition.
For any final nede v (w) in M (N), there exists exactly one final node w (v) in N (M)
such that [v,w,E,E] is in C.

From Theorem Al, (M,N) is a safe network. To show that it is a phase, it is
sufficient to prove that for any exit node pair (v,w) of (M,N), there is a state [v,w,E,E]
in C.

Let (v,w) be any exit node pair of (M,N). This implies that the state s=[v,w,E,E]|
of (M,N) is reachable, i.e. there exists a sequence SgrSq Sy of reachable states of (M,N)
such that S is the initial state, s=s,, and for i==0,1,...,r-1, 811 follows s;. This sequence
corresponds to two directed paths « and g in M and N respectively such that the
following condition is satisfied: Path « (8) starts with the initial node vy (W) and ends
with node v (w) in M (IN).

Let the nodes in path o referenced in some state in the closed cover C be
VgV Vys and let the nodes in path g referenced in some state in C be Wi Wyeee W

There are three cases to consider:

1. m<n.

2. m==n.
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3. m>n.

Using the definition of closed covers and using a similar argument to that of Theorem
Al, it straightforward to show that cases 1 and 3 lead to contradictions. It also
straightforward to show that case 2 leads to the fact that state [v,w,E,E] must be in
C. This completes the pfoof ‘that (M,N) is a phase.

_ : 0]
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TABLE 1

Reachability Analysis Results

Protocols analyzed # of states gel_ler_ated Exec. time of
: in validation validationt
BSC ( Figure 5 ) 107 760
modified BSC ( Figure 11 ) 292 2.581
Call setup phase { Figure 1) 32 .228%
Data transfer phase { Figure 2 ) 40 .313x%
BSC using phases 72 541+
modified BSC using phases 72 .541%

t: Execution time is measured by Cyber TM seconds.
*: includes checking of the exit set condition.
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where

p1 p2 LI B pm } p1 IIIII pn

¥y is the message label of sending edge e s
yk+i is the message Tabel of sending edge ey s
phase p; = (M4,N;), i=1,...,n, and

fi is the last executed edge in Mi' i=1,...,m.

Fiqure A3. Proof of Theorem 3.





