AN EXPERIMENT WITH THE BOYER~MOORE
PROGRAM VERIFICATION SYSTEM:
A PROOF OF WILSON'S THEOREM

David M. Russinoff

Technical Report #38 July 1983

Institute for Computing Science
The University of Texas at Austin
Austin, Texas 78712
(512)471-1901

TABLE OF CONTENTS

Acknowledgements ...ccccecccaooses

1. Introduction «..ccoocosocsscn

2. The Boyer-Moore Theorem Prover

3. The proof of Wilson's theorem .
2.1, The functlon INVERSE ...
3.2. The function INVERSE.LIST
3.3. The pigeon hole principle ..
2.4, The final resul . . o002 00

4, Conelusions ..ocoeosocoooa

Appendix A. A list of system functions
A.l. Arithmetle functions ...«
A.2. List-related functions

Bibliography s ccsscovooscoscoocs

-

-

iil

10
15
17
17

19
i
21

23

ACKNOWLEDGEMENTS

I would like to thank my supervising professors, Robert S. Boyer and J Strother Moore,
who introduced me to automatic theorem proving and program verification. I am grateful to

» them for suggesting the problem for this thesis.

I am also indebted to M. Cochinwala, N. Shankar, W. Uhrig, and W. Young for their
help in acquainting me with the TOPS-20 operating system, the Scribe document formatter, and

the Boyer-Moore theorem prover.

David M. Russinoff

The University of Texas at Austin
August, 1983

1 Introduction

In 1961, McCarthy [8] initiated an effort to create a mathematical theory of
computation based on recursively defined functions, conditional expressions, and mathematical
induction. Among his goals [7] were the automation of the processes of mathematical proof and
verification of computer program specifications.

MecCarthy introduced 2 formalism for describing computable functions and related
entities and developed the method of ®recursion induction® for proving the equivalence of
functions defined within this formalism. The method was discovered in the comsideration of
mathematical conjectures but has been found to be applicable to 3 wide class of problems in
computer science. McCarthy used it to derive various results in pumber theory and the theory of

symbolic expressions.

The relevance of mathematics to any mechanization of the intellectual process is
affirmed by Boole's thesis that “The laws of thought, in all its processes of conception and of
reasoning, in all those operations of which language is the expression or the instrument, are of the
same kind as are the laws of the ackmowledged processes of mathematics.®{1] McCarthy
recognized this correspondence in conmection with his theory of computation, observing a
similarity between the problems involved in deriving results in the theory of numbers and those in
proving the equivalence of algorithms. He also discussed the limitations of his methods in number
theoretic terms:

In mumber theory one gets as far as the theorem that if a prime p divides ab then it
divides either a or b. However, to formulate the unique [actorization theorem requires a
notation for dealing with sets of integers. Wilson’s theorem, a moderately deep result, can
be expressed in this formalism but apparently cannot be proved by recursion induction. {8

The obstacles to the proof of the umique factorization theorem have been overcome by
Boyer and Moore, the designers of an automatic program verification system which implements
McCarthy's formalism and proof methods. This theorem is among many familiar results in
elementary number theory which they have mechanically verified.

The last theorem to which McCarthy referred is a well-known result, originally published
by Waring in 1770 and attributed to his student, John Wilson. [6] It states that for any prime p,
{p-1)! and p-1 are congruent modulo p. In this paper, we describe the use of the Boyer-Moore
system in generating a mechanical proof of Wilson’s theorem.

3]

2 The Boyer-Moore Theorem Prover

In the Boyer-Moore system, as described in |2}, proofs are constructed in a quantifier-free
logical theory which is built on the propositional calculus with equality, variables, and function
symbols. Terms are written in the prefix notation of LISP. The basic theory includes four
functions:

o TRUE and FALSE are both functions of zero arguments. The constants (TRUE) and

(FALSE) are abbreviated T and F, respectively. The axiom T5%F allows them to be
considered as distinct truth values. .

o EQUAL is a function of two arguments, axiomatized to require that {EQUAL I r) have
the value T or F, depending on whether l==r.

o IF is a function of three arguments. Axioms insure that the value of (IF t u v} is that
of v if t==F and is otherwise the value of u.

The function IF allows the use of conditionals ir axioms which define new functions, as
in the definition ’
(AND P Q) = (IFP (IFQTF) FI.

A fupction capturing the semantics of each of the other logical connectives is similarly defined,
allowing a term p to be constructed, corresponding to any formula ¢, such that the formulas pf=F
and $ have the same truth values. In this situation, the term p is said to be a stheorem?® if ¢ is 2
theorem. All formulas may thus be represented as terms.

The theory also includes

e 5 principle which permits the introduction of axioms specifying new types of
inductively constructed objects

s a principle for admitting axioms which define new recursive functions

a principle of induction (a rule of inference} based on the notion of a well-founded
relation, which is well-suited for inferring theorems about these objects and functions.

@

Two types of inductively constructed objects are relevant to the proofs presented below:

e The natural numbers are formalized by the type ®number®. Peano arithmetic is
realized through axioms relating to the functions NUMBERP, ADDL, SUBI, and the
constant 0. NUMBERP is the ®recognizer® for this type, le., (NUMBERP ¢) returas T or F
depending on whether the value of the term ¢ is a pumber. ADD1 is the usual
successor function, and SUB1 is its inverse function.

e Ordered pairs are formalized by the type *list®. The functions CONS, CAR, and CDR
are axiomatized to have the properties of the familiar LISP functions, and LISTP is
the recognizer for this type. Finite sequences are represented by means of CONS and
the special constant NIL; the sequence of terms by by is represented by the term

(CONS t, (CONS t, (...(CONS t, NIL)...))),

which is abbreviated {(LIST ¢, ... t,).

The theorem proving program naturally relies heavily on induction. Several heuristics
are employed to formulate induction schemes based on analysis of the structure of the recursive
function definitions and the inductively conmstructed types which are involved in a conjecture. A
proof by induction is only attempted, however, after a simplification procedure has been followed
and has failed to establish the theorem.

Every conjecture which is presented to or generated by the theorem prover is first
written as a single term and then represented internally as a conjunction of simpler “clauses®,
each of which is a disjunction of atomic formulas called "literals®. In order to establish a clause,
the prover first attempts to simplify each of its literals in turn, assuming the others to have the
value F. A variety of heuristics are employed, including the use of previously proved lemmas as
rewrite rules. A term | is :oplaced by the term r if 3 rewrite rule of the form

(IMPLIES h (EQUAL 1 1))

is encountered and the hypotliesis h can be established. The manner of use of 2 lemma thereflore
depends on its precise syntactic form.

The user's manual [3] describes the input commands to the system. Of these, only three
were used in our proof of Wilson's theorem:

1. The command
‘DEFN{<name> <args> <expression>>)

results in the definition of a function with the designated name and formal argument
list, to be evaluated. by computing the value of the expression. Before admitting 2
function definition, however, the system must verify that certain conditions are met
which guarantee the existence of a unique function satisfying the proposed definition.

2. The command
PROVE.LEMMA{<pame> {REWRITE} <term>)

initiates an attempt to prove the comjecture ®term®. If this succeeds, the theorem is
stored as 2 rewrite rule under the given name. Once the proof altempt has begun,
there is no interaction with the user until it has completed. However, there is a "hint®
facility associated with this command (not mentioned in [3]) which allows the user
some control over the method of proof:

s A list of {previously proved) lemmas may be specified to be used in the proof.
These lemmas are instantiated as indicated by the user and imserted into the
hypothesis of the conjecture.

o An induction scheme may be specified. Its application becomes the first step in
the attempted proof.

o A "disable® feature allows 2 specified list of theorems to be tempeorarily deleted
from the system’s library.

3. The command
INIT{< lile>>)

serves to initialize the system’s data base to that contained in the designated library
tile. The file most useful for our purpose was RSA.LIB, prepared by Boyer and Moore
for their proof of the RSA encryption aigorithm ({to appear in the American
Mathematical Monthly). The file contains the several hundred definitions and lemmas
which are listed in [4] and Appendix A of [2]. Included are many basic results of
number theory, some of which are cited in the proofs below. The relevant function
definitions from RSA.LIB are listed in an appendix.

3 The proof of Wilson’s theorem

With no guidance by the user permitted during the theorem proving process, the system
must be led to the discovery of the proof of a complicated theorem by means of a carefully
ordered sequence of relatively simple lemmas. In the case of Wilson's theorem, it was found that
three function definitions and forty-two lemmas were sufficient. These are presented in the
sequel, numbered according to the order in which they were subniitted to the theorem prover.
Along with a description of the theorem prover’s activity, we include informal proofs where
appropriate, using conventional mathematical notation.

2.1 The function INVERSE

In this section, we define and establish the properties of a function which assigns to each
reduced residue modulo the prime P its multiplicative inverse modulo P:

pefinition 1. (INVERSE J P)

(IF {EQUAL P 2)
(REMAINDER J 2 ‘
(REMAINDER (EXP J (DIFFERENCE P 2)) P

where DIFFERENCE and EXP are the ordinary operations of subtraction and expomnentiation and
(REMAINDER X Y) is the least non-negative residue of X modulo Y. In our original formulation of
this function, the case P==2 was overlooked. The (EQUAL P 2) clause was omitted, resulting in
(INVERSE 0 2) = 1 (since (EXP 0 0) returns 1). This was discovered only when the
attempted proof of Lemma 18 failed, forcing 2 careful analysis which led to the new definition.

(4]

The proofs in this section depend on two imp&rtant results contained in RSA.LIB. The
first is 2 version of Euclid’s First Theorem, which states that for prime p, if p|ab, then pla o pib:

Lemma. PRIME.KEY.REWRITE
(IMPLIES (PRIME P)
(EQUAL (EQUAL (REMAINDER (TIMES A B) P) 0)
(OR (EQUAL (REMAINDER A P) 0)
(EQUAL (REMAINDER B P) 0)))).

The second is Fermat’s theorem:

Lemma. FERMAT.THM
(IMPLIES (AND (PRIME P)
(NOT (EQUAL (REMAINDER M F) 033
(EQUAL (REMAINDER (EXP M (SUBL P)) P) 1)).

3.1.1. Our first goal is to establish that‘ if J is not divisible by the prime P, then the
product of J and (INVERSE J P) is co’ngment to 1 modulo P :

Lemma 2. (IMPLIES (‘IOT (ZEROP P))
(EQUAL (REMAINDER (llMES (INVERSE J P) J) P)
(REMAINDER (EXP J (SUBL P)) PIJ).

Lemma 3. INVERSE.INVERTS
(IMPLIES (AND (PRIME P))
(NOT (EQUAL (REMAINDER J P) 0)))
(EQUAL (REMAINDER (TIMES (INVERSE J P) 1) P) 1)
Hints: use Lemms 2
" disable INVERSE.

Lemma 3, named INVERSE.INVERTS, is the desired result. It follows immediately from
FERMAT .THM. The original proof attempt, however, which did not use Lemma 2, failed,
apparently because of cénfusion over the many possible uses of the hypothesis (PRIME P). Thus,
the more general lemma was established first and the system was instructed to use it to prove
INVERSE. INVERTS. Simce no other properties of the function INVERSE were needed, the second
hint was provided in order to prevent the use of its definition, which would only have complicated
matters. '

3.1.2. The next lemma establishes that for a given value of J, (INVERSE J P) is the
unique residue modulo P with the property described in INVERSE. INVERTS:

Lemma 4. INVERSE.IS.UNIQUE
{IMPLIES (AND {PRIME PJ
{EQUAL {1 (REMAINDER (TIMES M X0 P)))
({EQUAL {INVERSE M P) (REMAINDER X P
Hints: use INVERSE.INVERTS with {J/M}
use THM.B55.SPECIALIZED.TO.PRIMES
with {Y/(INVERSE M P)}.

The theorem cited in the second hint is found in the iib‘rary file. When instantiated as indicated

in the hint, it becomes

(IMPLIES (AND (PRIME P)
(NOT (EQUAL (REMAINDER ¥ P) 0}
(EQUAL (EQUAL (REMAINDER (TIMES M X) F)
(REMAINDER (TIMES M (INVERSE M P)) P))
(EQUAL (REMAINDER X P)
(REMAINDER (INVERSE M P} P)})J)).

Thus, the congruence between (TIMES M %) and (TIMES M (INVERSE M P)), both of which
are known to be congruent to 1, implies that X is congruent to (INVERSE M P). The conclusion
of INVERSE.IS.UNIQUE follows easily (although the mechanical proof involved an analysis of

sixteen cases).

3,1.& Lemma 4 is useful in proving that P-1 is its own inverse modulo P, which now
follows from the observation that

(P-1)(P-1) = 1 + P(P-2).
Thus,

Lémma 5. (IMPLIES (AND (NOT (ZEROP N)) (NOT (EQUAL N iRD Y]
(EQUAL (TIMES (SUBL N) (SUBL N))
(PLUS 1 (TI}:{ES N (SUB1 (SUBL N})JJJ3.

Lemmz &. (IMPLIES (AND (NOT (ZEROP ¥)) (NOT {EQUAL N 1))
: (EQUAL (REMAINDER (TIMES (SUB1 M) (SUBL W)) M) 1))
Hints: use Lemma 5
use RFMAINDER.PLUS.TIMES 2
with {J/N, X/i, I/{SUB1 (SUBL N))?}
disable Lemmz 5 and REMAINDER .PLUS.TIMES.Z2.

Lemma 7. SUBL.P.IS.INVOLUTIOHN
{IMPLIES (PRIME P)
(EQUAL (INVERSE (SUB1 P) F) (SUBL P)3)
Hints: use INVERSE.IS.UNIQUE with {M/(SUBL P), X/(SUBL P}}
disable INVERSE. .

. The lemma REMAINDER .PLUS . TIMES .2 cited in the hint for Lemma 6 simply states that when

¥

(TIMES J 1) is added to X, the remainder upon division by J is unchanged. The system

z

responded to the hint by inserting the following instance of this lemma as an additional hypothesis
of Lemma 6:

(EQUAL (REMAINDER (PLUS i (TIMES P (SUBL (suBt FI))) P
(REMAINDER 1 P)).

If the prover had then rediscovered REMAINDER.PLUS.TIMES.2 on its own and applied it as a
rewrite rule, then ’
(REMAINDER (PLUS 1 {TIMES P (SUB! (SUBL X)) P)

would have been replaced by (REMAINDER 1 P), rendering the above hypothesis useless.
Therefore, the instruction was given fo disable REMAINDER .PLUS.TIMES.2 (and, for the same
reason, Lemma 5}. :

3.1.4. Our next goal is to prove that no integer greater than 1 and less than P-1 can be
its own inverse modulo P. The principal ingredient of this proof is the lemma
PRIME‘KE?.REWRITE, cited earlier, which implies that if Pl J3%-1, then Pl1J+1 or PlJ-1. The‘
theorem prover, however, was unable to prove this directly, failing to discover the factorization of
32.1. This was inserted, therefore, as an extra lemma: ’

Lemma 8. (EQUAL (DIFFERENCE (TIMES X X) 1)
(TIMES (ADD1 X) (SUBL X33).

The prover was them able to discover and apply Lemma 8 and PRIME.KEY.REWRITE in
establishing
Lemma ©. (IMPLIES (AND (PRIME]
(EQUAL (REMAINDER (DIFFERENCE (TIMES J J) 1) P)
0}

(or (EQUAL (REMAINDER (ADD1 J) P) O)
(EQUAL (REMAINDER (SUBL J) P) 0)}).

¢ I is its own inverse and is not divisible by P, then it {ollows from INVERSE.INVERTS
that J? =1 {mod P). Hence, P| %1 and we reach the conclusion of Lemma 9, that P1J+1 or
PlJ-1. The system, however, was unable to comstruct this argument in one step, requiring
assistance in discoveriag that J% =1 {mod P} implies P! J2.1

Lemma 10. (IMPLIES (AND (NOT (LESSP A 1))
. (EQUAL (REMAINDER A P) 1))
(EQUAL (REMAINDER (SUBt &) P) 03)
Hints: use EQUAL MDDS.TRICK.Z2 with {B/1}
disable Lemma 8.

) Lemma 10 was derived as 2 special case of EQUAL . MODS .TRICK.Z2, which states that il A =B
{mod P}, then P1A-B. It was then used in the proof of

Lemma 11. (IMPLIES (AND (PRIME F)
(NOT (EQUAL (REMAINDER J P) 0))
(EQUAL (INVERSE J P} 13)
(OR (EQUAL (REMAINDER (ADD1 Iy P) 0)
(EQUAL (REMAINDER (SUBL J) P) 0)))
Hints: use INVERSE.INVERTS and Lemma g
disable Lemmsz 8 and INVERSE.

We note that Lemma 8, which had served its purpose in the proof of Lemma 9, interfered with
the next two events and was, therefore, temporarily disabled.

Finally, using Lemma 11 and observing that no J in the interval 1<J<P-1 satisfies
either P1J+1 or P| J-1, the prover was able to establish our goal:

Lemma 12. N0 .OTHER . INVOLUTIONS
(IMPLIES (AND (PRIME P)
. (LESSP J (SUB1 P))
(LESSP 1 J))
(NOT (EQUAL (INVERSE J P) 1))
Hint: use Lemma 11
disable INVERSE.

%.1.5. An essential property of the function INVERSE is that for prime P and 0<J<P,
(INVERSE (INVERSE J P) P) == J.

The proof of this fact requires two preliminary lemmas. The first of these is simaply the algebraic
identity
(P-2)%-1 = (P-1)(P-3),

which was easily derived as

Lemma 13. (EQUAL (SUB1 (TIMES (DIFFERENCE P 2) (DIFFERENCE P 2J))
(TIMES (DIFFERENCE P 3) (SUBL P)J).

The other is found in the lbrary file:

Lemmz. EXP.MOD.IS.1
(IMPLIES (EQUAL (REMAINDER (EXP M DR O
(FQUAL (REMAINDER (EXP ¥ (TIMES I Iy P 1)),

With these two lemmas brought to its attention, the theorem prover was able to establish

Lemma 14. INVERSE.OF.INVERSE
(IMPLIES (AND (PRIME P)
(NOT (EQUAL (REMAINDER J P) 0)3)
(EQUAL (INVERSE (INVERSE J P} P}
(REMAINDER J P)))
Hints: use Lemma 13
use EXP.MOD.IS.1 .
with {#/J, J/(suBt P), I/(DIFFERENCE P 3)}.

The case P==2 is trivial. For P>>2, the proof begins by expanding the definition of INVERSE
‘twice, which leads to

(INVERSE (INVERSE J P) P) =J(F-2(-2
’ EJ(P"X)(?“S)} (mOd P) i

By FERMAT . THM (which the system applied without prompting) and EXP .MOD.IS.1,
and the result follows.

3.1.8 We conclude our analysis of INVERSE by showing that if J lies in the interval
0< J<P-1, then so does (INVERSE J P). The upper and lower bounds on (INVERSE J P) were
verified separately.

E‘iist, the system easily proved that if I is O {or not a number}, then (INVERSE I P) =
O:)

Lemma 15. (IMPLIES (AND (ZEROP I) (LESSP 1 P})
(EQUAL (INVERSE I P) 0)J..

it T is replaced by (INVERSE J P), where P}{, then (INVERSE I P) becomes (INVERSE
(INVERSE J P) P), which is (REMAINDER J P) by INVERSE.CF.INVERSE. Thus,

Lemma 16. NON.ZEROP.INVERSE
(IMPLIES (AND (PRIME P)
(NOT (EQUAL {(REMAINDER J Py 0)3)
(NOT (ZEROP (INVERSE J P)3J))
Hints: use Lemma 15 with {I/{INVERSE] P)}
use INVERSE.(F.INVERSE
disable INVERSE.

There is, of course, a more direct approach to Lemma 16, which is to show that if J is

positive, then so are all of its powers, including (INVERSE I P). However, this method requires

induction and was found to be more difficult for the prover.

10

The upper bound on (INVERSE J P) was established in three steps. Fiest, the
possibility of (INVERSE J P) = (SUB1 P) was disallowed by

Lemma 17. (IMPLIES (AND (PRIME P)
(NOT (EQUAL (REMAINDER J P} O))
(EQUAL (INVERSE J P) (SUBL P)))
{EQUAL (REMAINDER J P) (SUBL P)))
Hints: use INVERSE.OF.INVERSE
disable INVERSE.

The proof of Lemma 17 depends on INVERSE.CF . INVERSE, by which
(REMAINDER J P) == (INVERSE (INVERSE J P) P) = (IMRSE (sUBtL P) ?).
At this point, the system discovered SUB1.P.IS. INVOLUTION to complete the proof.
Next, it was observed that (INVERSE J P) can never exceed P-1, ie.,

Lemma 18. (IMPLIES (LESSP i1 P) .
(LEQ (INVERSE J P) (SUBi P)J)).

Finally, combining the last two results, we have

Lemma 19. BOUNDED.INVERSE
(IMPLIES (AND (PRIME P)
(LESSP I (SUBL P)J))
(LESSP (INVERSE J P) (SUB1 F)J).
Hints: use Lemmas 17 and 18
disable INVERSE

2.2 The function INVERSE.LIST

For a fixed prime P, (INVERSE J P) may now be viewed as a permutation of the
interval 1< J<P-1, fixing only 1 and P-1. By INVERSE.OF.INVERSE and INVERSE.INVERTS,
the remaining elements of the interval may be paired off in such 2 way that the product of each
pair is copgruent to 1 module P. It follows from the elementary properties of congruences that
the product {P-1)1 of all integers in the interval is congruent to P-1 modulo P. This completes an
informal proof of Wilsoa’s theorem. -

It is-at this point, however, that the formal proof only becomes interesting. The main
problem is to formalize the notion of ®pairing off* each element with its inverse. This may be

schieved by means of

11

Definition 20. (INVERSE.LIST I P)

(IF (ZEROP 1)
NIL
(IF (EQUAL I 1)
(CONS 1 NIL)
(IF (MEMBER I (INVERSE.LIST (SUBL I) P))
(INVERSE.LIST (8UB1 I) P
(CoNs I
(CONS {(INVERSE I P)
(INVERSE.LIST (SUB1 I) P)))I)).

Thus, (INVERSE.LIST 1 P) is the st whose only entry is 1, and for I>>1, (INVERSE.LIST I
P) is constructed by first recursively computing (INVERSE.LIST (SUBL I) P) and determining
whether this list already contains I; if not, then I and (INVERSE I P} are inserted at the head
of the list.

We are interested, in particular, in the value of
(INVERSE.LIST (DIFFERENCE P 2) P)

Our aim is to show that this list is a permutation of the sequence of integers from 1 to P-2. In
this section, we examine those of its properties which are relevant to this goal.

3.2.1. First, it is neceSSary to show that
(INVERSE.LIST (DIFFERENCE P 2) P)

contains all and only the positive integers less than P-1. The following two lemmas follow easily
from the corresponding properties of INVERSE:

Lemma 21. ALL NON.ZERQOP.INVERSE.LIST
(IMPLIES (AND (PRIME P) (LESSP I (SUB1 P)Y)
(ALL .NON.ZEROP (INVERSE.LIST I P)J)
Hints: wuse NON.ZEROP.INVERSE wita {J/I%
induct according to (INVERSE LIST I P)
disable INVERSE.

Lemma 22. BOUNDED.INVERSE.LIST
(IMPLIES (AND (PRIME P)
(LESSP I (8UB1 P})
{EQUAL J (DIFFERENCE P 2)})
(ALL.LESSEQP (INVERSE.LIST I P) J))
Hints: use BOUNDED.INVERSE with {J/I}
induct according to (INVERSE LIST I P)
isable NVERSE

us, each entry I in the list les in the range l§<1_<-‘9~2. Io proving both lemmas, the system

wuired the hint to induct according to the seﬁemész&ggestedby the structure of the definition of
(INVERSE.LIST I P), ie., with base cases (ZEROP 1) and I==1 and inductive hypothesis that

12

the statement holds when I-l‘replaces I. The awkward use of the variable J in Lemma 22 could
have been avoided, but its presence makes the lemma more useful as a rewrite rule. If the

conclusion were
(ALL .LESSEQP (INVERSE.LIST I P) (DIFFERENCE P 2))

then it would only be automatically applied to terms involving the function DIFFERENCE (see the

proof of Lemma 42}.

The statement that the list includes all the positive integers through P-2 is formalized by
means of the recursive function POSITIVES:

Lemma 23. SUBSETP.POSITIVES
(SUBSETP (POSITIVES N)
(INVERSE.LIST N P)J.

The prover verified this easily, discovering the appropriate induction without assistance.
We also make the simple observation that 1 is its own inverse:

Lemma 24. INVERSE.!
{IMPLIES (LESSP 1 P)
(EQUAL (INVERSE { P} 1)).

3.2.2. Next, we show that the entries of the list
(INVERSE.LIST (DIFFERENCE P 2) P

are pairwise distinct. The definition of INVERSE.LIST suggests a proof by induction on I that
the same is true of (INVERSE.LIST I P) for all I<P-1. This amounts to showing that for
1< 1<P-1, if (INVERSE.LIST (SUBL I) P) is a list of distinct entries and I is not among
them, then peither is {INVERSE I P). (It shouild also be noted that I and (INVERSE I P) are
distinct by NO.OTHER.INVOLUTION.) This conjeciure is further generalized by Lemma 26 below.

Lemma 25. (IMPLIES (AND (PRIME P
(NOT (EQUAL (REMAINDER I P) 0J)
(LESSP I P) .
(MEMBER J (INVERSE.LIST I P})J
(MEMBER (INVERSE J P) (INVERSE.LIST I P)})
Bints: use INVERSE.OF.INVERSE with {J/I} -
induct according to (INVERSE.LIST I P}
disable INVERSE. :

Lemma 26. (IMPLIES (AND (PRIME P)
(NOT (EQUAL (REMAINDER I P) 0J)
(NOT (EQUAL (REMAINDER J P) 0))
(LESSP I P)
(LESSP I P)
(MEMBER (INVERSE J P) (INVERSE.LIST I P}))
(MEMBER J (INVERSE.LIST I P)))
Hints: use INVERSE.OF.INVERSE
uss Lemma 25 with {J/{INVERSE J P)}
disable INVERSE, INVERSE.LIST,
INVERSE.OF.INVERSE, and Lemma 25.

Thus, Lemma 26 asseris that under suitable restrictions on the variables involved, if
(INVERSE J P) belongs to (INVERSE.LIST I P), then so does J. Lemma 25, which states the
converse, was found to be an easier task for the theorem prover. The proof proceeds by induction
on I as follows: suppose that J is a member of (INVERSE.LIST I P). If J already belongs to
(INVERSE.LIST (SUBL1 I) P), then by the inductive hypothesis, so does (INVERSE J P).
Otherwise, J is either I or (INVERSE I P), both of which are members of (INVERSE.LIST I
P)y. In the case J=I, (INVERSE J P) = (INVERSE I P). I J=(INVERSE I P), then by
INVERSE.OF . INVERSE, (INVERSE J P)=I. In either case, (INVERSE J P) belongs to
{INVERSE.LIST I P))

Lemma 26 is easily derived from Lemma 25, using INVERSE.OF . INVERSE. As noted
above, the important result that the entries of (INVERSE.LIST I P) are distinct now follows
easily. The theorem prover, however, was unable to verify this directly. It was necessary to

introduce the inductive step of this theorem as z preliminary lemma:

Lemmaz 27. (IMPLIES (AND (PRIME P)
(LESSP I (8UB1 P))
(ALL .DISTINCT (INVERSE.LIST (SUBL I) P))3
(ALL .DISTINCT (INVERSE.LIST I P22
Hints: wuse Lemma 26 with {J/I, I/(sUBL 1)}
use NO.OTHER.INVOLUTIONS with {J/I}
disable INVERSE.

Havisg proved Lemma 27, the system was finally able to verify

Lemmz 28. ALL.DISTINCT.INVERSE.LIST
(IMPLIES (AND (PRIME P)
(LESSP I (SUB1 P)))
(ALL .DISTINCT (INVERSE.LIST I P}))
Hints: use Lemma 27 .
induct according to (PUSITIVES I
disable INVERSE.

2.2.3. The motivation for the definition of INVERSE.LIST was that it results in a list
of numbers ordered in such a way that their produet is easily computed. The final theorem of
i ction states that for I<P, the product of the pumbers in (INVERSE.LIST I P) is

eni to 1 modulo P.

14

Here we must make careful use of the properties of REMAINDER and TIMES. We begin
with the following established result:

Lemma. TIMES.MCD.3
(EQUAL (REMAINDER (TIMES (REMAINDER A N) B) ND
(REMAINDER (TIMES A B) N))

Applying TIMES.MOD.3 (with the substitution indicated} and the commutativity of TIMES, the
system immediately proved

Lemma 20. (IMPLIES (EQUAL (REMAINDER {TIMES 4 B) P) 1)
(EQUAL (REMAINDER (TIMES A (TIMES B C) P
(REMAINDER C P)))
Hints: use TIMES.MOD.3 with {A/(TIMES A B), B/C. N/P}
disable TIMES.MOD.S3.

¥ T>1 and I is not already 2 member of (INVERSE.LIST (SUB1 I) P), then the {previously
defined) function TIMES.LIST recursively computes the product of the entries of
(INVERSE.LIST I P) as

(TIMES.LIST (INVERSE.LIST I P))

(TIMES I (TIMES (INVERSE I P)
(TIMES.LIST (INVERSE.LIST (SUB1 I) P)I)).

Thus, we have, a5 a special case of Lerama 29,

Lemma 30. (IMPLIES (EQUAL (REMAINDER (TIMES I (INVERSE I P)) P) 1)
(EQUAL (REMAINDER (TIMES.LIST (INVERSE.LIST I P)) P)
{REMAINDER
(TIMES.LIST (INVERSE.LIST (SUB1 I) PJ) P3))
Hints: uss Lemma 29
with {A/I, B/(INVERSE I P},
C/(TIMES.LIST (INVERSE.LIST (SUB1 I) P))}
disable Lemma 2¢, INVERSE, INVERSE.INVERTS.

By INVERSE.INVERTS, it follows that

Lemma 31. (IMPLIES (AND (PRIME P}
{NOT (EQUAL (REMAINDER I P) O)))
(EQUAL (REMAINDER (TIMES.LIST (INVERSE.LIST I P))

P})
(REMAINDER (TIMES .LIST(INVERSE.LIST(SUBL I)
: P3)
P33}

Hints: use INVERSE.INVERTS with {J/I}
digsable INVERSE, INVERSE.LIST, TIMES.LIST,
REMAINDER, and PRIME.

Lemma 31 is essentially the inductive step in proving that

15

(REMAINDER (TIMES.LIST (INVERSE.LIST I P)} P) =
for I<P. The base case is simply

Lemma 32. (IMPLIES (LEQ I 1)
(EQUAL (TIMES.LIST (INVERSE.LIST I P)) 1)).

Combining the last two results, we have

Lemma 33, TIMES.INVERSE.LIST
(IMPLIES (AND (PRIME P) (LESSP I P))
{EQUAL (??MAINDER (TIMES.LIST (INVERSE.LIST I F)) P
i
Hints: use Lemmas 31 and 32
induct according te (POSITIVES I)
disable INVERSE, INVERSE.LIST, TIMES.LIST,
Lemma 31, and Lemma 32.

3.3 The pigeon‘hole principle

For prime P, (INVERS’E:;..LIST (DIFFERENCE P 2) PJ is now kmown to be a list of
pairwise distinct positive integers including all and only those which are less than P-1. The main
resuit of this section is that these properties imply that the list is a permutation of (PGSITIVES
(DIFFERENCE P 2)).

There is 2 similaz result, named PICEON,HOLE.PRINCIPLE, which is found in the file
RSALIB. This theorem is not applicable to the problem at hand because it contains a hypothesis
concerning the length of the list. Apparently, there is no simple way to compute the length of
any list copstructed using INVERSE.LIST. - ’ ‘

*The next six lemmas all deal with list manipulations. The functions concerned all have
similarly structured definitions, each recursing on the CDR of ome of its arguments. In this
situation, the theorem prover’s heuristics lead unambiguousiy to an appropriate induction scheme.
The proofs of these lemmas We‘reidiscovered without any hints.

Lemma 34. (IMPLIES (AND (MEMBER A §) (NOT (EQUAL A X)))
~ (MEMBER A (DELETE X 8))). -

Lemma 35. (IMPLIES (AND (SUBSETP R S) (NOT (MEMBER X R)))
: (SUBSETP R (DELETE X S)))°

Lemms 36. (IMPLIES (AND (ALL.DISTINCT L) (ALL LESSEQP L N))
(ALL LESSEQP (DELETE N L) (SUBL N))J.

16

Lemma 37. - (IMPLIES (LESSP N M)
(NOT (MEMBER M (POSITIVES N)JJ).

Lemma 38. (IMPLIES (SUBSETP (PUSITIVES N) L)
: (SUBSETP (POSITIVES (SUB1 N)) (DELETE N LJ)J.

Lemma 39. (IMPLIES (AND (ZEROP W)
(ALL.LESSEQP L M)
 (ALL.NON.ZEROP L))
(NOT (LISTP L))).

The {ollowing function definition is introduced with no intention of ever evaluating the
function, but rather as a means of teaching the system a new induction scheme to be used in the

next proof:

Definition 40. (PIGEONHOLEZ.INDUCTION L N)

(IF (ZEROP N)
T
(PIGEDNHOLE2 . INDUCTION (DELETE N L) (SUB! N))).

Lemma 41. PIGEONHOLEZ
‘ (IMPLIES (AND (ALL.DISTINCT L)
(ALL .NON.ZEROP L)
(ALL .LESSEQP L W)
(SUBSETP (POSITIVES N} L))
(PERM (POSITIVES N) L))
Hint: induct according to (PIGEONHOLEZ.INDUCTION L H).

The induction indicated imvolves ome base case, (ZEROP N), and one inductive hypothesis,
obiained by the substitutions L/ (DELETE N L) and N/ (SUBL N).

In the base case, we observe that (POSITIVES NJ==NIL and hence (PERM (POSITIVES
" N) L) reduces to (NLISTP L). This is true by Lemma 39.

For the inductive step, we assume that 2ll the hypotheses of the lemma hold. Two
theorerns from RSA.LIB, ALL .DISTINCT.DELETE and ALL.NON.ZEROP.DELETE, them imply
(ALL DISTINCT (DELETE N L)) and (ALL.NON.ZEROP (DELETE N L)), respectively.
Lemmsz 36 yields (ALL LESSEQP (DELETE N L) (SUB: H)), and from Lemma 38 we have
(SUBSETP (POSITIVES (SUB1 N)) (DELETE N L). We now infer the conclusion of the
inductive hypothesis, (PERM (POSITIVES (SUB1i M)) (DELETE N L)), which may be written
iPi?ﬁ J(CDR (POSITIVES N)) (DELETE N L)). The hypothesis (SUBSETP (POSITIVES N
1.} implies (MEMBER (CAR (POSITIVES N3) LJ, and the lemma follows.

17

3.4 The final result

For L==(INVERSE.LIST (DIFFERENCE P 2) ?;) and N=(DIFFERENCE P 2), the
hypotheses of PIGEONHOLEZ are among the resulis of section 3.2. We conclude, therefore,

Lemma 42. PERM.POSITIVES.INVERSE.LIST
(IMPLIES (AND (PRIME P) (EQUAL I (DIFFERENCE P 2)))
(PERM (POSITIVES I) (INVERSE.LIST I P))).

The library theorem TIMES.LIST.EQUAL.FACT states that if L is a permutation of
(POSITIVES N), them (TIMES.LIST L)==(FACT N). Combining this with
PERM.POSITIVES. INVERSE.LIST, we have

Lemma 43. INVERSE.LIST.FACT
(IMPLIES (AND (PRIME P} (EQUAL I (DIFFERENCE P 2)))
(EQUAL (TIMES.LIST (INVERSE.LIST I P)) (FACT 1)))
Hints: use TIMES.LIST.EQUAL.FACT
with {N/I, L/(INVERSE.LIST I P)}
disable INVERSE.LIST.

Next, we recall TIMES . INVERSE.LIST, which now yields

Lemma 44. (IMPLIES (AND (PRIME P)
(FQUAL I (DIFFERENCE P 2)))
(EQUAL {REMAINDER (FACT I) P} 1))
Hint: use TIMES.INVERSE.LIST.

Finally, multiplying the congruence of Lemma 44 by P-1, we have

Lemma 45. WILSON.THM
({IMPLIES (PRIME P)
(EQUAL (REMAINDER (FACT (SUB1 P)) P} (SUBL P)})
Hints: use Lemma 44 with {I/(8UBi1 {(8UBL P))}
use THM.B5.SPECIALIZED.TO.PRIMES
with {M,;(§U81), %X/(FACT (SUBi1 (8UB1 PJJJ.
Y/1
disable Lemma 44 and THM.B55.SPECIALIZED.TO.PRIMES.

4 CUonclusions

In 2 lecture delivered to the 1982 Joint International Seminar on the Teaching of
puter Science, P. M. Melliar-Smith [5] remarked that

4 drawback to heuristic theorem proving attempts is that successful proof depends upon
imate knowledge of the heuristics »emp%oy‘ed. One must understand how very subtle
1ges in specification structure, even those that preserve semantic equivalence, can affect
ihe direction and final outcome of the proof attempt. Lemma form becomes as important

a8 content.

18

To some exient, the Boyer-Moore system is susceptible to this criticism. A familiarity
with the structure of the theorem proving program is probably necessary for success in verifying
any nontrivial theorem. However, the expertise required of the user is less than might be
expected. The author, 3 mathematician acquainted with the logical theory involved but with no
prior experience in automatic theorem proving, executed this project in three phases, each
occurring within a period of one week. First, a modest understanding of the system’s heuristics
and current library was gained by reading [4] and Chapters V-XIII of [2]. Next, a sequence of
twenty-five lemmas and function definitions was prepared for submission to the theorem prover.
Informal proofs were constructed in an attempt to predict the prover's behavior. Finally, this list
of events was presented to the system. Some lemmas were verified immediateiy, others required
modification {e.g., additional kints}, and new lemmas were inserted where necessary.

The responses of the theorem prover were generally found to be difficult to predict. The
analysis of proof attempts was often so complicated that the effects of minor changes in
conjectures could only be determined empirically. In many cases, hints were inserted liberally and
somewhat arbitrarily until a lemma was finally proved. Upon subsequent examination of the
system’s output, it was generally possible to explain why each hint or exira step was warranted.

There is no doubt that a more ®intimate knowledge of the heuristics employed® by 2
theorem prover would allow its user greater efficiency. However, it is possible for a novice in the
field to enjoy some success. The verification of meaningful results, which might be impractical
with a system based solely on decision procedures, may be achieved relatively easily with a
heuristic theorem prover with only a limited understanding of its design.

Appendix A.

A list of system functions

Here are listed some function definitions from RSA.LIB which were used in the proof of
Wilson's theorem.

A.1 Arithmetic functions

1. (ZEROP X)
(OR ?EQUAL X 0) (NOT (NUMBERP X))}
2. (LESSP X Y3
(1F (;ERGP)
iIF (ZEROP X)
%LESSP (suB1 X) (SUBL Y))))
3. (LERXY)
iﬁg; (LESSP Y X))
4. (FIX ¥

(IF (NUMBERP XJ X O)

o

(PLUS X Y)
(IF (ZEROP X)
FIX V)
(ADD1 (PLUS (SUBL X) YO
&, (TIMES I 1)
{(IF (ZERDP I)

(PLUS J (TIMES (SUB1 I) 11))

e
[¥N]

(DIFFERENCE I J)
(IF (Z;ROP n
%IF (ZEROP 1)
%DIFFERENCE (suB1 I3 (SUBL 1313}
(REMAINDER I J)
(IF (ZERGP)]
(FIX 1)
(IF (LESSP I)
(FIX I) :
‘ (REMAINDER (DIFFERENCE I J) 1))
(Exp 1000
(IF ?ZEROP n
%TIMES I (EXP I (SUBL 1))
(FACT 1D
(IF:(ZERDP 9]
%TIﬁES I (FACT (SUBL1 1)J))3
(DIVIDES X Y)
(zsaa; (REMAINDER Y X))
(PRIMEL X YO
(1F (Z;ROP Y)
izy iEQUAL Y 1)

%AND (NOT {(DIVIDES Y X))
(PRIMEL ¥ (SUBL D))

(PRIME X)
(AND (NOT (ZEROP X3

(NOT (EQUAL X 122
(PRIME1 X (SUB1 X))}

A.2 List-related functions

14. (MEMBER X L)

(IF (LISTP L)
(IF (EQUAL X (CAR L))
T

(MEMBER X (CDR L))}
F)
15. (SUBSETP X Y)
(IF (LISTP X)
(IF (MEMBER (CAR X0 Y)
{SUBSETP (CDR X) Y
)
)
16. (NLISTP L)
(NOT (LISTP L))
17. (DELETE X L)
{IF (%LISTP L)
L
(IF (EQUAL X (CAR L))
(CDR L)
(CONS (CAR L) (DELETE X (CDR L)1O)W)
18. (PFRM A B)
CaF ENLISTP A)
(NLISTP B)
(AND (MEMBER (CAR A) B)
(PERM (CDR A) (DELETE (CAR A) B)))
i9. {TIMES.LIST L)
(IF (N{ISTP L)

1
{TIMES (CAR L) (TIMES.LIST {(CDR L)JJ)

el
L]

(PUSITIVES M)

(IF (ZEROP N}
NIL :
CONS N (POSITIVES (SUBL N))J))

21. {(ALL.WON.ZEROP L)

(IF (NLISTP L)
T
(AND (NOT (ZEROP (CAR L)J)
{ALL .NON.ZEROP (CDR L)JJ)

22.

(ALL.LESSEQPF L W)

(IF (NLISTP L)
< ,

(AND (LEQ (CAR L) N)
(ALL .LESSEQP (CDR L) N)J)

{ALL .DISTINCT LJ

(IF (NL;STP L)
T
(AND (NOT (MEMBER (CAR L) (CDR L))}
{ALL.DISTINCT (CDR L}J2) =

(6]

Bibliography

George Boole. : .

An Investigation of the Lows of Thought on which are Founded the Mathematical
Theories of Logic and Probabilities. '

Dover Publications, New York, 1951,

Robert S. Boyer and J Strother Moore.
A Computational Logic.
Academic Press, New York, 1979.

Robert S. Boyer and J Strother Moore.
A Theorem Prover for Recursive Functions, a User’s Manual.
Compater Science Laboratory, SRI International, 1979.

Robert S. Boyer and J Strother Moore.

Proof Checking the RSA Public Key Encryption Algorithm.

Technical Report ICSCA-CMP-33, Institute for Computing Science and Computer
Applications, University of Texas at Austin, 1982.

Edsger W. Dijkstra.
Trip Report, Newcastle-upon-Tyne.
Sept. 6-10, 1982.

. H. Hardy and E. M. Wright.
An Introduction to the Theory of Numbers.
Oxford University Press, 1968.

John McCarthy.
Computer Programs for Checking Mathematical Proofs.
Becursive Function Theory, Proc. Symp. Pure Math., Amer. Math. Soe. V:219-227, 1962.

John McCarthy.

A Dasis for a Mathematical Theory of Computation.

In P. Braffort and D. Hershberg (editor), Computer Programming and Formal Systems,
pages 33-70. North-Holland Publ. Co., Amsterdam, 1963.

23

