A Gypsy-to-Ada Program Compiler
Robert L. Akers

December 1983 Technical Report 39

Institute for Computing Science
The University of Texas at Austin
Austin, Texas 78712
(512) 471-1901

Table of Contents

Chapterl.lNTRoDUCTION I......."Q...G.'...

1.1. Background -- Compiling to High Level Languages
1.2. Goals And Priorities cccccooccccacccccccce
1.3. Caveat On Ada Source Modifications ...

Chapter 2. The Ada Image of Gypsy Constructs .

2.1. Basic Concepts o cccococcsccoccsse
2.2, Lexical Preliminaries c c ccccccccoee
2.3, Type Specifications . coccooccoccee

2.3.1, Initial Values ...cc-0-
2 3.2, Simple Types c:00022
2.3.3. Scalar Types csccoso-
.3.1. Type Boolean
.3.2. Type Character . . . -
.3. Type Integer - - c o+ «

2.3
2'3
.3.

3

2.3.3

2.3.3.4. Type Rational . . .«
3

2.3.3.5. Subrange Types ..c.-0
2.3.4. Static Structured Types

2
2
2.3
2.4.
2
2

.3.4.1.Al‘l‘&y5 s 0o @ 2 ¢ & 9 © 6 8 8 @ °
03.452-ReCOrds 2 » ®o 8 6 9 0 2 8 B @S

5. Base Types c cccoossssssas
xpres!ions 6 o086 @ 6 osee o B8O

4.1. Name Expressions-0¢-
.4.1.1. Component Selectors . . .

2.4.2. Value Expressions <. ccc020
2.4.2.1. Primary Values . c oo cs
2.4.2.2. Modified Primary Values

4

2.5.

.5.
5

o 29 ¥ oo

®

5.
5

8 B B9

B
ls‘
B

23 89

2.4.2.3. Operators c c cos s e
2. 4.2.4. If Expression . cccceccve
.3. Pre-computable Expressions .
Programs . c s s s scsesoscosce

Procedures . .sscs002090s

) |
.2. External Environment
3

4, Constants c.sccsscsc0es
.slBodles.D....OII.I‘O...
8. Internal Environment ...
7

.Functions c ccoccoeceooase
. Internal Statements « c ¢ c o o ¢

2.5.7.1. Assignment Statement . .

5.7
2.5.7.2
2.5.7.3
2.5.7.4

7

2.5.8. Procedure and Function Calls . .

. Input and Output-
. ¥ Composition ..c0050
. Case Composition ...
2.5.7.5. Loop Composition-
2

5.8.1. Actual Parameters . o c c o = ¢
5.8.2. Type Consistency «c:.022
5
5

2
z. 08030Aliasing e o » © 8 ¥ @ & 2 8 % 8
2

.5.8.4, Transfer of Control ...

2.5.9.

2 & @ ®

¢ 2 © @

e ® o @

e » 2 8 @ B & @ ® & © &

2 e @ 2 @ 2 © & & ° &

e
e v 8 ® & B 5 & & B
@

'O....... e ¢ ® 8 & B 8 @ O
..""...."...‘.CQQ.
.'.'...‘..I...'......
...G..O‘D...Q.'...O..‘
0......'.-........‘...
9.‘.........‘I'..‘...-.A...“'
'.‘....'.QC...'.Q.IC....0....
...C....‘..‘.....‘..'...O'...
.ll‘.“.'.."'....ﬂ‘..‘..l...
‘.l.-.ﬁ..l..."..’.....'.....
Q.‘I‘O.II‘........I..........
llol"..’."...-..OO.I.'....‘
.‘.'l"".'...."-l‘..l..l
.00'........‘.."l...‘l..‘
..Gl'la.IO“.‘..QIQO.....O
C"....‘O..C...‘.O....'..‘
I.O..'..I.‘..‘l‘..‘.ﬁ‘.@."
.C‘....Q‘.O"‘......."...
..OI...'.'........’.'QO‘..
'...‘.......‘...'..‘.'0..0
....‘....‘.I'..CI."D“.‘.
.C“.......'.'.Gﬁ'....’...
IO...'9..‘...‘.‘..‘.'..-..
..'...--..‘....“!‘.Qk.ﬁ..‘
.0‘5'.'..!.0'..OOQ.QGCCﬁ.l
Q’.“...U...ﬂ.....OB.I..'.
.'...3".0‘0.9'....".0.0.
‘O.ﬁ..“".’.‘...‘ﬂ‘.....'
!O‘...C.D‘...'OQ...OOG.0.0
.l.i'...ﬂ.Q...‘0.0‘B“.O.-O
..I.G..‘...l.l.“.‘.l...'.
....I.'G.O‘l....ﬁ’..0.0...
...I.....'..‘.‘I"O.C.'Q.Q
....".."....‘.....9"...
.9.0'..3DG..G'.!..O.IUG...
O‘..‘OI'I‘.OIQ..'.0.0.QCGG’
'..3'.'-‘..".O'.‘O...Q..
.-anecoo'oaenssttouaso.a.
.ll“&.."#’ﬁ.’a‘.ﬁ'.‘..l
..."..IQ......'.'..OQ..
.’OD..Q..QU.I..O‘.....BE
90‘.*.'39.0....0...”'9.
’Ol.“.ﬁ.ﬁ.@.DQ.'DQBGQiQQ.
f-2 ..03.&...-‘..’..‘900.3‘9
Getting Started G.‘Q.Q.'l.'.e'ﬁOG..'QBQGOQ..CGD'OQ.
2.5.9..VeriﬁcationEnvlronment......,......‘.....,....a..
%2.5.9.

.Main Programccscscosssescncsssscocccosecs

©9 0O B e

@ OO PO IA A

2.5.9.3. Implementation Prelude . . .
2.8. Operational Specifications
2.8.1. Specification Expressions
2.8.1.1. Entry Values ..cccos0c0
2.6.1.2. Value Alterationg-
2.6.1.3. Quantified Expressions
2.8.2. External Specifications
2.8.3. Internal Program Specifications
'9.8.4. Lemma Specifications
2 7. Textusl Organization .ccccccoe0
2.7.1. Scopes .. cacoc0 0o
279 NAME Declaration cccccoooo
2.7.3. Unit Name Reference Resolution
2.8. Condition Handling . c e ccccccceco
2 8.1. External Conditions .c.:.0c050 2

2 8.2, Internal Conditiong . .o ccccsen
2.8.3. Signalling Conditions . « o o c o oo
2.8.3.1. Signal Statement « c ccco 00

2 8.3.2. Actual Conditlon Parameters
2.8.4. Handling Conditions ::cccoc0¢
2.8.5. Conditional EXIT Specifications .
2.9. Dynamic ObjJects . .cccceocecccces
2.8.1. Dynamic Types . c c s cccccoccoe

&
a ® 2 & B 8 @ &
@

®

e

a

e

®

a

®

°

®

°

°
-.1‘1-Set3 ¢ 226060880068 08088 Do 008
®

®

@

e

e

@

@

e

®

®

®

°

°

®

°

s © o ®© 8 © @ o © ® @ 8
®

2.9

2.9.1.2. Sequences . .csoccccsss oo
2.9.1.3. Type STRING (ccc2000090
2.9.1.4. Mappings ccccococcoccss
2.8.2. Expressions ..:cccccco0s0cec
2 6.2.1. Set and Sequence Values ...
3. Operators s c cc s coo o

°
e
® e 5 ®
]

g
2.9
2.9.
2.9.2.4. Value Alterations
2. 0.3, Statements c cocecoscses

2.
2,2, Component Selectors
2.
2.

2.9.3.1, INSERT Statement . . .
2.0.2.2. REMOVE Statement . .
2 .

2 @ 9

.8.2.3. MOVE Statement .. -

e

®

®

2 8 2 e
®

e ® & B
@

0.1. Buffers c cccocccsssoocsons
0.2. Operations Restrictions
0.3. Buffer Parameters « cscocoocea
0.4. Statements «cocccocsocooos s
%.10.4.1. RECEIVE Statement .:c..
2,10.4.2. SEND Statement cccocscsoo
2 10.4.3. GIVE Statement cscsc00c0000
2.10.4.4. Communicating Sequential Processes
2 16.5. Concurrent Composition ccccccccoees
2.10.8. Specifications ..c.ccsccsscoccacscs
2.11. Type Abstraction ...ccoccoccccocccccs

ao........l.‘.‘.h.OC‘..O!.ODI'

®
@
®
@
@
®
2
®
e
e
®
[
@
®
®
s
®
&
®
®
@
®
®
®
@
®
®
L]
®
®

Chapter 3. Compiler Role and Implementation ¢ . .-

B
3
e
@
2
®
®
£
®
°
®
®
®
®
e
@
@

®
®

®
@
®
e
@
[
®
®
e
@
@
®
®
®
e
2
®
2
®
e
e
®
@
®
®
e
@
e
®

e °

°® e v 8 o
e e o e @
e« 8 ® 0 ®
s v 0 e e
s 2 & 8 @
e o e o &
2 & 8 o @
a8 @ 6 8
®» & ® @ @
2 5 0 2 @
e« 8 2 &5 8
o a v e @
e e o 0 o
5 0 8 s @
e 25 e 0
o6 ¢ 5 ©
2000 s
2 6 8 e o
® 2

®
®
®
e
®
e
e
e
@
e
e
@
e
@
2
%
a
®
®
@
z
e
2
®
®
e
@
®

2 2 & & @

3.1. The Gypsy Verification Environment +..cccccoo0e.
3.2. Consideration of Intermediate Program Representations
3.2.1. Overview of Gypsy Prefix ..cccccccoocccccss
3.2.2. Choosing an Intermediate Representation

Adoption and Syntactic Modification of Infprint
Data StructuUres .c.cocoansesososossescs

3.3
3.4

3.5. Prepasses of Gypsy Prefix c.cceocccccccss
2
3

2 @ 2 2 B

e e ¢ 2 ©®

»

2 & ®
s 2 @
® e 2

» ® 2
@ o »
e o =
e & @

,B.1. The Global Program Pass .::cccscsccccsscscccccs
.5.2. Prepassing Scopes . c.csscccsoosssoccsccncsocce

e & ® @ © ® o

s m ® © © ®» ©® & v

s o o ® ® B © & @
» ® » ® B ¢ B @ W
a8 ® @ ® ®© & © ® &
« v @ ® @ ©® © ©° @

e © © 8 & o

e ® © © ® & © & ®
a & o ® © e 8 & @

I'l.l&.l'!t..""l..l'.l....

s &« © o # ® e e ® & 6 ® s 6 6 @ o & & O

e © ® @ ® @ @& ® e e ® @ © & @

s & © ® © ® e ® 8 8 ‘& S &

¢ » ® @ ¢ - ©®8 O @

5.3. Prepassing Units . ccccoccococcscccscacsse

3.

3.5.4. Semantic Modifications During the Print Pass
Chapter 4. CONCLUSION . ccccceerescncanscoccs
Appendix A, The Predefined Support Package «cc.000 0

Appendix B. Predefined Support for Structured Types ..

B.1. Support for AFFays « c cccsosocescocoscsans
B.2. Support for Sequences c c c coccosce oo
B.3. Support for Sets c s s cccovscosecss e
B.4. Support for Mappings . . cccccocecccccccnse
B.5. Support for Buffers «...cccccoeccoccocse

Appendix C. A TOPS-20 Implementation Prelude

Appendix D. Translation Examples cccooocasossccse

[

®

D.1. A Translation Involving Only Syntactic Changes . .

D.2. Type Declarations ..cccceccocccccccccos

®

D‘a.AStandardExample l..‘..’lﬁ'.......l'l

Appendix E. Example -- How to Run the Compiler\ cesase

s & ® & ®

® @

o © © 8 ©

L]
®
L]
¢
®
®

s o & o ©
e @
a ® ® o @

o 2 ¢ & 8 ©

ooooo

o

s o ®© & @

32
40

43

42

Acknowledgements

Don Good, Rich Cohen, Larry Smith, and Mike Smith assisted in the selection of the compiler as a
thesis topic. Don Good was primarily responsible for acquiring funding for the project.

Bill Young assisted in the implementation of dynamic structured types by coding the Ada support
packages of standard functions for those types. Discussions with Bill Young and Don Good were
invaluable in arriving at the final design for the implementation of dynamic types. John McHugh
made significant contributions in discussions on the implementation of condition bandling.

Larry Smith was my constant sounding board. His contribution cannot be underestimated, nor my
appreciation sufficiently expressed. ‘

All of these people have made valuable suggestions and provided numerous insights in discussions
which helped formulate the implementation.

Chapter 1
INTRODUCTION

Gypsy [11] is 2 language developed to support 2 methodology for formally specifying,
implementing, and verifying computer software. Developed from Pascal [18,35], it is a concise, clean,
and very modular language in the lineage rooted in ALGOL 60 [23]. The evolution of Gypsy from
Pascal was largely a process of eliminating those language constructs which did not lend themselves to
verifiability, replacing them with more tractable alternatives, and adding some new capabilities,
including a mechanism for the formal specification of program behavior.

The Gypsy Verification Environment [6,7,8] is an interactive system of tools, implemented in
LISP, which work together to aid the programmer in executing the tasks of incremental program
development and verification. Programs may be incrementally specified, implemented, parsed,
proven, and compiled, all within this environment.

Ada [16,32] is 3 programming language of considerable expressive power designed to be applicable
to embedded systems and a wide domain of other applications. Ada also has its roots in the heritage
of ALGOL and Pascal, and bears many syntactic and semantic resemblances to Gypsy, though Ada is
much larger and more complex. The critical nature of some of its applications has aroused interest in
the possibility of verified Ada programs, but certain aspects of the language preclude of formal
verification [31,37].

The subject of this report is the design and initial implementation of a Gypsy compiler which
targets to Ada. The compiler is the combination of a LISP module integrated into the Gypsy
Verification Environment and packages of support routines written in Ada. The compiler converts an
internal form of a2 Gypsy program maintained by the verification system into Ada source, which may
then be compiled along with the support packages in any Ada environment. Using the Gypsy
verification methodology and tools to perform the actual task of program verification and then
applying the compiler to obtain Ada code with the same semantics results in Ada code which may be
used with much the same confidence as the verified Gypsy program.

There are several aspects of this project, some pragmatic and some theoretical, which are
attractive to those interested in formal program verification. First, this approach will require minimal
time and expense in producing verified Ada, since the tools it utilizes for program development and
verification already exist and have demonstrated success. Such a system of tools is normally huge and
costly, and producing a whole system tailored to Ada might be prohibitively expensive. Secondly, this
approach will provide a mechanism for getting Gypsy programs to run on any machine which can run
Ada. Thirdly, this approach effectively decouples the development of Gypsy and Ada. To users, this
means that Gypsy is 2 verifiable systems development language which can compile into Ada. To the
verification research community, this means verification research may be cleanly decoupled from Ada.
The importance of this decoupling is that it allows subsequent development of Gypsy and Ada to
proceed without mutual interference.

This report will briefly outline background to the compiler effort, describe the mapping from
Gypsy to Ada constructs, and describe the role of the compiler in the Gypsy Verification Environment
and the high points of its implementation.

[3]

1.1 Background -- Compiling to High Level Languages

Usually, programs are compiled from a high level language to some machine language, but there
are often reasons for compiling programs from one high level language into another. For example, an
enterprise may wish to consolidate its software effort to a minimum number of languages so as to
streamline and simplify its personnel assignments. Two other cases, the ones motivating this report,
are: 1) that special program development strategies available for one language do not exist for the
language in which the program must ultimately be compiled, and 2} that a program written in some
language may be needed on another machine for which no compiler for the language exists.

Source-to-source compiling from one high level language to another is not pearly as common 38
compiling to a lower level language, nor has it received as much attention in the literature.
Nevertheless, it is not without precedent. One well documented effort, which is germane to this
report, is the Pascal-to-Ada and ‘Ada-to-Pascal translator implemented by the PascAda group at the
University of California at Berkeley [2]. The problems of translating from Pascal to Ada are quite
similar to those of translating Gypsy to Ada. {(The project documented in this report is not concerned
with problems analogous to compressing features of the Ada language into the less baroque Pascal.
The questions of reflexive translation, whereby a program translated from Gypsy to Ada and back to
Gypsy needs to resemble its original form, is never raised here.)

The central strategy of the PascAda group was to define compatible subsets of Pascal and Adsa
which have a direct translation between them. A program written in full Pascal is transformed into 2
form using only those constructs in the Pascal subset. The program in Pascal subset form. is then
converted into the Ada subset form and regenerated as Ada source for interpretation or compilation.
The converse process is followed for translation from Ada to Pascal. The target, then, is the subset
language rather than the full version of the target language. Where AdaP is the Ada subset and
PascalA the Pascal subset, the general schema of the translation is:

Pascal Ada

|]

y Y
Pascalh {~———=—————"=" > AdaP

While PascalA and AdaP are semantically equal, primarily syntactic issues will make the
incarnations of a single program look somewhat different in the two languages. To aid in the
~ tranmsition, 3 single intermediate form was selected to represent the semantics of a program in either
language. This form could be used as a basis for generating the syntactically appropriate source code
in either language. Translations to and from the intermediate form are generally local in nature. The
intermediate form chosen was the tree structure defined in the formal definition of Ada [9].

Some features of the each language have no analog at all in the other language, and these were
thereby excluded from translatability. (This is primarily true for Ada features which do not map into
the simpler Pascal.}) A translatable subset, larger than the semantically equal subsets, was defined for
each language. These were called AdaPE for the Ada side and PascalAE for Pascal. The process of
translating a program P, say from Ada to Pascal, then became: 1) determining if P is in AdaPE (is
translatable), 2} transforming P (an AdaPE program) into AdaP, 3) trapslating the AdaP
representation of the program into the intermediate tree structure, and 4 generating the PascalA
program from the tree. Schematically the arrangement is:

P in PascalAE? (subset of Pascal) P in AdaPE? (Ads subset)

if so, | if so, |
¥ y
Pascalh (==~ S internal tree {————- > AdaP

Since the intermediate tree form was designed to represent Ada programs, the algorithm to
prettyprint the Ada source is a straightforward, top-down, post order traversal, which prints text as it
goes. (This is quite similar to the operation of infprint on Gypsy prefix representations in the Gypsy
Verification Environment.} Since the tree representation was designed for Ada, some infoermation
often needed to be collected or inferred in order to print Pascal from the tree. (Similar collection is
necessary in generating Ada from the modified prefix which serves as the translation medium for the
Gypsy-to-Ada compiler.)

1.2 Goals And Priorities

The implementation of the Gypsy to Ada compiler is an ongoing project. The work documented
bere is the attempt to compile the bulk of the Gypsy language, with the notable exception of its
mechanisms for concurrency. It may be reasonably expected that work on concurrency may follow,
but our goal has been to compile accurately the large subset of Gypsy which does not involve
concurrency before expanding to the full language.

We realized that on occasion there would be certain uses of Gypsy language features which would
not lend themselves at all to the compilation effort, or for which the overhead of compilation would
exceed the benefits. The compilation philosophy used in this report allows for the acceptability of
variances where such cases might arise. '

The primary role of the compiler is simply to aid in producing running object code from Gypsy
programs, which may have been completely verified. It need consider, then, only those parts of the
program which will form its runtime image. All code which contributes only to the verification
process oOf otherwise to program development may be disregarded. To the greatest extent feasible,
remnants of untranslated Gypsy text, for example non-validated formal specifications and lemmas, are
maintained as comments in the Ada code.

Qur approach concerns only the one-way compilation from Gypsy to Ada. The task of compiling

Ada programs into Gypsy is much more difficult, due to the gex}erality of Ada. Some of Ada’s

fundamental characteristics which do not lend themselves to verification might likewise not lend
themselves to representation in a language which is restricted by the rigors of verifiability.

It is hoped that the results of this effort will serve as fruitful grouxid for the further study of
language-related issues regarding Gypsy and its usage, as well as its relation to Ada.

Clearly, the foremost priority of the compiler is that the Ada program must be functionally
equivalent to the Gypsy program so as to preserve the validity of the Gypsy proofs. A secondary
priority is to maintain a physical resemblance of the Ada program to the original Gypsy. It is
understood that this resemblance must dissolve in the compilation of many constructs which are
treated differently in Ada, even though the differences may be subtle. A less significant priority is the
efficiency of the Ada program. : :

1.3 Caveat On Ada Source Modifications

Since the validity of the verification of a Gypsy program is extremely sensitive to changes in the
program, the Gypsy Verification Environment (GVE) includes 2 facility for tracking the effects of
such changes through incremental program development. This facility notes which verification
conditions will have to be regenerated after a change and which unchanged ones will have to be re-
proven in order to maintain the validity of the verification. Changes occurring outside the GVE
impose a complete caveat emptor on the verification status of the program.

A verified program may undergo several tramslations, all of which are designed to preserve
verification status. These translations, supervised in the GVE, may include compilation via
translation to BLISS for later BLISS compilation, or the translation to Ada described here. The role
of any Gypsy compiler is to produce a functionally equivalent program in its target language. A
program emitted from 2 compiler may be considered to be ®verified® only if the Gypsy program being
transiated was completely verified in the GVE and was unchanged since the verification was
performed. Similarly, the code produced by a compiler, be it BLISS or Ada, must not be altered. To
do so would invalidate the verification of the program.

Chapter 2
THE ADA IMAGE OF GYPSY CONSTRUCTS

This chapter describes the Ada forms into which the various Gypsy constructs are compiled. It
parallels the text of the Revised Report on the Language Gypsy Version 2.1, by Donald 1. Good, [38]
which is the current defining document for Gypsy. The treatment of Chapters 1-7 is the most
thorough, since the compiler was designed first to completely translate the features described in those
chapters. Material from the other chapters is covered to the extent to which the compiler software
currently treats it.

2.1 Basic Concepts

The broad concept of a program in the two languages is identical, although Gypsy buffer
parameters to the main procedure are treated directly as files in the Ada environment. The
fundamental concept of procedure, function, type, and constant are similar in Gypsy and Ada. Gypsy
lemmas, since they have no runtime significance, may be transformed into comments. Dynamic
memory is implemented with explicit pointers, although this implementation is totally abstracted from
user control in Gypsy. ,

The Gypsy standard types boolean, integer, and character are present in Ada, and the set of
predéfined operations for objects of those types are similar, but not identical. Where there are
differences, Ada support code has been written to perform exactly as would the Gypsy program.
Rational numbers, as currently implemented in Gypsy, serve Do runtime purpose, 0 they are not
translated. The type activationid is not relevant to the Ada image as currently implemented. Scalar
types are supported as enumeration types in Ada, and additional support provided in the compiler
ensures that their implementation reflects Gypsy semantics. Ada includes the standard composition
types array and record. Ada’s access types are used in conjunction with records to implement Gypsy
sets, sequences, mappings, and buffers. Strings are present in Ada, and string constants in Gypsy and
Ada share the same notation. Ada’s predefined strings are implemented as arrays of character,
however, while Gypsy’s are sequences of character. The compiler implementation must treat them as
it does sequences, which includes coercing constants from array to sequence (linked record) value.

Gypsy's standard procedures are emulated in three ways: 1) as routines in instantiations of
predefined generic support packages, 2) as routines in 2 non-generic support package, or 3) with in-line
expansions possibly incorporating calls to the above types of support routines. Gypsy's [F, CASE, and
LOOP statements have counterparts in Ada with which the Gypsy semantics may be expressed.

The implementation preludes (see Ch. 2,5.9.3) which will be available for use with the Ada
compiler will mainly provide support for the input/output mechanisms. They will include type and
object representations which will represent internal objects eligible for treatment as input/output
devices. When the user invokes the compiler from the GVE monitor, he will supply a Gypsy-like call

to the user's main procedure which will link the program to an environment and drive the compiler’s
treatment of input/output. ‘

2.2 Lexical Preliminaries

The character set available to Ada programs is the same as that for Gypsy. Ada identifiers have
the same form as Gypsy identifiers. The bound on identifier length is an Ada implementation
constraint. The set of reserved words is somewhat different in the two languages. Where a Gypsy
identifier is the same as an Ada reserved word, it is transformed through transiation to some non-
reserved identifier. The set of identifiers beginning with the characters "g__a__ " are reserved for use
by the compiler.

Any construct translated as a comment becomes an Ada end-of-line comment, textually preceded
by *—*° on every line. A < CRLF> is inserted at the end of the comment.

2.3 Type Specifications

The concept of type is quite similar in Ada and Gypsy. The syntactic form of type specifications
in Ada is quite similar to Gypsy's, and all varieties of Ada types are present in Gypsy with the
exception of the access type. The fundamental target mechanisms for translating Gypsy types, then,
are present in Ada. Even so, the translation of types and their predefined operations and the
provisions made for replicating Gypsy type compatibility in Ada is one of the most involved processes
undertaken in the compiler.

While both Ada and Gypsy are strongly typed languages, Ada places constraints on type
compatibility which are not present in Gypsy. Type compatibility in Gypsy means only that the
actual parameters in function and procedure calls must be of the same basetype as the formal
parameters. (The same treatment is given to arguments to the various predefined statements.) Type
compatibility is all that is required by the Gypsy parser for type checking. Checks on range and size
restriction violations on the types of formals must commonly be deferred until runtime, when 2
violation will result in the signalling of the VALUEERROR condition.

In Ada, however, type compatibility means that the objects are either of the same declared type or
are of explicitly declared subtypes which share the same basetype. For example, consider:

type intl is integer;
type int2 is integer; ,
type intd is integer range 1..10;

Objects of any pair of these types are mot type éompatible with one another, since each type
declaration represents a distinct data type. In order for them to be compatible, each must be declared
as a subtype of type integer. Consider:

subtype intl is integer;
subtype intd is integer range 1..10;

Objects of types intl and int3 are type compatible both with each other and with objects declared to
be of predefined type integer.

To achieve the Gypsy sense of type compatibility in the Ada program, then, it is necessary to
declare explicitly the basetype of every type declared in-the Gypsy program, and to declare each
user-declared type to be a subtype of the appropriate basetype. Moreover, any objects sharing the
same Gypsy basetype need to be linked to the same Ada basetype. Each basetype is declared only
once in the Ada program. Consider the Gypsy type declarations in scope foo:

array % 1..10 g of integer[l..10];
array ([1..10]) of integer 0..1000];

These two array t(ypes will share the same ‘basetype, which will be declared in
BASETYPE _PACKAGE to be:

type arrayl_foo is array (3nt'eger range 1..10) of integer;

type arrayl
type array2

(1]

Both arrayl and array2 are declared to be subtypes of arrayl _foo.

A further rationale for the use of this basetype mechanism relates to predefined operations in

Gypsy. These include predefined operators, standard functions, and predefined statement forms such
as assignment. In many cases Gypsy provides operations which Ada does not, and in many other
cases the operations provided have different semantics than their predefined Ada counterparts. -The
compiler must provide Ada support semantically equivalent to that of Gypsy. Strong typing in Ada
suggests that these operations would be most efficiently defined for the various basetypes which occur
in the program. {The Ada generic capability is not general enough to provide, for example, a single
‘assignment procedure for all objects, but it may be used to provide 2 single assignment procedure for
all integer types.) Any operation properly defined on the basetype of its operands may be used with
operands of any subtype, provided a mechanism exists for providing appropriate behavior regarding
subtype restrictions.

This mechanism involves the use of a typedescriptor. Each Gypsy type has associated with it a
typedescriptor constant which describes it in terms of its kind (i.e. sequence, set, array, etc.), its range
and size restrictions, and typedescriptors of its component types. A typedescriptor will be provided as
a parameter to all functions and procedures which must be sensitive to range and size restrictions, for
example where runtime valueerror or indexerror checking is performed. The typedescriptor type is
declared in the Ada program to be a variant record, with the kind of Gypsy object as its discriminant.
For an example of a typedescriptor, consider these Gypsy type declarations:

type smalipos = integer [1..100];
type small_array = array ([1..10]) of smalipos;

The typedescriptor declarations which would accompany the translations of these types are:

smallpos_typedescriptor: constant gypsy_package.typedescriptor
:= (kind => g_integer; low => 1; high => 10;;

small_array_typedescriptor: constant
gypsy_package.typedescriptor := (kind =» g array;
index_type => (kind => g_integer; low =) 1, ‘
high =) 10); elem_type => smallpos_t.ypedescriptor);

For a declaration of the typedescriptor type, see Appendix A.

The predefined operations on basetypes are provided in four different ways, depending on which is
most appropriate. If the correct operation exists in the predefined Ada support, for example with
integer comparisons, it may be used in its native form. The remaining three alternatives are
generated during trapslation. For basetypes which are predefined in the compiler, i.e. integer,
character, boolean, sequence of integer, sequence of character, and sequence of boolean, the predefined
operations are provided in a support package named GYPSY_PACKAGE. For those other basetypes
which result from user declared types, the functions are provided either through instantiation of
generic packages of routines germane to a kind of type (array, sequence, set, mapping, buffer), or,
where the routines do not lend themselves to generic instantiation, by in-line declaration based on
templates embedded in the compiler. This latter method is used most notably on enumerated scalar
and record types, which are n-ary in nature, and on functions supporting the seqcomstructor and
setconstructor operations. The listings for GYPSY _PACKAGE and the generic basetype packages
are provided in Appendix A and Appendix B.

A feature of Ada very unfortunate for this project is that any program unit or object must be
declared before it may be referenced. Since Gypsy scopes are translated into Ada packages and Ada
packages must include in their headers the names of all other packages which they reference, there is
a2 constraint on Gypsy input disallowing scopes which form a ring of inter-scope references via name
declarations. This can create difficulties for programs not composed with this constraint in mind.
Declaring a basetype in the same package as one of its subtypes, and then providing access to that
package for all other packages using any other subtype of the basetype could greatly magnify the
difficulty.

To simplify this problem, the compiler places all basetype declarations in a separate package,
BASETYPE _PACKAGE, which appears first in the translated code. All other packages are declared
with access to the basetype package. The basetype package also includes a valueerror checking
function, default initial value and typedescriptor constant declarations, and the declarations of 2ll the
standard functions provided by Gypsy on _objects of each basetype. Grouping all basetype

declarations and their associated unit declarations in an isolated part of the translated program has

the desirable side effect of keeping directly translated code free of conmstructs radically different in
appearance from the original Gypsy program.

For an example of a basetype package resulting from translation of a sample Gypsy program, se¢
Appendix D.3.

2.3.1 Initial Values

Types in Gypsy have default initial values associated with them, while types in Ada do not. To
provide an initial value, each type declared in translated code is accompanied by a constant
declaration which specifies the initial value for the type. If the user has provided an initial value in
his Gypsy type specifications, then that value is the ome given as the value of the constant.
Otherwise, the Gypsy default initial value for the type is used. Composed types have initial values
based on the default initial values of their component types. Array and record imitial values may, but
need not, be expressed as aggregates. Dynamic types must have their initial values expressed in terms
of calls to predefined functions which construct objects of the type. The default initial value for 2
dynamic object is 2 record structure with null item pointers.

For example, consider the following type declarations. '

type foo_intl = integer tl..l@];
type foo_int2 = integer 1..100] := 100;
type foo_array = array (1..10]; of foo_intl;
type foo_seq = sequence of integer;

The corresponding initial value constant declarations would be:

g_a_foo_intl_initial: constant foo_intl i;

g_a_foo_int?_init,iai: constant foo_int2 := 100;

g 2_foo_array_initial: constant foo array := (1..10 => 1);

g a_foo_seq_initial: constant foo_seq := ’
basetype__package.foo_seq_basetype. nutl_value;

.o
[[I]

These constant declarations appear with the type declarations and may be used in any package which
may refer to the type name. ‘

All Gypsy variables are assigned initial values either explicitly in declarations or implicitly from
the default initial value of the type. Their Ada counterparts must be given initial values explicitly.
Consider the following declarations.

fool: foo_intl;
fo02: foo_int2 := 10;
fo03: integer;

These will be translated to:

fool: foo_intl := g a_foo_intl_initial;
too2: foo_int2 := 10;
foo3: integer := 0;

2.3.2 Simple Types

The Gypsy simple types boolean, character, integer, enumerated scalar types, and subrange types
are all provided in Ada, but some operations on objects of these types must be treated differently, and
thus generated by the compiler. The operations eq, ne, It, le, gt, ge, max, min must be defined for all
simple types. The functions lower and upper must be defined for all bounded simple types. An
assignment procedure must also be provided which responds to bounds violations by raising a
valueerror rather than the Ada constraint__error.

Eq, ne, It, le, gt, and ge are all defined in Ada and may be used in their infix form. The functions
max and min are defined in GYPSY__PACKAGE as generic functions operating on range operands.
Where T is a typename, lower(T) and upper(T) may be transformed into Ada’s functional attributes
T'first and T’last. Assignment is generated in a manner appropriate for each kind of type.

2.3.3 Scalar Types

The basetype of a scalar type is the scalar type itself. Since there may be any number of items in
the value set, the type declaration may not be parameterized for generic treatment. Therefore, scalar
type declarations are generated from templates and appear in BASETYPE_PACKAGE. The
operations pred, succ, ord, and scale must be defined, and they, too, are generated from templates,
along with the assignment procedure and valueerror checking function.

The typedescriptor for an enumerated scalar type is given in terms of the ordinal position of the
lower and upper bounds of the type within the sequence of scalar identifiers composing the type.

2.3.3.1 Type Boolean

Gypsy operations defined for type boolean are: not, and, or, imp, and iff. Of these, not, and, and
or are sufficiently expressed in Ada. Since type boolean is one of the predefined basetypes known to
the compiler, imp, iff, assignment, and the valueerror function are defined in GYPSY _PACKAGE.
The universal and existential quantification operations are not intended for execution, so they are not
translated. If they are detected in executable code, the translation fails. In pon-executable code, they
are printed in their original form for documentation purposes.

2.3.3.2 Type Character

The type character is predefined in Ada and carries the same operations as scalar types. Since
character is one of the predefined basetypes known to the compiler, the pred, succ, ord, and scale
functions and the assignment procedure are declared in GYPSY _PACKAGE. Character literals are
printed in the form consistent with the Ada declarations of the CHARACTER and ASCII packages.
Printable characters are printed using the quoted form; control characters are printed using the
constant identifiers from the ASCII package. 4

2.3.3.3 Type Integer

The Gypsy operations on integers include *+°%, a5 e*s s*¥: diy mod, and unary *-*. Ada
supports all of these operations (Ada ®rem®, not *mod®, is the Gypsy °mod®.}, but the only
exceptions which can be raised by the Ada operators are CONSTRAINT _ERROR and
NUMERIC _ERROR. Contrast this with the more specific conditions raised by the Gypsy operators,
which include adderror, subtracterror, multiplyerror, powererror, powerindeterminate,
negativeexponent, divideerror, zerodivide, and minuserror. -So that the proper exceptions will be
raised by the integer operations, the compiler provides each of the operations as a predefined function.
Typically, these functions will have the call to the appropriate Ada operation embedded and will trap
Ada exceptions with the appropriate granularity, converting them to the various Gypsy conditions.
The functions, along with other declarations germane to integer support, are defined in
GYPSY _PACKAGE. Note that they are declared as functions and not as overloaded operators.
This means the infix operator forms will be translated into function calls with normal syntax.

Gypsy 2.1, now under development, will include notation for representing integer literals in a
binary or octal form. The Ada compiler will convert these numbers into decimal form.

2.3.3.4 Type Rational

The Gypsy verification system does not support rational numbers in executable code. They exist
in Gypsy as a specification tool. If the compiler discovers a rational number in executable code, it wiil
issue a message and disallow the tramslation. Note that executable code may include runtime
validated specifications, for which executable code must be generated to validate the runtime program
state. If rationals appear in non-executable specifications, they appear as normal in the commented
gpecifications.

2.3.3.5 Subrange Types

Subrange types are fully supported in Ada with only minor variation in notation. As previously
stated, to duplicate Gypsy type compatibility notions, subrange types must be declared as subtypes.
The idea of pre-computability is not discussed in standard Ada documents, but it is reasonable to
assume that the Gypsy notion of pre-computability, narrow as it is, could be supported by an Ada

implementation.

As long as subrange types are declared with type declarations, they are completely consistent with
the initial value and typedescriptor mechanisms utilized for other types in the compiler. A problem
arises, however, when symbols are declared to be of a type with the subrange attached to the symbol

declaration rather than a type declaration. For example, consider:

var fool: integer [1..10];
{ This is opposed to:
var foo2: smalipos:
where type smallpos = integer [1..10]; 3

To determine the typedescriptor of foo2, the compiler needs only recognize that foo2 is of type
smallpos and then look up the name of the typedescriptor for smallpos. Fool, however, does not have
an independently declared type, hence there is no declared typedescriptor for fool. To remedy this
situation, the typedescriptor is generated as an aggregate expression whenever it is peeded, for
example in an assignment to fool. The GVE may soon be giving these objects of anonymous
subrange type special treatment by declaring invisible types. When this treatment is provided, the
generation of these aggregates on demand will no longer be necessary.

2.3.4 Static Structured Types

Ada has array and record mechanisms which are sufficient as targets for translating Gypsy arrays
and records, provided some predefined operations are superseded by new definitions.

2,3.4.1 Arrays

Gypsy arrays map neatly into Ada arrays with a minimum of overhead. The support for an array
basetype is entirely declared in a generic package which may be instantiated for each basetype. The
units declared in the package include the basetype typedescriptor, the basetype itself, the element
selector function, the element alteration function, a valueerror checking function, an aggregate
assignment procedure, and an element assignment procedure. The element selector, aggregate
assignment, and element assignment procedure are different from those in Ada because of their
distinct handling of exceptions. The element alteration clause, as with all alteration clauses, must be
provided because no analogous operation is predefined in Ada. Equality and inequality are adequately
handled in Ada.

Having these various operations declared as functions and procedures produces quite a potational
impact on ¢ranslated code which utilizes them. Handy and easily recognizable forms such as [ij for
indexing and ®:=" for assignment must be abandoned in favor of standard function and procedure
calling forms. Even these are somewhat unsightly due to the use of qualified global names which are
used throughout the compiler. For example, the simple reference to a[l}, where a is of type foo,
becomes:

basetype_package. foo_basetype.select e fement
. (a, foo_descriptor, 1)

The arguments to the select __element function are the array, its typedescriptor, and the index
expression. The global name of the select__element function must include the name
basetype _package, from which it was generically declared, the name of the array basetype (here
assumed to be foo___basetype), which is the name of the instantiated array basetype package, and the
name of the selector function in the package. This is not so much new complexity as it is hidden
complexity brought to the surface through translation. Nevertheless, the unfortunate truth is that
code which deals heavily with highly structured data types becomes very difficult to read, particularly
if the reader is not well-versed in the compiler’s operation.

10

2.3.4.2 Records

The operations defined on Gypsy records are eq, ne, field selection, assignment (both of aggregates
and of individual field values), and field alteration. Eq, ne, and field selection are sufficiently handied
in Ada. Both varieties of assignment and, of course, alteration, must be provided by the compiler for
each record basetype. This involves much more overhead than immediately appears.

Records are the bane of generics in Ada, largely because record field names cannot be used as
expressions for parameterization and also because there may be any number of fields in a record.
Generic packages could not be useful in generating support code for records, so those functions are
generated from templates embedded in the LISP code of the compiler.

Not only may generics not be used, but a function which must deal with an individual record field
must be written to operate specifically on that field. Two cases where this complicates the translation
are in generation of field assignment code and in generation of alteration clause code. Each field in
the record must have its own field assignment procedure and its own field alteration clause.
Generating all these functions in the basetype package is somewhat disconcerting when in all
likelihood few, if any, of the functions will ever be called.

Other functions generated from templates are the valueerror function for the entire record, the
aggregate assignment procedure, and the basetype typedescriptor and initial value declarations.

2.3.5 Base Types

Basetypes have been adequately discussed earlier in this section. It is worth noting once again
that the compiler is quite basetype oriented, and that typedescriptors provide the most critical guide
for type specific behavior in the program at runtime.

The compiler requires basetypes and typedescriptors to have been declared internally in order for
most predefined operations to be performed. These declarations are made in conjunction user type
declarations. Aponymous types, or types without names, create problems within the compiler. A user
may create an anonymous type in one of two ways: 1) by declaring an object of a subrange type,
which has already been addressed, and 2) by placing levels of anonymity in type declarations.
Consider the type declaration:

type seqarray = array ([1..10]) of sequence (10) of integer;

The sequence type embedded in the definition is anonymous. An item selected from the array would
have no named type. : » ,

Ada would not allow such anonymity in type declarations, and we feel that using them is a poor
programming practice. It will be disallowed in Gypsy 2.1. Pending the implementation of 2.1, the
compiler detects and disallows user specified anonymous types of the embedded variety.

2.4 Expressions

2.4.1 Name Expressions

Although Ada has same treatment of name expressions as Gypsy, the compiler’s abstraction of
structured data types and their operations does not allow a normal treatment of structured object
pames in many places. In those places where normal treatment is sufficient, it is used with glee.

2.4.1.1 Component Selectors

Component selection on structured types is where name expressions demand unusual treatment.
In particular, abstraction functions for field selection on structured types other than records must be
used rather than direct access. (Direct access would mean normal indexing on arrays. It would mean
a clumsy series of linked record accesses on dynamic types.] Also, special treatment is required for
_element selection on the left hand side of assignments. As explained in section 2.3, since access
‘functions may not appear on a left hand side of assignments and since condition generation is

11

different, basetype procedures are generated for element assignments. An indexerror on the left hand
side is recognized in the appropriate assignment procedure for the object. Name expressions on
structured types no longer appear, then, in units directly translated from user code. They are all
protected in the abstraction functions for the various basetypes, where they make their only
appearances.

2.4.2 Value Expressions

The concept of a value expression in Ada is exactly that of Gypsy.

2.4.2.1 Primary Values

The distinction the compiler makes between structured name and value (name) expressions is
illustrated by the use of basetype-generated selector functions where value selectors were used in
Gypsy. These are clearly illustrated in section 2.3.3.1.

Entry values (primed expressions) are intended for use in specification only. Their use in
executable code will disallow the translation. In non-executable specifications, which become
comments, they are translated in their original syntax.

Sealar literals are all declared in the basetype package. Therefore, to refer to literal "red® of type
scolor®, it is necessary to use the qualified literal "basetype___package.color__basetype’(red)".

As previously stated, strings are implemented as arrays in Ada and as sequences in Gypsy. The
compiler handles them as it would sequences. Translation of a string literal, then is done by coercion
of the literal with a predefined function in GYPSY_ PACKAGE which takes a string as an argument
and returns a CHARACTER _SEQ (a predefined basetype, sequence of character). The string A
string® would translate to the function call:

gypsy_package.coerce_string (*A string®)

Rational values are not translated in executable code. All other primary values are transiated directly
in to their Ada equivalents.

2.4.2.2 Modified Primary Values

Structure element alterations are performed with functions generated with the basetypes of each

.

structured type. A subsequence selector function is provided in the sequence basetype package.

2.4.2.3 Operators

The treatment of specific operators has been extensively described in section 2.3 on types.
Precedence levels are preserved in the Gypsy prefix, and emerge naturally from the compiler.

2.4.2.4 If Expression

No equivalent to the if expression construct exists in the Ada language. Translation of if
expressions requires assignment to a temporary, which will serve as a place holder in the statement
containing the expression when it is translated immediately afterward. Consider the translation of the
statement:

a[i] := foo(if a[j] (ya[k] then a[j] else a[k] Ti);

where a is an array of integer values. In translating the statement we would first recognize the
presence of an if expression and compute its value, assigning it to the temporary g_a_ temp. Then
g_a_temp would be substituted for the if expression in the tramsiation of the statement. The
generated Ada code would then be:

declare
g a_temp: integer := 0;
begin
if a[j] It afk] then g_a_temp := a[i]

12

else g a_temp := a[k]; end if;
a[i] := foo(g_a_temp);
end;

G_a_temp is declared in the block to be a variable of the basetype of alj], i.e. integer. '

In the case of having more than one if expression embedded in the same Gypsy statement, we
would simply have embedded blocks of code. Hence the rather baroque (and useless) Gypsy
statement:

ali] := if (if not j in 1..k then j in k..i else j in 1..1)
then a[j] else a[k];

would transiate to:

declare
g_a_templ: integer := 0;
iT (if not j in 1..k then j in k..i else j in 1..1)
then g_a_templ := a j} :
else g a_templ := alk];
a[i] := g a_templ;
end;

which in turn expands to:

declare
g_a_templ: integer := 0;
declare
g a_temp2: boolean :
if not j in 1..k
“then g a_temp2 :
else g a_temp2 :

false;

joink..i;

jini.i;

a templ := a{j};
= 3k

er W

if g a_temp2 then g a_
, else g_a_templ := alk];
end;
a[i] := g_a_templ;
end;

Gypsy semantics are such that evaluation of Gypsy expressions is free of side effects. This property is
required to preserve the semantics of the if expression through this translation. It is sufficient for
-preservation of semantics, however, only in the absence of conditions and condition handling.
Extracting the if expression from the context of a larger expression so that it can be pre-evaluated in
an if statement can perturb the order in which conditions can be signalled. Preserving the correct
order of evaz'uation under these circumstances is such an extemsive problem that this initial
implementation will not attempt to perform it.

2.4.3 Pre-computable Expressions

Pre-computability was not defined in Gypsy 2.0, on which the initial implementation of the
compiler was based, and the Gypsy 2.0 parser placed very tight constraints on what expressions were
regarded as pre-computable. Under _these constraints, there is mo danger that a pre-computable
expression will not be pre-computable upon its translation inte Ada.

Gypsy 2.1 liberalizes the previous constraints on pre-computability. Although it stops short of
declaring exactly what expressions are pre- computable in a given implementation, it does define the
set of expressions which are candidates for pre-computability. The standard documentation on Ada
does not address the question of pre-computability, but it is hoped that any good Ada implementation
will be able to pre-compute the value of any translated pre-computable Gypsy expression.

13

2.5 Programs

The Ada concept of program is compatible with the Gypsy notion. In particular, those Ada
constructs which are targeted by the Gypsy translation are philosophically consistent with the Gypsy
constructs, although they will vary in appearance. The effect of translated code on its environment is
limited to changing the value of its data objects, raising an exception, and reading and writing files.
The external emvironment specification for each program is provided by the implementor of the
compiler for a particular target machine. Ada’s concept of procedure, function, and constant is
similar to that of Gypsy.-

2.5,1 Procedures

Ada procedures are fundamentally quite similar to Gypsy procedures. Those aspects which differ
are more appropriately discussed in other sections, notably those on textual organization and
condition handling and in other subsections of this section on programs. User-defined Gypsy
procedures are translated directly into Ada procedures with the same name. A return statement must
be inserted at the end of the procedure statement list, since Gypsy procedures pormally exit when
they execute the last statement.

2.8.2 External Environment

Although the Ada concept of the external environment to a procedure is somewhat different from
Gypsy, the net effect of translating a procedure into Ada preserves the semantics of the Gypsy
procedure. The point of consistency between the environments of Ada and Gypsy procedures is that
they are defined by a combination of those objects in the formal parameter lists and those externally
visible at the point of declaration of the procedure.

Gypsy procedures have access only to those conditions supplied as actuals to the list of formal
condition parameters. Ada procedures have no *exception parameters®. Rather, they have access to
those exceptions which are declared in any environment which nests the procedure at runtime.
Visibility of external constants is defined by the environment of the scope or package which contains
the procedure declaration.

While the external environment of an Ada procedure is somewhat different than that of a Gypsy
procedure, symbols used in a translated procedure will naturally be only those which were used in the
Gypsy procedure plus references to initial value comstants and typedescriptors, to whichk the Ada
procedure has access. Ambiguity among symbols in the external environment is eliminated by using
global names for all external references. (Ex. The initial value for the basetype of an array type foo
declared in “scope bar would be basetype__package.foo_bar.initia]_value.) Therefore the set of
symbols referred to in the Ada procedure represents the same symbols referred to directly or inferred
in the Gypsy procedure.)

Gypsy ®var® parameters to procedures are translated to ®in out® parameters in the corresponding
Ada procedure. ®Const® parameters in Gypsy procedures become "in® parameters to Ada procedures.

2.5.3 Functions

The relationship between Gypsy and Ada functions and procedures is the same as between Gypsy
and Ada procedures. , '

Ada has no item analogous to the predefined RESULT of Gypsy functions. Therefore RESULT is
declared as a local variable in each translated Ada function. Its type is the type of the function, and
its assigned initial value is the initial value for the type. When Gypsy functions terminate normally,
the value of RESULT is returned. Ada functions must terminate pormally with a RETURN
statement which has a parameter, the value to be returned. The value supplied in the translated
functions is the locally declared RESULT.

14

2.5.4 Constants

Ada constant declarations are exactly analogous to Gypsy comstant declarations, except for the
degree to which the concepts of pre-computability vary. This is implementation dependent in both
languages, but the rather conservative rules on pre-computability, plus the fact that translated
standard Gypsy functions are elaborated before any translated user declarations are given, seems to
ensure that any acceptable constant declaration in Gypsy will translate directly into a declaration
acceptable to Ada. The Gypsy parser will evaluate constant values, so the question of how to handile
exceptions which arise during this evaluation is not of concern. :

2.5.5 Bodies

Not all of the material which goes into the body of a Gypsy unit is mezaningful to the program at
runtime. In particular, pon-validated specifications have no impact on execution and are converted
into Ada comments in translation.

Pending bodies are not wholly acceptable to the compiler, since they reflect that the program
translated is incompletely implemented and pot ready to be run. If the body of a type or constant is
pending, the compiler will abort. If a statement list is pending, the singleton statement list ®raise
_ routineerror;® is generated and a message is sent to the tty.

A special transformation is made on all user-declared function and procedure bodies to facilitate
condition handling. This is discussed in Section 2.8.

2.5.6 Internal Environment

The internal environment of both Gypsy and Ada procedures may include the declaration of local
variables, constants, and conditions (exceptions).

The only point of difference involves initial values for variables and constants. All Gypsy objects
have initial values, which are either supplied explicitly by the user or assumed to be the default initial
value of the type of the object. The internal objects of a Gypsy procedure are created in order of
declaration and given their initial values explicitly. This means that the initial value of 2 symbol may
depend on the initial value of any previously declared symbol. In addition, evaluation of the initial
value of the local may result in the signalling of a condition. These conditions will propogate directly
out of the routine, either through the condition parameter list or as routineerror. They cannot be
locally handled by the user, since they are raised in 2 transitional state ::{ the routine calling
mechanism. ’

The valueerror which can result from the initial value assignment, however, must be treated
specially. The initial value assignment in Ada is not an assignment treated counsistently with normal
assignment statements, since it cannot be replaced in-line with a call to a procedure which can check
for valueerror. To perform the valueerror check, the compiler would have to put an explicit
_assignment statement at the beginning of the procedure for each variable declaration. Direct
‘assignment in the declaration, however, would likely be more efficient, and is at least more closely
resembles the Gypsy code.

The compiler attempts to use assignments in declarations whenever possible. It prints the symbol
declarations in order. Whenever it finds a declaration where the user has specified an initial value, it
attempts to determine if the initial value might generate a valueerror. If it sees there will be no
valueerror, it will print the initialization in the declaration and treat succeeding symbols in the same
mannper. If it cannot determine that valueerror will not occur, it will print a declaration without an
initialization and insert a call to the proper assignment procedure at the beginning of the statement
list for the procedure. All subsequent declarations must also be made with an explicit call to the
assignment procedure in order to preserve the correct order of evaluation. For example, consider the
following local declarations in Gypsy (where type small__int = integer [1..10] and there is a formal
parameter int _param of type integer):

10;
intparam;
int2 - 1;

var intl: small_int :
yar int2: smaH_'m‘o :
var int3: smali_int

Wuw

var int4: small_int;
These will transiste to:

intl: smal!_int := 10;

int2: smali_int;

int3: small_int;

intd4: small_int := sma\!_int_initia!;)

gypsy_package‘integer_assign (int2, small_int_typedescriptor,
intparam);

gypsy_package.integer_pssign (int3, sm;ll_int_typedescriptor,

: Cint2 - 1); ,

Access specifications on internal objects, as with all objects, are ignoréd for the time being. When
data abstraction is implemented in the compiler, access lists will be used to help steer determination
of abstract equality, but its effect will be more or less invisible in the translated code.

s 27 Internal Statements

Of the various statement forms, only the if composition, case composition, loop composition, and
begin composition survive intact. The procedure statement is used profusely, but user calls to
procedures are embedded in blocks which perform valueerror and aliasing checks. All the others, save
the cobegin statement {concurrency is not yet handled), are replaced with calls to procedures provided
~ in the basetype support. ‘ : : -

2.5.7.1 Asslgnment Statement

All assignment statements are converted into calls to the assignment procedure provided for the
type of object on the left hand side. The parameters to the assignment procedure are some
representation of the name expression on the left hand side, the typedescriptor appropriate for the
name expression, and the expression on the right hand side. These procedures first check to see if the
value on the right hand side is a legal value for the name expression (using the typedescriptor as 2
guide). If so, they raise a valueerror exception. Otherwise they make the assignment by invoking
Ada assignment procedures. ‘

The name expression on the left hand side may have a selector list with as many selectors as it
takes to descend through a data structure to whichever component is to receive the expression on the .
right hand side. This creates a serious problem in Ada transiation, since assignment statements for
structured objects are generated as generic procedures, and these procedures must have the entire
variable structure as a parameter. The only such procedures generated for structured types are the
structure assignment and the component assignment (one level deep).

The only reasonable solution, then, is to decompose the assignment into assignments to
temporaries one level at a time. For example: :

type foo = sequence of integer;
‘type bar = sequence of foo;

yar a: bar;

s[i][j] := 10;
- would translate into:

yar 8: bar;

declare
var g_a_temp: foo; '
foo_basetype_assign (g_a_temp, a[il):
foo_basebype“e%ement_assign Eg_a_temp, i, 10);
bar_basetype_element_assign (2, T, g s _temp):

end;

16

It is not difficult to see that this mechanism is clumsy and grossly inefficient at best, and becomes
more so as the levels of descent into a structure on the left hand side increase. With structured types
implemented as they are, however, it is the only way in which the semantics of structured component
assignments may be maintained.

2.5.7.2 Input and Output

Input and output of Gypsy programs, as currently supported, is performed entirely through
buffers. Those buffers which are parameters to the main program are designated as I/O buffers
rather than normal internally used buffers. The send and receive operations on these buffers are the
1/O operations print and read.

Ada input and output is performed through a predefined Ada package SEQUENT IAL_IO. This
package must be instantiated for each different type of object which will be involved. Thus, if both
characters and integers will be output, two package instantiations must occur, with each defining a set
of input and output functions and file types which may be used with the appropriate data objects.
The file types are IN_FILE, OUT_FILE, and INOUT _FILE for each type of object. ®Internal®
files are then declared to be of these file types in the same manner as any other declaration. The
package instantiations and internal file declarations occur at the end of basetype package. For
example:

- Here we instantiate the I/0 package for character types

package character_io is new se vential_io .
?element__type =) character);

—- This is @ declaration of an ®interna!® file for output of
-— characters

char_fi le: character_io. i nout._ﬁ e;

To associate devices, or external files, with sinternal® files, the CREATE, OPEN, and CLOSE
procedures are invoked. These associations are made in the supermain routine which is the calling
point for the compiled program. For example, the following statement will open the file whose device
name is the string value of the variable FILENAME. This could, for instance, be
* < cmp.akers>inchars.history ®.

basetype__package.character__‘ao.open
(file =) basetype_package.char_file, name =) FILENAME);

An operation to write to the file would look like:

character_io.write (file =) basetype package.char_file,
item =) "a’);

A further description of the manner in which input\output objects are treated is given in the sections
on the main program and implementation prelude.

Since Gypsy buffers may be passed around as parameters, the routines which call send and receive
have no way of statically knowing whether they are performing input/output or internal message
sending. Since the Ada input/output mechanism is different from the mechanism employed to
perform buffer operations, some distinction will be needed at runtime in the Ada translation to

determine what kind of operation to perform.

To this end an extra integer field will be included in the Ada image of Gypsy buffer objects. The
field, named io_flag, will have the value O if the buffer is for internal use, and a positive value which
associates it with one of the internal files if it is an input/output buffer. The value corresponds to the
ordinal position of the buffer in the parameter list to the user’s designated main procedure. A send or
receive statement is translated into a case statement which keys on the io__ flag field of the buffer. If
the value is 0, a normal send to an internal buffer is performed. If it is non-zero, a write or read for
the appropriate internal file is generated. Here is the Ada image of the Gypsy statement ®send 'a to

buf;®:

17

if gypsy_package.character~valueerror
(buftype descriptor.b_elem_type, *a’)
then raise vaiueerror;
else case buf.lo flag is
when 0 =) basetype package.buftype test.send
(*a’, buftype_descriptor, buf);
when 1 => basetype package.character_ioc.print
(basetype_package.char _Tile, ’2’);
when others =) raise caseerror;
end case;
end if;

2.5.7.3 If Composition

The Gypsy if composition statement form is exactly the same as the one in Ada, excepting minor
points of syntax, and is translated directly.

2.5.7.4 Case Composition

The Ada case composition statement is like that of Gypsy, except that the when others clause,
corresponding to the else clause of the Gypsy case statement, is required. If there is no else clause in
a Gypsy case composition and none of the case arms match the value of the label expression, a
caseerror is signalled at runtime. In order to duplicate this behavior, an absent else clause is
translated into an Ada when others clause which explicitly raises the caseerror exception.

2.5.7.5 Loop Composition

The loop statement in Ada is somewhat more general than the Gypsy loop composition, but it
includes a syntactic and semantic form which exactly matches the Gypsy construct. The translation
is direct. . :

2.5.8 Procedure and Function Calls

The Ada procedure and function calling mechanisms are fundamentally similar to Gypsy, although
they are somewhat more flexible. To correctly handle procedure and function calls, however, the
compiler must ensure that conditions which may be signalled from the call are generated and handled
according to Gypsy rules. The solution to this problem is somewhat different for functions than for
procedures. :

Aside from conditions which propogate out of the called function, the only condition which may be
signalled from a2 Gypsy function call is the valueerror which may be raised when an actual parameter
violates the type constraints of its formal. In Ada this would result in a comstraint__error (or in the
case of translated dynamic types would likely go’ undetected). In either case this must be prevented.
Since function calls may be embedded in arbitrarily complex expressions, it would be prohibitively
complicated to check for valueerror at the call site. Neither can the checks be made in the called
function since Ada would have by that time detected the violation through its own calling mechanism.

v To resolve this difficulty, each user defined function is declared with an interface function. This
_function is called rather than the original, or parent, function. Its formal parameters are the same as
those of the parent, except that their types ‘are the basetypes of the corresponding formals in the
parent. The type of the function is the basetype of the type of the parent. The function checks each
of its parameters for valueerror against the type of the corresponding parent formal, and raises the
valueerror exception if it finds a violation. This exception will propagate back to the call site,
producing the same behavior as Gypsy specifies. If there are no violations, the parent function is
called, and its value returned as the value of the interface fumction. For example, consider the
following function declaration:

function addl (i: int): int =
begin
result s 1 ¢ 1;

18

end;
The function addl is renamed to g__a_ add1 and 2 new function addl is defined as follows:

function addl (i : in integer) return gypsy_package.int is
result : gypsy package.int := 0;
begin
if gypsy_peckage.integer_valueerror
= (gypsy_package.int_typedescriptor, i)
then raise valueerror;
end if;
result := g a_sddl (i);
return result;
end addl;

function g a_sddl (i : in gypsy_package.int)
return gypsy_package.int is
result : gypsy_package.int := 0;
begin
gypsy_package.integer_assign ‘
Tresult, gypsy_package.integer_plus (i, 1),
gypsy_package.int_;ypedescriptor);
return result;
end g_a_addl;

If the types of the parameters to the user function are all basetypes, the interface function serves no
purpose, since valueerror may not occur. In this case the interface function is not declared.

Valueerror checking must be provided on procedure calls also. Since the procedure call is a {ree-
standing statement (as opposed to the function call, which may be embedded in a complex expression},
the checks may be done at the call site without complication. The called procedure need not be
affected by the translation of the calling mechanism. For example, consider the following procedure
defined in scope s (as above):

procedure amin (var i: small_int; a: saall_int;array) 2 ...
A call to amin of the form ®"amin (i_actual, a__actual);® would need the structure:

begin ' :
if gypsy_package.integer_valueerror (small_int_descriptor,
i_sctual)
then raise valueerror; end if;
if basetype,package.small_int_array”s.valueerror_pccurs
(smaTl_int_array descriptor,” a_actual)
then raise valueerror; end if;

amin (i_actual, a_actual);

end;

Checking for aliasing on var parameters, discussed later, may also be embedded in this structure.

There are two problems with this scheme of procedure calling. One is that if an actual parameter
is an expression which must be evaluated to produce a value, the evaluation will be done twice: once
in the call to the valueerror function and once in the call to the procedure itself. The other problem
occurs where the actuals corresponding to var formals are name expressions which index into 2
structured item (Ex. afi] or rec.fieldl). In such a case, the Ada representation of the actual is a
function call (the function which performs indexing on objects of the basetype of the root of the
actual). This violates the constraint that variable names must be used as actuals where the formal is
an in or in out parameter.

In-line emulation of the value-result parameter passing scheme will solve both of these problems
simultaneously. In this scheme, the value of the actual is calculated and assigned to a temporary of
the type of the formal. The temporary is used as the actual parameter in the procedure call itself,
and its value upon return is re-assigned to the variable from which it was created. Note that the
expression is evaluated only when it is assigned to the temporary. It is checked for valueerror in the

19

assignment, since the assignment will be performed by the assignment procedure for the basetype of
the formal with the typedescriptor of the formal. Any conditions arising out of evaluation will arise in
the proper order with respect to the rest of the computation. The temporary has a name, which
satisfies the constraint for actuals of var parameters. The reassignment to the original actual will be
performed with the typedescriptor for the original actual, so valueerror will be checked correctly and
at the appropriate time. Incidentally, the checks for aliaserror may be inserted cleanly between the
assignments to temporaries and the call to the procedure, so that any conditions arising from that
check will appear at the appropriate time.

Consider this Gypsy example, particularly the ¢all to proc:

scope bim = begin
type foo = array ([1..10]) of integer;
procedure proc (var il: int; 12: int) = pending:;
procedure caller (var arr: foo; i,j: integer) =
begin

proc (arr[i], arr[j]);

end;

end;

The call *proc (areli], arr(j])® becomes the block statement:

declare
g a_templ, g _a_temp2 : gypsy_package.int;
begin : }
gypsy_package.integer_assign (g_s_templ, :
basetype_package.foo_bim.select component (arr, 1),
gypsy_package.int'typedescripto?);
gypsy_package.integeq_assign {g_s_temp2,
basetype_package.foo_bim.select_component (arr, §),
gypsl_package.int_typedescriptor);
if i = j then raise alisserror; end if;
proc (g a_templ, g a_temp2);
basetype_package.foo_bin.element_assign
* (arr, foo_descriptor, i, g _&_templ);
end;

2 £.8,.1 Actual Parameters

The treatment of actual parameters is embedded in the previous discussion. The runtime varerror
check which was required in Gypsy 2.0 is no longer necessary in Gypsy 2.1, due to the disallowance of
local declarations whose types are restricted by the values of formal parameters.

2.5.8.2 Type Consistency
Type consistency has been thoroughly discussed above.

2.5.8.3 Aliasing

Some alias checking, specifically the check to see if a candidate pair of actual parameters are
exactly the same name expression, may be performed by the parser. The rest of the check must be
performed at runtime. The compiler must check for pairs of type-compatible formal parameters
where at least one is a variable parameter and the roots of both name expressions are the same. In
this case, the indexes into each expression must be checked at runtime for equality. If they are equal
down to the finest index of the shallowest name expression (a.b[1] is shallower than a.bjl].c.}, aliasing
exists and aliaserror must be signalled. Consider the procedure header and call below:

type int_array = array ([1..10]) of integer;
‘type arrayl = array ([1..10]) of int_array;
type seql = sequence of grrayl;

procedure proc (var i,]: integer) =

procedure foo (var sl, sZ: seql) = begin
var i1, i2, 13, 14, 1B, i6: integer;

proc (si[i1,i2,13], s2[i4,i5,16]);

For the sake of clarity in the example, let us comsider that the valueerror checks have been optimized
away and that for the moment we need not be concerned with the conversion of the translated actual
parameter expressions into name expressions. The aliaserror check will be included in the procedure
calling mechanism in the following manner:

it (i1 eq 14) and (i2 eq i5) and (i3 eq i6)
then raise gliaserror
else proc (s1[i1,i2,i8],s2[i4,15,i6]);

This statement will be inserted in the procedure call block immediately preceding the call itself. {See
also the last example in Section 2.5.8.)

2.5.8.4 Transfer of Control

The code to transfer control through a procedurc call is created so as to preserve the order of
operations described in the Gypsy manual. In particular, the aliaserror check will be made after the
valueerror check and may occur either before or after the creation of name expressions to use as
actual parameters.

2.5.0 Getting Started

2.5.0.1 Verification Environment

The generation of Ada code from Gypsy code is directed entirely from within the Gypsy
Verification Environment. The exec command in the environment which orders a translation is the
translate command. The command is menu driven by the exec grammar.

The translate command initiates an interactive dialogue with the user to acquire mecessary
information. An annotated dialogue may be found in Appendix E.

2.5.9.2 Main Program

* When the user invokes the compiler, he supplies the name of an implementation prelude to serve
s the environment for the execution of his program and a call to a procedure which is interpreted to
be the main program. The main program specified must be a Gypsy procedure. As currently
supported, only buffers are allowed to be variable parameters to the main procedure. These buffers
are treated specially throughout the Gypsy program. (See the section on input and output.) The
types of all parameters to the main program must have their basetype defined in the given
implementation prelude. In the user’s call to main, the actual parameters are names chosen from the
syariables® in the chosen environment. These variables must be type-compatible with the formals in
the user’s main procedure. Note that in the prelude, the range restriction constants are #pending®,
which means in this case that they will be supplied by the compiler to match those of the formals in
the user’s main procedure.

The main procedure is transformed into three separate procedures which are all placed in the same
package as the user’s main. If the user’s main were named, for instance, TOP__PROC, the compiler
would produce procedures named G_A_SUPERMAIN, G_A_TOP_PROC_ENTRY, and
TOP_PROC. TOP _PROC itself is not treated specially in the translation. Its header, however, is
used 35 the basis for the generation of an intermediate procedure, G_A_TOP_PROC_ENTRY,
which sets the io_flag fields of the buffer parameters and does valueerror checking before calling
TOP_PROC. G__A_SUPERMAIN is the outermost procedure, and it serves to link the program
with Tts execution environment and determine the system-level devices which are being used by the
program. :

Consider the following procedure which is designated as the main program.

21

procedure top_proc (var b: buftype) = begin
bufproc (b):
end;

This procedure itself is translated in a straightforward manner, as follows.

procedure top_proc (char_file : in out buftype) is
begin
declgre
g 2_templ : buftype;
begin
basebypq—package.buftype_test.assign
g_a_templ, char_file, buftype_descriptor);
bufproc (g_a_templ);
basetype_package.buftype_test.assign
(char_file, g_a_templ, buftype descriptor);
end;
return;
end top_proc;

This version of top__proc will behave exactly like the originally defined function for all internal calls.

The compiler must take several steps in the main procedure to set up the environment of the
program. These steps are embodied in g__a_ top__ proc_entry. To set up correct input and output
interfaces, the compiler must examine the formal parameter list of the main procedure. Each buffer
parameter is treated as an input/output file but is type consistent with pormal buffers. So that
internal code doing sends and receives may differentiate between regular buffers and input/output
buffers, an integer field in the buffer record structure indicates the buffer status. If the field is set to
0, the default, the buffer is a regular internal buffer. If it is non-zero, the value represents the ordinal
value of the buffer in the parameter list to main, i.e., if set to 1, it is the first parameter to main, if
set to 3, it is the third. The entry procedure first assigns these values to the buffer io__flag fields,
then simply calls the user’s main procedure. The above declared main procedure will produce the
following entry procedure, which will be declared just after the main procedure.

procedure g_s_top_proc_entry (char_file : in out buftype) is

begin
char_file.io_flag := 1;
declare
g a _temp2 : buftype;
begin

baSetype_package.buftype_&esb.assign
(g_2_temp2, char file, buftype descriptor):
top _proc (g_a_temp2);
basetypeﬁpackage.buftype_test.assign
(char_Tile, g_a_temp2, buftype descriptor);
end; :
return;
end g_a_top_proc_entry;

The procedure which serves as the actual call point to the program is g_a_supermain. It forms the
link between the execution environment and the translated program, declaring the buffer variables
which are formals in the user’s main procedure and querying the user for device names which are then
associated with the internal files declared in basetype _package. G _a_ supermain opens these files,
calls the entry procedure, and closes the files on return. If a file corresponds to an output-restricted
buffer, the file is opened with a CREATE staternent; otherwise it is assumed that the file exists, and
an OPEN statement is used. In generating g __a_ supermain, the compiler uses the names of the
formal parameters of the user’s main as names for the actuals which it declares. It has access to the
internal representation of the user’s invocation to main, so that it can use the user’s actuals as keys
for querying for device names. TTYIN, TTYOUT, and TTY are treated as special case actuals for
which 2 device name is not needed. Here is the supermain procedure generated for the top__proc

example.

procedure g_s_supermain is

22

filename : gypsy_package.string;
char_file : buftype := buftype_initiel;
begin
begin
tty io.put (® FILE FOR IN CHAR FILEL ? ®);
-~ IN_CHAR FILElL is 2n object from the implementation prelude
tty_lo.beep;
tty io.get (filename);
basetype_package.character io.open
(basetypg_package.char_lee, filename);
end;
g_s_top_proc_entry (char_file);
basetype_package.character_io.ciose
(basetype_package.char_file);
return;
end g_a_supermain;

2.5.9.3 Implementation Prelude

The implementation prelude is a collection of type and constant declarations, plus an environment
unit which declares as variables all of the Gypsy objects which may be used as actual parameters in
the user’s call to his main program. Typically, there are several objects of a given type, so that more
than one may be used in the program. Each must be unique in the user’s actual parameter list. The
user’s call is checked for semantic correctness by a call to the Gypsy parser which utilizes special -
semantic rules. An example of an implementation prelude may be found in Appendix C. Its
utilization by the compiler is described in the preceding section.

2.6 Operational Specifications

Most Gypsy specifications have no effect on the runtime performance of the program. Where this
is the case, the compiler transforms them into comments.

There are a several Gypsy forms which are not effectively translatable into executable Ada code.
Most of these are in the language as specification tools. Some of them, such as quantified expressions
and rational numbers, have been moted earlier. If the compiler encounters one of these forms when
transforming a specification expression into a comment, it will attempt to regenerate it in its original
form. If it finds a non-translatable feature in a specification containing a validation directive, it will
emit a message and abort the translation. :

Gypsy allows functions which contain only external specifications to be written. When such a
function is encountered in translation, it is regenerated as a comment. Runtime validation on such 2
function is meaningless, since the function is regarded to have a pending body and thus cannot
execute. Similarly, it is meaningless for a specifications-only function to be called from a specification
which is being runtime validated. In either case, the compiler will abort the translation.

2.8.1 Specification Expressions'

While most Gypsy specifications have no runtime impact and may become comments, runtime
validated specifications must be treated in executable code generated by the compiler. A validated
specification is composed of a boolean expression indicating a validation criterion and a condition to
be signalled if the validation fails. Translating such specification involves generating code to ev aluate
the boolean expression, signal the condition if the result is false, and proceed quietly if it was true. in
Gypsy 2.1, specification expressions have omly one part, the boolean expression, so that the
transportation of the expression into executable code will be monolithic. Consider the validated
specification, where a is of type arr = array {{1..10}) of integer;

(array_summation (3) It 1000) otherwise summation_error

This specification will translate into 2 statement, which will be appropriately placed in the program
text. The statement will be:

23

it not (array_summation (a) It 1000)
gzhen rzise summation_error;

2.86.1.1 Entry Values

Entry values, or primed variable object mames, are intended for specification use only, and thus
will result in an aborted translation if detected in 2 validated specification (or in executable code).
Otherwise, they are printed normally.

2.8.1.2 Value Alterations

For each basetype of a record or array, the compiler declares a function for performing a value
alteration of a given field. For arrays, the function takes the array, the index of the replaced value,
and the new value as parameters and returns an array of the same basetype with the modified value.
For record basetypes, one function is declared (unfortunately, but necessarily) for each field. Each of
these functions takes the record and the new value as parameters and returns a record of the same
basetype with the modified value. ‘

Compositions of alterations may be expressed in Gypsy which perform multiple alterations on 3
structure. These may be expressed using either an explicit list of alterations or an each clause which
will iterate over a specified index, replacing an item with each iteration. For an example of the
former case, consider the Gypsy expression:

a with ([1] :=10; [2] := a[1])

where a is of type arr = array ([1..10]) of integer. This will produce 2 recursive function call to the
alteration function for the basetype of a {for brevity, call it alter__fo and call the array selector
function select _fn) which will appear as:

siter fn (alter_fn (2, 1, 10), 1, select_fn (3, 1)) |

Each clauses are not handled in this manner. Since they are fundamentally looping constructs, an
aslteration clause containing an each clause will be replaced in the statement in which it appears by 2
temporary whose value will be computed immediately prior to the statement. Consider the statement
below, where a and b are of type arr and the array assignment procedures are for the moment
optimized back to ":=".

b := a with (each i: integer[1..10], [i] := 1);
This statement could be replaced with the block:

declare

g a_temp: arr_basetype;
g & _temp = 8;

for i in 1 .. 10
g a_temp[i] := i;
end loop;

a := g a_temp;

end;

Due to the flexibility of the each clause, it is not possible to implement a generic function which could
hide the details of this process. ' :

Alterations with each clauses, like the if expression, require the normal order of evaluation to be
rearranged in a manner difficult to retrace. Moreover, the internal representation of alteration clauses
in the GVE is being reviewed. For these two reasons, the implementation of each clauses has been
delayed. It is possible that, when full condition handling is implemented, they, like the if-expression,
will no longer be translatable. '

24

2.6.1.3 Quantified Expressions

Quantified expressions are intended for specification only and are not translatable into executable
code. ’

2.6.2 External Specifications

Of all external specifications, only entry specifications may be runtime validated. If an external
specification is to be validated, the resulting statement will become the first executable statement of
the unit. v

2.8.3 Internal Program Specifications

Of the two types of internal program specifications (keep and assert), only assert specifications
may be runtime validated. The statement produced by translating a validated assert will replace the
assert statement in the program text, with the assertion itself printed as a comment.

2.6.4 Lemma Specifications

Lemmas have no runtime impact on the program, and are thus translated as comments.

2.7 Textual Organization

The treatment of scopes, name declarations, and name resolution will change somewhat in the
transition from Gypsy 2.0 to Gypsy 2.1. The compiler currently implements the Gypsy 2.0
mechanism. A description of its treatment follows immediately. After that will come a description of
how the Gypsy 2.1 mechanism will be implemented in the compiler.

Conceptually, Gypsy scopes and Ada packages share much common ground. Both are schemes for
modularization of code. Both are mechanisms for restricting access among program regions and for
isolating the name spaces of sectors of the program. On account of this strong commonality,
preserving the scope structure of a Gypsy program by translating scopes into packages is worthwhile.
There are, however, important differences between the two constructs which need to be analyzed and
dealt with carefully.

First, there are significant differences in the ways which scopes and packages interact with each
other. Gypsy scopes are collections of declarations of procedures, functions, lemmas, types, and
constants, all of which may be referred to anywhere in the scope. Also included are name
declarations, which are the only mechanism for accessing units from another scope. A npame

declaration brings the named units into the name space of the importing scope. If the <unit id>
alone is used as a named-in item, the unit is referenced in by the same name in the imported scope a8
it had in the exporting scope. If the <identifier> = <unit id> form is used, the unit is renamed to
<identifier> in the importing scope. In either case, the name declaration must not introduce an
identifier of the same name as one elsewhere declared globally in the scope. Only units may be named
into a scope; there is no mechanism for bringing a whole scope into the name space of another scope

other than naming in each of its units individually.

, This presents a stark contrast to Ada packages, which have no facility for selectively bringing
single units from another package into the package name space. If a package needs access to units
from another package, a WITH clause in the package header will provide this access for all units in
the included package. While a WITH clause provides access, it does not bring the units into the local
name space of the importing package. To reference a unit foo from package bar in package baz
(where baz was preceded by a *WITH bar;®), the form “bar.foo® is required. To actually bring the
units of bar into the local name space of baz, a USE clause must be included in baz’s header. The
units of bar may then be referred to without the package name gualification, except where the local
pame is ambiguous. .

Translating the effect of name declarations in Gypsy scopes to Ada packages is easily
accomplished. The USED attribute of scopes in Gypsy prefix gives a tist of all scopes which are

25

referenced within a given scope. Each of these scopes may be included in the WITH clause of the
package. Although this gives the package access to units which it could not access in the Gypsy scope
{i.e. those units in the exporting scope which are not explicitly named in}, no references to these units

appear in the code. Their inclusion, then, is safe.

Although there is a renaming declaration in Ada, with which any accessible unit may be renamed,
it is not advisable to attempt renaming of those units which are renamed across scope boundaries in
Gypsy. The problem occurs when attempting to rename functions and procedures. An Ada renaming
declaration is of the form:

RENAMING DECLARATION ::=
IDENTIFIER : TYPE MARK renames NAKE;
| IDENTIFIER : exception renames NAME;
| package IDENTIFIER renames NAHE;
| task IDENTIFIER rename NAME;
| SUBPROGRAM_SPECIFICATION IDENTIFIER renames NAMWE;

A Gypsy name declaration requires only the mame of the exported routine. That the routine’s
parameter list may include references to type names which were imported from yet another scope is of
no consequence. An Ada subprogram specification, however, includes the entire header for the
routine, which encompasses the parameter list and, if the unit is a function, the type of the value
returned. If the parameter list or function type refers to a type which is not in the same scope as the
function, and that type is not in a scope which is among those being named in via a WITH clause,
then an undefined symbol is generated when the type name is printed with the unit header. This
symptom could be treated by including the name of the scope in which the type resides in the WITH
clause, but in so doing, the scoping of the translated Ada code begins to lose its resemblance to that of
the original Gypsy program. This would also introduce a greater likelihood of circular references
among packages. While the renaming may have been mnecessary to eliminate name conflicts in the
Gypsy scope, it accomplishes very little in the Ada version, where name conflicts may be resolved
simply by using the global name of the unit (with its home package appended).

The Ada USE clause will bring the units of an imported package into the local name space of the
importing package, so that global references are not necessary (i.e., so the package name need not be
appended to the umit name). In the absence of renaming, the same name conflicts avoided in the
Gypsy program could recur in the Ada version if the imported package were USED. A decision would
then need to be made as to when the ambiguity exists, so that it could be eliminated by using the
global reference. This is more overhead than is merited by the rewards. The USE clause and
renaming declarations in the Ada text are not attempted. All references to imported units are with
global names. '

The Ada requirement that all units must be declared before they can be referenced has caused a
certain amount of grief. While it is possible to use the division of a package into a header and a body
to declare some items before they are fully defined {which allows for recursive function calls and
linked record structures), packages at the top level may not in any way refer to each other in a cyclic
manner. One of the package headers has to come first, and it must give the name of the other
package, which has not been declared, in its WITH clause. In Gypsy, such cyclic references among
scopes are allowed. For example:

scope a = begin

name bl from b;

type al = integer [1..b1];
end;)
scope b = begin

name al from a;

const bl = 10;

end;

If the WITH clause were mutually applied between packages a and b, the undeclared symbol problem
would arise. This problem could be corrected by 1) lumping all user defined units into a single
package and taking pains to eliminate name conflicts, or possibly by 2) restructuring the user defined
units into a hierarchical package configuration so that cyclic package accessing is not necessary. Both
of these solutions violate the desired goal of maintaining in the translated Ada code a good semblance
of the original Gypsy program. Aan unfortunate, yet preferable solution is to restrict the Gypsy code

26

given to the compiler so that cyclic references may not be made among its scopes. With this imposed
hierarchy, it is then possible to order the packages so that no forward references to other packages are
made. Violations of this restriction may be detected by the same operation which determines the
ordering.

The units within a package must be ordered so that the problem of reference to an undeclared
symbol does mot occur. At this level, the problem appears to be more complex, but in fact the
solution is easier. The kinds of units involved are types, constants, functions, procedures, and lemmas.
Lemmas are not translated, so we need not address them. For the purposes of name scopes, functions
and procedures are identical. Constants declarations may refer to a type name, and they may also
refer to other constants. Naturally, it makes no sense for constant declarations to refer to each other
in a circular manner. Constant declarations may not refer to user functions, even for initial value
specification, since user function calls are not regarded in the verification system to be parse time
computable. Types may refer to constants, as in a range or size restriction. They may also refer to
other types, but not to themselves and not to other types so that a recursive types are defined. As
with constants, type declarations may not, in the current Gypsy implementation, include function
calls. »

The resolution of forward references, then, can make use of these various relations, and of the fact
that in Ada packages, a unit may have its header declared in the package header, but its body need
be given only in the package body. Functions and procedures, since they may not be referenced in
either type or constant declarations, may have their declarations saved for last. Since their headers
will refer only to types and constants, they may be declared in any order at the end of the package
header. In their bodies they may, of course, call other functions and procedures, but by the time these
references appear in the package body, the headers of all functions have already appeared. This
resolves the ordering problem for functions and procedures.

Types and constants may refer to each other in a random order, but they may not refer to each
other in a cyclic manner. This reduces the problem, then, to ordering them according to their forward
references, which may be accomplished in the same manner as with scopes, i.e. by using the USED
attribute of each unit. The header and body of both constants and types may then be fully declared

in the package header. This is in fact necessary, since functions and procedures may refer to their
composition, which requires them to have been fully declared already.

Most of this treatment will carry over fo the Gypsy 2.1 implementation. The transition will
involve adding several new mechanisms to accommodate the additional complexity of the revised
approach to scopes, name declarations, and name resolution.

2.7.1 Scopes .

The presence of the EXPORT and IMPORT in the headers of scopes will likely have no impact on
the form in which scopes are presented to the compiler. Whereas in the 2.0 implementation the
compiler gave a package access (some of which was not peeded and was never exercised) to more units
than the Gypsy scope had, now the access mechanism provided in translated code will be more like
that in the Gypsy program. ’

27 2 NAME Declaration

The possibility of aliasing chains via name declarations in Gypsy 2.1 complicates the compiler’s
approach to name declarations considerably. A unit which may be referenced by an alias may not
reside in a scope to which the referencing scope has access. The normal compiler technique of
referencing non-local names is to use the global name, but this may osnly be done where the
referencing package has access to the package containing the definition of the referenced unit. Giving
the referencing package access to all packages which contain the root definitions of aliased units would
not only be complicated, but it would greatly increase the possibility of circular references among
packages, an already strong constraint. '

To deal with this problem, the compiler will generate a unit declaration wherever 2 name
declaration occurs. The declaration will carry the same header as the unit being aliased, except that
the aliasing name will be the name of the unit. The body of the new unit will be a simple reference to
the original unit. Consider the following examples:

27

scope @ =
uses b;
for ¢;
name foo from b;
nzme bim = bar from b;

end;
scope b =
for a;

type foo = integer [1..10];
procedure bar (var i: integer) = ...
end;

The name declarations in package a will become unit declarations as follows:

subtype foo is b.foo;

procedure bim (in out i: integer) is
begin
- b.bar (i);
-end bar;

With these dummy units declared in package a, any references to foo or bim in package ¢ will have
indirect access through package a to the original unit definitions in package b.

2.7.3 Unit Name Reference Resclution

Although the symbol table design for Gypsy 2.1 has not been done, it will need to include some
kind of table to map local unit references to global references. This table will be usable to the
compiler, which will again place the global references themselves in the code where they are used.

2.8 Condition Handling

Translating Gypsy conditions into Ada exceptions would appear straightforward, since the basic
mechanisms are conceptually very similar. There are, however, important differences which make the
translation mon-trivial.

2.8.1 Externsl Conditions

In Gypsy the external conditions to a user routine are only those which are named in the formal
condition parameter list, plus routineerror and spaceerror. “Ada routines do not have any mechanism
analogous to the condition parameter. External exceptions include any which have been declared in
the external environment of the routine. Multiple declarations of the same exception in any
environment are redundant and of no significance.

Gypsy’s handling of conditions across routine boundaries can map fairly neatly into Ada, provided
that conditions are not renamed in the actual/formal mapping in the Gypsy program. This constraint
is enforced by the compiler; a violation will result in an aborted translation. Also, the set of
predefined Gypsy conditions are treated as reserved words in the compiler. {This is no problem since
they are reserved words in Gypsy.) This will protect the condition handling mechanism for predefined
Gypsy functions and procedures translated into Ada.

2.8.2 Internal Conditions

Internal conditions may be declared in Ada in much the same way as in Gypsy, i.e. in the local
symbol declaration segment of the routine. A Gypsy condition declaration ®cond fooerror;® will
translate to Ada as *fooerror: exception;®.

2.8.3 Signalling Conditions

Ada exceptions may be raised in the same manner as Gypsy conditions, ie. with 2 RAISE
statement or in a procedure call. The Gypsy caseerror, which may arise out of a case statement, is
raised explicitly in translated case statements. Gypsy spaceerror is totally implementation-dependent,
hence its treatment will be superseded by Ada's storage __error.

2.8.3.1 Signal Statement

The Gypsy signal statement translates directly into the Ada raise statement. The only Gypsy
conditions which may be mentioned are those locally declared in the routine, either as a condition
parameter or with a local symbol declaration. The exception mentioned in an Ada raise statement
may be any one which is visible in the environment of the call. The mechanism by which these two
concepts are made consistent is described later.

2.8.3.2 Actual Condition Parameters

The constraint that formal/actual pairings must use identical condition names allows the use of
actual condition parameters, or any analogous mechanism, to be dropped from the call site.

2.8.4 Handling Conditions

Ada condition handlers are very much like Gypsy, varying only in syntax. The primary difference
is the way in which conditions propagate when they are not handled locally. If a Gypsy condition is
not handled in a particular routine, it will either propagate through the condition parameter list as 2
signal to the actual condition at the call site, or if the condition is not in the external environment, it
will be transformed to a signal to routineerror at the call site. Ada exceptions, on the other hand,
propagate across the routine boundary to the call site intact, in effect always resulting in the same
exception emerging from the routine call.

To map the Gypsy mechanism into Ada requires an exception handler to be wrapped around the
body of each user routine. In it each formal condition parameter is explicitly trapped and re-signalled.
The when others clause of the handler catches all other exceptions and transforms them to
routineerror. Thus each exception which may escape the internal environment of the routine is
explicitly raised by this outer handler. All internally raised exceptions are caught by the handler and
treated according to Gypsy semantics. No special treatment is required at the call site. Consider this
example:

procedure foo (var i: integer) unless (condl, condd) =
begin : :
var j: int := 0;
cond condZ;
cond cond3;
cond condé; :
it i 1t] then signal condl;
elif 1 1t 100 then signal cond2;
Celif i It 1000 then signal condd;
- else signal cond4; end;
when is cond2: i := 0;
is cond3: raise cond§;
end;

This procedure will translate to:

procedure foo (in out i: integer) is’
j: gypsy_package.inb; '
cond?2, cond3, cond4: exception;
begin 4
gypsy_package.int_assign
(i. gypsy_package.int_descriptor, 0);
begin ,

20

if i le] then raise condl;
elsif i It 100 then raise cond2;
elsif | 1t 100 then raise cond3;
else raise cond4; end if;
exception
when is cond2 => i := 0;
ghen is cond3 =) raise condb;
end;
exception
shen is condl: raise condl;
when is condb: raise condb;
when others => raise routineerrcr;
end:

In this situation signal to condl would propagate out of foo into the calling environment through the
outer handler. The signal to cond2 would be caught by the inner handler, as in the original procedure,
and would never emerge from foo. The signal to cond3 would be caught by the inner handler and
re-signalled as cond5, which in turn would be caught by the outer handler and propagated as condb.
The signal to cond4 would be caught by the when others clause of the outer handler and propagated
as routineerror. In each case the Gypsy behavior is recreated. The call site may drop its actual
parameters and will otherwise remain unaffected.

Note that this example illustrates the concept of an "extended body® which is implied by Gypsy
semantics. Local initializations occur as the first statements of the routine (except in the case where
there is a runtime validated entry specification, when the statement performing the validation
immediately precedes variable initializations). Then follows the block which is the image of the user’s
routine body, including his outermost exception handler. The special exception handler generated by
the compiler is wrapped around all of these statements.

Note that if the compiler allowed renaming of exceptions through the formal/actual mapping,
special treatment would be required at all procedure call sites. Exceptions would need to be treated
through some other mechanism, for instance by including an extra integer var parameter which would
return O normally and, if an exception were propagating out of the called routine, the ordinal number
in the list of » formal condition parameters of the exception being raised (n+1 for routineerror}. Then
each procedure call would need to be followed by a case statement which would transform each non-
zero value of the extra parameter into the appropriate exception at the call site (or be a no-op for a
value of 0). The situation would be even more complicated for function calls, which could be
embedded arbitrarily in expressions. This complexity and our perception that formal/actual renaming
is not a critical feature {we have not observed its use in any real Gypsy program), are the reasons
justifying the compiler’s rejection of that feature.

The correct handling of Gypsy standard conditions is potentially complex and perilous. Difficulties
can arise primarily because there are a multitude of standard conditions in Gypsy, and only five
standard exceptions in Ada. In many cases, 3 large number of Gypsy conditions collapse functionally
into the same Ada exception. For example, the Gypsy conditions adderror, subtracterror,
multiplyerror, divideerror, minuserrof, powererror, and powerindeterminate all are subsumed into the
Ada numeric__error. 'The problem of this fine granularity is that the user may write individual
handlers for each of the Gypsy conditions. To preserve the semantics of these handlers, each
arithmetic operation subject to a condition handler would need to be isolated from other arithmetic
operations and paired with its handler.

To illustrate, consider the statement A {I + J) :== X * Y;. Notice that the multiplication could
generate a Gypsy multiplyerror, and the I + J an adderror. In ADA, both could generate an ADA
pumeric__error. Similarly the indexing could generate Gypsy indexerror and the assignment 2
valueerror; both could generate an ADA constraint _error. If the user wrote a handler for adderror
after this statement, the indexing operation would have to be performed in the context of the handler
and the assignment outside of the handler (so that a range constraint violation on the value of an
array item would not be trapped by the handler for the adderror).

This problem was the primary motivating factor in the decision to. provide a new version of any
Gypsy operation which may raise a condition. Thus the functions for integer arithmetic operations
are provided in gypsy _ package, and they must be called using function call notation rather than infix

30

operators. (Integer comparisons are not specially provided, since they may not signal conditions.}
These new versions will raise only those exceptions which they could raise in Gypsy. No Ada
exceptions will propagate from them into their calling environments. This means that no special
treatment is mecessary for exception handling at the call site, and that anmy user-provided handlers
may translate directly.

2.8.5 Conditional EXIT Specifications

Conditional exit specifications are translated as comments.

2.0 Dynamic Objects

Where Gypsy offers several different types of data structures for dynamic objects, the only
dynamic form possible in Ada is the linked record structure, where records are tied together with
access pointers in a Pascal-like manner. New objects may be allocated, and old ones which have been
dropped from linkage with any structure may be de-allocated either explicitly or by the Ada garbage
collector. In order to be truly dynamic, all the Gypsy dynamic objects must be implemented as linked
record structures. :

2.6.1 Dynamic Types

Just as any type of data object may be the component type of a dynamic type in Gypsy, any type
of data object may be a record field type in the linked record structure. A dynamic type declaration
produced by the compiler is 2 composition of types. The general form for a structured type foo with
components of type bar is as follows: '

type foo is access foo_item;
type foo_item is record fl: bar;
12: foo;

end record;

The basetype of any dynamic type is the same structure, except that its length is unbounded and its
items are of the basetype of the original item type. Since the dypamic types are completely mew
objects to Ada, the complete set of operations which Gypsy provides on each basetype must be
provided by the compiler. The compiler uses a generic package for each kind of dynamic type (set,
sequence, mapping) to declare the basetype itself and all of the predefined operations. The predefined
statements must also be defined for each basetype, and this is also done in the basetype package.

User types themselves (i.e. with range and element value restrictions) are declared in the packages
corresponding to their scope of origin. The type is declared to be an identical subtype of its basetype.
Along with each type declaration are constant declarations for the initial value and the typedescriptor
for the type. A size restriction on the type is not contained in the type declaration itself; rather it is
noted in the typedescriptor, which is provided as a parameter to any predefined operation which must
be sensitive to the various restrictions on the type.

2.9.1.1 Sets

Sets are declared as linked records, as described above. The generic package which is instantiated
for each set basetype is SET _BASETYPE_ROUTINES. Its parameters include the type kind of the
jtem (an item of the scalar “type type_kind is (g_integer, g_ character, g_ scalar, g_ array,
g __record, g_sequence, g_set, g_ mapping, g_bufferF) the descriptor of the item basectype, the
item basetype name, the name of the equality function for the item, and the name of the valueerror
function for the item. It instantiates declarations for the several types, the mnull value, the
typedescriptor for the basetype, all of the predefined operations on the type, and various utility
functions which it employs internally. A listing of SET“BASETYPE_ROUT INES may be found ip
Appendix B.3.

31

2.9.1.2 Sequences

Sequence types and operations are declared in the same manner as sets. The basetype package is
SEQUENCE _BASETYPE_ROUTINES. A listing of this package is in Appendix B.2.

Gypsy may produce objects of three sequence types without the types themselves having been
declared. This happens implicitly in range expressions, which are defined to be sequences of the type
of the items listed as range bounds. Since the compiler cannot produce such a sequence unless its type
has been declared, the three types INTEGER _ SEQ, CHARACTER _SEQ, and BOOLEAN _SEQ are
instantiated in GYPSY_PACKAGE. This is not seen as excessive overhead, since these are the types
of sequences most likely to be declared by the user in a program, anyway.

2.9.1.3 Type STRING

Type string in Ada is specified to be an unbounded array of character. In Gypsy it is predefined
to be sequence of character. Having CHARACTER _SEQ as a predefined type, as just stated, allows
a predefined target for translating type string. All that remains is the treatment of string literals, and
this is accomplished with the type coercion function COERCE_STRING, which is defined in
GYPSY_PACKAGE. It takes an Ada string literal as its argument and returps 2
CHARACTER _SEQ. Any Gypsy string literal will be transiated as a call to this function on the
literal, i.e. ®foo® will translate to gypsy__package.coerce_string('foo').

' 2.9.1.4 Mappings

Mappings are declared in the same manner as sets and sequences, except that each item includes
two data fields, one for the domain item and ome of the range. The generic package which
instantiates mapping types is MAPPING _BASETYPE_ROUTINES, and it is listed in Appendix B.4.

2.9.2 Expressions

Most standard operators defined on dypamic types are supplied in the generic packages for
dynamic basetypes in functional and procedural form. The others involve functional decomposition at
the call sight.

2,9.2.1 Set and Sequence Values

Set and sequence construction expressions may take two kinds of value lists: a list of expressions
separated by commas or a range expression. In the case of the range expression, the. operation
involves an implicit iteration indexing over the bounds of the range expression, with an adjoin
performed with each element. The function performing this operation is generated in-line in the
basetype package after the generic instantiation of the basetype support package. In the case of a list
of expressions, the operation must be functionally decomposed at the call sight into a composition of
adjoin operations. This is necessary, since seqconstructor and setconstructor are n-ary operations and
Ada functions must have a predetermined number of arguments.

In either case, the basetype functions which must be called are instantiated for the basetype of the
result. This means that if a set or sequence constructor appears in the program, the type of the result
{or some type which has as its basetype the type of the result) must have been declared to the
compiler. Since a user is unlikely to construct a set or sequence if he bas declared no analygous types,
this will rarely be a problem. The only exception is the string literal, which is an implicit
seqconstructor. Strings, however, are of type CHARACTER _SEQ, which is predefined in the
translator. Nevertheless, the user needs to beware of this restriction when using constructors.

2.9.2.2 Component Selectors

Sequence and mapping element selectors and subsequence selectors are defined as functions in their
respective basetype packages and instantiated for the basetype of each root name expression.

32

2.6.2.3 Operators

Each standard operator is defined as a function with correct Gypsy semantics in the basetype
package for the appropriate structure.

2.0.2.4 Value Alterations

Value alterations on dynamic types are performed in essentially the same manner as for arrays and
records. The basetype packages provide functions to perform specific field alterations and omit
alterations. Decompositions are done in-line, exactly as described for arrays and records.

2.8.3 Statements

Predefined statements operating on the various dynamic types are defined as procedures in the
appropriate basetype package.

2.9.3.1 INSERT Statement

The insert statement is provided as a procedure for sets and mappings. Its arguments are the
expression to be inserted, the name of the structure being inserted into, and the typedescriptor of the
structure. :

There are two procedures provided for inserting into sequences, one for inserting before and one
for inserting behind. The arguments to these procedures are the expression being inserted, the name
of the structure being inserted into, the index of the component before or behind which the insertion is
to be performed, and the typedescriptor of the structure.

2.6.3.2 REMOVE Statement

The remove statement is translated to 2 call to a generically instantiated procedure. For sets and
mappings its arguments are the component being removed and the structure from which it is being
removed. For sequences the arguments are the sequence name and the index of the component being
removed.

2.6.3.3 MOVE Statement

The move statement is translated into either a call to an insert procedure followed by 2 call to a
remove procedure or a call to an assignment procedure followed by a call to a remove procedure. The
proper form is determined by the syntax of the move statement according to the semantics described
in the Gypsy 2.1 manual. .

2.10 Concurrency

Concurrency is not implemented in the compiler. Buffers, however, must be implemented as a
means for performing input 2nd output.

2,10.1 Buffers

Buffers are declared in a manner similar to the other dynamic types. The major differences are
the ®io_ flag® field in the buffer header which is used to indicate the buffer’s use as an inputfoutput
device and the ®last® field, which points to the oldest item in the buffer. The use of the io_ flag was
described in detail in Section 2.5.7.2 on input and output. Buffer operations and type declarations are
instantiated generically from BUFFER _BASETYPE_ROUTINES, which is listed in Appendix B.5.

33

2.10.2 Operations Restrictions

Operation restrictions are used in semantic checking of the program and have no meaning at
runtime. For this reason they are ignored by the compiler.

2.10.2 Buffer Parameters

The use of buffers as parametérs is checked by the parser. Checks of their special semantics need
not be performed by the compiler.

2,10.4 Statements

Buffer manipulation statements are implemented only to the extent that they are necessary for
input and output and sequential execution.

2.10.4.1 RECEIVE Statement

The receive statement is converted by the compiler into a case statement which keys on the value
of the io_flag field of the buffer. If the value of the io__flag is non-zero, a read from the appropriate
device is performed. If the value is zero, the procedure which performs a receive on an internal buffer
is called. For now this procedure is not intended to be useful for concurrent processing. It is defined
to perform the extraction of an item from a buffer in the same manner as an item would be extracted
from the end of a sequence. A more detailed explanation of the expansion of a receive statement is in
the section on input and output. ‘

2.10.4.2 SEND Statement

The send statement is converted by the compiler into a case statement which keys on the value of
the io_ flag field of the buffer. If the value of the io_flag is non-zero, a print to the appropriate
device is performed. If the value is zero, the procedure which performs a send on an internal buffer is
called. For now this procedure is not intended to be useful for concurrent processing. It is defined to
perform the insertion of an item into a buffer in the same manner as an item would be inserted at the
beginning of a sequence. A more detailed explanation of the expansion of a send statement is in the
section on input and output.

2.10.4.3 GIVE Statement

A give statement is translated into an expanded send statement followed by a call to the
appropriate remove procedure. : ‘

2.10.4.4 Communicating Sequential Processes

This is an issue dealing with concurrency not addressed in the compiler.

2.10.5 Concurrent Composition

Concurrency is not addressed in the compiler.

2.10.6 Specifications

The special specification forms dealing with buffers are not relevant to non-concurrent programs.
Since they are not needed for execution, however, they may be translated transparently as comments
whenever they are encountered.

34

2.11 Type Abstraction

Type abstraction is not addressed by the compiler. Abstract type declarations, when encountered,
will result in an aborted translation.

35

| C'ha:pter 3
COMPILER ROLE AND IMPLEMENTATION

3.1 The Gypsy Verification Environment

The Gypsy Verification Environment (GVE) is a large program development environment,
implemented in LISP, which -brings together tools to aid the programmer in specifying, implementing,
and verifying Gypsy programs. The following overview of the GVE is largely based on material in the
Gypsy 2.0 Verification Environment 6.0 Users Manual [7]. .) : :

The source text of Gypsy program units enters the GVE by either being read from file, from a text
entry mode in the system monitor, or from a buffer in an editor, EMACS [30], linked to the monitor.
The text is first converted into a LISP S-expression form called Prefix [14] by a parser derived from
Wilhelm Burger’s BOBSW parser generator output [5]. Prefix is an internal form of Gypsy programs
_ which is maintained and used throughout the GVE. After the BOBSW parse, the Prefix undergoes
semantic checking and clarification by a parser written by Dwight Hare and enhanced by this author.
The parser also maintains symbol tables for system-wide use throughout the verification process.

Program units may be revised or new units added at any time using the same parsing mechanism.
Existing units may also be altered through use of either the EMACS editor or a Gypsy structure
editor [13]. Prefix may be displayed as Gypsy source by a pretty printing package called infprint [1].
Both infprint and the structure editor were implemented by Dwight Hare.

Altering a program unit may require other units to be re-checked for semantic correctness and
verification conditions to be re-proven. The global impact of program changes is tracked by the top
level component of the GVE. The top level also keeps track of the overall state of each program unil
with regard to its semantic completeness and its verification status. The top level incremental
development code was originally implemented largely by Mark Moriconi [22].

The verification process begins with the generation of verification conditions for each eligible unit
by the vcgen component. A verification condition is a formula representing the relationship between
the formal specifications for a unit and the executable code in the unit. If all the verification
conditions for a unit can be proven, then the formal specifications and the code are consistent. Vegen
was written by Richard Cohen and Judith Merriam. ' '

To assist the user in proving verification conditions, the GVE houses a powerful interactive natural
deduction theorem prover. The prover was written by W. W. Bledsoe [3,4] and integrated into the
GVE by Mabry Tyson and Peter Bruell. A symbolic -expression evaluator, xeval, assists vegen and
" prover in simplifying Prefix expressions. Xeval returns a normalized symbolic form of its arguments,
which can be evaluated either in isolation or with respect to given context and/or program state.
Xeval commonly reduces simple verification conditions in vegen to True so that the user needs to
confront only the more complex conditions in the prover. -

The Gypsy to Bliss compiler consists of three parts. A compilability checker first determines that
the program is completely defined and uses machine-dependent features properly. The second phase is
an optimizer, which maps the Gypsy Prefix into an optimized, enhanced, and annotated program tree.
The optimizer attempts to suppress runtime checks via proof methods and perform in-line expansion

36

of routines. Finally the program tree is used by a Gypsy to Bliss compiler to produce z file containing
2 Bliss image of the program. The Bliss file may be compiled by one of the Bliss compilers and run.
The optimizer is being implemented by John McHugh and the Bliss compiler by Lawrence Smith [28].

The Gypsy to Ada compiler, which is the subject of this report, is similar in spirit to the Gypsy to
Bliss compiler, in that they both utilize compilers for another high level language. Since a variety of
Ada compilers are under development, the code produced by the Gypsy to Ada compiler will be widely
portable and usable on 2 variety of machines in the near future. The compiler is integrated into the
GVE with an interface at the system monitor level.

3.2 Consideration of Intermediate Program Representations

3.2.1 Overview of Gypsy Prefix

The Gypsy parser transforms Gypsy source text into an internal representation known as Prefix.
Prefix is a tree structure taking the form of a LISP S-expression. The name "Prefix® is appropriate,
since at each level the tree consists of an operator in the CAR, or first position, and the operands
follow in the CDR.

Since Prefix is a form which may be conveniently and powerfully manipulated and referenced in 2
LISP environment, it is used to represent all program units throughout program development in the
GVE. The GVE database maintains a Prefix representation for each scope, procedure, function, ty pe,
constant, and lemma. This may be selectively extracted for processing. Several forms are saved, each
reflecting knowledge available at a different stage of development. Passl Prefix is the product of the
BOBSW parser. Fullprefix or Pass3witherrors results from semantic checking and expansion of Passl
Prefix. An abstract syntax prefix, which is an abstract representation which can accommodate
annotations, is also kept for each unit. A somewhat formal description of Prefix is available in ICSCA
internal documentation [5,14].

3.2.2 Choosing an Intermediate Representation

At the outset of the project, it was clear that the Gypsy program would need to be represented in
some internal form which captured the semantics of both its Gypsy and Ada incarnations. The
natural starting point for the transformation was the Gypsy prefix maintained in the GVE, since il
embodied the semantics of the Gypsy program. The question was what form would be best for Adsa
semantics.

An intermediate representation for Ada programs, Diana [12,24], was under development as a joint
project of teams from the University of Karlsruhe, Carnegie-Mellon, Intermetrics, and Softech. Diana
was primarily designed with Ada compilers in mind, but was suitable for other purposes such as pretty
printing. It was a merger of two previously designed forms, TCOL [36] and AIDA [34], and was
potentially a military standard.

With the. assumption that there would be pretty printers available for Diana representations, a
prefix to Diana translation was considered, but ultimately rejected. The primary reason for the
rejection was that Diana is not, in fact, a standard Ada representation. Rather, it is an abstract data
type, with its published form of attributed trees serving as an abstract model for the definition of
Diana. The standardization applied only to the model, meaning that implementations could take
whatever form was appropriate for the implementor. Obviously this would make it much harder to
find a pretty printer based on a. form convenient to our purposes, and writing 2 Diana S-expression
pretty printer was peither within the scope of this project nor deemed worthy of the effort necessary

to do it.

The next candidate for an internal representation was Gypsy prefix itself. The semantic
similarities between Gypsy and Ada meant that the structure of the Gypsy prefix would be
appropriate. The decision was made to use Prefix as a starting point and to modify it to
accommodate different forms introduced during the compilation process. Of the several existing
Prefix forms, parser prefix was chosen for the initial implementation. Since the two components most
likely to impact the compiler, the parser and infprint, both utilized parser prefix, parser prefix offered

the quickest startup time for the implementation. When the new abstract prefix model currently
under consideration is installed throughout the system, the compiler will be retrofitied to work from
that new dialect.

3.3 Adoption and Syntactic Modification of Infprint

Infprint, as previously stated, is the component of the GVE which ®un-parses® Gypsy prefix and
presents it as Gypsy source text. Infprint processes prefix explicitly by recursive descent, printing the
text as it descends. The descent is driven by knowledge embedded in the component about the
various operators. Printing operations require only information locally available in the prefix form
and knowledge hard-coded in infprint. Symbol table and other global information about the units
being printed is not needed. For the most part, infprint processes the prefix without temporary
modification, requiring only indentation and character positioning data which it computes
dynamically. The notable exception to this mode is the printing of expressions. Before an expression
is actually printed, a pass is made over the prefix during which the print length of each prefix item is
appended to the front of each item. This prepassed prefix is then used as the data structure for
expression printing.

The cosmetic and structural similarities of Gypsy and Ada, combined with the general cleanness of
the infprint component, made infprint very attractive as a tool for the pretty printing of Ada prefix.
The prefix traversal and pretty printing structure were already in place. The major remaining
problems were 1) the determination of what global information will be needed and the points at which
it is required, 2) the prepassing of the prefix to embody the semantic modifications being made to the
program, and 3) the adaptation of infprint to print the modified prefix using Ada syntax. Though the
modifications of infprint turned out to be so sweeping that only its structure survived, having that
structure from the beginning was a great boost. It provided an initial thread of functioning code om
which to build the bulk of the compiler.

The general problem-solving strategy was to get a bare bones compiler working, and then expand
upon that base until a complete compiler was finished. The obvious first step, then, was to make the
modifications to infprint which were purely syntactic in nature. With these modifications made,
Gypsy programs which contained only those constructs which have more or less the same form in Ada

could be compiled.

Ada and Gypsy bave many common features, varying only in syntax. For these features the
adaptation of infprint to produce Ada was straightforward. The fundamental control structures and
control flow mechanisms of Gypsy are all present in Ada, and are identical except for condition
handling, which is somewhat different from Ada exceptions. The concepts of function and procedure
are similar in the two languages, and the appearance of their headers, local declarations, and bodies
differs only cosmetically. The basic simple types of Gypsy: integer, character, and boolean, are
present in Ada. {Gypsy rationals are mot compiled because they are intended primarily for
specification.) Both the declarations and references to arrays and records are directly translatable.
The mapping of Gypsy scopes into Ada packages was achieved largely syntactically, provided
packages make no circular references amongst themselves.

Similarly, a number of the comstructs which would not translate into Ada, but which are mot
needed in the runtime image, were easily transformed syntactically into comments. These constructs
include all non-validated formal specifications, lemmas, functions for specification only, and most of
the constructs dealing with data abstraction. The fact they could be presented for the most part in
their original syntax enhanced their usefulness as documentation.

Naturally, there were 2 great number of syntactic modifications to be made. Enumeration of all
these changes would be tedious, but an example which illustrates a great many of them appears in
Appendix C.L :

38

3.4 Data Structures

The GVE maintains a database of program units which, among other things, stores the various
computed prefix forms for the units. These prefix forms include the Passl prefix generated by the
BOBSW parser, the result of semantic checking (either Fullprefix or Pass3witherrors), and the
abstract syntax representation of the unit. Each of these is saved to reduce the amount of
recomputing necessary through verification and incremental development.

The various passes which the compiler makes over the prefix transform it to reflect Ada constructs
and semantics. Generating new units and tracking their relationships introduces a certain volatility to
the units produced. For example, a re-ordering of the type declarations presented to the compiler in a
scope, or a re-ordering of scopes presented might produce a basetype and a set of basetype functions
with different names. To track the effects of such changes through repeated compilations would
require an incremental development capability which is beyond the current scope of this effort.

Therefore the compiler currently maintains its own database of prepassed units. Each unit in the
compiler database is stored under the ADA-PREFIX property in the GVE database. These units may
be modified during the course of a compilation, but the life of the database is only the life of the
compilation. If a new compilation is ordered, the ADA-PREFIX for all existing units is discarded, and
a new database is initialized. The units in the Ada database corresponding to user defined units
originate from Fullprefix and are the result of the most recent parse of the unit. Units introduced in
the compilation, such as basetypes, typedescriptor and initial value constants, and functions not
created in generic packages are also stored in the database. ADA-PREFIX is largely identical in form
to FULLPREFIX, but many new properties are introduced, and some expression and statement forms
not present in Gypsy prefix may occur. Access to the database units is abstracted through access
functions. The Ada database is the main data structure used during the compilation.

Another structure which is critical to the compilation is the structured type map. This is
constructed during the global program pass and gives for each type the name and the prefix expansion
of its basetype. Basetype units created by the compiler also have entries in the structured type map.
The structure aids in linking various declared types to common basetypes where such relationships
exist.

A smaller, but important, structure created during the prepassing of a scope is an ordering of units
based on their mutual dependencies. If units are declared in this order, there will be no forward
references in the code produced. The ordering is determined by producing a dependency tree and
passing over the tree laterally. :

A global name map ‘is constructed for the purpose of correct printing of unit names. It maps the

local Gypsy name of units referenced to atoms which, when printed, will produce a global reference in
the Ada program.

3.5 Prepasses of Gypsy Prefix

Many semantic modifications of the Gypsy program are necessary to effect the translation imto
Ada. These are performed, where appropriate, on prepasses through the various structures of the
Gypsy program, and on the final printing pass over the prefix. The operations performed at the
various levels are described in this section.

3.5.1 The Global Program Pass

The entry point to the compiler receives a list of scopes which are to be compiled. The first stage
of the compilation is a preliminary pass over these scopes, mainly devoted to gathering information
relevant to the compilation of types and to ordering the scopes according to their dependencies.

The first operation is to gather the USED lists of all the scopes, thus determining which scopes
refer to which others through named units. A sorted ordering of scopes is calculated on the basis of
these USED lists. The ordering is such that a scope will only reference another scope if the other
precedes the scope in the ordering. A side effect of this ordering is the detection of circular references
among scopes, and of scopes which are referenced but not included in the list of scopes to be compiled.

39

Both of these conditions are not compilable and resuit in an aborted compilation.

The ordering determines the order in which the Gypsy scopes will be presented as Ada packages.
It also determines the order in which the scopes will be prepassed. During the prepass, the type
declarations in each scope are sorted by USED lists, just as the scopes were sorted. Then, in order,
each type is examined and its basetype "determined. Each type receives an entry in the
aforementioned structured type map, with the entry consisting of the expanded TYPDEF of the
basetype and the name of the basetype. Naturally, if the basetype has not been previously defined, it
must be given a name and an entry in the map. The map, which initially included only the predefined
types and basetypes of Gypsy, plus the various primitive sequence types, will by the end of this pass
include an entry for every user declared type and every basetype in the program. The global nature
of this pass will result in unique basetypes, declared so that any two types with the same basetype will
map to the same basetype.

Next, the first new units of the Ada database are created, based on information in the structured
type map. Each entry in the map is examined. If it is a user-declared type, its fullprefix is modified
to reflect basetype information, and symbols are inserted which will serve as names for the initial
value constant and valueerror function, and for the typedescriptor constant where needed. If the
entry is a basetype, a prefix representation of the unit is CONS-ed up, reflecting all the information
necessary to generate the basetype declaration, and also a generated name for the valueerror function
on the basetype.

At this point the basetype package itself is printed. The basetypes are ordered and printed as
described in Chapter 2. As each one is generated, items are inserted into the basetype's database
entry, indicating the names of the functions generated to perform the predefined operations on the
type. These items will then be looked up whenever one of the operations is encountered in the
compilation.

If the user has specified a main procedure to be compiled, that procedure is examined and the
prefix for a new interface procedure is generated and stored for later printing along with the main
procedure. The buffers in the parameter list to the main procedure are examined and a list of the
basetypes of their item types is calculated. For each of these basetypes, an Ada SEQUENTIAL _ 1O
package is instantiated at the end of the basetype package. Each buffer parameter then has a
corresponding in_out file declared so that a send or receive on the buffer may be compiled as a print
or read on the file.

3.5.2 Prepassing Scopes

The first operation performed in the prepassing of a scope is an updating of the name map in the
prefix for the scope. For each type defined in the scope, an entry for its valueerror function and its
initial value constant is inserted into the map. If the type is non-dynamic, its typedescriptor constant
is also inserted. The name map will later drive the printing of the units.in the scope.

Next, the global name map for the scope is generated from the name map of the scope. The
global name map will associate unit names in the scope with atoms which may be printed as unit
references. Finally the list of packages which this scope/package will reference is computed for the
WITH clause of the package. :

The printing of the package follows the péttem described in Chapter 2.

3.5.3 Prepé.sslng Units

The distinction between those semantic changes which should be made during the prepassing of 2
unit and those which may be performed in dynamically on the printing pass is dim. The general
philosophy taken has been to defer until the printing pass whenever reasonable, in an attempt to
prevent an extra operator-driven traversal of the prefix for the unit.

As a result of this decision, the prepass has been reduced to adapting the Gypsy mechanism for
exiting from routines. In Gypsy, a routine is exited normally when execution of the last statement in
the main statement list is completed. In Ada, normal execution is completed when a return statement
is executed. To this end, return statements are inserted at the end of the main statement list. If the

40

routine is a function, the declaration of the local variable ®result® is made explicit. ®*Result® is given
the type of the function, and the return statement uses it as a parameter.

3.5.4 Semantic Modifications During the Print Pass

A myriad of minor syntactic modifications to the program occur during the printing pass. They
are too numerous to mention, but 2 number of more significant semantic and syntactic modifications
are worth noting. .

Calls to standard functions and procedures must be transformed to calls to the appropriate
routines generated for use by objects of the operand basetype. In some cases, a8 in integer
comparison, the Ada infix operator will suffice. In many others, particularly those involving
operations on the dynamic structured types and those operations which can raise conditions, the
correct call to a generated function must be looked up. The Ada database contains the necessary
information to do this. Consider the append operation on objects A and B of type foo, where foo is 2
sequence of some scalar type with basetype foo_ barscope. The compiler first determines the
basetype of the type of the operands with the help of a staged symbol table for the unit. Then it
looks at the database entry for the basetype to find the name of the append function for objects of
that basetype, stored internally as APPEND::FOO__BARSCOPE::BASETYPE__PACKAGE. Finally
this function call is transformed into its print form, and the function call printed. It will appear as:

. basetype_package.foo_barscope.append (2, b) ...

Other significant operations performed during the print pass have already been discussed. Among the
most significant of these are the transforming of statements including if-expressions, each clauses,
structured component assignments with more than one level of indexing, and the functional
decomposition of alteration clauses. Function and procedure calls must be transformed to perform
valueerror checking on routine parameters, and buffer operations must be expanded to include the
possibility of input/output operations. These various forms are recognized during prefix traversal and
the modified forms are fed recursively to the compiler for further semantic transformation. When the
new forms are encountered, the printer handles them as Ada syntax. :

41

Chapter 4
CONCLUSION

The implementation of the compiler is not yet complete. It is fully operational on features
described in Chapters 1-7 of the Gypsy manual (with the few exceptions noted), but the later chapters
define some translation problems not yet solved. Condition handling and work on dynamic types is
mostly complete, but is not quite finished. Data abstraction is not implemented, and while it has only
limited impact on programs at runtime, it has been somewhat difficult to implement in other system
components. Omne of the more difficult problems involved in a complete compilation of Gypsy,
however, is the mapping of its concurrency mechanisms into those of Ada. Ada’s rendezvous concept
differs significantly from Gypsy’s more flamboyant message buffers, but preliminary analysis indicates
there is sufficient capability in Ada to support the Gypsy concept. While some work remains to be
done, the compiler implementation is in an advanced state.

A major disappointment which has hampered development of the compiler has been the lack of an
available Ada compiler of sufficient quality to test the translated code. Severe space problems and
weaknesses in semantic analysis have to date prohibited compilation of much support code and
production of any object code from translation.

Although it would be naive to expect a translation from one high level language to another to be
totally clean, I was surprised with the difficulty of translating some constructs. In some cases the
results are rather messy and may tend to execute slowly. A large amount of generated code, notably
functions generated to operate on structured data types, will likely never be exercised. To produce
efficient object code, the Ada compiler will need to perform thorough data flow and call structure
analysis. Key optimizations will be possible if the Ada compiler realizes that units generated but
pever called do not need to be compiled. I hope it will be possible to communicate to a good Ada
compiler that many of the compile-time and runtime checks which the Gypsy to Ada compiler
performs will supersede the need for the Ada compiler to generate code to do the same work. Given a
sufficiently intelligent Ada compiler with appropriate pragmas, however, it should be possible
ultimately to generate relatively efficient object code with the Gypsy to Ada compiler.

Production of efficient code, however, was not 2 main goal of the compiler. The single most
important thing that Gypsy can provide to Ada users is formal verification. No thorough tests have
yet been run to ensure that the semantics of Gypsy programs are being preserved through
compilation. That preservation, however, has been the top priority of this project, and results to date
appear to be accurate. In the final analysis, I am confident that program semantics and the validity
of the Gypsy proofs, though at some expense of efficiency, will be completely preserved through the
compilation. There lies the value and the success of this effort.

Appendix A
The Predefined Support Package

H
i

This is the Ada package containing sil the predefined
Gypsy support code. It includes generic packages
for support of arrays, sequences, sets, mappings,

and buffers, but these are listed separately

in Appendix B.

package GYPSY_PACKAGE is

{
H

§
i

-- These are the predefined Gypsy conditions

adderror, alisserror, caseerror, divideerror, indexerror,
membererror, minuserror, multiplyerror, negativeexponent,
nonunique, nopred, nosucc, overscale, powererror,
powerindeterminate, receiveerror, routineerror, senderror,
spaceerror, suberror, subtracterror, underscale, valueerror,
zerodivide: exception;

-- The following declarations together define the typedescriptor
-- type, which is itself a variant record keyed on the type kind

IDENTIFIER LENGTH : constant integer := 30;
subtype IDENTIFIER is string;

type TYPE KIND is (g_integer, g_scalar; g_boolean, gacharacter.
g array, g_record, g_sequence, g set,
g_mapping, g_buffer);

type pt_fielddescriptor;
type typedescriptor (kind: type_kind);

type TYPEDESCRIPTOR (kind: type_kind) is record
case kind is
when g _integer - =) i_low: integer := integer’first;
i_high: integer := integer’last;
when g scalar =) s_low: integer := 0;
s_high: integer := integer’last;
when g boolean =) b_low: boolean := false;
b_high: boolean := true;
when g character =) c_low: character := character’first;
c_high: character := character’last;
when g array =) index_type: typedescriptor;
s_elem_type: typedescriptor;
when g record =) r_items: pt_fielddescriptor;
wvhen g_sequence
| g_set =) s_size_restriction: integer;
' s_elem_type: typedescriptor;
when g_mapping => m_size_restriction: integer
' := integer’last;
domain_type: typedescriptor;
rng_type: typedescriptor;
when g buffer => b size_restriction: integer;

42

b elem type: typedescriptor;
end case;
end record;

type FIELDDESCRIPTOR (kind: type kind) is record
name: identifier;
field_type: typedescriptor(kind);
next: pt_fielddescriptor;

end record;

type pt_fielddescriptor is access fielddescriptor;

-- Here are the predefined functions for the simple,
unstructured type

generic
type DISCRETE TYPE is (€>):

function MAX (D1, D2: in DISCRETE TYPE) return DISCRETE TYPE;

generic
type DISCRETE_TYPE is (€);

function MIN (D1, D2: in DISCRETE_TYPE) return DISCRETE TYPE;
function IFF (X, Y : in BOOLEAN) return BOOLEAN;
function IMP (X, Y : in BOOLEAN) return BOOLEAN;
function BOOLEAN VALUEERROR (LHS : in TYPEDESCRIPTOR(g_boolean);
S : in BOOLEAN)
return BOOLEAN;
procedure BOOLEAN‘ASSIGN-(x: in out BDGLEAN;
y: in BOOLEAN;
x_descriptor:
typedescriptor(g_boolean));
function BOOLEAN_EQ (EXP1, EXP2: in BDDLEAN) return BOOLEAN;
function BOOLEAN PRED (B: in BOOLEAN) return BOOLEAN;
function BOOLEAN SUCC (B: in BOOLEAN) return BOOLEAN;
function BOOLEAN SCALE (I: in INTEGER) return BOOLEAN;

BOOLEAN_TYPEDESCRIPTOR: constant typedescriptor :=
(kind =) g_boolean, b_low => false, b_high => true);

function CHARACTER_VALUEERROR (LHS :
in TYPEDESCRIPTOR(g_character);
S : in CHARACTER)
return BOOLEAN;

procedure CHARACTER_ASSIGN ' .
(x: in out CHARACTER; y: in CHARACTER;
x_descriptor: typedescriptor(g_character));

function character eq (charl, char2: in charscter)
return boolesn;

function CHARACTER_PRED (B: in CHARACTER) return CHARACTER;
function CHARACTER SUCC (B: in CHARACTER) return CHARACTER;
function CHARACTER SCALE (I: in INTEGER) return CHARACTER;
CHARACTER TYPEDESCREPTQﬁ: constant typedescriptor =

(kind => g_character,

¢ jow =y character’first,

c_high =) character’last);
function INTEGER EQ (intl, int2: in integer) return boolean;
function INTEGER _ADD (x, y: integer) return integer;
function INTEGER WULTIPLY (x, y: integer) return integer;
function INTEGER_MINUS (x: integer) return integer;
function INTEGER SUBTRACT (x, y: integer) return integer;
function ISTEGER_POWER (x, y: integer) return integer;
function INTEGER PRED (x: integer) return integer;
function INTEGER SUCC (x: integer) return integer;

function INTEGER _VALUEERROR (LHS: typedescriptor(g_integer);
x: integer) return boolean;

function foo (TK: type kind) return type kind;

procedure INTEGER_ASSIGN (x: in out integer;
y: in integer;
x_descriptor:
typedescriptor(g_integer));

integer_typedescriptor: constant typedescriptor :=
(kind => g_integer, i_low =) integer’first,
i_high => integer’last);

subtype int is integer range -32768 .. 32767;

int_typedescriptor: constant typedescriptor =
typedescriptor’ (kind => g_integer, i_low =) -32768,
i_high => 32767);

int_initiai: constant int := 0;

-- Declarations for sequence_basetype_routines,

-- set_basetype_routines, mapping_basetype_routines,
buffer_basetype_routines, and array _basetype_routines
-- go here, but may be found in Appendix B

t

package integer_seq is new sequence_basetype_routines
(g_integer,integer_typedescriptor, intéger, integer eq,
integer_valueerror);

integer_seq_typedescriptor: constant typedescriptor :=

(kind => g_sequence,

s_size_restriction =) integer3last,
s_elem_type => integer_typedescriptor);

integer_seq_initial: constant integer_seq.basetype := null;

package character_seq is new sequence_basetype routines
(g_character, character_typedescriptor, character,
character_eq, character_valueerror);

character_seq_typedescriptor: constant typedescriptor :=
(kind => g_sequence,
s_size_restriction = integer’last,
s_elem_type => character_ﬁypedescriptof);

character_seq_initial: constant character_seq.basetype := null;

function coerce string (S: string) return
character_seq.basetype;

package boolean_seq is new sequence_basetype_routines
(g_boolean, boolean typedescriptor, boolean, boolean_eq,
boolean_va(ueerrorf; :

boolean_seq_typedescriptor: constant typedescriptor :=

(kind => g_sequence,
s_size_restriction => integer’last,
s_elem_type = boolean_typedescriptor);
boolean_seq_ initial: constant boolean_seq.basetype := null;
end;
package body GYPSY_PACKAGE is

function IFF (X, Y : in BOOLEAN) return BOOLEAN is

begin
" return (not X) or Y;
end IFF;
function IMP (X, Y : in BOOLEAN) return BOOLEAN is
begin ‘ ,
return (X = Y);
end INP;

function MAX (D1, D2: in DISCRETE_TYPE) return DISCRETE TYPE is
begin
if DISCRETE_TYPE’PDS(DI) = DISCRETE_TY?E’PGS(DZ)
then return D1, o
else return D2;
end if;
end MAX;

function MIN (D1, D2: in DISCRETE TYPE) return DISCRETE TYPE is
begin
if DISCRETE.TYPE’PUS(DI) {= DISCRETE_TYPE’PUS(DQ)
then return D1 '
else return D2;
end if;
end MIN;

45

46

function BOOLEAN VALUEERROR (LHS : in TYPEDESCRIPTOR(g_boolean);
S : in BOOLEAN) B
return BOOLEAN is
RESULT : BOOLEAN := FALSE;
begin
if (S = LHS.B_LOW) and (S /= LHS.B_HIGH) then RESULT := TRUE;
end if
return RESULT;
end BOOLEAN_VALUEERROR;

procedure BOOLEAN_ASSIGN (x: in out BOOLEAN;
y: in BOOLEAN;
x_descriptor:
typedescriptor(g_boolean)) is
begin :
if boolean_valueerror (x_descriptor, y)
then raise valueerror;
else x := y; end if;
return;
end boolean_assign;

function BOOLEAN EQ (EXP1, EXP2: in BOOLEAN) return BOOLEAN is
begin o '

return (EXP1 = EXP2):

end boolean_eq;

function BOOLEAN_PRED (B: in BOOLEAN) return BOCLEAN is
begin '
if B = false then raise nopred;
else return faise; end if;
end boolean_pred;

function BUOLEAN_SUCC (B: in BOOLEAN) return BOOLEAN is
begin
if b = true then raise nosucc;
else return true; end if;
end boolean_succ;

function BOQLEAN_SCALE (I: in INTEGER) return BOOLEAN is
begin '
i T = 0 then return false;
elsif I = 1 then return true;
elsif 1 € 0 then raise underscale;
else raise overscale; end if;
end boolean_scale;

function CHARACTER_VALUEERROR (LHS ‘
in TYPEDESCRIPTOR(g character);
S : in CHARACTER)
return BOOLEAN is
RESULT : BOOLEAN := FALSE;

begin
if S ¢ LHS.C_LO¥ then RESULT := TRUE;
end if;
if S » LHS.C HIGH then RESULT := TRUE;
end if;

return RESULT;
end CHARACTER_VALUEERROR;

47

procedure CHARACTER_ASSIGN (x: in out CHARACTER;
y: in CHARACTER;
x_descriptor:
Tn typedescriptor(g_character)) is
begin
if character_valueerror (x_descriptor,_y)
then raise valueerror;
else ¥ = ¥,
end if;
return;
end CHARACTER_ASSIGN;

function character eq (charl, char2: in character)
return boolezn is
begin
return {charl = char2);
end character_eq;

function CHARACTER PRED (B: in CHARACTER) return CHARACTER is
begin
if B = character’first then raise nopred;
else return character’pred(b); end if;
end character_pred;

function CHARACTER SUCC (B: in CHARACTER) return CHARACTER is
begin
i# b = character’last then rsise nosucc;
else return character’succ(b); end if;
end character succ;

function CHARACTER SCALE (I: in INTEGER) return CHARACTER is
begin
if i ¢ 0 then raise underscale;
else return character’val(i); end if;
exception ,
~ when constraint_error =) raise overscale;
end character scale;

function INTEGER EQ (intl, int2: in integer) return boolean is
begin '
return (intl = int2);
end integer_eq;

function INTEGER ADD (x, y: integer) return integer is

begin
return (x + y);
exception

when numeric_error => raise sdderror;
end integer_add;

function INTEGER MULTIPLY (x. y: integer) return integer is
begin
return (x % y);
exception
when numeric error =) raise multiplyerror;

end integer_multiply; :

tunction INTEGER WINUS (x: integer) return integer is
begin
return (- x};

exception
when numeric_error =) raise minuserror;
end integer_minus;

function INTEGER SUBTRACT (x, y: integer) return integer is

begin
return (x = y);
excepbion

when numeric_error =) raise subtracterror;
end integer subtract;

function INTEGER DIV (x, y: integer) return integer is
begin
ify=20
then raise zerodivide;
else return (x/y);
end if;
exception
when numeric_error => raise divideerror;
end integer div;

function INTEGER MOD (x, y: integer) return integer is
—— This function returns the equivalent of ®x - (x div) * y® and
—— calls the translator routines rather than using the Ada mod

. —— function in order to raise the appropriate exceptions. Gypsy
—~ has no ®moderror® exception.

z: integer;
begin
z := integer_div (x, ¥):
z := integer multiply (z, ¥);
return (integer subtract (x, z));
end;

i

function INTEGER POMER (x, y: integer) return integer is
begin :
it (y ¢ 0) then raise negativeexponent; end if;
it (x = 0) and (y = 0) then raise powerindeterminate; end if;
return (x ** y); :
exception
when numeric_error =) raise powererror;
end integer_power; :

function INTEGER PRED (x: integer) return integer is
begin '
if (x = integer’first)
then raise nopred;
else return (x - 1);
end if;
end integer_pred;

function INTEGER SUCC (x: integer) return integer is
begin
if (x = integer’last)
then raise nosucc;
else return {x + 1);
end if;
end integer succ;

48

function INTEGER VALUEERROR (LHS: typedescriptor(g_integer);
x: integer) return boolean is
begin
return (x ¢ LHS.i_low) or (LHS.i_high < x);
end integer_valueerror;

funetion foo (TK: type kind) return type kind is
begin
return type kind’(g_integer);
end foo;

procedure INTEGER ASSIGN (x: in out integer;
y: in integer;
x_descriptor:
typedescriptor(g_integer)) is
begin : '
if integer_valueerror (x_descriptor, y)
then raise valueerror;
else x := y;
end if;
return;
end integer_assign;

function COERCE STRING (S: string)
return character_seq.basetype is
P, q: character_seq.pt_item_type := null;
begin
for ch in reverse S’first..S’last
toop . .
p := new character_seq.item_type
(item =» character(ch), next = Q)
q = p;
end foop;
return character_seq.basetype (q);
end coerce_string;

i
i

The package bodies for sequence_basetype_routines,
set_basetype_routines, mapping_basetype_routines,
buffer_basetype_routines, and array_basetype_routines,
normalTy found here, may be seen in Appendix B '

i
§

end GYPSY PACKAGE; .

49

B

Appendix B
Predefined Support for Structured Types

.1 Support for Arrays

sepsessrrerrrssrsrerrerass ARRAYS ssrdsdssiesvibbdriddeddrss

ARRAY_BASETYPE ROUTINES is the package of predefined support
for array types. It is a generic package instantisted for
each array basetype in the user program. It includes a
declaration of the basetype and basetype descriptor,

functions for equality, sccessing via index, tield alteration,
and valueerror checking, and procedures for field assignment
and aggregate assignment. :

generic
index_kind: type kind;
index_type_descriptor: typedescriptor (index_kind);
type Tndex_type is (€);
with function index type valueerror_occurs
(Ths: typedescriptor(index_kind);
i: index_type) return boolean;
elem kind: type_kind; ‘
elen_basetype_descriptor: typedescriptor(eiem_kind);
type elem_basetype is private;
with function elem_basetype_valueerror_occurs
Tihs: typedescriptor{elen_kind);
¥ elem_basetype) return boolean;

package ARRAY_BASETYPE ROUTINES Is

BASETYPE DESCRIPTOR: constant typedescriptor :=
(kind => g_array, '
index_type => index_type descriptor,
3_elem_type => elen_basetype descriptor);

type BASETYPE is arraj (index_type) of elem_basetype;
function BASETYPE EQ (a1, 32: in basetype) return boolean;

function SELECT COMPONENT
(A: basetype;
A_descriptor: typedescriptor(g_array);
it index_type) return elem basetype;

function ALTERATION (A: basetype;
A_descriptor: typedescriptor(g_array);
i: index_type;
x: elem_basetype) return basetype;

function VALUEERRDR_DCCURS'(LHS: typedescriptor(g_array);
' A: basetype) return boolean;

procedure ASSIGN (Al: in out basetype;
A2: in basetype;
Al descriptor: in

typedescriptor(g_array));

procedure ELEMENT ASSIGN (A: in out basetype;
A _descriptor: in typedescriptor(g_array);
it in index_type; x: in elem_basetype);

end ARRAYMBASETYPE_ROUTINES;

‘package body ARRAY_BASETYPE_ROUTINES is

function BASETYPE EQ (21, 22: in basetype) return boolean is
begin v
return al = 22;
end basetype_eq;

function SELECT COMPONENT (A: basetype;
A_descriptor: typedescriptor(g_array);

iT index_type) return elem_basetype is

indexerror: exception;
begin

if index _type valueerror_occurs -

(k_descriptor.index_type, i)
then raise indexerror;

end if;

return A(i);
end select_component;

function ALTERATION (A: basetype;
A _descriptor: typedescriptor(g array);
i index_type;
x: elem_basetype) return basetype is
indexerror: exception;
sltered_array: basetype;
begin
if index type valueerror_occurs
(R_descriptor.index_type, i)
then raise indexerror;
end if;
altered array := A;
altered array(i) := x;
return altered_array;
end alteration;

function VALUEERROR OCCURS (LHS: typedescriptor(g array);
A: basetype) return boolean is

begin A
for 1 in A’first .. A’last
loop
if elem_basetype_valueerror_occurs
(LHS.2_elem_type, A(i))
then return true;
end if;
end loop;

return false;
end valueerror_occurs;

procedure ASSIGN (Al: in out basetype;
A2: in basetype;
Al_descriptor:

in typedescriptor(g_array)) is
valueerror: exception;
begin :
it valueerror_occurs(Al_descriptor, A2) -
then raise valueerror;
end if;
Al := AZ;
end gssign;

procedure ELEMENT ASSIGN (A: in out basetype;
A _descriptor: in typedescriptor(g_array);
i: in index_type;
x: in elem_basetype) is
indexerror, valueerror: exception;
begin
if index_type_valueerror_occurs
(A _descriptor.index_type, i)
then raise indexerror;
end if;
if elem_basetype_valueerror_occurs
(A_descriptor.a_elem_type, x)
then raise valueerror;
end if;
A() = x;
end element_assign;

end ARRAY_BASETYPE_ROUTINES;

B.2 Support for Sequences

—— pywyrsssrerseesrerrrzerrsrsss SEQUENCES EEFERRRRRERRRHERTRREE

-~ SEQUENCE BASETYPE_ROUTINES is the package of predefined

-- support for sequence types. It is a generic package

-— instantiated for each sequence basetype in the user program.
—- Sequences are implemented as linked records. The package

—— includes a declaration of the basetype and basetype

-- descriptor, all the Gypsy functions on sequences, 2 function
-- for checking valueerror, & null constant, and a POINT TO LAST

- function used internally. Assignment and REMOVE are defined
-- as procedures. '

generic

kind: type kind;
item_basetype_descriptor: typedescriptor(kind);
type item basetype is private; ‘
with function item basetype equality

(vi, v2: item_basetypef return boolean;
with function item_basetype_valueerror_occurs

(Ihs: typedescriptor(kind); v: item basetype)

‘ return boolean;

package SEQUENCE_BASETYPE_ROUTINES is -
type pt_item_type;

BASETYPE_DESCRIPTOR: constant typedescriptor :=
(kind => g_sequence,

s size_restriction => integer’last,
s_elem_type => item_basetype_descriptor);

type BASETYPE is new pt_item_type;
type ITEM_TYPE is record itenm: item_basetype;
next: pt_item_type;
end record;
type PT_ITEM_TYPE is access item_type;
NULL_VALUE: constant basetype := null;
function SIZE (S: basetype) return integer;
function BASETYPE EQ (S1, S2: basetype) return boolean;
function BASETYPE NE (S1, S2: basetype) return boolean;

function ADJOIN FIRST (S: basetype; x: item_basetype)
return basetype;

function ADJOIN_LAST (S: basetype; x: item basetype)
return basetype;

function SUB (S1, S2: basetype) return boolean;
function POINT TO_LAST (S: basetype) return pt_item_type;

function SELECT_ELEMENT (S: basetype; i: integer)
return item_basetype;

function IN SEQUENCE (S: basetype; item: item_basetype)
return boolean;

function SELECT SUBSEQUENCE (S: basetype; 1, j: integer)
return basetype;

function ALTERATION (S: basetype; i: integer;
x: item_basetype) return basetype;

function ALTER_SUBSEQUENCE_ASSIGN (S: basetype; i, j: integer;
E: basetype) return basetype;

function ALTER_PUT_BEFORE (S: basetype; i: integer;
y: item_basetype) return basetype;

function ALTER PUT_BEHIND (S: basetype; i: integer;
y: item_basetype) return basetype;

function ALTER _SEQOMIT (S: basetype; i: integer)
‘ return basetype;

function APPEND (S1, S2: basetype) return basetype;
function FIRST (S: basetype) return item_basetype;
function NONFIRST (S: basetype) return basetype;

function LAST (S: basetype) return item_basetype;

53

function NONLAST (S: basetype) return basetype;

function VALUEERROR OCCURS (LHS: typedescriptor(g_sequence);
S: basetype) return boolean;

procedure ASSIGN (S1: in out basetype; S2: in basetype;
S1_descriptor:
in typedescriptor(g_sequence));

procedure REMOVE (S: in out basetype; i,j: in integer);
end SEQUENCE_BASETYPE_RUUTINES;
package body SEQUENCE_BASETYPE_ROUTINES is

function ADJOIN FIRST (S: basetype; x: item_basetype)
return basetype is

SS1: basetype:

p: pt_item_type;
begin

SS1 := select_subsequence(S, 1, size(S)):

p := nev item type(item => x, next =) pt_item_type(SS1));

SS1 := basetype(p):

return SS1;

end adjoin_first;

function ADJOIN_LAST (S: basetype; x: iteu_pasetype)
return basetype is

—- Creates 8 new sequence which is identical to S except that
-- the element x is adjoined to the rear of the sequence.
$S1: basetype;
p, q: pt_item_type;

begin
SS1 := select subsequence(S, 1, size(S)): -
p := new item type(item => x, next =) null);
q := pt_item type(SS1);
if-g = nuill
then SS1 := basetype(p):
else

q := point_to_last(SS1);
g.next := p; '
end 1f;
return SS1;
end ADJOIN_LAST;

function SIZE (S: basetype) return integer is

—- Returns the length of the sequence pointed to by S
p: pt_item_type := pt_item_type(S);
no of_elems: integer := 0;
begin
loop
if p = null then return no_of elems; end if;
p = p.next;
no_of elems := no_of_elems + 1;
end loop;

54

55

end size;
function BASETYPE EQ (S1, S2: basetype) return boolean is

—- Checks the equality of two sequences of type basetype.
-- Sequences must match in length and identity of items
-- according to item_basetype_equality.
pl: pt_item_type :
p2: pt_item_type
begin
foop
exit when pl = null or p2 = null;
if not item_basetype_equa!ity(pl.iteu, p2.item)
then return falise;

Wou

pt_item_type(S1);
pt_item_type(S2

2

eise pl := pl.nexy;

p2 := p2.nexy;
end if;
end loop;

it pl = null and p2 = null
then return true;
else return false;
end if;
end basetype_eq;

tunction BASETYPE NE (S1, S2: basetype) return boolean is

-~ Checks inequality of sequences of basetype.
begin
return not basetype eq(S1, S2);
end basebype_ne;

function SUB (S1, S2: basetype) return boolean is

-- Checks if S1 is a subsequence of S2.
pl: pt_item_type :
p2: pt_item_type :

begin
loop
if pl = null then return true;
elsif p2 = null then return false;
end if;
if item basetype equality (pl.item, p2.iten)
then pl := pl.next;
end if;
p2 := p2.next;
end loop;
end sub;

pt_item_type(S1);
pt_item_type(SZ);

function POINT TO_LAST (S: basetype) return pt_item_type is
-- An internal support routine used by several of the routines
-~ in this package. Returns 2 pointer to the last element
-- of sequence S or the null pointer if S is the emplty sequence.
p: pt_item_type := pt_item_type(S):
begin
if p /= null

then loop
exit when p.next = null;
p := p.next;
end loop;
end if;
return p;
end point_to_last;

function SELECT ELEMENT (S: basetype; i: integer)
' ‘ return item_basetype is

-- Returns the ith element from sequence S. Raises indexerror if
-- 1 is an improper index for the sequence.

indexerror: exception;
p: pt_item_type := pt_item_type(S);
j: integer := 1;

begin
it (i ¢1ori)»size(S)) then raise indexerror; end if;
loop
if j = i then return p.item; end if;
p := p.next;
j=iel;
end loop;

end select element;

function IN_SEQUENCE (S: basetype; item: item_basetype)
' return boolean is

-- Returns true iff item appears somewhere in the sequence.
p: pt_item_type := pt_item_type(S);
begin
loop
if p = null then return false;
elsif item basetype_equality (p.item, item)
‘then return true;
else p := p.next;
end if;
end loop;
end in_sequence;

function SELECT SUBSEQUENCE (S: basetype; i, j: integer)
return basetype is

-- Creates and returns a sequence which is the subsequence of S
. ~- indexed by i .. .

indexerror: exception;
subseq: basetype; :
p, q: pt_item type := pt_item_type(S):
k: integer := 1;
begin
if (1>]e«1)or gi ¢ 1) or (i » size(S) « 1)
or (j € 0) or (j > size(S))
then rsise indexerror;
end if;
if i =] +1 then return basetype(null); end if;
ioop
exit when k = I; %

p := p.next;

k =k «1;
end loop; :
q := new item_typegp.all);
subseq := basetype(q);
foop

if k=]

then g.next := null;

return subseq;

k
p.next;
t := new item_type(p.ali);

end loop;
end select subsequence;

function ALTERATION (S: basetype; 1: integer;
x: item_basetype) return basetype is

-- Returns @ new sequence which is the Ada transiation of
— the Gypsy construct *S with ([i] := x)*

indexerror: exception;
new_sequence: basetype;
k: integer :=1;
p: pt_item_type;
begin
if i ¢1ori) size(S) then raise indexerror; end if;
new_sequence := select _subsequence(S, 1, size(S));
p := pt*iten_type(new_;equence);
foop ' .
if k=i
then p.item := x;
return new_sequence;
else p := p.next;
k :=k+1;
end if;
end loop;
end alteration;

function ALTER SUBSEQUENCE ASSIGN (S: basetype; i, j: integer;"

E: basetype) return basetype is

-- Creates s new sequence which is the Ada equivalent of the
-- Gypsy °S with ([i..]] := E)". Note that E is a sequence
-- expression of basetype and that the resulting sequence

-- need not be of the same length as S.

Si, S2: basetype;
El: basetype := E;
p: pt_item_type;

begin ‘
S1 := select_subsequence gs, 1, i-1);
S2 := select subsequence (S, j+1, size(S)):
p := point_to_last (El);
if p=null
then El := S2;
else p.next := pt_item_type(S2);
end if;

.s
(131}

57 -

p := point_to_last(S1);
i1t p=null
then S1 := El;
else p.next := pt_item_type(El);
end if;
return S1;
end alter_subsequence_assign;

function ALTER PUT_BEFORE (S: basetype; i: integer;
y: item_basetype) return basetype is

—- Creates a new sequence which is the Ada equivalent of the
- Gypsy *S with (before [i] := y)®

k: integer := 0;
p: pt_item_type;
new_sequence: basetype;
indexerror: exception;
begin
it (i ¢1) or (i > size(S)) then raise indexerror; end if;
new_sequence := select_subsequence (S, 1, size(S)):
p = pt_item_type(nev_sequence);
loop
exit when k = i-1;
k 1= kel;
p := p.next;
end loop:
if p= pt_item_type(nev_sequence)
then new_sequence := basetype%new item_type (y. P)):
else p.next := new item_type (y, p); :
end if;
return ney_sequence;
end alter_put_before;

function ALTER PUT_BEHIND (S: basetype; i: integer;
y: item_basetype) return basetype is

-~ Creates a new sequence which is the Ada equivalent of the
-- Gypsy °S with (behind [i] :=y)®

k: integer := 1;

p: pt_item_type;
new_sequence: basetype;
indexerror: exception;
begin

new_sequence := select_subsequence (S. 1, size(S));
p := pt_item_type(new_sequence};
loop ,
exit when k = i;
k 1= kel;
p := p.next;
end loop; : ‘
p.next := new item_type (y, p.next);
return new_sequence; ‘
end aiter_put_behind;

function ALTER_SEQOMIT (S: basetype; i: integer)
return basetype is

it (i ¢ 1) or (i > size(S)) then raise indexerror; end if;

58

—- Creates 3 new sequence which is the Ada equivalent of the
—- Gypsy *S with (seqomit [i])®

k: integer := 0;

p: pt_item btype;

new_sequence: basetype;

indexerror: exception;

begin
?f (1 ¢ 1) or (i > size(S)) then raise indexerror; end if;
new_sequence := select_subsequence (s, 1, size(S));
p = pt_item_pype(new_sequence);
foop
exit when k = i-1;
k := kel;
p := p.next;
end loop;
it k=0 then new_sequence := basetype(p.next);
else p.next := p.next.next;
end if;
return new_sequence;
end alter_seqomit;

function APPEND (S1, S2: basetype) return basetype is

-- Creates the new sequence which is the Ada equivalent of the
-- Gypsy °Sl1 append S2°
SS1, SS2: basetype:
p: pt_item_type;
begin :
Ss1 select_subsequence gSI. 1, size%Slgg;
SS2 := select subsequence (S2, 1, size(S2
if 852 = null
then return SSI;
elsif SS1 = null
then return SS2;
end if;
p := point_to_last (SS1);
p.next := pt_item_type(SS2);
return SS1;
end append;

v
uon

?

function FIRST (S: basetype) return item_basetype is

—- Returns the first item in the sequence.
begin

return select_element (S, 1); -
end first;

function NONFIRST (S: basetype) return.basetype is

—— Creates and returns the ®cdr® of the sequence, i.e. all but

-- the first item. '
begin

return select subsequence (S, 2, size(S)):

end nonfirst;

function LAST (S: basetype) return item_basetype is

59

-- Returns the last item in sequence S.
begin

return point_to_last(S).ites;
end last;

function NONLAST (S: basetype) return basetype is

-- Creates and returns the sequence which contains all but the
-- jast element of S.
begin
return select subsequence (S, 1, size(S) - 1);
end nonlast;

function VALUEERROR_OCCURS (LHS: typedescr?ptor(g_gequenée);
S: basetype) return boolean is

—— Checks whether sequence S is compatible with the sequence
—- indicated by typedescriptor LHS. This comparison uses the
-- type valueerror checker form the element types.

p: pt_item_type := pt_item_type(S):
begin
it LHS.s_size_restriction < size (S)
then return true;
end if;
loop
it p=nuli
then return false;
elsif item basetype valueerror_occurs (LHS.s_elem_type,
p.itemg
then return true;
else p := p.next;
end if;
end loop;
end valueerror_occurs;

procedure ASSIGN (S1: in out basetype:
S2: in basetype:;
S1_descriptor:
in typedescriptor(g_sequence)) is

—- Implements the assignment °Sl := S2®. To check that this is
-~ a legal assignment the routine Valueerror-occurs checks

-- whether S2 is compatible with the type of S1 as indicatedn
-- by S1’s typedescriptor.

valueerror: exception;
begin
it valueerror_occurs (S1_descriptor, $2)
then raise valueerror;
end if;
S1 := select_subsequence(S2, 1, size(S2));
end assign;

procedure REMOVE (S: in out basebype; i,j: in integer) is

— Removes from S the items indexed by [i .. j]. Note that

60

61

—- this is a8 procedure and the sequence is updated in place
-- rather than copied.

indexerror: exception;

p: pt_item_type := pt_item_type(S);

k: integer := 1;

begin '

it (i>])+1)or (i <1)or Ei » size(S) + 1)
or {j €0) or (j > size(S))

then raise indexerror;

end if;
if i =]+ 1 then return; end if;
iti=1
then foop
S := basetype(S.next);
if k = j then return; end if;
k :=k ¢ 1;
end loop;
end if;
loop

exit when k = 1 - 1;
p := p.next;
k :=k ¢+ 1;

end loop;

foop
exit when k = J;
p.next := p.next.next;
k= k+1;

end loop;

end remove;

end SEQUENCE_BASETYPE ROUTINES;

B.3 Suppeort for SetsA

— pekksrsrssesepriresassks SETS drssxssdriddsrsirbbisssss

-~ SET BASETYPE ROUTINES is the package of predefined support
-- for set types. It is a generic package instantisted for each
-- set basetype in the user program. Sets are impiemented

—- 3s linked records. The package includes a declaration of the
-- basetype and basetype descriptor, all the Gypsy functions on
—- sets, 3 function for checking valueerror, and a null

-- constant. Assignment and REMOVE are defined as procedures.

generic
kind: type kind;
item_basetype descriptor: typedescriptor(kind);
type item_basetype is private; : '
with function item basetype equality (vl, v2: item_basetype)
o return boolean;
with function item_basetype valueerror_occurs
(Ihs: typedescriptor(kind); v: item_basetype)
, : return boolean;

package SET_BASETYPE_ROUTINES is

type pt_item_type;

BASETYPE_DESCRIPTOR: constant typedescriptor :=
(kind => g_set,
s_size_restriction =) integer’last,
s_elem_type =) item_basetype_descriptor);
type BASETYPE is new pt_item_type;
type ITEM TYPE is record
item: item_basetype;
next: pt_item_type;
end record;
type PT_ITEM TYPE is access item_type;
NULL VALUE: constant basetype := null;
function SIZE (S: basetype) return integer;
function COPY SET (S: basetype) return basetype;

function IN SET (S: basetype; itenm: item_basetype)
return boolean;

function ADJOIN ELEMENT (S: basetype; x: item_basetype)
return basetype;

function OMIT (S: basetype; x: item_basetype)
return basetype;

function SUB (S1, S2: basetype) return boolean;

function BASETYPE EQ (S1, 52; base;ype) return boolean;
function BASETYPE NE (S1, S2: basetype) return boolean;
function UNION (S1, S2: basetype) return basebype;
function INTERSECTION (S1, s2: basetype)‘return basetype:
function DIFFERENCE (st, s2: bgsetype) return basetype;

function VALUEERROR OCCURS (LHS: typedescriptor(g_set);
S: basetype) return boolean;

procedure ASSIGN (S1: in out basetype;
S$2: in basetype;
S1 _descriptor: in typedescriptor(g_set)):

end SET_BASETYPE_ROUTINES;

package body SET_BASETYPE_ROUTINES is

function SIZE (S: basetype) return integer is

—- Returhs the size of the set. Assumes that no duplicate
-- elements occur, something assured by the other routines

-- in this section.

p: pt_item_type := pt_item_type(S);

no of_elems: integer := 0;
begin
loop
if p = null then return no_of_elens; end if;
p = p.next;
no_of_elems := no_of elems ¢ 1;
end toop;
end size;

function COPY_SET (S: basetype) return basetype is
—- Creates a copy of Set S. Used as internal support in many
—- of the other routines in this package.
SS1: basetype := null;
p: pt_item_type := pt_item_type(S);
q: pt_item_type;
begin
if p /= null then
q := new item_type(item => p.item,
next => null);
SS1 := basetype(q);
foop
p := p.next;
exit when p = null;
q.next := new item_type(item =) p.itenm,
next =) null);
q := q.nexy;
end loop;
end if;
return SS1;
end copy_set;

function IN SET (S: basetype; itenm: item_basetype)
return boolean is

— Returns true iff item is in set S.

p: pt_item_type := pt_item type(S):

begin
loop
it p = null then return false;
elsif item basetype_equality (p.itenm, item)
then return true; .
eise p := p.nexy;
end if; ~
end loop;

end in_set;

function ADJOIN ELEMENT (S: bésetype; x: item_basetype)
return basetype is

-- Copies set S and adjoins element x to the front if
-- it is not already in the set, otherwise returns the
-- copy &s lIs.

SS1: basetype;
p: pbt_item_type;

63

begin
881 := copy_set(S);
if not in_set(S, x) then
p := new item_type(item => X,
next =y pt_item_type(SS1));
SS1 := basetype(p);
end if;
return S81;
end adjoin_element;

function OMIT (S: basetype; x: item_basetype)
return basetype is

—— Creates and returns 3 copy of set S with item x omitted.
-- Assumes that the item appears at most once in the set.

SS1: basetype;
p: pt_item_type;
begin
SS1 := copy_set(S);
p := pt_item_type(SS1);
i1 p /= null
then
if p.item = x
then SS1 := basetype(p.next);
else
loop
exit when p = null
or else p.next.item = x;
p = p.next;
end loop;
if p /= null
then p.next := p.next.next;

end if;
end if;
end ‘1f;
return SS1;
end omit;

function SUB (S1, S2: basetype) return boolean is

-- Checks whether S1 is a subset of S2.
p: pt_item_type := pt_item_type(S1);
begin '
{oop
if p=null
then return true;
elsif not in_set (52, p.iten)
then return false;
end if; :
p = p.next;
end loop;
end sub;

, functionisASETYPE_EQ (s1. s2: basetype) return boclean is

—- Checks equality of two sets by checking whether each is
-- 3 subset of the other.

64

begin
return sub(S1, S2) and sub(S2, S1);
end basetype eq;

function BASETYPE_NE (S1, S2: basetype) return boolean is

p—

-- Checks inequality of sets S1 and S2.
begin

return not basetype eq(S1, S2);
end basetype_ne;

function UNION (S1, S2: basetype) return basetype is
-— Takes the union of sets Sl and S2. Elements which
-— appear in both sets appear only once in the union.

SS1: basetype;

p: pt_item_type := pt_item_type(S2);

q: pt_item_type;
begin

SS1 := copy_set(S1);

toop

exit when p = null;
it not in_set(S2, p.item)
then
q := new item_type(item =) p.iten,
next =) pt_item_type(SS1));
SS1 := basetype(a); '
end if;
p := p.next;

end loop;

return SS1;
end union;

function INTERSECTION (S1, S2: basetype) return basetype is

-~ Forms the set which' is the intersection of sets Sl

-- and S2.

SI: basetype := null;

p: pt_item_type := pt_item_type(S1);

begin :

loop ‘

exit when p = null;

if in_set(S2, p.item) ,
then SI := basetype(new item_type (item =) p.itenm,

next =) ptﬂitem;type(SIg));

end if;

p := p.next;
end loop;
return SI;-

end intersection;

function DIFFERENCE (S1, S2: basetype) return basetype is

- Forns the set which is the set difference of Sl and S2,

—- i.e., containing those elements which appear and S1 and
-~ not in S2.
SD: basetype := null;
p: pt_item_type := pt_item_type(S1):
begin .
loop
exit when p = null;
it not in set(S2, p.item)
then SD := basetype(new item_type (item =) p.item,
next => pt_item_type(SD)));
end if;
p = p.next;
end ioop;
return SD;
end difference;

function VALUEERROR OCCURS (LHS: typedescriptor(g_set):
S: basetype) return boolean is

-- Checks whether set S is compatible with the set type
—- indicated by typedescriptor LHS. This comparison uses
-- the valueerror checker form the element types.

p: pt_item_type := pt_item_type(S):
begin
if LHS.s size_restriction ¢ size ()
then return true;
end if;
loop
it p=null
then return false;
eisif item_basetype valueerror_occurs
(LFS.s elem_type, p.item)
then return true;
else p := p.next;
end if;
end loop;
end valueerror_occurs;

procedure ASSIGN (Si: in out basetype;
$2: in basetype;
S1 _descriptor:

°

in typedescriptor(g_ééb)) is

-- Implements the assignment ®S1 := S2%. To check that this
-- is 3 lega! sssignment the routine Valueerror-occurs

—- checks whether S2 is compatible with the type of Si as
-- indicated by S1's typedescriptor.

vzlueerror: exception;
begin ' : '
if valueerror_occurs (S1_descriptor, $2)

then raise valueerror;

end if;

S1 := copy set(S2);
end assign;

66

67

end SET_BASETYPE_ROUTINES;

B.4 Support for Mappings

—— pesksrezriteserrirekseess MAPPINGS sessrsspstsdissssssssasdesd

-- MAPPING BASETYPE ROUTINES is the package of predefined

-~ support for mapping types. It is a generic package

-- instantiated for each mapping basetype in the user program.
-~ Mappings are implemented as linked records. The package
— includes a deciaration of the basetype and basetype

-- descriptor, all the Gypsy functions on mappings, 2 function
-- for checking valueerror, a null constant, and a COPY

-- function used internally. Assignment and REMOVE are

-- defined as procedures.

generic
domain_kind: type kind;
domain_basetype descriptor: typedescriptor(domain_kind);
rng_kind: type_kind; i
rng_basetype descriptor: typedescriptor(rng _kind);
type domain_basetype is private;
with function domain_basetype equality _
(vi, v2: domain_basetypef return boolean;
with function domain_basetype valueerror_occurs
(ihs: typedescriptor(domain_kind);
v: domain_basetype) return boolean;
type rng_basetype is private; ' ‘
with function rng basetype equality (v1, v2: rng_basetype)
return boolean;
with function rng_basetype_valueerror_occurs
(1hs? typedescriptor(rng_kind);
y: rng_basetypeg return boolean;

package MAPPING_BASETYPE_ROUTINES‘is'
type pt_item_type;

BASETYPE_DESCRIPTOR: constant typedescriptor :=
(kind => g_mapping,
m_size_restriction =) integer’last,
domain_type => domain_basetype_descriptor,
rng_type = rng_basetype_descriptor);

type BASETYPE is new pt_item‘type{

domain: domain_basetype;
rng: rng_basetype;
next: pt_item type;

end record;

type MAPPING ITEM_TYPE is record

type PT_ITEM_TYPE is access mapping_item_type;
NULL_VALUE: constant basetype := null;

function SIZE (M: basetype) return integer;

function COPY_MAPPING (M: basetype) return basetype;

function SELECT_MAPPING VALUE
(M: basetype; “d: domain basetype) return rng_basetype;

function INDEX (M: basetype; d: domain_basetype)
return pt_item_type;

function SUB (W1, W2: ﬁasetype) return boolean;

function BASETYPE EQ (M1, M2: basetype) return boolean;
function BASETYPE NE (M1, M2: basetype) return boolean;
function UNION (M1, M2: basetype) return basetype;
function INTERSECTION (M1, M2: basetype) return basetype;
function DIFFERENCE (M1, M2: bssetype) return basetype;

function ALTERATION (M: basetype; x: domain_basetype;
y: rng_basetype) return basetype;

function ALTER_MAPOMIT (M: basetype; x: domain_basetype)
: return basetype;

function VALUEERROR OCCURS (LHS: typedescriptor(g ! mapping);
¥: basetype) return boolean;

procedure ASSIGN (M1: in out basetype;
M2: in basetype;
Ml descriptor: in typedescriptor);

end HAPPING_BASETYPE;ROUTINES;

package body MAPPING BASETYPE ROUTINES is
funcbion SIZE (M: basetype) return integer is

—- Returns the size of the mapping (the number of items
-~ in the domain).
p: pt_item_type := pt_item_type(!);
no_of “elems: integer := 0;
begin :
loop
if p = null then return no_of elems; end if;
p := p.next;
no_of_elems := no_of_elems + 1;
end loop;
end size;

function COPY_HAPFING (4: besetype) return basetype is

-- Makes a copy of mepping H.
¥U1l: basetype := null;
p: pt_item_type := pt_iten_type(¥);

q: pt_item_type;
begin
if p f= null then
¥M1 := basetype (new mapping_item_type
. (domain => p.domain,
rng => p.rng,
next => null));
q := pt_item_type(¥¥1);
loop
p := p.next;
exit when p = null;
g.next := new mapping_iten_type(domain => p.domain,
, rng => p.rng,
next =) nuil);
q = g.next;
end loop;
end if;
return MM1;
end copy_mapping;

function SELECT MAPPING VALUE (M: basetype;
d: domain_basetype)
return rng_basetype is

-- Given a domain value, returns the appropriate range
-- value according to mapping M.

p: pt_item type := pt_iten_type(¥);
indexerror: exception;
begin
loop
it p = null :
then raise indexerror;
elsif p.domain = d
then return p.rng;
end if; -
p = p.next;
end loop;
end select_mapping_value;

function INDEX (M: basetype; d: domain_basetype)
' return pt_item_type is

-- Given a mapping ¥ and a domain value, return & pointer
-- to the element (domain value, range value, pointer)

-- triple which has that domain value if there is one,

-- eise the nuli pointer.

p: pt_item_type := pt_item_type(H);
begin
© loop
if p=null or else p.domain = d
then return p;
end if;
p := p.nexi;
end loop;
end index;

70

function SUB (M1, M2: basetype) return boolean is

-- Checks whether M1 is a submapping of MZ2.
p: pt_item_type := pt_item type(M2);
begin
loop
it p = aull
then return true;
elsif index(Ml, p.domain) = null
or else index(Ml, p.domain).rng /= p.rng
then return false; :
end if;
p := p.next;
end loop;
end sub;

function BASETYPE EQ (M1, M2: basetype) return boolean is
-- Checks equality of mappings Ml and W2 by determining
-- whether each is a8 submapping of the other.
begin

return sub(M1, M2) and sub(M2, W1);
end basetype eq;

function BASETYPE_NE (M1, M2: basetype) return boolean is

-— Checks inequality of mappings M1 and M2.
begin

return not basetype eq(¥l, M2);
 end basetype ne;

function UNION (M1, M2: basetype) return basetype is
—- Takes the union of mappings M1 and M2. If there is 2
-~ mapping domain value in common between W1 and ¥2 for

-- which the associsted range values differ, the exception
-- ponunique is raised.

¥i1: basetype;
p: pt_item type := pt_item_type(M2);
q: pt_item_type; ‘
nonunique: exception;
begin
MMl := copy mapping(Ml);
loop :
exit when p = null;
if index(¥2, p.domain) = null
then
q := new mapping_item_type
(domain => p.domain, rng => p.rng,
next => pt_item_type(MM1));
B¥1 := basetype(q);
elsif index(M2, p.domain).rng f= p.rng
then raise nonunique;

end if;
©p = p.next;
- end loop;
return H¥1,;
end union;

function INTERSECTION (M1, M2: basetype) return basetype is

-- Takes the intersection of mappings Ml and M2. If there
=— is a mapping domain value in common between M1 and M2
—- for which the associated range values differ, the

-- exception nonunique is raised.

MI: basetype := null; o
p: pt_item_type := pt_item_type(¥l);
nonunique: exception; ‘

begin
loop
exit when p = null;
if index (M2, p.domain) /= null
then , o
if rng_basetype equality
' (select_mapping_value %Hl, p.domain%;
select_mapping_value M2, p.domain))
‘then MI := basetype(new mapping_item_type
(domain => p.domain,
rng =» p.rng,
next =» :
: pt_iten_type(¥I)));
else raise nonunique; -
‘ end if;
end if;
p = p.nexy;
end loop; :

return MI; v
end intersection;

function DIFFERENCE (M1, M2: basetype) return basetype is
—— Takes the difference of the mappings Ml and 2. If M2
— is not s submapping of M2, exception suberror is raised.
¥D: basetype := null; '
p: pt_item_type := pt_item_type(W1);
suberror: exception;
begin :
if not sub (M2, M1) then raise suberror; end if;
loop » S ‘
exit when p = null; :
i1 index(M2, p.domain) /= null
then MD := basetype (new mapping_item_type
(domain => p.domain,
rng => p.rng, ‘
next = pt_item_type(MD)));

end if;

p := p.next;
end loop;
return ¥D;

end difference;

function ALTERATION (M: basetype; x: domain_basetype;
y: rng_basetype) return basetype is

-- Creates the mapping which is the Ada equivalent of the
-- Gypsy "M with ([x] := y)e

#1: basetype;

p: pt_item_type;
begin

M1 := copy mapping(¥);

p := index(Ml, x);

it p = nuil

then M1 := basetype (new mapping_item type

(domain => x,
rng => ¥,
next = pt_item _type(¥1))):
else p.rag = ¥; '

end if;

return M1;
end alteration;

function ALTER MAPOMIT (M: basetype; x: domain_basetype)
return basetype is

-- Creates the mapping which is the Ada equivalent of the
Gypsy °M with (mapomit [x])e :

W1: basetype;
p: pt_item_type;
indexerror: exception;
begin ; ’
it index(M, x) = null then raise indexerror; end if;
¥l := copy_aapping(ﬂ%;
p := pt_iten_type (Ml
if p.domain
then M1
else
foop
exit when p.next.domain = X;
p := p.next; ;

.
2

X
besetype(p.next);

end loop;

p.next := p.next.next;
end if;
return ¥1;

end alter_mapomit;

function VALUEERROR BCCURS (LHS: typedescriptor(g_mapping);
M: basetype) return boolean is

—- Checks whether mapping M is compatible with the mapping
-~ type indicated by typedescriptor LHS. This comparison
-- yses the valueerror checkers for both domain and range
-~ Lypes. .

p: pt_item_type := pt_item_type(H);
begin

if LHS.®»_size_restriction (size (&)

then return true;
end if;

72

loop
if p= null
then return faise;
elsif (domain_basetype_vaiueerror occurs
(LHS domain_type, p.domain)
or rng_basetype_valueerror occurs
(LHSTrng_type, p.rng))
then return true;
else p := p.next;
end if;
end loop;
end valueerror_occurs;

procedure ASSIGN (M1: in out basetype;
M2: in basetype;
M1_descriptor: in typedescriptor) is

-- Implements the assignment "Ml := ¥2®. To check that this
-- is a legal assignment the routine Vg lueerror-occurs

—- checks whether M2 is compatible with the type of Si as
-- indicated by M1’s typedescriptor.

valueerror: exception;

begin , : ‘
if valueerror occurs (M1_descriptor, W2)
then raise valueerror; ,
end if; :
¥1 := copy_mapping(M2);

end assign;

end MAPPING BASETYPE ROUTINES;

B.5 Support for Buffers

sxesesepasssssskatrsssss BUFFERS sexpsssrssedisisssirbrirss

BUFFER BASETYPE ROUTINES is the package of predefined support
for buffer types. It is a generic package instantisved for
each buffer basetype in the user program. Buffers are
implemented as linked records. The package includes a
declaration of the basetype and basetype descriptor, all the
Gypsy functions on buffers, 2 function for checking
vslueerror, 8 null constant, snd an assignment function used
for parameter passing. SEND and RECEIVE are defined 2s
procedures.

generic
kind: type kind;- ,
item_basetype_descriptor: typedescriptor(kind);
type item_basetype is private;
with function item_basetype equality
(v, v2: iteu_pasetypeg return boolean;
with function item_basetype valueerror_occurs
(Ihs: typedescriptor(kind); v2:item_basetype)
return boolean;
buffer_size_restriction: integer;

package BUFFER_BASETYPE ROUTINES is -

74

type pt_item_type;

BASETYPE_DESCRIPTOR: constant typedescriptor :=
(kind => g_buffer,
b_size_restriction => buffer_size restriction,
b_elen_type => ltem-pasetype_ﬁescriptor);

type BASETYPE is record
first: pt_item_type;
last: pt_item_type;
io _flag: integer := 0;
-- To_flag is 0 if the buffer is an internal buffer. If
- its value is non-zero, it represents the ordinal
—- position of the buffer in the formal arglist to the
-~ procedure specified as main.
end record;

type ITEM TYPE is record
item: item_basetype;
next: pt_item_type;
end record;

type PT_ITEM_TYPE is access item_type;

NULL YALUE: constant basetype
- := (first => null,
last =) null,
io_flag => 0);

function SIZE (B: basetype) return integerﬁ
function FULL (B: basetype) return boolean;
function EMPTY (B: basetype) return boolean;

procedure SEND (itm: in item_basetype;
B descriptor: in t pedescriptor(g_buffer);
B: in out basebypeg;
procedure RECEIVE (received_item: in out item_basetype;
item_descriptor: ¢ pedescriptor(kind);
B: in out basetypeg;
function VALUEERROR OCCURS (LHS: typedescriptor(g_buffer);
B: basetype) return boolean;

procedure ASSIGN (Bl: in out basetype;
B2: in basetype:
Bl descriptor:
Tn typedescriptor(g_buffer));

end BUFFER_BASETYPE_ROUTINES;
package body BUFFER_BASETYPE_ROUTINES is
function SIZE (B: basetype) return integer is

-~ Returns the current size of the buffer.

~3
[

p: pt_item_type := pt_item_type(B.first);
no_of_elems: integer := 0;
begin
loop
if p = null then return no_of_elems; end if;
p := p.next;
no_of_elems := no_of _elems « 1;
end foop;
end size;

function FULL (B: basetype) return boolean is
begin - :
return
(size (B) = basetype_ﬁescriptor.b~size_restriction);
end full;

function EMPTY (B: basetype) return boolean is
begin

return (B.first = null);
end empty;

procedufe SEND (Itm: in item_basetype;
B: in out basetypeg is

—— Put item into buffer B. Since the check for valueerror
—— is made at the call site, no valueerror check is

—- necessary here. Also if the buffer if full, exception
- senderror is raised. No provisions are made for

-- concurrency.

senderror: exception;
begin
it full (B)
then raise senderror;
else B.first := new item_type (item
next

=y Itm,

=y B.first);
end if;

end;

procedure RECEIVE (received item: in out item_basetype;
item_descriptor: t,pedescriptor(kind);
B: in out basetype{ is
—- Implements a recieve from buffer B into received item.
Since this is similar to an assignment,
3tem‘basetype_valueerror_pccdrshis required to check
compatibility. Also exception receiveerror is raised if
the buffer is empty. No provisions are made for
concurrency. : :
valueerror, receiveerror: exception;
p: pt_item_type := B.first; o
begin
if empty (B)
then raise receiveerror;
elsif item_basetype valueerror_occurs
(item_descriptor, B. fsst.item)
then razise valueerror; -
else
received item := B.last.iten;
if B.first = B.last

i

i
{

H
t

76

then B.first := null; B.last := null;
else
loop
exit when p.next = B.last;
p := p.next;
end loop;
end if;
end 17;
end receive;

function VALUEERROR OCCURS (LHS: typedescriptor(g_buffer);
B: basetype) return boolean is
p: pt_item_type := B.first;
begin .
i7 LHS.b_size_restriction ¢ size (B)
then return true;
end if;
loop
if p = null
then return false; :
elsif item basetype_valueerror_occurs
(LHS.b_elenm_type, p.iten)
then return btrue;
else p := p.next;
end if;
end loop;
end valueerror_occurs;

procedure ASSIGN (Bl: in out basetype; B2: in basetype;
Bl descriptor:
n typedescriptor(g_buffer)) is

~- Implements the assignment "Bl := B2". To check that
-- this is a lega! assignment the routine Valueerror-
—- occurs checks whether B2 is compatible with the type
—- of Bl as indicated by Bl’s typedescriptor. Note that
-~ this does not copy B2. ,

valueerror: exception;
begin

‘it valueerror_occurs (B1_descriptor, B2)

then raise valueerror; ‘ ‘

end if;
Bl := BZ;
end assign;

end BUFFER_BASETYPE_ROUTINES;

Appendix C
A TOPS-20 Implementation Prelude

{ What folloes is an example of an implementation
prelude which the compiler might use to define
an environment for compilation and execution of
the user program. This is one of many possible
preludes for running under TOPS-20.2

scope tops_20_predefined =
begin

{ The basic configuration of an actual parameter in the user
call to main is:

var [in\out]_[charlint!string]_}i1e[1!213|4|5] :
buffer [pending_size restriction] of
[character|integerTstring] <input>|<output>

This configuration is achieved by imposed compositions of
constant and type definitions from the environment scope and
variable declarations from the environment unit. Each buffer
type, except for the tty types, has its size restriction
declared as a pending (implementation—suppl3ed) constant, and
each type is used as the type of exactly one variable in the
environment. There are five of each variety of composition,
so the user may have up to five parameters to main of the same
internal type. If an environment variable in_char_filel is
used as sn actual in the user call to main, the implementation
looks up the buffer restriction on the corresponding formal
parameter in main and give that value to the constant
in_char_filel_size. An unrestricted formal will result in an
unrestricted actusi. The names of the actuals must be
selected from the list of variables declared in the
environment unit and must be unique. }

type tty _channel = buffer of character;
type tty type = record (console: tty_channel Cinputd;
display: tty channel Coutputd};

const in_char_filel size: integer
const in_char_file2 size: integer
const in_char_filed size: integer
const in_char filed size: integer
const in_char_fileb size: integer

pending;
pending;
pending;
pending;
pending;

[130 I 1}

const out_char_filel size: integer
const out_char_file2 size: integer
const out_char_file3 size: integer
const out_char_file4 size: integer-
const out_char_fileb _size: integer

pending;
pending;
-pending;
pending;
pending;

const in_int_filel_size: integer = pending;

const
const
const

const

const
const
const
const
const
const
const
const
const
const
const
const
const

const
const

type
type
type
type
type

type
type
type
type
type

type
type
type
type
'tjpe

type

type

in_int_file2 size: integer = pending;
in_int “file3 size: integer = pending;
in_int_ “filed_size: integer = pending;
in_int_ “1ileb _size: integer = pending;

out_int_filel size: integer = pending;
out int ftle2 size: integer = pending;
out int “fiie8 size: integer = pending;

out_int “filed_size: integer = pending:
out_int_ “fileb_size: integer = pending;
in_string_filel size: integer = pending;
in_string_ “file2_size: integer = pending;
in strxng “file3 size: integer = pending;
in strsng “file4 size: integer = pending;
in_string_ “fileb size: integer = pending;
out_string_filel size: integer = pending;
out_string_ “file2 size: integer = pending;
out_string_ “file3 size: integer = pending;
out,_string_ “file4_size: integer = pending;
out_string_ “fileb _size: integer = pending;

in _char_filel type =
B buffer (in_char file sizel) of character;

in_char_file2 type =
buffer (in_char_file size2) of character;

in_char_file3_type =
_ buffer (in_char_file size3) of character;

in_char_file4 type =
buffer (in_char_file _sized) of character.

in_char_filed_type =

buffer (in_char_file sizeb) of character;

out char_filel type =

buffer (out char_filel _size) of character;
out_char_file2 type =

buffer (out _char_ fnle? ssze) of character;
out_char_filed type =

buffer (out_char_ fsieS size) of character;
out_char_filed type =

buffer (out _char_filed_size) of character;
out_char_filed_type =

buffer (out_char filed snze) of character;

in_int_filel type =

buffer (in_int_filel sxze) of integer;
in_int_file2 type =

puffer (in_int_file2 size) of integer;
in_int_file3 type =

buTfer (in_int_filed ssze) of integer;
in_ |nt filed type =

buffer (in_int_filed s'ze) of integer;
in_int_fileb_type =

buffer (in_int_fileb ssze) of snteger,

out_int_filel type =

buffer (out_int filel ssze) of integer;
out_int_file2 type =

puffer (out_int_file2 size) of integer;

type
type
type

type
type
type
type
type

type
type
type
type
type

out_int_Tiled type =

- buffer (out_int_file3_size) of integer;
out_int_Tile4 type = ‘

N buffer (out_int~fi!e4_§ize) of integer;
out int fileb type =

= 7 puffer (out_int_fileb _size) of integer;

in string_filel_type =
- buffer (in_string_filel_size) of string;

in_string_file2 type =
buffer (in_string file2 size) of string;

in_string_file3 _type =
buffer (in_string_file3_size) of string;

in_string_file4 type =
buffer (in_string file4_size) of string;

in_string_fileb_type =
buffer (in_string_fileb size) of string;

out_string_filel type =

buffer (out_string filel size) of string;
out_string_file2 type =

buffer (out_string file2 size) of string;
out_string_file3_type =

buffer (out_string_file3 size) of string;
out_string_file4_type = :

buffer (out_string_file4_§ize) of string;
out_string_fileb_type =

buffer (out_string_filé&_size) of string;

Environment TOPS_20 =

begin

var
var
var

yar
¥ar
var
var
var

yar
yar
var
var
var

var
vyar
var
var
ver

var
ver
ver
var
ver

tty: tty type; ‘
ttyin: tty channel (inputd;
ttyout: tty channel Coutputd;

in_char filel: in_char_filel type <inputd;
in_char_file2: in_char_file2 type <inputd;
in_char_file3: in_char_file3_type <inputd;
in_char_file4: in_char_filed type <inputd;
in_char_fileb: in_char_fileb type {inputd;

out_char_filel: out_char_filel_type {outputd;
out_char fileZ: out_char_file2 type Coutputd;
out_char_file3: out_char file3 type {outputd;
out_char_file4: out_char_file4 type {outputd;
out_char_fileb: out_char_fileb type {outputd;

in_int_filel: in_int_filel _type <inputd;
in_int_file2: in_int_file2 type <inputd;
in_int_file3: in_int_file3 type {inputd;
in_int_filed: in_int_filed type Cinputd;
in_int_fileb: in_int_fileb_type <inputd;

out_int filel: out_int_filel type {outpuld;
out_int_file2: out_int_file2 type Coutput);
out_int_file3: out_int_file3_type Coutputd;
out_int file4: out_int_file4 type Coutputd;
out_int_filed: out_int_filed type <outputd;

79

var
var
yar
yar
var

var
va&r
var
varf
ver

end;
end;

in_string filel:
in_string_ “file2:
in_string_ “file3:
in_string_ filed:
in_string_ fileb:

out string filel:
out_string T flle2:
out str:ng “file3:
out_string_ “filed:
out_string_ “fileb:

in_string filel type <inputd;
in_string_ file2 type <inputd;
in_string_ _file3 type inputd;
in_string_ filed type Cinput);
in_string_ “fileb_type Cinputd;

out string filel type Coutputd;
out_string fl! e2_type Coutputd;
out_string “file3 _type Coutputd;
out_string “filed_type Coutputd;
out_string_ “file5_type Coutputd;

80

81

Appendix D
Translation Examples

D.1 A Translation Involving Only Synta.ctic Changes

Here is an example of a compilation performed by 2n
early version of the compiler which made mostly transparentiy
syntactic changes in the program text. The Gypsy the scope
being compiled, summation_procedure, is given first, followed
by the results of running the compiler over the prefix for the
scope.

scope SUMMATION_PROCEDURE =
begin

procedure COMPUTE_SUM (A : SMALL _INTEGER ARRAY;
. I, J : ARRAY_INDEX;
var S : LARGE_INTEGER) =
begin
entry (assume I in [1..WAX INDEX] & J in [1..MAX_INDEX]):
exit S = ARRAY SUMMATION (R, I, J);
var K : INTEGER := I;
S :=0;
loop
if K>J
then leave
else assert S = ARRAY_SUMMATION (A, I, K-1)
&K in [I..J]
&I in [1..MAX INDEX
& J in [1..MAX_INDEX];
ADD_NEXT (S, A K});
K:i=Kel
end
end
end;

function ARRAY_SUMMATION (A : SNALL_INTEGER ARRAY;
P, Q: ARRAYnlNDEY) : INTEGER =

begin
exit P> Q -> RESULT = 0)
¢ (Pleg
-» ARRAY_SUMMATION %A, P, Q)
= ARRAY_SUMMATION A, P, Q- 1) « A[Q]):
end;

procedure ADD_NEXT (var SUM : LARGE_INTEGER;
NEXT : SMALL_INTEGER) =
begin »
exit SUM = SUM’ » NEXT;
SUM := SUM + NEXT
end;

const WAX_INDEX : INTEGER = 10;
const THOUSAND : INTEGER = 1000;

const TEN_THOUSAND : INTEGER = 10000;

type ARRAY_INDEX = INTEGER[1. .MAX_INDEX];

type SMALL_INTEGER = INTEGER[- 1000..THOUSAND];

type LARGE INTEGER = INTEGER[- 10000. . TEN_THOUSAND];

type SHALL_INTEGER ARRAY =
array (ARRAY_INDEX) of SMALL_INTEGER;

end;

e L R e LRt S AL ARt bbb
The translator yielded the following code for
summation_procedure.

EE R R R R R R R R R R AR R R R

package GYPSY PACKAGE is
end GYPSY_PACKAGE;

with GYPSY_PACKAGE;
package SUMMATION PROCEDURE is
use GYPSY_PACKAGE;

MAX_INDEX: constant INTEGER := 10;

THUUSAND: constant INTEGER := 1000;

TEN_THOUSAND: constant INTEGER := 10000;

subtype ARRAY_INDEX is INTEGER range 1..MAX_INDEX ;

subtype SWALL_INTEGER is INTEGER range —-1000..THOUSAND ;
subtype LARGE INTEGER is INTEGER range -10000..TEN_THOUSAND ;

type SMALL_INTEGER ARRAY is
array (ARRAY_INDEX) of SMALL_INTEGER;

procedure COMPUTE_SUM (A : in SMALL_INTEGER ARRAY;
I, J : in ARRAY_INDEX;
S : in out LARGE_INTEGER) :

function ARRAY_SUMMATION (A : in SWALL_INTEGER ARRAY;
P, Q : in ARRAY_INDEX) :
return INTEGER ;
-- Unit is for specifications only
-- exit (P » @ -> RESULT = 0)
- & (Ple@
- -» ARRAY_SUMMATION (A, P, Q)
- = ARRRY_SUMMATION (A, P, Q@ - 1) « A(Q));

_proéedure ADD_NEXT (SUM : in out LARGE INTEGER;
NEXT : in SMALLﬁINTEGER) :

end;

82

83

package body SUMMATION_PROCEDURE is

procedure COMPUTE_SUM (A : in SHMALL INTEGER_ARRAY;
I, J : in ARRAY_INDEX;
S : in out LARGE INTEGER) is
-~ entry (assume I in [range 1..MAX_INDEX] 2
-— J in [range 1..MAX_INDEX])
—— exit § = ARRAY SUBKATION (A, I, R
K : INTEGER := I;

.
2

begin
S :=0;
loop
if K> J
then exit;
else —- assert S = ARRAY SUMMATION (A, I, K - 1)
- 8 K in [range I..J]
- - &1 in [range 1..MAX INDEX
- & J in [range 1..MAX_INDEX ;
ADD_NEXT (S, A(K)):
K:=K=+1;
end IF;
end LOOP;

end COMPUTE_SUM;

procedure ADD_NEXT (SUM : in out LARGE INTEGER;
NEXT : in SMALL_INTEGER) is
-- exit SUM = SUM’ + NEXT;
begin
SUM := SUM « NEXT;
end ADD_NEXT;

end SUMMATION PROCEDURE;

D.2 Type Declarations

A critical part of the transiation task is the
treatment of types. What foliows is an annotated transiation
of the following Gypsy text.

scope test = begin

type lower_case = character [a..’2];

type color = (red, blue, green);

type cool_color = color [blue..green];

type index = integer [1..10]; :

type array type = array (index) of lower_case;
type record_type = record (f1: integer: 72: array_type):
type seq type = sequence (10) of index;

type set_type = set of cool_color;

type map_type = mapping from index to color;
type buf_type = buffer (1) of character;

end; :

An inescapsble observation is the size of the code
generated from this small body of Gypsy text. Host of this
bulk of this code embodies standard Gypsy functions which must
be generated in-line for scalar and record basetypes, which
may not be treated generically. Note that the declarations in
basetype package are sssociated with the basetypes of the

84

user’s types, while the declarations specific to the type
itself appear in a package of the same name as the original
user scope.

with gypsy_package;
package basetype package is

-- The basetype of array_type and its support functions are
-- declared generically.” An initisl value for the basetype
-- follows.

package array_type test is

new gypsy_package.array_basetype_routines
(gypsy_package.typg_kind’(g_integer),
(kind => gypsy_package.ty e_kind’(g_integer),

i_tow => 1, i_high => 10§

integer range 1..10,
gypsy_package.integer_va!ueerror,
gypsy_package.type;kind’(g_character),
gypsy_package.character_typedescriptor,
character,
gypsy_package.character_va!ueerror);

array type_test_initial: constant |
basetypg_package.array_type_pest.basetype iz ‘
(array_type_test_initial’range = character’first);

i
§

The basetype of type color is declared to be identical to
the Gypsy type. Then come declarations for each predefined
function on the scalar basetype, a valueerror checker, a
typedescriptor for the basetype, and an initial value
constant.

§
§

1
i

type color_test is (red, blue, green);

procedure color_test_assign (ths : in out color test;
‘ rhs : in color_test;
‘Ihs_descriptor :
in gypsy_package.typedescriptor) ;

function color_test_pred (s : in color_test) return color_test ;
function color_test_succ {s : in color_test) return color_test ;
function color_test scale (i : in integer) return color_test ;
function color_test eq (s1, s2 : in color_test) return boolean ;
function color_test_valueerror

. (ths : in gypsy_package.typedescriptor;

s : in color_test) return boolean ;
color_test_initial: constant color_test := co!orﬁtest’(red);
color_test_typedescriptor: .

constant gypsy package.typedescriptor :=

(kind => gypsy_package.t pe_kind’ (g scalar),
s_low =» 0, s _high => 2{

°
&

-- The basetype of type record_type is declared as a3 record with
-- basetype fields. Then come declarations for each predefined
- function on the scalar basetype, @ valueerror checker, 38

-- typedescriptor for the basetype, and an initial value

—- constant. MNote that separate functions are needed for each
-- field for field sssignment and aiteration.

type record_type test is
record f1 : integer;
f2 basetype package.array_type_test.basetype;
end record;

procedure record_type_test fl assign
(rec : in out record_type_test;
exp : in integer;
descriptor : in gypsy_package.typedescriptor) ;

procedure record type_test_f2 assign
(rec : in out record_type test;
exp : in basetype_package.array_pype_test.basetype;
descriptor : in gypsy_package.typedescriptor) ;

function record_type test_valueerror
(descriptor : in gypsy_package.typedescriptor;
exp @ in record_type test) return boolean ;

procedure record_type_test_assign
(rec : in out record_type_test;
exp : in record type test;
descriptor : in gypsy_package.typedescriptor) ;

function record type test fl alteration
(rec : in record_type_test; exp : in integer)
return record type_test ;

function record type_test f2 alteration
(rec : in record_type_test;
exp : in basetype_package.array_type_test.basetype)
return record_type test ;

function reccrd_;ype_test;eq (rl, r2 : in record_type_test)
' : return boolean ;

record_type_test_initial: constant record type test :=
(f1 = 0,712 => array_type_test_initial];

record_type_test_typedescriptor:
constant gypsy package.typedescriptor :=
(kind => gypsy_package.type_kind’(g_record),
r_items =) ‘ : ,
new gypsy package.field-descriptor
(kind =) gypsy_package.type_kind’(g_integer),
name =) *F1°,
field _type => e
gypsy_package.integer_typedescriptor,
next => new gypsy_ package.field-descriptor
(kind =>
gypsy“package.type_kind’(g_array),
name => °F2%,
field type =

85

basetype package.array type test.basetype descriptor,
next =) aull)));

§
i

The sequence, set, mapping, and buffer basetypes are all
declared as generic instantiations of their respective support
-- packages, which are, incidentally, listed in Appendix B. The
initial value constants are required for each basetype.

i
1

package set_type test is new gypsy ackage.set_basetype routines
(gypsy_package.type_kind’(g_gcalarg, color_test_typedescriptor,
color_test, color_test_eq, colon_test_vaiueerror{;
set_type_test initial: constant
basetype_package.set_type test.basetype :=
basetype_package.set_type_test.null_value;

package map_type_test is

. new gypsy_package.mapping_basetype_routines
(gypsy_package.type_kind’(g_integer), ’
gypsy_package.integer_typedescriptor,
gypsy_package.type_kind’(g_scalar), color_test typedescriptor,
integer, gypsy_package.integer_eq, -
gypsy_package.integer_valueerror, color_test,
color_test_eq, color_test_valueerror);

map_type_test_initial: constant
basetype package.map type_test.basetype :=
basetype package.map_type_test.null_value;

package buf_type test is
new gypsy_package.buffer_basetype_routines
(gypsy_package.type_kind’(g_characterg,
gypsy_package.character_typedescriptor, character,
gypsy_package.character_eq,
gypsy_package.character_valueerror, 1);

buf_type test_initial: constant
basetype_package.buf_type_test.basetype :=
basetype_package.buf_type_test.null_value;

end basetype_package;
package body basetype package is

function record_type test_eq (rl, r2 : in record_type test)
return boolean is
result : boolean := false;
begin
result := rl = r2;
return result;
end record_type_test_eq;

function record_type test_f2 alteration

{rec : in record type test;
exp : in basetype_package.array_;ypq_testgbasetype)

return record type test is

result : record type test;
begin
result := rec;
result.f2 1= exp;

86

return result;
end record type test_f2 alteration;

function record_type_test_fl alteration
(rec : in record_type_test; exp : in integer)
return record_type_test is

result : record_type_test;
begin

result 1= rec;

result.fl := exp;

return result;
end record_type test_fl alteration;

procedure record type_test_assign
(rec : in out recor?_type‘test;
exp : in record type test;
descriptor @ in gypsy_package.typedescriptor) is
begin
if record_type_test_valueerror (descriptor, exp)
then raise valueerror;
else rec = exp;
end if;
return;
end record_type_test_assign;

function record_type test_valueerror :
(descriptor : in gypsy_package.typedescriptor;
exp : in record_type test) return boolean is
result : boolean := false;: ‘ -
begin '
it gypsy_package.integer_valueerror .
(gypsy_package.extract_fielddescriptor (descri§tor, *F1%),
exp.fl
or basetype_package.array~type_test.valueerror_occurs
(gypsy_package.extract_fielddescriptor
(descriptor, ®F2°),
exp.f2) ‘
then result := true;
else result := false;
end if;
return result;
end record_type_test_valueerror;

procedure record_type test_f2 assign
{rec : in out record _type_test; ‘
exp ¢ in basetype package.array_type_ test.basetype;
descriptor : in gypsy_package.typedescriptor) is
begin o . :
if basetype_package.array_pypentest.valueerrop_occurs
(gypsy_package.extract fielddescriptor
(descriptor, *F2%), -
exp)
then reise valueerror;
eise rec.¥2 := exp;
end if;
return;
end record_type_test f2 assign;

procedure record_type_test“fl_pssign‘
(rec : in out record_type_test;

exp @ in integer;
descriptor : in gypsy_package.typedescriptor) i
begin
gif gypsy_package.integer_valueerror
(gypsy_package.extractﬂfielddescriptor
(descriptor, *F1%),
exp)
then rzise valueerror;
else rec.fl := exp;
end if;
return;
end record_type_test_fl _assign;

function color_test_valueerror
(Ihs : in gypsy_package.typedescriptor;
s : in color_test) return boolean is
result : boolesn := faise;
begin
resuit := false;
it color_test’pos (s) < Ihs.s_low
then result := true;
end if;
if color_test’pos (s) > lhs.s high
- then result := true;
end if;
return resuld;
end color_test_valueerror;

function color_test eq (sl, s2 : in color_test)
return boolean is
result : boolean := faise;
begin
result 1= sl = s2;
return result;
end color_test eq;

function color_test scale (i : in integer)
return color_test is
result : color_test;
begin
if 1 ¢ 0 then raise underscale;
elsif i » color_test’pos (color_test’last)
then raise overscale;
else result := color_test’val (i);
end if;
return result;
end color_test scale;

function color test _succ (s : in color_test)
return color_test is
result : color_test;
begin ‘ :
if s = color_test’last then raise nosucc;
else resuTt := color_test’succ (s);
end if;
return result;
end color_test succ;

function color_test pred {s : in color_test)
return color_test is

result : color_test;
begin

if s = color_test’first

then raise nopred;
else result := color test’pred (s);

end if;

return result;
end color test pred;

procedure color_test_assign
(ths : in out color_test;
rhs : in color_test;
Ihs_descriptor : in gypsy_package.typedescriptor) is
begin
gif color_test_valueerror (lhs_descriptor, rhs)
then raise valueerror;
end if;
ths := rhs;
return;
end color_test_assign;

end basetype_package;

with gypsy_package, basetype package;
package test is

subtype color is basetype_package.color_test range
basetype_package.color_;est’(red)..
basetype_package.color_pest’(green);

color_descriptor: constant gypsy_package.typedescriptor :=
(kind => gypsy_package.t pe kind’ (g_scalar),
s _tow => 0, s_high => 2{;

color_initial: constant color :=
basetypq_package.colon_test’(red);

subtype index is integer range 1..10;

index_descriptor: constant gypsy_package.typedescriptor :=
(kind => gyps _package.type_kind’(g_integer), i_low =) 1,
i_high => 10{;

index_initial: constant index := 1;

subtype lower _case is character range tat.. '2’;

lower_case_descriptor: constant gypsy_package.typedescriptor :=
(kind => gypsywpackage.type_kind’(g_character),
c_low =3 ’3’,
c_high => 'z°);

30ter_case_initialz constant lower case = '3%;

subtype cool_color is color range
basetype_package.co!or_test’(blue)..
basetype_package;colordteSt’(green);

cool_color_descriptor: constant gypsy_package.typedescriptor :=
(kind => gypsy_package.type_kind’(g_scalar).

s_low => 1,
s_high => 2);

coo!_polor_initiat: constant cool_color :=
basetype_package.color_test’(blue);

subtype array _type is
basetype_paﬁkage.srrsy_type_tes%.%asetype;

array_type_descriptor: constant gypsy_package.typedescriptor
(kind => gypsyﬂpackage.type*kind’(g“arrayg

index_type =) index_descriptor,

a_elen_type => lower_case_descriptor);

array_type_initial: constant array_type :=
array type initial’range =) lower case_initial);
y_vype_ g - -

subtype buf_type is basetype_package.buf_type test.basetype;

buf_type_descriptor: constant gypsy_package.typedescriptor :=
(kind => gypsy _package.type_kind’(g_buffer),
s_size_restriction => 1,
s_eiem_type => gypsy_package.character_typedescriptor);

buf_type_initial: constant buf type :=

basetype_package.buf_pype_test.nul!_value;
subtype map_type is basetype package.map_type_ test.basetype;

map_type descriptor: constant gypsy_package.typedescriptor :=
(kind => gypsy_package.type_kind’(g_mapping),
m_size restriction => integer’last,
domain_type => index_descriptor,
rng_type => color_descriptor);

mep_type_initial: constant map_type :=
basetype_package.map_type_test.nuIt_value;

subtype set_type is basetype_package.set_type test.basetype;

set type descriptor: constant gypsy_package.typedescriptor :=
T (kind = gypsy_package.type_kind‘(g_set{,
s_size_restriction =) integer’last,
s_elem_type => cool_color_descriptor);

set_type_initial: constantgéet type =

basetype_package.set_type_;est.nul!_véiue;
subtype seq_type is gypsy _package.integer_seq.basetype;

seq_type descriptor: constant gypsy_package.typedescriptor =
{kind => gypsy_package,type_kind’(g_sequence),
s _size_restriction =) 10, ' ”
s_elem_type =) index_descriptor);

seq_type_initial: constant seq_type := :
, gypsy_package.integer_seq.nul!_value:

subtype record_type is record f1 : integer;
f2 : array_type; end record;

® o
.=

90

record_type_descriptor:
constant gypsy_package.typedescriptor =
(kind => gypsy_package.type_kind'(g_record),
r items =)
Tew gypsy_package.field-descriptor
(kind => gypsy~package.type‘kind’(g_integer),
name => ®Fl®,
field_type = gypsy_package.intege;~typedescriptor,
next =) new gypsy_package.field-descriptor
(kind => gypsy_package.type_kind’ (g_scalar),
name =) "F2°,
field type = array_type descriptor,
next =» null)}));

record_type initial: constant record type :=
(f1 => 0, 12 = array_type_initial);

end;
package body test is

end test;

D.3 A Standard Example

This is an example of the full compiler in action on
a small Gypsy program which computes fsctorial. The Gypsy text
is given first, followed by the Ada code produced. The
transiation was to be performed with respect to the environment
TOPS-20, given in Appendix C. The user®’s call to main was:

*main{in_int_filel, out_int_filel)', which results in the device

query snd |inkage described in g a_supermain. The Gypsy text for

the program is:

scope factors
begin

type buftype = buffer (1) of integer;

procedure main (var in_file: buftype {inputd;
var out_file: buftype Coutputd) =
begin
var in value, out value: integer;
receive in_value from in_file;
out value := fact (in_value);
send out_value to out_file;

end;

function fact (n:int) : int =
begin
entry n > 0;
exit fact(n) = factorial(n);
var i:inti=n;

91

result = 1;

loop
if 1 = 1 then leave end;
assert factorial(n) = result = factorial(i)

snd 1> 18end nd0;

result := result * 1;
=1 -1;

end;

end;

function factorizl (m:int) :int=
begin
exit (assume factorial(m)=if m=1 then 1 eise mxfactoriai (m-1)
fi);
end; :

end; <{scope factor}

R E R R R R R R R R R R R R
The following is the program produced by the compiler.
e T e T TR L L L bt SRt bbb

with gypsy_package;
package basetype package is

package buftype_factor is
new gypsy_package.buffer basety e_routines
(gypsy_package.type_kind’(g_integer§
gypsy_package.integer_typedescriptor,
integer, gypsy_package.integer_eq,
gypsy_package.integer_valueerror. 1);

»

buftype _factor_initial: constant
basetype_package.buftype_factor.basetype 1=
basetype_package.buftype_factor.null_value;
package integer_io is new input_output(integer);
in_file: integer_io.inout file;
out_file: integer_io.inout_file;
end basetype package;

with gypsy_package, basetype_package;
package factor is

subtype buftype is basetype_package.buftype_factor.basetype;
buftype descriptor: constant gypsy_package.typedescriptor :=
(kind => gypsy_package.type_kind’(g_buffer).
s _size_restriction => 1,
s elem_type => gypsy_package.integer_typedescriptor);

buftype initial: constant buftype :=
basetype_package.buftype_factor.nu!i_va!ue;

procedure main (in_file, out_file : in out buftype) ;

function fact (n : in integer) return gypsy package.int ;

function g_s_fact (n: in gypsy_package.int)
return gypsy_package.int ;

-- Unit is for specifications only

-- function factorial (m : in gypsy_package.int)

- return gypsy_package.int
procedure g_a_main_entry (in_file, out_file : in out buftype) :
procedure -g_a_supermain ;

end;

package body factor is

procedure main (in_file, out_file : in out buftype) is
in_value, out_value : integer := 0;

begin
begin
case in_file.io_flag is
when 0 : :
=) basetype package.buftype factor.receive
(in_value,
gypsy_package.integer_typedescriptor,
in_file);
when 1
=) declare
g_s_templ : integer;
begin
basetype package.integer io.read
(basetype package.in_fiTe, g a_templ);
in_value := g_3_templ;
end;
when 2
- =) declare
g_2_temp2 : integer;
begin
bssetype package.integer io.read
(basetype package.out Tile, g 3_temp2);
in_value := g_a_temp2; o
end;
when others =) raise caseerror;
end case;

out_value := fact (in_value);
if gypsy_package.integer_valueerror
(buttype descriptor.b_elem type, out_value)
then raise valueerror;
else case out file.io flag is
when 0
=) basetype_package.buftype factor.send
(out_value, outﬁfi!e{;
when 1
=) basetype_package.integer_io.print
(basetype_package.in_file, out_value);
when 2
=) basetype package.integer io.print :
(basetype package.out_file, out_value);
when others =) raise caseerror;
end case;

93

end if;
return;
end;
exception
shen others =) raise routineerror;
end main;

function fact {n : in integer) return gypsy_packsge.int is
result : gypsy_package.int := 0;
begin
begin
if gypsy_package.integer_valueerror
(gypsy_package.int_typedescriptor, n)
then raise valueerror;
end if;
result := g a_fact (n);
return result;
end;
exception
when others =) raise routineerror;
end fact;

— Unit is for specifications only :

—- function factorial (m : in gypsy_package.int)

- return gypsy_package.int
- exit case (is normal :

— (assume factorial (a) =

- : ifm=1 then 1

- else m * factorial (m - 1)

- fi)):
procedure g a_main_entry (in_file, out_file : in out buftype) is
begin
begin

in_file.io_flag := 1;
out_file.io_flag := 2;
declare
g_a_temp3, g_a_temp4 : buftype;
begin :
basetype_package.buftype_factor.assign
(g_s_temp3, in_file, buftype descriptor);
basetype package.buftype factor.assign
(g_a_temp4, out_file, buftype descriptor);
main (g_a_temp3, g_a_tempd);
basetype package.buftype factor.assign
(in_file, g_a_temp3, buftype descriptor);
basetype_package.buftype_factor.assign :
(out_file, g_a_temp4, buftype_descriptor);
end;
return;
end;
exception
when others =) raise routineerror;
end g 8_main_entry; . ‘

procedure g_a_supermain is

filename : gypsy_package.string; :
in_file, out_file : buftype := buftype_initial;
begin ‘

94

begin
begin
tty_to.put (® FILE FOR IN_INT_FILEL ? *};
tty io.beep;
tty io.get (filename);
basetype package.integer_io.open
(basetype_package.in_file, filename);
end;
begin
tty io.put (® FILE FOR OUT_INT_FILEL ? *);
tty_io.beep;
tty io.get (filename);
basetype package.integer_io.create
(basetype package.out_file, filenanme);
end;
g_a_main_entry (in_file, out _file);
basetype package.integer io.close
(basetype package.in_file);
basetype package.integer_io.close
(basetype package.out_file);
return;
end;
exception
when others => raise routineerror;
end g_s_supermain;

function g_a_fact (n : in gypsy_package.int)
return gypsy_package.int is

-- entry n > 0;
-- exit case (is normal : fact (n) = factorial (n));
i : gypsy_package.int :=n;
result : gypsy_package.int := 0;
begin
begin
gypsy_package. integer_assign
(result, 1, gypsy_package.int_typedescriptor);
foop
ifi=1
then exit;
end if; :
—— assert factorial (n) =
-~ result * factorisl (i) 21 >1&n>0;
gypsy_package.integer_assign
(result, gypsy package.integer times (result, DP
gypsy_package. int_typedescriptor);
gypsy_package.integer_assign
(i, gypsy package.integer difference (i, 1),
gypsy_package.int_typedescriptor);
end loop; :
return result;
end;
exception
vhen others =) raise routineerror;

end g a_fact;

end factor;

95

99

35. Wirth, N. ®*The Programming Language Pascal.® Acta Informatica 1, January, 1971, pp. 35-63.

36. Wulf, W.A., Brosgol, B.M., Newcomer, JM., Lamb, D.A., Levine, D., Van Deusen, M.S,, eTCOL-
Ada: Revised Report on an Intermediate Represemtation for the Preliminary Ada Language®,
Technical Report CMU-CS-80-105, Carnegie- Mellon University, Computer Science Department,
February, 1980.

37. Young, W.D. & Good, D.I. "Generics and Verification in Ada®, Proceedings of the ACM
Symposium on the Ada Language, Boston, Massachusetts, December, 1980.

38. Good, Donald I, Revised Report on the Language Gypsy Version 2.1, Technical Report in
preparation, Institute for Computing Science and Computer Applications, University of Texas at
Austin. .

