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Abstract - This paper describes the program-representation language MIRROR. MIRROR has been
designed to support automatic, high-level reasoning about programs of the kind that must be done by an
intelligent help system. MIRROR facilitates such reasoning in two important ways. It makes program,
structures as static as program logic allows.  And it makes the structure of a program correspond as
closely as possible to the structure of unportant objects and operations in the problem domain. It also
provides mechanisms for indicating the relationships between program components and their
corresponding concepts in the problem domain.
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1 Introduction

There are ~ome questions about a program’s behavior that are best answered by looking at its code
seldom used branches of code or unplanned interactions of values lie undocumented anywhere else
However, even when source code s avalable it s difficult for anyone other than the author to understand
We ure building a system that will look at code and answer questions about the program’s behavior. This
syvstem should be able to serve as w user-ortented help facthity that is far mwore flexibie than other such

facilities, whose only ability 1s to parrot back cauned responses, usually triggered by simple kevwords,

For such a system there are two critical 1ssues — how to represent the target program and how to
answer questions about its behavior. In this paper we look at the first of these issues, and describe a help
program  language (called MIRROR), discuss it's features, and cousider the implications for source
prograimn languages such that programs in these languages could be mechanically translated into MIRROR.

The specific system that has motivated much of this work is a help system [Rich 82 for the document
formuatting program Seribe [Reid 80].) Many of the examples in this paper will be drawn from that system.

2 Program Representations

A given program can be represented imm many different ways, depending on how it is used (see Figure 1)
The code read and written by humans s in the source language, and the other versions are gotten by a
{semi) mechanical translation frem the source program, although admittedly programming environments
blor this distinction. 10 s necessary to ensphasize that MIRROR 15 not (necessarily) o language a human
would read or write. Several properties, particularly some that introduce redundancy in the
representation, make the language p(mrl.y suited for hunians to write.  Other properties make it poorly
satted for execu ton. MIRROR is, however, a good candidate for replacing the question mark in Figure 1.

1 he reasons for this will be explained below.

Task to be Done Representation into Which the
Program is to be
Transformed
Fxecunted directly Machine code
Interpreted Symbolie program tree +

symbol table

Fxammed and modified Indented format +
anxiliary mformation such
as name reference charts

Proved correct Verification conditions

Used to answer questions ?
about itself

Figure 1: Uses of a Program and the Representations Required

1()”,” appreaches to the design of intelligent help facilities are desciibed in [Kehler 80, Genesercth 78, Shariro
75, Wilensky 82},



3 Answering Questions from Code

The main method that is avatlable for answering questions from code 15 program slicing [Weiser 81]. and
the gonl of MIRROR is to make this as easy as possible. The question-answering process can be sphit into

three parts:
1 Find out where to start the shiee
2. Find the slice
3 Find out how to explain the results of the slice

The wivond step of this process has led to the consideration of how the syntax and semantics of existing
cource languages can be simplified (while maintaining equivalent overuit expressive power). The other two
steps provide the motivation for allowing MIRROR programs to be annotated with information that will
allow e guestion answerer to performr the necessary mappings between objects in the problem dommn
and objects (sueh as variables and procedures) within the MIRROR program.

The following general properties must hold for a program representution that is to be used to answer
questions about the program’s behavior:

o It must be possible to determine a great deal about a program’s hehavior from a static
analysis of its code,

e It must be easy to inilch code segments and the conditions under which those segments will be
executed with tiupertant components of the questions o be answered.

e [t must be possible to explain the behavior of an individual program seginent in a single
paragraph of reasonzble length and intricacy. )

e All code in the representation should be relevant to the domain of the program and of
potentinl interest to a user. The representation should include as little *housekeeping® code us
pussible.

These senerad goaks transhe into the following spectfic features that are importast in the representation

language:

e Support  for modularity  that reflects 2 top-down  decomposition of the program  into
manageable modules, fromn which we can infer what code to explain together, and what

abetractions are reasonahle.
o [vping mechanisms that help to coustrain the search for particular objects of interest.

o Abhstract data types. beeause routines connected to particular data types deserve different
explanations than higher-level conirol code.

e Stuile and dyvnamic binding of tvpes and sizes of variables, as appropriate to the soluiion
instead of the programming system, to eliminate ®housekeeping® code such as system
dependent bounds checking. We call this logical binding time.

¢ Absolute nunimization of aliasing, so that the use of program objects can be determined from
a static analysis of specific code segments, regardless of how deeply nested the call to that
code may be.

+

e I'lattened {nnnested) conditionals, so that the conditions under which a particular piece of code

witl be exeeuted can be determined with as little search as possible.

e Separation of observing procedures {which do nothing but return values} from acting



creccdurcs owhich may iy system structures) so that the set of situations an whieh =l

i

ctfos s need o be constdered s as restricted as possible

o Vality to return an arbitrary nuisber of values from a fanction so that these vialues can e
casily reconnzed when they are logically necessary

control structures, such as Joops, whose defimtions correspond 1o the types that are ueed <o
that dogieal control flow s as explicit as possible

o ivlormatne procedure headings, because  these headings summnarize the functon of the

procedure amd o be weed withont an exsinination of the procedure body .

e Lunotitons that deserdee cach adentifier so that mappings from question (o code wnd code 1o,

doswer van be done

4 The llelp Representation Language MIRROR

MIREOR huas been designed to meet the eriteria described above. MIRROR is stimilur to GLISP [™ovik
~0thoueh mere restricted. An example of a piece of 2 MIRROR program is shown in Figure 30 1a th-
sectiog, specifie barzunge features that are motivated by the general requirements outlined above will 1
descuibed These requirenments have much m o conumon with good prograuming style and easy venfication
Fhus some MIRBOR features will not appear to be new: others however are

4.1 Modularity and Control

1.1.1 Encouraging Modularity

Flie unportance of apood decomposttion of a large program into a set of modiles exch of manageable
stre = now well understood . although the eriteria to be used in forming that decomposition may vary

Harmas O Hogood exphudions are gong to be generated from code, then the folowing three criterin

cre ol pardnount naportance:

'

e | orvel of Jdetiad
Sy
e Uompienity

The Dt of these s welb aceepteds 1t sayvs that o progeam should be divided into modules that COrrespon il
to stemliont lovelb of absteaction o the problem itself. These abstractions ean then be explored an

coneratins vplaations The second of these ertteria says that a prograon should be davided into mrodules
that e snadh enongh that aodesenption of o single module’s behavior can form the bania of Sl
cotierent envplanatien This sheuld be able to be done in one very short paragraph. The third criterion
ways thiat the structural complensty of o module should not be so great that o siimple, upderstandable

explanation cannot be produced.  In the next section, the form of a2 MIRROR procedure that satisfics
these eriteria s deseribed,

4.1.2 A Production Rule System

A MIRROR prove ture as o production rule system (possibly consisting of only one rule). The mugor
advantage of s s that a production rule makes an explicit association between eacl code segmen
(which formes the right hand side of a rule} and the guards {which form the left hand side of the rule) thist

st be tree o order for the seguent to be exeented. The guards consist of a4 set of conditions conbined



into 3 single boolean expression. The action part of each rule is either a sequence of four or fewer sunple
clatements or it is a single loop with an optional initialization and for closing statement. Thus the form of
a4 production rule system is similar to that of the LISP COND statement. The simple case where there are
no guards on a code segment is represented as a one-rule production system. The common if-then-else
construct is represented as a two-rule production system. Il there are more than two paths, they can be

represented by as many rules as necessary and each will be at the same level.

A complete definition of the form of a MIRROR production rule system 1s given in Figure 2. This
structure makes three guarantees to an explanation systern that must reason about a MIRROR program:

1. The conditions under which a piece of code will be executed are clearly marked.

2 Becanse loops are difficult to explaiu, there can be no more than one per right hand side.
Thus there is a limit on the complexity of each action.

3. No action will be too large to be explained in a single paragraph.

These guarantees support the modularity criteria described in the last section.

< production system> = (RULES <production sct>)

< production set> = <condition action pair> | <condition action pair> <production set>
<condition action pair> == (<hoolean expression> <action part>)

action part> = <loop> I <statement sequence>

<statement sequence> n== <simple stmt> <simple stmt> <Isimple stmt> <simple stmt>

<simple stmt > == <assignment statement> | <procedure call> | ¢

Figure 2: The Form of a Production Rule System
Figure & shows an example of a three-rule system that appears in the MIRROR version of Seribe. It s
the procedure that parses input from a user’s file. It considers three cases: the next character is the
character that signals the beginning of a command; the next character indicates an end of file; or the next
character s an ordinary text character, We use T (for true) as a shorthand for the expression that s the
conjunction of the negations of alt of the previous guards. Thus it is only satisfied if none of the others is.

4 order to stmphify the semanties (and thus the explanation) of the guard notion, we require that the set
of guards contained in a particular production system be mutually exclusive. Notice that this restriction
makes AMTRROR different from other guard-based systemns, such as guarded commands [Dijkstra 78] This
restrictionr means that although the set of guards must be tested in some order at runtime, the behavior of
the prezram ean be determined without knowing what that order is. It is in general undecidable whether
a given set of guards is mutually exclusive. But in most real programs, the logic causes them to be so.
Sometimes to guarantee this it is necessary to add additional terms to the guard. An example of this is
shown in Figure 4. Notice that in the revised version, the conditions under which statement B is executed
can be determined locally by examining its guard. In the original version, doing so would require
examining the guards of all of the preceding statements. Notice that the use of T (or true) as 2 guard
does not vielate this mutual exclusivity requirement since it is interpreted not as ‘T but as n shorthand for
the conjunction ol the negations of all of the previous guards. '
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(ACTING-ROUTINE
(PARSE-INPUT
(FORMALS (NEXT-CHARACTER (CHARACTER BY-VALUE)
(ANNOTE (TEXT Next input character ))))
(LOCALS (NEW-OBJECT OBJECT (ANNOTE (TEXT Next file object)))
(STUP BOGLEAN (ANNOTE (TEXT Any more objects?)))))
(RESULTS New-0BJECT STOP)
(ANNOTE (TEXT switch to correct routine for commands or text))
(RULES ((COMMAND~CHARACTERP NEXT-CHARACTFR)
(SKIP~COMMAND-CHARACTER)
(ASSIGNQ NEW-OBJECT (PARSE-COMMAND))
(ASSIGNQ STOP NIL))
( (EOF-CHARACTERP NEXT-CHARACTER)
(ASSIGNQ STCP T))
(T (ASSIGNQ NEW-OBJECT (PARSE-TEXT))
(ASSIGNQ STOP NIL)))))

Figure 3: A MIRROR Production Rule System

Original production system:

(RULES ((NULL X0 &
((LISTP X) B)
((ATOM X) CO))

Revised production system:

(RULES ((NULL X) A)
((AND (NOT (NULL X)) (LISTP X)) B)
((ATOM X) ©))

Figure 4: Transforming Production Systems

4,1.3 Separation of Observing and Acting Procedures

The use of production systems to attach guards to code segments forces a clear-cut distinction bhetween
observing procedures {which may return values but must have no side-effects) and acting procedures
(which may both return values and have side effects). Only observing procedures may occur in the guard

portion of a production. This 1s important for Lwo reasons:

e It reduces the space that must be searched by the matcher when it is trying to hind code
segments in which a particular action may occur. Only the action parts of each production
system nnist be considered.

o It sunplifies the search for the conditions under which a matehed piece of code will bhie
executed, I actions could oceur in guards, then it would be necessary to know exactly the
conditions under which a guard is tested in order to determine when the action it produces will
oceur.  This chminates the simplicity that s gained by requiring guards to be mutualiy

exclisive.

Of course au alternative to this distinction would be to eliminate side effects entirely and take a totally
functional approach to programming (such as that described in [Henderson 80]). We do not do that
because there are situations in which that increases the difficulty of explaining what is going on.  The
reason for this is that functional programming obscures the distinction between modifying existing objects
and creating new ones.  This distinction has always been recognized as an important one from an
unplementation point of view, but it s, in fact, also important for the understanding of a program’s
logical strueture.  As an example, consider a piece of Scribe code that, as a result of & command in the

urer's e, updates the system state vector in such a way as to cause later output to be double spaced.



The state vector existed prior to the execution of that code. After execution of the code there i< a new
value .n the vector so we could simply view it as a4 new value that was produced by the code. 3ut there
are two other important things that are also true. First, the previous value no longer exists. And second,
the new value is to be used everywhere in which the old value would previously have been used. (A nother
way to look at this is that the new value has the same name as the old value) Both of these facts are
obvious if we view the code that was executed as having had the side effect of modifying the state vector,
while if we view the code as having created a new object, these facts can only be derived from 2 global
anahvsis of the program. This same reasoning can also be applied to the modification of nonglobal objects
that are passed to procedures as parameters.

Because of this need to represent the transformation of one value into another, MIRROR allows the
modification of global variables (see Section 4.2.7) within acting procedures and it allows  acting
procedures to modify the values of their parameters (see Section 4.2.8). For an example of the use of such
a modification to an input parameter, see Figure 7(b).

The argument given above on the importance of allowing the explicit modification of existing structures
within acting procedures should not be interpreted as an argument against the use of functionn vulues.
These values are important as they represent new objects that have been created. MIRROR allows both
observing and acting procedures to create new objects and thus to return values.

MIRROIs ban on side effects in the left hand side of a production rule turns out not to he as restrictive
as it may at first seemi. If one examines existing LLISI” programs, in which the COND statement functions
very much like the MIRROR rules, one sees that the majority of the cases in which side effects occur in
the conditional part fall into one of the following three classes:

‘a. The side effect 1s 1 the first condition element. What is intended is that the side-effect-
producing action should be performed and then the condition elements should be checked.

b The side effect s in the last condition element and the corresponding action element is emnpt v,
What has happened s that the actual final condition element, *otherwise®, has been omitted
and the corresponding action has been shifted into its place.

¢. The side-cffect is a strictly local SISTQ performed for efficiency. Although such side effects
are not permitted in the MIRROR representation of a program, they may occur in the
executable representation. If, however, the result that s being saved in the SETG s
important in the context of the problem domain, it should be computed outside the guard and
given a nune by which the explanation system ean refer to i,

Pigure 5 shows an exampie of each of these classes of side effects. Figure 6 shows how each  of these
programs will be represented i MIRROR.

4.1.4 Returning Muliiple Vilues from Procedures

As was just deseribed above, MIRROR views values returned from procedures as representing objects
created by the operation of those procedures. In order for it to be clear exactly what has been created, it
is important that the values that are returned reflect the created objects as closely as possiLle. To allow
this, it is unportant that a procedure be allowed to return multiple values if it creates multiple objeets. If
this is not allowed, the procedure must either return a single artificial value that is constructed t< contain
the real values, or 1t must use modifiable parameters to return all but one of the created values, thus
obscuring the distinction between modified and created values. As an example of the need for this
eapability, consider a game playing program that uses the recursive minimax procedure [Rich 83] to search

a tree of game positions.  This program is given as its input a node representing a particular game



(DEFINEQ (COMPUTE (LAMBDA O
(PROG (IN)
(COND ((ZEROP (SETQ IN (READ))) (RETURN 0))
({(GT IN 0) (RETURN (A)))
(T (RETURN (BN

(a)

(DEFINEQ (COMPUTE (LAMBDA ()
(PROG (IN)
(SETQ IN (READ))
(COND ((ZEROP IN) (RETURN 0))
((GT IN 0) (RETURN (A)))
((RETURN (B))2)))))

()

(DEFINEQ (COMPUTE (LAMBDA (X Y)
(PROG (TEMP)
(CON> ((GT (SETQ TEMP (PLUS X Y)) 0)
(RETURN (A TEMP)))
(T (RETURN (B TEMP) DN

(@
Figure 5: LIS CONDs with Left-Side Side Effects

configuration.  The program must return two valdes, the move to be made next and a number
representing the backed-up evaluation of the merit of the input node.

MIBROR allows multiple values to be returned from procedures.  To make the use of these values
straightforward, it also provides a multiple assignment statement, which is a version of the standard
MIRROR assignment statement, ASSIGNQ, discussed in more detail in Section 4.2.3. Thus the call to the
game program described above would be written as V

(ASSIGNQ
(VALUE PATH) (MINIMAX NCDE))

This will result in VALUL being set to the first value returned by MINIMAX and PATH being set to the
second.

Multiple-valued procedures can also be composed with other procedures that require multiple nput
parameters, 8o therr use is not restricted to ASSIGNQ statements and thus to the action parts of

prosras,

4.1.5 Looping Structures and Recursion

One part of the control structure of a program is described by its modularity. The other is described hy
control constructs such as looping and recursion. MIRROR provides such structures and depends on
programmers to choose those that most clearly deseribe each program operation. Both iteration and
recursion are allowed, since there are situations in which each is the easiest to explain. Figure 7 shows one
example of cach

The prograan of Figure 7{a) can be deseribed as follows:

If there is one disk, move it to the goal. Otherwise, move n-1 disks to the temporary peg,
move the remaining disk to the goal, and then move the n-1 disks to the goal.



(ACTING-ROUTINE
(COMPUTE
(FORMALS)
(LOCALS (IN INTEGER (ANNOTE (TEXT Next integer)))

(ANS INTEGER (ANNOTE (TEXT New maximum integer))))
(RESULTS ANS)
(ANNOTE (TEXT Compute based on difference))
(RULES (T (ASSIGNQ IN (READ))
(COMPUTEL IN)))D))

(ACTING-ROUTINE
(COMPUTEL
(FORMALS (INPUT (INTEGER BY-VALUE)
(ANNOTE (TEXT New value)))))

(LOCALS (ANS INTEGER (ANNOTE (TEXT Answer))))
(RESULTS ANS) :
(ANNOTE (TEXT Compute function))
(RULES ((ZEROP INPUT) (ASSIGNQ ANS 0))

((GT IN 0) (ASSIGNQ ANS (A)))

(T (ASSIGNQ ANS (B)))))))

(a and b)

(ACTING-ROUTINE
(COMPUTE
(FORMALS (X (INTEGER BY-VALUE) (ANNOTE (TEXT First value)))
(Y (INTEGER BY-VALUE) (ANNOTE (TEXT Second value))))
(LOCALS (ANS INTEGER (ANNOTE (TEXT Answer))))
(RESULTS ANS)
(ANNOTE (TEXT Compute based on difference))
(RULES ((GT (PLUS X Y) O
(ASSIGNQ ANS (A (PLUS X ))))
(T (ASSIGNQ ANS (B (PLUS X Y)))))))

()
Figure 8: Lelt-Side Side Effects Removed

The program of Figure 7{6) ean be deseribed as follows:

“io through the set, checking each element to see if it is bigger than the current maximurn.
I 1t s, then make it the current maximum,

Although both of these problems ean be solved both iteratively and recursively, each has one relatively
more natoral soluties,

4.2 Data

in order to be able to generate explanations of a program’s behavior, it is important to understand the
role of each object in the program. At one extreme, each object is a separate entity, and specific
imformation about it must be recorded. For example, the Scribe variable LMARG contains the size of the
left margin. At another extreme, all objects are the same. They are locations in memory. There is an
intermediate level, though, at which objects can be grouped together with other objects on which the same
operations can be performed. Objects within a group are very likely to affect each other, for example by
assignment. Typing mechanisms provide a way to define these groups. Once these groups arc defined,
they provide a way to constram the search of the question answerer to those objects that may influence
the objects with which the question is directly concerned. The more detailed information about individunl



(ACTING-ROUTINE
(TOWER-0OF-HANOI
(FORMALS (START-PEG (STRING BY-REFERENCE)
(ANNOTE (TEXT Starting peg)))
(GOAL-PEG (STRING BY-REFERENCE)
(ANNOTE (TEXT Goal peg)))
(TEMP-PEG (STRING BY-REFERENCE)
(ANNOTE (TEXT Temporary peg)))
(NUMDISKS (INTEGER BY-VALUE)
(ANNOTE (TEXT Number of disks to move))))
(LOCALS)
(RESULTS)
(ANNOTE (TEXT Solve towers of hanol problem))
(RULES ((EQ NUMDISKS 1)
(MOVE START-PEG GOAL-PEG))
(T (TOWER-OF-HANOI START-PEG TEMP-PEG GOAL-PEG (MINUS!1 NUMDISKS))
(MOVE START-PEG GOAL-PEG)
(TOWER-OF-HANOI TEMP-PEG GDAL-PEG START-PEG (MINUS! NUMDISKS))) D))

()

(OBSERVING-ROUTINE
(FIND-BIGGEST
(FORMALS (X (SET-OF-INTEGFRS BY-VALUE)
(ANNOTE (TEXT Set of elements))))
(LOCALS (MAX INTEGER (ANNOTE (TEXT Maximal element))))
(RESULTS MAX)
(ANNOTE (TEXT Find the maximal integer in the set))
(RULES (T (LOOP
(INIT (ASSIGNQ MAX 0))
(BODY (FOREACH I IN X DO (CHECKBIGGEST X MAX))))))))

{ACTING-ROUTINE
(CHECKBIGGEST

(FORMALS (ELEM (INTEGER BY-VALUE)

(ANNOTE (TEXT Next element to check)))

(MAX (INTEGER BY-REFERENCE)

(ANNOTE (TEXT Maximum so far))))
(LOCALS)
(RESULTS)
(ANNOTE (TEXT Compare maximum against next element))
(RULES ((GT ELEM MAX)

(ASSIGNQ MAX ELEM)))))

®

Figure 7: Good Uses of Recursion and lteration

objects 1 also important to the question answerer, since it is needed to generate specific explanations in
Enghish  DBut it cnonot be used effectively in the actual process of finding an explanation.

A data type in MIRROR consists of a domain (2 set of values) and a set of operations. Types are
defined similarly to the way clusters in CLU [Liskov 81} or packages in ADA [Ichbiah 80] are defined. Al
variables in MIRROR must be declared statically and their types must be specified. In addition to the
usual information provided in a declaration, each MIRROR variable has associated with it an annotation,
which provides the Iink between that variable and an object in the task domain. MIRROR is strongly
typed. although coercion 15 allowed in o few special cireumstances, as outlined below.  All of these

allowuble coercions are free coercions [Geschke 77], since they involve no computation.
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In addition to these general capabilities, which are currently implemented by building MIRROIZ on top
of GLISP [Novak 82], MIRROR allows the following specific typing mechanisms.

4.2.1 Index Types

Index types signal to the explanation system that a particular variable will act as an array index.  This
knowledge 1s useful when a program is calculating with indexes, but the array that will be indexed is not
directly apparent Rather than searching for the actual access, the explanation system is alerted to it
direc:tly. To see the need for this, consider the problem of generating an explanation for the program
shown in Figure 8 1t s a QUICKSORT routine, taken from [llorowitz 76}, whose only parameters are
two integers. If m and n are declared as index types, then the explanation system will know that it is not
really integers but rather pileces of an array that are being manipulated.

procedure QSORT(m,n)
ifm<n
then {1 <-m; j <-n + 1; key <= k[m]
loop
repeat 1 <~ i + 1 until k[i] > key;
repeat j <~ j - 1 until k[j] < key;
if 1 <j
then call INTERCHANGE(r[i]l,r[j])
else exit
forever
call INTERCHANGE (r[m],r(j1)
call QSORT(m,j - 1)
call QSORT(] + 1, n)]
end QSORT

Figure 8: A Hard-to-follow Program

An index type is defined in terms of an underlying type and a set of array types. The underlying type
must be an cnumerated type, such as integer.  All operations on the underlying type are automatically
overloaded for the mdex type.  Associating with an index type a set of array types (those for which the
index type may be used) provides useful information without restricting the use of the type. Notice that
it would help an explanation system even more if it knew exactly which array each index were to be used
with. But in order to do so, it would be necessary to prohibit such constructs as the following, in which
the index 1 is used to reference one array to choose a position and then to access a second array to do
something in the chosen position:

I :=1,

WI£I§NAA[I]#XW
I =1+ 1;

IF 1 > N THEN ERROR

ELSE B[1] :=Y;

The goal of ndex types 15 to make it obvious when a computation is being done whose purpose is the
mampulation of an array component.  Of course, it is also possible that an essentially numeric
computation s bemng performed but the result must also be used to access an array element. This can be
done by computing with an integer type and then doing an explicit type conversion to generate a value of
an index t(yvpe.  This conversion corresponds to the idea that the positive integers can be viewed as
ordinals and that an ordinal can be viewed as a function that can be applied to any linear structure to
extract an individual element. Thus there can also exist conversion functions from the integers to pointer
(or access) types apphied to linear lists.
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4.2.2 Built-In Structured Types

Arrays are simbie, both to mmplement and to deseribe. Other common structured types, such as lists,
are more complex.  The design of the structured type mechanisms in MIRROR is motivated by the

following two observations:

Lo Addresses (eg pointers) are to dita structures what gotos are to control structures. They are
completely general structures that allow arbitrary interconnections among program objects.
But beeause of this, programs that use them are difficult to understand.

2 There 15 a fundamental distinction between the use of an address to specify the next picee of a
structure that happens not to be stored contiguously (this is called a link in MIRROR) and the
use of an address to point to (select) a piece of a structured object (this is called a pointer in
MIRROR). Arrays do not need links but they do need something corresponding to pointers
{which are provided by index types). Linked lists need both.

Beeause of the difficulties posed by gotos, most current programming languages provide a set of higher-
ievel control structures, such as loops, that make the need for gotos rare and confined only to those
circumstances in which the required coutrol structure cannot be expressed using the higher-level structures
that are provided. MIRROR does this with control structures and it also does it with data types. It
provides, as bullt-in types, the common structures list and set. Others maybe added if they are required.
Unfortunately, though, we must assurme that no matter how rich the built-in collection is, it will not
always be adequate. In fact, this appears to occur more often with respect to types than it does with
respect to control. When it does occur, programmers must manipulate addresses explicitly. Programs
that do this are wore difficult to explain than those that do not, but this is to be expected, for two
reasons:

e They are usually more complicated.

e They are using structures that the explainer, who does know something about the buili-in
types, does not already know about.

MIRROR provides two address types, links and pointers. Neither may be used in an unrestricted form:
instead they must be tied to the speeific type to which they may refer. Figure 9 shows the use of links
and pomters to define a type binary tree. Two data objects are to be stored at each node of this tree: an
integer and a pornter to an ebject in an externally defined data base. Links are used to describe the way
that the strueture itsell is constructed. The practical significance of this distinction between pointers and
links s described in the next section. It can be summarized though by saving that the tree is all the
objects that can be rcached by starting at the link that defines it and following all accessible links.
Objects that can be reached by pointers, on the other hand, are not part of the tree itsell, although the

tree contans references to them,
4.2.3 The Assignment Operator
In MIRROR, assignment is done with the ASSIGNQ operator. The statement

(ASSIGNQ A B)
always means copy B into A, This differentiates MIRROR from many languages.

When an assignment statement in any language is executed, something is copied from one place to
another. Sometimes what is copied is the value of interest, and sometimes what is copied is a pointer to
such a value. In languages, such as PASCAL, in which user programs manipulate pointers explicitly, it is
generally clear which s happening. Data types thut are implemented using structures with pointers to



(TYPE :
(BINTREE (LINK TO TREENCDE)) (ANNOTE (TEXT Binary tree)))
{TYPE
{TREENCDE (RECORD
(VALUE1 INTEGER (ANNOTE (TEXT First value)))
(VALUE2 DB-POINTER (ANNOTE (TEXT Second value)))
(LCHILD BINTREE (ANNOTE (TEXT Left child)))

(RCHILD BINTREE (ANNOTE (TEXT Right child)))))
(ANNOTE (TEXT Node in a binary tree)))

(TYPE
(DB-POINTER (POINTER TO DB))
(ANNOTE (TEXT Pointer to a database record)))

Figure 8: MIRROR Definition of the Type Binary Tree

them (such, as for example, a binary tree implemented as a linked structure) are not copied, while all
other data types {e.g. integers) are. In languages, such as LISP, in which user progrums do not explicitly

manijpulate pointers, 1t 1s much less clear whether objects or pointers are copied on assignment. In LISP,
for example, :

(SETQ A B)
results in copying if B has a number as its value but it does not if BB has as its value a hst.

Whether or not copying is done is cerucial to an understanding of a program’s behavior.  This is
eparticularly true since failure to copy creates aliasing, which must be considered when the question
answerer tries to match the objects with which it is concerned against specific named objects in the code.

The goal, in the design of MIRROR, is to make the copying/not copying distinction clear in two respects:

e It should be elear which s occurring from @ static analysis of & program.

This can be done
easily since the types of all variables must be declared.

o The distinction between copying and not copying should be made on semantic rather than
implementation grounds. Whether the assignment of one binary tree to another should involve

copying should not be decided by whether the tree happens to be implemented as a linked
structure or an array.

1A and Boare declared to he of type binary tree (as defined in the last section), then the ASSIOGNQ
statement shown above will cause the tree structure to be copied using the following algorithm:

e T'o copy an object of any type other than hink (c.g.

. Integer, pointer), sitnply copy the value
dircetly

e To copy an object of type huk. recursively copy the object that is hnked to, then, in plice of
the ongmal ok, wsert a link to the newly copied object.

This means that all the tree structure, which is tied together with links, will be copied. But the duta

values stored in the external database will not be copied. Just the references to them (the pointers) will
be copred.

It P and Q are declared to be of type pointer to bintree, then the statement

(ASSIGNQ P D
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will copy the pomter contatned i Q mto P But no tree structure will be copied. Thus we have made the
key distinction between objects that are trees (even though they happen to be implemented with
addresses) and objects that are mdexes into trees (which are also implemented with addresses).

4.2.4 Augmented Types

Many functions that normally return values of one type may, on occasion, return special values that are
not of that type. For example, a RIEAD function that is expected to returu an integer may also return the
special value FOF. To support this, MIRROR allows the definition of augmented types. An augrnented
type’s domain s equal to the domain of another, already defined type (called the base type) plus one or
more special vidues. Al of the operations defined for the base type are defined for all clements of the
augimented type that are also present in the base type. The program must check to make sure that these
operations are not called with any of the special values. Coercion from the augmented type to the bhase
type is allowed subject to the same restriction.

Figure 10 shows an example of the use of an augmented type to allow a function to test for end-of-file.
Note that although the type of IN is the augmented type FILE-INTEGER, the type of ONE is simply
INTEEGER. This 1s allowed since the code of PROCESS will prevent PROCESSONE from being called
when IN takes on the special value EOF.

(TYPE
(FILE~INTEGER (INTEGER A EOF))
(ANNOTE (Text Range of values from input file)))

(ACTING-ROUTINE
(PROCESS
(FORMALS) .
(LOCALS (IN FILE-INTEGER (ANNOTE (TEXT Next input from file))))
(RESULTS)
(ANNOTE (TEXT Read integers from file until done))
(RULES (T LOOP
(INIT (ASSIGNQ IN (READ)))
(BODY (WHILE (NE§ IN EOF) DO
(PROCESSONE IN)
(ASSIGNQ IN (READ))))D))

(ACTING-ROUTINE
(PROCESSONE
(FORMALS (ONE (INTEGFR BY-VALUE)

(ANNOTE (TEXT vValue to be processed))))
(LOCALS)

(RESULTS)
(ANNOTE (TEXT Process one integer from file))
(RULES (T .. .20))

Figure 10: Using an Augmented Type

The use of "logical® augmented types is common in untyped languages such as LISP (in which the most
common =pecial value is NIL). By allowing the declaration of augmented types, MIRROR permits the
flexibihity that these types allow without sacrificing the static availability of type information.



4.2.5 Union Types

In many problem domuins, the assignment of values to type classes is not best done using only 2 single
level, Inetead it s sometimes logical {and thus easier to explain} to define a type as the union of twa or
more other types. Whenever a union type appears, it must be part of a structure that contains nt least
one other component that disambiguates the union type. Thus union types are similar to variant records
in Pascal [Wirth 74}

An example of the use of a union type in the Scribe domain is the following. A user of Seribe may
define an environment {such as letter body or enumerated list) by giving an environment name andd a list
of attribute vatue pairs that define what will happen inside the environment. Scribe needs an internal
structure in which to represent this definition. The MIRROR declaration for this structure is shown in
Figure 11 (¢}, It says that an environment-definition consists of a list of two elements. The first, called
name, is of type string. The second, called attrs, i1s a list of objects, each of which is of type attribute-
value-puair.

(TYPE ,
(ENVIRONMENT-DEFINITION -
(RECORD
(NAME STRING (ANNOTE (TEXT Environment name)))
(ATTRS (LISTOF ATTRIBUTE-VALUE-PAIR)
(ANNOTE (TEXT Modifications))))
(ANNOTE (TEXT An environment definition))))

(a)

(TYPE
(ATTRIBUTES

(ENUMERATED LEFT-MARGIN RIGHT-MARGIN JUSTIFICATION FLUSHLEFT. . )
(ANNOTE (TEXT All attribute names))))

(TYPE
(VALUES

(UNION HORIZONTAL-DISTANCE VERTICAL-DISTANCE INTEGER BOOLEAN NIL)
(ANNOTE (TEXT Possible value types))))

(TYPE
(ATTRIBUTE-VALUE-PAIR
(RECORD
(ATTR ATTRIBUTES (ANNOTE (TEXT The attribute name)))
(VALUE VALUES (ANNOTE (TEXT 1It’'s value))))
(ANNOTE (TEXT An attribute value pair))))

®)

Figure 11: The Use of a Union Type

But now a definition of the type attribute-value-pair is required. An attribute-value-pair consists of an
attribute and a value. The attributes are all strings and must come from a fixed set prescribed by Scribe.
Jut the values must depend on the attribute.  Attributes such as LEFT-MARGIN have a value of type
borizontal-distance while JUSTIFICATION requires a boolean value and FLUSHLEFT takes no argument
at all. To represent this, we must ereate a union type that includes all of these base types. Figure 11 {4}
shows the defmition of the type attribute-value-pair using this union type.

The ondy operation that as defined explicitly on a union type is assignment. Al other operations 1riust be



done by viewing the value as an element of the appropriate base type {such as horizontal-distance e} and
performing operations defined on that type. Cocrcion from the union type to the appropriate base type is

allowed.

4.2.6 Size Definitions

Iovery structured object (such as a set) has, at cach instant of run-time, a size. Sometimes this size, or
at Jeast a bound on it s known prior to run-time. For example, there are always exactly 80 columns on a
punch card, so the size of a structure representing such a card will be known at the time the program
using it s written. Sometimes, theugh, the size of a structure cannot logically be known prior to run time.
Continuing with the punch card example, for instance, consider the size of a list of cards, each
representing oue employee, to be read in and processed. The size of this structure is not known until the
cards are read.

MIRROR allows sizes of structured objects to be specified but they need not be. If the size is known, it
can be used as part of an explanation. But this is true only if the size is real and has not simply been
included because an early binding of structure size is required by the language. When such a spurious
binding is provided, it interferes with the operation of the question answerer in two ways. It makes what
is really only a forced guess appear to have the status of a fact. And it forces the programiner to write
housekeeping code to handle the situations in which the guess turns out to have been imnaccurate. This
extra housekeeping code clutters the program and so makes explanation of the program more difficult.

The ability to choose between a size specification provided at program-writing time and one that is left
open until run tinie is an example of the crucial MIRROR idea of *logical" binding time.

4.2.7 Aliasing and Global Variables

Any procedure for answering questions from code must depend heavily on the ability to match code
sepments against speeified effects. To do this, it is necessary Lo find the places in the code where o
particular objeet 15 set and used. To do this efficiently, it is necessary to be able to reason from a static
analvsis of the code, with a minimum of simulation of the program’s dynamic behavior. To do this, it s
pecessary Lo minimize aliasing.

One way o do this s to use global vanables for structures that are truly global and to restrict, s much
as possible, the use of global varmbles as parameters. 1Yor example, the Seribe system makes extensive use
of a system state vector, several input files, and several text buffers. Almost all parts of the systcrn refer
{o these structures By making these structures global and referring to them throughout the program
vonsistently by the same pame, references to them can easily be discovered by the matcher. The use of
clobal variables hus been the souree of some controversy [Wulf 73, Peterson 73, Liskov %1, But gnost of
that controversy has centered around the use of global vanables for other reasons than because structures
are genuinely globall for example. to simulate the ALGOLGO own capability. We are not suggesting that
they be used for that,

Onee the use of any nonlocal variables is admitted, the question of the number of levels of nonlocul
reference to be allowed 1mmediately arises. For many systems, of which Scribe is one, the necessary
pumber of levels is one. There are global structures and there are local ones. But logically this is not
necessary.  For example, a system could consist of several phases, each with its own set of global
structures,  Or one large phase might consist of several subparts each of which uses its own globul
structures as well as structures global to the phase. So multiple levels may be necessary. DBut many fewer
levels of nonlocal referencing are required than there are levels of procedural decomposition. T hus, in
AIRROR there is o clear-eut distinetion between blocks, which contain type deflinitions, globud varmble
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definitions, and procedure definitions, as opposed to procedures, which contain only local vartables und

code. This leads to the definition of a MIRROR program shown in Figure 12,

<program> 1= <block>
<block> = <type definitions> <global variables> <bhody >
<hody > = <block sequence> | <procedure sequence>

<block sequence> t= <bloek> | <block> <block sequence>

< procedure sequence> == <procedure> | <procedure> <procedure sequence>

Figure 12: The Form of a MIRROR Program

4.2.8 Parameters

Aliasing cannot be avoided entirely by the use of global variables. It arises whenever a new pointer is

created to an object. There are two circumstances in which this may occur:
1. Passing of a parameter by reference,

2 Execution of an ASSIGNQ statement of an existing pointer value to another pointer variable.?

Although the use of global variables cuts down on the need for parameters, parameters are necessary for
procedures that do in fact operate on more than one program object. This occurs often for local variables.
It occurs occasionally even for large global structures to which a standard utility routine such as sort must
be applied  Thus the matebing component of the question answerer must handle aliasing by tracing
calling sequences to find places where the object in which 1t is interesied is used. In MIRROR, parameters
are typically passed by value, and so no alasing arises. Parameters may be passed by reference, but they
must be marked as such in the header of the called procedure. There are two reasons why a programmer

mizht choose to pass a parameter by reference

s To avoud the overhead of copying, even though no nonlocal effect on the original objret is

intended.

e To make it possible to change the value of the object within the called procedure.

Sinee the MIRROR representation of a program is not intended to be the executable representzation of
the program. the fiest of these will not occur. Reference parameters will be used only when they are
required Tor semantic reasons. When this happens, the question answerer must handie the multiple names

that an object may have.

The fact that ahusing may also arise from the use of pointers and must also be handled properly by the
question answerer has already been discussed.

“In MIRROR, ASSIGNQ is used for all assigniments, including those done in other languages using other as<igniment
statements {(~uch ax LISP RPLACA and RPLACD).



4.3 Summary of Procedures, Headers, Parameters, and Results

Procedures are eentral to the structure of MIRROR because they allow a program to be divided into
picces i such aoway that only a small part of the program must be exwumnined during the process of
answering specific questions. Several things have already been mentioned about the way procedures are
declared and used in MIRROR. This is because those things have related to many of the other issues in
the langunge design. ln this section, a complete description of MIRROR procedures, parameters, and
results will be presented, even though some of the descriptions will duplicate statements that have alrendy

3 3
VeCT Imiadae.

Fach MIRROR procedure begins with o header that contains summary information about the objects
with which the procedure deals. The header contains four mandatory fields. The four mandatory fields
arer FORMALS, LOCALS, RESULTS, and ANNOTE. Each field contains a list of variables and their
associated types {except RESULTS, all of whose variables must be mentioned in one of the other fields
and whose type information can be found there; and ANNOTE, which contains something else). The
purpose of the header information is to constrain the question-answerer’s search o just those procedures
that might act on the objects involved in the question to be answered.

There are two kinds of procedures in MIRROR, observing procedures and acting procedures. The
former cause no side effects; they only compute values to be returned.  The later may both cause side
effects and create values. This distinction is marked explicitly in the procedure heading.

Procedures may return one or more values, representing objects created or discovered by the procedure.
Some procedures do not need to return any values; they do all of their work by modifying existing objects,
which may either be global variables or parameters to the procedure.

The FORMALS field of the procedure heading lists all of the formal parameters used in the procedure.
Each parameter must be marked exphicitly as being passed either by value or by reference.

The LOCALSN ficld of the procedure heading hists the procedure’s local variables.  The scope of these
variables s just the procedure in which they are declared. They can, however, be used in ecalled
procedures if they are passed as parameters.

The RESULTS field of the procedure heading lists the formal and local variables whose values are to be
transmitted out of the procedure. The order tn which multiple variables appear in the RESULTS field
defines the order in which the values will be returned.

The ANNOTE field of the procedure heading provides the link between the procedure and the terms
that users may employ to deseribe the operation that i1s performed by the procedure. These annotations
are used botho o find the appropriate procedure given o question and to generate approprinte Fonglich
responses given a procedure.  As deseribed in Section 4.2, similar annotations are also associnted with
vartibies in MIRROR.

5 Implications for Source Languages and Programs

We know that the choice of a particular internal representation does not completely determine the
design of the language in which people write programs. But it is recognized that some prograrmming
i;'negu:xge features facilitate the transformation into certain kinds of internal representations while other
features make the same transformation difficult. Thus we see languages such as FORTRAN and €, from
which 1t 1~ easy to geperate good executable code and languages like ALPHARD [Wulf 76} and CiYPSY
{Ambler 76]. from which it is relatively easy to generate good correctness proofs.
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Some hinguage structures are particularly unportant if programs written in them are to be casily
translatable into MIRROR. These include:

o User-defined functions and procedures.

Statie ty pe deelarations,
s A rich collection of data types to build from and a good way of building from them.

e Global varmbles.

Statie seope of names,

e Parameters transmitted by reference and marked as such.

Of course, it s not sufficient for a program to be written in a language that provides the necessary
structures; the program must use them properly. The following properties of a program facilitzate that
program’s translation into MIRROR:

o Modularity.
e Explicit use of defined types for semantically significant classes of objects.
e Separation of observing proeedures from acting procedures.

o Mutually exclusive guards in case statements or CONDs.

ven with the right language structures and an ideal program design, the transformation of a traditional
program into MIRROR will not normally be straightforward because of the additional inforination
{(particularly the annotations) that are required. Two solutions to this problem are possible:

e Transhite mto MIRROR interactively and ask for additional information as it is needed.
There 1s currently an effort underway to do this with programs written in INTERLISP.

o Urovide a good programniing environment that supports the construction of programs that are
avgmented with the additional information required for a MIRROR representation. This is
certainly the preferred approach for new programs.

8 Conclusion

In this paper we have deseribed a program-representation language that facilitates the automuatic
generation of explinations of program behavior. Although this language is not pecessarily the lang uage in
which people nitially write programs, its structure does impose constraints on the way people do write
thew programs and on the Ewguage i which they write them.  In particular, the relationship between

program structures and objects in the problem domain must be made clear by the programmer.

If the requirements muposed on programming by the need to translate into MIRROR were orthogonal to
those imposed on programming by the other uses to which programs are put (as suggested in Sec tion 2),
we would be concerned and would be forced to question the usefulness of the MIRROR approach.  But, in
fact, they are not. In particular, the requirements of MIRROR are very similar to the requireimients of
both human maintenance and automatic verification. (Compare, for example, the programming prineiples
outlined 1 [Gries 791} This is not surprising. Many of the ideas discussed in this paper {(such as logical
binding time, augmented types, and the use of the most natural control structure) apply to those other
aspects of program development as well.

There are however, some differences between MIRROR and languages that were designed primraarily (o



support formal verification. The most important of these is the admission of the address types pointer
and ok There s no question that the wmelusion of these types in the tanguage substantiadly complicutes
the fanguage's semantics. But they have been intentionally included in MIRROR. The reason is the
fellowing. PFor any program, there s an abstraction continuum, with the code at one end and the original
idea of whot the program should do at the other. Somewhere in between, there should be an exphieit
stutement {the specifications} that describe what the program should do. Verification systems must show
the correspondence between the code and these explicit specifications.  The designer of a verification
system and a language to support that system 1s allowed to choose both of those points. So it mnakes
sense to destgn o language that does not contain features that are difficult to handle; those same features
can be onntted from the specification language. If those difficult features oceur naturally in the original
idea for the program, they can be ignored since the verification system does not concern itself with
reasoning at that level or with mapping fromn that level to the specifications. In designing a progrzum to
reason in English, to users, about another program that operates in a particular problemn domain, one does
not have so much freedom. Now the system must map all the way from the code to the naturally
oceuring concepts in that problem domain. If the messy things are missing in the program, they will have
to be reconstructed, which is more difficult even than dealing with them if they appear in the code.

As an example, consider the implementation of a binary tree. If pointers are not provided, a binary tree
cun be implemented as an array. If the formal specifications for the tree are written in terms that map
easily to arrays, then verifying the correctness of a program that manipulates the tree will not be diffieult.
Jut explhiining that program in terms of a tree will be hard. For question answering, on the other hand. it
1~ not possible to hide the difficult transformations in the idea-to-specification step and then to sirnplify
the specifieation-to-code correspondence. The whole span, from idea to code, must be accounted for.
Thus MIRROR includes such things as address types, even though they complicate the semuantics of the
inngunge. beeause they simplify the relationship between the code and the ideas behind the code,
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