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1. INTRODUCTION

Temporal logic ([PR57], [PR67]) provides a formalism for describing the occurrence of
events in time which is suitable for reasoning about concurrent programs (cf. [PN77]). In
defining temporal logic, there are two possible views regarding the underlying nature of time.
One is that time is linear: at each moment there is only one possible future. The other is that
time has a branching, tree-like nature: at each moment, time may split into alternate courses
representing different possible futures. Depending upon which view is chosen, we classify (cf.
[RU71]) a system of temporal logic as either a linear time logic in which the semantics of the
time structure is linear, or a system of branching time logic based on the semantics
corresponding to a branching time structure. The modalities of a temporal logic system usually
reflect the semantics regarding the nature of time. Thus, in a logic of linear time, temporal
operators are provided for describing events along a single time path (cf. [GPSSR0]). In
contrast, in a logic of branching time the operators reflect the branching nature of time by
allowing quantification over possible futures (cf. [AB80],[EC80]).

Some controversy has arisen in the computer science community regarding the differences
between and appropriateness of branching versus linear time temporal logic. In a landmark
paper [LAS8O] intended to *clarify the logical foundations of the application of temporal logic to
concurrent programs,” Lamport addresses these issues. He defines a single language based on
the temporal operators *always® and *sometimes". Two distinct interpretations for the
language are given. In the first interpretation formulae make assertions about paths, whereas
in the second interpretation they make assertions about states. Lamport associates the former
with linear time and the latter with branching time (although it should be noted that in both
cases the underlying time structures are branching). He then compares the expressive power of
linear time and branching time logic. Based on his comparison and other arguments, he
concludes that, while branching time logic is suitable for reasoning about nondeterministic
programs, linear time logic is preferable for reasoning about concurrent programs.

In this paper, we re-examine Lamport’s arguments and reach somewhat different
conclusions. We first point out some technical difficulties with the formalism of [LA80]. For
instance, the definition of expressive equivalence leads to paradoxical situations where
satisfiable formulae are classified as equivalent to false. Moreover, the proofs of the results
comparing expressive power do not apply in the case of structures generated by a binary
relation like those used in the logics of [FL79] and [BMP81]. We give a more refined basis for
comparing expressive power that avoids these technmical difficulties. It does turn out that
expressibility results corresponding to Lamport’s still hold. However, it should be emphasized
that these results apply only to the two particular systems that he defines. Sweeping
conclusions regarding branching versus linear time logic in general are not justified on this
basis.

We will argue that there are several different aspects to the problem of designing and
reasoning about concurrent programs. While the specific modalities needed in a logic depend
on the precise nature of the purpose for which it is intended, we can make some general
observations regarding the choice between a system of branching or linear time. We betieve
that linear time logics are generally adequate for verifying the correctness of pre-existing



infinite then |x] = oo and has the form (sy,5,55,...). If x can be either finite or infinite it is
sometimes convenient to write x = (s,...,Sy,.) or even x = (s;) where, implicitly, 0 <1 < 1+|x|.
We use first(x) to denote the first state, sy, of x, and las{(x) to denote the last state, s, of x. If
x is infinite, last(x) does not exist. If |x| > 0, we define x5 = (s},...,5},.); otherwise x®4¢¢ =
x. We define the suffires of x, x0 = x, x™+1 = (xM)SU¢¢, If y £ x is a suffix of x then y is a
proper suffiz of x. The prefires and proper prefizes of x are defined similarly. If x is a finite
sequence and y is a sequence, then the concatenation of x and y, written xy, is the sequence
obtained by appending y to x. (E.g., if x = (s;,5,) and y = (s3,54,55) then xy = (s1,59,53,54,55)-
Similarly, if x = x's is a finite path and y = sy’ is a path then the fusion of x and y, written
x-y, is the path x’sy’ (the fusion is undefined if last(x) 7 first(y)).

Remark: Various constraints can placed on the set of paths X. In particular, Lamport
[LARO] requires that X be suffix closed meaning that if x € X then x*¢“ € X. Similarly, we
say that X is fusion closed (cf. [PR79]) if x;sy, € X and x,8y, € X imply x;sy, € X, We also
say that X is limit closed (cf. [AB80]) provided that if there is an infinite sequence of paths
YoXo:Yo¥ 1X1Y oY 1YoXor € X and each y; is nonempty then the “limit" path y;y,y,.. € X. In
the subsequent sections, we shall also consider the case where X is required to be R-generable
meaning that there is a (total, nonempty) binary relation R such that X consists precisely of the
infinite sequences (sy,51,59,--. ) such that (s;s;,;) € R for all i. This is a natural condition which
has been assumed in many previous papers including [FL79], [EC80], [BMP81], and [EH82]. It
is shown in [EMS81] that the above three closure properties are exactly equivalent to R-
generability. ~ These closure properties are important in ensuring that certain commonly
accepted identities are valid (see sections 4,5 and [EMS81]). Finally, we say that X is state
complete provided that for each s € S there is some x € X for which first(x) =s.

2.2 Syntax. Lamport inductively defines the syntax of a class of temporal formulae:

1. Any atomic proposition P is a temporal formula.
9. 1f p,q are temporal formulae then so are p A q (*conjunction®), and —p ("negation®).
3. If p is a temporal formula then so are Op (meaning *always p")

and ~p (meaning *sometimes p").

2.3 Semantics. A temporal formula’s meaning depends on whether it is interpreted as a
formula of branching time or a formula of linear time. For the branching time interpretation,
we write M;s Fg p to indicate that formula p is interpreted as true in structure M at state
s. We define Fp inductively:

1. Ms kg Piff P € L(s)
2. Mis kg p A qiff Miskgpand Mskgq
M,s kg —p iff not( M,s Fp p)
3. M;s by Op iff ¥ path x € X with first(x) = s, Vn > 0, M, first(x") Fg p



and linear time formulae, it is not clear from the syntax which interpretation is intended. This
has the effect of obscuring an essential difference between the two interpretations, namely, that
linear time formulae make assertions about paths and branching time formulae make assertions
about states. It also causes difficulties when translating from English into the formalism.

We also disagree with Lamport’s conclusion that linear time logic is superior to branching
time logic for reasoning about concurrent programs. Lamport gives two specific arguments to
justify this claim:

1. To establish certain liveness properties of a concurrent program, it is frequently necessary
to appeal to some sort of fair scheduling constraint such as strong eventual fairness (which
means that if a process is enabled for execution infinitely often, then eventually the
process must actually be executed). This constraint can be expressed in linear time logic
by the formula (~0 —ENABLED) V ~EXECUTED. However, it is not expressible in
branching time logic.

[

. In proving a program correct, it is often helpful to reason using the principle that, along
any path, either property P is eventually true or is always false. This amounts to
assuming an axiom of the form ~»P Vv 0O-P which is M-valid for all models M under the
linear time interpretation, but not under the branching time interpretation.

The first observation is certainly true for the particular systems that Lamport has defined.
However, by using a branching time logic with appropriate operators (such as the *infinitary"
quantifiers used in [EC80]) these assertions can be easily expressed. Indeed, by adding enough
modalities to a branching time logic, any assertion of Lamport’s linear time can be expressed as
described in section 4. In regard to the second point, it is true that the given formula is valid
(i.e., true in all models) under the linear time interpretation but not under the branching time
interpretation. However, the formula is not a correct translation of the principle into the
formalism under the branching time interpretation. We believe that this is an instance of the
confusion caused by the use of the same syntax for both interpretations. Again, it is possible to
write a formula in a branching time system which accurately renders the principle as shown in
section 3.

3. A UNIFIED APPROACH

In this section we exhibit a uniform formalism for comparing branching with linear time
that avoids the technical difficulties of Lamport’s and allows us to examine the issues more
closely. To illustrate our approach, we describe a language, CTL*, which subsumes Lamport’s
branching and linear time systems as well as UB [BMP81] and CTL ([EH82], [CE81}). CTL" is
closely related to MPL [AB80]. (CTL* is also used in [CES83].) In CTL* we allow a path
quantifier, either A ("for all paths®) or E ("for some paths"), to prefix an assertion p composed
of arbitrary combinations of the usual linear time operators G (*always"), F' (*sometimes"), X

("nexttime®), U ("until"), as well as the infinitary state quantifiers of [EC80], P ("infinitely

o0
often*), G (*almost everywhere*).



CTL* was considered in [EH82] and ECTLY is essentially the language studied in [EC80].
Both ECTL and ECTL™ provide us with an ability to make assertions about fair computations.

We use |p| to denote the length of formula p, ie., the number of symbols in p viewed as a
string over the set of atomic propositions union the set of connectives (A, =, A, E, F, G, (, ),
etc.).

Remark: In rules 3-6a, the arguments p,q are state formulae whereas in rules 3-6b the
arguments are path formulae.

3.2 Semantics. We write M;s F p (M;x E p) to mean that state formula p (path formula
p) is true in structure M at state s (of path x, respectively). When M is understood, we write
simply s F p (x E p). We define F inductively:

S1. skEPIiff P €L(s)
S2. skEpAqiffskFpandskq
s F —p iff not (s F p)
S3. sk Ap iff for every path x € X with first(x) = s, xF p
N s E Ep iff for some path x € X with first(x) = s, x F p
P1. x kP iff P € L(first(x))
P2. xEpAqiffxEpandxFq
x E =p iff not (x E p)
P3a. x k Gp iff for all i > 0, first(x!) F p
x k Fp iff for some i > 0, first(x!) F p
P3b. xF Gpiff foralli > 0,x'kp
x F Fp iff for some i > 0, xi Ep
P4a. x k Xp iff first(x!) k p
P4b. xEXpiff x1Fp
P5a. xk (p U q) iff for some i > 0, first(xi) F qand for all j > 0[] < iimplies first(xj) E p]
P5b. x F (p U q) iff for some i > 0, xi k q and for all j > 0 [j < i implies x k p)
P6a. xE %Op iff for infinitely many distinct i, first(xi) Ep
X F %}Op iff for all but a finite number of i, first(x!) k p
P6b. x F %op iff for infinitely many distinct i, xlEp
x E g‘}p iff for all but a finite number of i, x! E p

Remark: The notions of M-validity and strong equivalence (defined in sections 2.4 and
2.5, respectively) generalize to apply to arbitrary state and path formulae.

It is easy to check that all the equivalences mentioned in the remark in section 3.1 hold.
Observe that the following equivalences establish the claimed correspondences between
Lamport’s linear time and L(F,G) and between Lamport’s branching time and BT:

Mx kp Op iff Mx F Gp



L|S’. Since X is fusion closed, {s* € S: s" appears on some x’ € X'} = S and M’ is thus a
structure. Observe that for any state formula r, M;s k¥ AGr iff M';s F AGr iff Vs’ € S’ (M',¢’
F r). Taking r=p, we get Vs’ € ", M';s’ F p. Since p Ezq, Vs' € S’, we have M';s’ F q. Now
take r=q, to see that M;s ¥ AGq as desired.

(&:) Assume AGp =% AGq, i.e. M,s E AGp iff M,s F AGq for all M and s in M. It will
suffice to show that M F p implies M F q as a symmetric argument will yield p Eg q- Now
suppose M k p where M = (S,X,L). Then Vs € S, we have M;s k p whence Vs € 5, we also have
M,s F AGp. Since AGp =7 AGq, Vs € S, M;s F AGq. Since M is state complete, Vs € S, we
have M,;s F q. Thus M k q as desired. O

Remark: Both fusion closure and state completeness are needed for the previous result.
Considering the formulae p = P A EFEX-P and q = false, we see that while p =_ q we also
have AGp == AGq if we allow structures that are not fusion closed. Similarly, if we take p =
AGEFtrue A EFtrue and q = p V AG false we have AGp = AGq but also p = q if we allow
structures that are not state complete.

3.7 Corollary. For any path formula p and state formula q, p qu iff AGAp E;AGq.
Finally, we compare the expressive power of two branching time languages as follows:

3.8 Definition. As measured with respect to a class of structures C, we say that L, is at
least as expressive as Ly, written L, _§_C L,, provided that for every p € L there exists q € L,
such that p =¢ q. We say that L, is exactly as expressive as Ly, written L, =C L,, provided
L, _<_C L, and L, SC L,. Finally, Ly is strictly less expressive than L, , written L, <¢ L,
provided L, <¢ L, and L, = L,. (When clear from context we omit the superscript C.)

4. EXPRESSIVENESS RESULTS

Using the formalism of the last section we compare the relative expressive power of the
branching time languages defined there. In proving our expressibility results, we assume that
all structures are R-generable. Without such an assumption even rudimentary equivalences such
as EFEFp = EFp do not necessarily hold. Our "inexpressibility* results are stronger than those
Lamport obtains in that ours apply in the case of R-generable structures as well as suffix-closed
structures whereas his apply only to suffix-closed structures.

We show that the following picture describes their relative expressive power:
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Suppose we have defined M; and N;. Then M, and N, have the following graphs

where in both M, 4 and N; .1, 341 EP, b, E —P, and Mj, Nj are copies of M;, Nj, respectively.
It should be clear that

(1) for all 1, M;.a; F AlF(P A XP)] and Nj,a; F -A[F(P A XP)].

We will also show that

(2) For any ECTL* formula p thereis a CTL formula q which is equivalent to p over
these two sequences of models. That is, for all i and all states s in M,

M;sEp =4 and similarly for N;.

(3) For any C'TL formula p, with |p| <1, M2 F P iff N, F p.

To see that the result follows, suppose that A[F(P A XP)] is equivalent to some ECTL*
formulae p. Then by (2) above, there is a CTL formula p’ equivalent to p over these models.
Now |p’| = 1 for some i. Then M, a; F A[F(P A XP)] which, by supposition and (2), implies
M,a; Fp’. By (3) this implies N, F P, which implies, again by supposition and (2), that N;,a
E A[F(P A XP)]. But this contradicts the fact (1) above that N;,a; F ~A[F(P A XP)).

The details of the proof for (2) and (3) are provided in the appendix. O

4.3 Theorem. The formula E[ (P, UPy V (Q,UQ) U R|] is not equivalent to any
formula q € ECTL™.

Proof: Left to the appendix. O

Similar combinatorial techniques can also be used to prove the following two theorems:

o0

4.4 Theorem. The ECTL* formula E[F P A %OQ] is not equivalent to any formula g
€ ECTL.

Proof: Left to the appendix. 0
4.5 Theorem. The ECTL formula E%OP is not equivalent to any formula q € CTL*.
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the suf operator only depends on proper suffixes. Ep is a state formula; since in PL we have
only path formulae, we force the truth of the formula to depend only on paths starting at the
first state.

Since MPL has not been widely discussed in the literature, we briefly review its syntax
and semantics here before describing the translation from CTL* into MPL (see [AB80] for more
details). To simplify the exposition, we take the liberty of slightly altering Abrahamson’s
notation. In particular, we use the temporal connectives ¢, U, and X instead of their duals O,
W, and Y, respectively. We also omit the H operator and view all paths as simply infinite
sequences of states corresponding to legal sequences of transitions since blocking will not
concern us here. '

The syntax of MPL is as follows:

1. Any atomic proposition is a formula.

2. If p,q are formulae then so are =p, p A q, op, Xp, and p U q.
We take Op to be an abbreviation for ~<¢-p.

A structure M is a triple (S,X,L) as before. An MPL formula is true or false of a triple
M,x,y where M is a structure (S,X,L), x € X, and y is a finite prefix of x (called a stage). If y,z
are stages or paths, we write y < z if y is a prefix of z. We define F inductively as follows:

1. Mx,y E P iff P € L(last(y))
2. MxyEpAqiff Mx,yFpand Mxy Fq
M,x,y F =p iff not(M,x,y F p)
3.Mx,yFpUqiff 3z(y < z <xand Mx,z F qand Vw(y < w
Mx,yEXpiff 3zMx,zEpandy <z < xand ~Iw(y < w
4. MxyE opiff IX'(x' € X,y < x’, and Mx',y F p)

< z=Mx,wEp))
< z))

While no restrictions are placed on the set of paths X in defining the semantics of MPL,
we must restrict our attention to structures that are suffix closed as well as fusion closed in
order to translate CTL* into MPL. These restrictions are necessary since there are CTL*
formulae which are satisfiable only in structures that are not suffix closed (e.g., EGXtrue A -
EXEGXtrue) or not fusion closed (e.g., EFEFp A —EFp) whereas every MPL formula is
satisfiable in a structure that is both suffix closed and fusion closed. This latter fact arises from
the use of stages in defining the semantics of MPL and is proved in

5.2 Lemma. An MPL formula is satisfiable iff it is satisfiable in a structure that is suffix
closed and fusion closed.

Proof: Left to the appendix. 0

If y is a stage of x, write x/y to indicate the suffix of x obtained by deleting all but the
last state of the prefix y, i.e. y - (x/y) = x. Then we get

5.3 Lemma. If M = (S,X,L) and X is suffix closed and fusion closed then for all MPL
formulae p and x € X|
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obvious modification of the [HA82] algorithm to force R, to be limit closed. In fact, no decision
procedure for testing satisfiability of CTL* formulae in R-generable structures of elementary
complexity was known for some time. Recently, however, decision procedures of triple ([ES83])
or quadruple ([VW83], [PS83]) exponential complexity have been announced.

We remark that in [AB80] a complete axiomitization is given for MPL which also applies
to CTL*, provided we restrict our attention to structures which are suffix closed and fusion
closed. The problem of finding a complete axiomatization which applies to R-generable
structures remains open.

6. CONCLUSION

We believe that linear time logics are generally adequate for verifying the correctness of
pre-existing concurrent programs. For verification purposes, we do not usually care which
computation path is actually followed or that a particular path exists because we are typically
interested in properties that hold of all computation paths. It is thus satisfactory to pick an
arbitrary path and reason about it. Indeed, Owicki and Lamport [OL82] give convincing
evidence of the power of this approach. In these situations, the simplicity of linear time logic is
a strong point in its favor, and we see only one advantage in considering the use of a branching
time logic. Namely, a linear time logic, L, as interpreted over branching time structures, as
language B(L) (i.e., all formulae of the form Aq where q is a formula of L) is not closed under
negation. While it may be possible to prove that a property holds for all executions of a correct
program, if a program is incorrect because the property does not hold along some execution, it
will be impossible to disprove the property for the program as a whole. As Abrahamson [AB80]
notes "It is out of the question to attempt to disprove a property when we can’t even state its
negation."

Furthermore, there are other situations for which we want the ability to explicitly assert
the existence of alternative computation paths and must use some system of branching time
logic. This arises from the nondeterminism - beyond that used to model concurrency - present
in many concurrent programs. Consider an instance of the mutual exclusion problem where
each process P, is functioning as a terminal server. At any moment, P; (nondeterministically)
may or may not receive a character. A key attribute of a correct solution is that it should be
possible for one particular P; to remain in its noncritical section, NCS;, forever (awaiting but
never receiving a character from the keyboard) while other Pj continue to receive and process
characters. It should also be possible for P, to receive a character and then enter its trying
region, TRY,. From there it eventually enters the critical section, CS;, where the character is
processed before returning to NCS;. But, no matter what happens, once P, is in NCS; it either
remains there forever or eventually enters TRY; To express this property one can use a
branching time logic formula involving a term (intended to hold whenever P, is in NCS;) of the
form EGinNCS; A EFinTRY; A A(GinNCS; V FinTRY;). However, using Theorem 4.6, this is
provably not expressible in linear time logic, i.e., in a language of the form B(L(-)). The natural
candidate formula, A(GinNCS; V FinTRY)), allows a "degenerate" model where all paths
satisfy FinTRY; and no path satisfies GinNC'S;.
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above and the observation that F(q; A GFqy) = Fq; A GFq,.

Similarly, since G(q; A q5) = Gq; A Gqy, it suffices to show Gp is equivalent to some BT
formula just when p is a disjunction of formulae in B. This follows using the observation below
(where p” and the g; are propositional formulae):

Glp' v (Vilpb-Phl) V (ViFg) vV (V,GFa )

Gp' V (Vi[p’,pg,...,p;i])v (ViGFq) Vv (V;GFq) V

Intuitively, the first three conjuncts of the right hand side take care of the case that no q
is ever true, and the fourth conjunct covers the case that some q is true infinitely often. The
last conjunct corresponds to all g being true only finitely often: the last time any q is true,

either Gp’ or one of the [p}),...,p;.] will be true at the next state. This would be a B* formula
1
except that q in some Gqu may not be a propositional formula.
If q in GFq is not a propositional formula, note that q still must be in the form of 4 above

since it is the argument to F. Note also the equivalence below:

GF(p A [pg,...,pgo] Ao PG PR T A X[qg,...,qﬁo] A Fry AAFr))

GFp A F([pg,...,pgo]) A A F([pgz...,pglm]) A F([qg,...,qgo]) A GFr; A..A GFr,

By repeatedly applying this equivalence, we can get down to the case where GF only takes a
propositional formula as an argument. This completes the proof of the claim. O

It remains to show that if p is a B formula, then Ep is equivalent to an ECTL™ formula.
Since E(q V q') = Eq V Eq’, it suffices to prove the result in the case where p is a conjunction
of B formulae. We proceed by induction on the number of subformulae of p of the form Fr
(corresponding to rule 4 above).

If p has no F’s, then it is of the form
qA [p8,-.-,p201 A A [p{)‘!u-,p;“m} A A, GFr,

where q is propositional. We first show that a conjunction of formulae of the form [py,...,p,] is
equivalent to a disjunction of such formulae. Given [pgy,....,p ], [dg,--9y,] We say that the
ordering of terms in [p, A qo,...,pik A qjk,...,pn A qp) is consistent provided that if pik A qjk

appears before pih A\ qjh then i, < i and j, < j,. Now observe that
[Pos-Pol A [dgse-rl) = V {[Pg A 9g0--P; A Q5 - Py A Q] With consistent ordering of terms}.
0 n 0 m AR N Ik n m

Thus, we can assume (if p has no F’s) that p is of the form q A [pg,...,p,] A A; GFr; by
again using the fact that E[q V ¢'] = Eq V Eq’. But

E[q A [pg---p,] A A GFrjl = q A E[py UE[p; U... E[p, ; UE[Gp, A A; GFr]]..]}.
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Niypb

i+1Fda (by **) or Mya; F qor Nya, F q

iff
Nitpair F EXG.
If p = E[q U 1] then,

M, ;8 FE[qUr]iff

(1) M, 8, Fror
(2) M 1841 F G M, by Fror
(3) M a1 Fa M, a, F E[qUr] or

iff

iff

Ni;paipr FE[@UT]

In the last case, if p = A[q U r] then,
M, 1.8i41 F Alq U r] iff

(1) M ja;, Fror
(2) Mipajyr F a4 Migpbig Foy
M2, F AlqUr], Nja; FAlqU r] or
(3) Mijpaq F a4 My by Fa,
M, a, F Alq U], Nja; F Alq U 1]
iff
(1) Njyp 2541 F T (by (*)) or
(2) Niypajpq F @ Nippbigg B (by (%9),
Ma; F Al[q U], NyaF AlqUr] or
(3) Nipp2i41 F @ Nippbigy Fa(by (%),
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where in both M, ; and Nj; 2, EPL A 2Py A 2Qp A -Q, A R, b,
F —"Pl A PQ A —.‘Ql A ﬁQQ A —‘R) Ci+1 E —‘Pl A —‘PQ AN Ql A —’QQ A —'R, and di+1
F-P; APy A QA Qa A -R, and finally M;, N} are copies of M;, N;, respectively.

It should be clear that
(1) for all 1, M; 2 EE[ ((P1 U PQ) vV (Ql U QQ)) U R] and
We can also show that

(2) For any ECTL?* formula p there is a CTL formula q which is equivalent to p over
these two sequences of models. That is, for all 1 and all states s in M;,

M;sFp=gq, and similarly for N;.

(3) For any CTL formula p, with Ip| < i, Mj,a; F piff Nja; F p.

The details of the remainder of the proof follow along exactly the same lines as that of
theorem 4.2. Details are left to the reader. O

Proof of Theorem 4.4: We inductively define two sequences of models M;{,M,M,,...
and N, NyNy... such that for all i, Mya; F E[FP A FQJ and Nye; F ~E[FP A FFQ]. We show
that ECTL is unable to distinguish between the two sequences of models, i.e. for all ECTL
formulae p with |p| < i, M;,a; F p iff Nje; F p. The result follows since if E[I?QP A %OQ] were

equivalent to some ECTL formula p’ of length i then we would get a contradiction: M;,a; F p’ iff

N.c, b p' while Mya; = E[F p A FQ] and Nyc; F ~E[F'P A FQ]. We define M;, N; to have the
graphs shown below:
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We first argue by induction on |p|, that for any ECTL formula p,
(*) [(3i > Ipl ¢; F piff Vj > |p| ¢; F p] and

[(3) > Ipl d F p)iff (% > [p| d; F p)].

The basis case when [p| = 1 is obvious since all ¢; agree on the atomic propositions as do all d;.
For the induction step, we assume (*) for formulae of length I and try to show it for I4+1. Note
that the < direction is obvious. To establish the = direction it will suffice to show that if p is
of length I+1 and j > I41 then

(i ¢; E p implies Cit1 Ep

(ii) ¢;Fp and j > I+1imply ¢;; F p

(1i1 dj E p implies dj+1 Ep
1

)
)
)
(iv) dj Epandj > I+1 imply dj-l Ep

We break the argument into cases depending on the form of p. If p is of the form q A r, or mq
the argument is straightforward and left to the reader.

Case I: p = EXq. Assume ¢; E p. Note that ¢; Ep iff ¢; E qor dj F q. By the induction
assumption twice, ¢j; F qor dj4y F q. Similarly if j > lpl =1+ 1sothatj-1>1> |q we
also see that €1 F qor dj_1 E q. Thus Ci41 E p ((i)) and Ciq Ep ((ii)).

Now assume dj F p. Note that dj Epiff
(1) d;Fqor
(2) €1 Eq
By the induction assumption twice, (1) implies dj+1 E q and (2) implies ¢; F q whence de Fp

((iii)). If j > |p| = I + 1 then j-1, j-2 > |q| so by the induction assumption twice, d; ; F q and
¢.0 F Q. We conclude that d; ; F p ((iv)).

Case II: p = E[q U r]. Assume ¢; F p. Now ¢; F p iff
(1) ¢jFror
(2) ¢jFq djFr
(3) ¢ Faq, dijF g ¢y Ep
This implies
(1) ¢j4q F r (by the induction assumption) or
(2) ¢4 F O dijj Fr (by the induction assumption twice) or
(3) ¢j41 F a, diz1Fa ¢k p (by the induction assumption twice and the assumption ¢; F p)

It follows that ¢; 4 E p ((i)). If we assume that j > I + 1 then we can also argue that
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(1) djFqor
(2) ¢ Eqor
(8)dy Fp

By the induction hypothesis, (1) implies dj_1 E q and hence dj.1 Ep.Sincej > 1+ 1= |p|, j-2
> 1> |q|. Using the induction hypothesis we see that (2) implies ¢; 5 F q and hence d;; * p.
Whichever of (1), (2), or (3) obtains, we get dj-l Ep ((iv)).

Case Vip = E&oq. The proof in this case is exactly like that for Case IV.
This completes the proof of (*).

We now argue by induction on |p| that
(**) 1 > |p| implies
(a; F piff ¢; F p) and

(b;Epiff d; F p)

We break the argument into cases depending on the structure of p. The cases where p is an
atomic proposition, a conjunction q A r, or a negation —q are easy and left to the reader. We

present the cases where p is of the form EXq, E[q U r], A[q U], or E%oq.
Case 1: p = EXq: We first note that

a,FpiffajFqorb;jFq
iff ¢; F q or d; F q (by the induction hypothesis twice)

iff ¢, F p
We next note that b; F p iff
(1) a; F qor
(2) b;F qor
(3) e,  Fyg
and that d, F p iff
(4) d; F qor
(5) ¢ F g

Now (1) implies ¢; k q (by induction hypothesis) which in turn (by (*)) implies (5). Also, (2)
implies (4) (by induction hypothesis) and (3) coincides with (5). Thus b; F p implies d; F p. For
the converse, note that (4) implies (2) (by the induction hypothesis) and (5) coincides with (3).
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iff d F p

Case 4: p = El%oq. Observe that a; F p iff
(1) a;Fqor
(2) b;Fqor
(3) e  EP
and that ¢; F p iff

(4) ¢;Fqor
(5) d; Fqor
(6) ¢,y F D

By the induction hypothesis twice we see that (1) is equivalent to (4) and (2) is equivalent to (5).
We conclude that a; F p iff ¢; F p.

Next observe that by k p iff
(1) byFqor
(2) a;, F qor
(3) e FP
and that d; F p iff
(4) d;Fqor
(5) ¢ FP
(1) is equivalent to (4) by induction hypothesis. If a; F q then ¢; F q by induction hypothesis and
then ¢; ; F q by (*). Thus, ¢;; F p and (2) implies (5). It follows that b, F p iff d; F p.
Case 5: p = E%}oq. The exact same argument as for Case 4 applies.
This completes the proof of (**) and of the Theorem 4.4. 0

Proof of Theorem 4.5: We inductively define two sequences of models M;, My M;,...
and N{,Ng,Nj,... such that for all i, M;a; F EIO;‘OP and N, F -nE%P. We show that CTL is
unable to distinguish between the two sequences of models, i.e., for all CTL formulae p with
Ipl<i, M;a;Fp iff Nj,a; Fp. The result follows since if E%OP were equivalent to some CTL*
formula p, it would also be equivalent to some CTL formula p’ of length i. But M;,a, EFpiff

0 o0
N.c; F p’ contradicting the fact that M;a; F EFP and Na; F —EFP. (Since a;b; appear only
in M; and ¢;,d; in N;, we omit the models from our assertions.)
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Next define X" = {x! | x € X'}, Using the observations that no state occurs twice along
any path, and that two paths have a state in common iff they have a common prefix including
the state, it is easy to check that X is fusion closed and suffix closed. Let M" = (T" X" L’).
Then we can argue by induction on the length of formulae q, that for x € X', M'x,y F q iff
M" x,y k q. Thus, M" is a fusion closed and suffix closed model of p.

If X, is not countable, a similar argument goes through (although we seem to need the
well ordering principle - which is equivalent to the axiom of choice - to order the paths first). O
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