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ABSTRACT

Consider a network of communicating finite state machines that exchange messages
over unbounded, FIFO channels. In general, for a node in one of the machines to be live
(i.e. be executed by its machine infinitely often during the course of communication),
each machine in the network should progress in some fair fashion. We define three
graduated notions of fair progress (namely weakly fair, fair, and strongly fair), and based
on them we define three corresponding degrees of node liveness (namely strongly live,
live, and weakly live, respectively). We discuss techniques to verify that a given node is
weakly live, live, or strongly live in its network. These techniques can be automated, and
they are effective even if the network under consideration is unbounded (i.e. has an
infinite number of reachable states). We use our techniques to establish the liveness of
some real communication protocols; these include an unbounded Start-stop protocol, an
unbounded Alternating Bit protocol, and a simplified version of the CSMA/CD protocol
for local area networks.
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1. Introduction

Consider a network of some finite state machines that communicate exclusively by
exchanging messages via connecting channels. There are two one-directional, unbounded,
FIFO channels between any two machines in the network. Each machine has a finite
number of states and state transitions, and each state transition is accompanied by either
sending a message to one of the machine’s output channels, or receiving a message from
one of the machine’s input channels.

Networks of communicating finite state machines are useful in modeling [5,25],
analysis [2,3,10,11,12,13,16], and synthesis [4,7,8,14,18,31] of communication protocols,
and distributed systems. The analysis problem for these networks can be stated as
follows: ®*Given an arbitrary network of communicating finite state machines, prove that
the communications within the network will satisfy some desirable properties.® Most of
the work to solve this problem has concentrated so far on properties such as boundedness
[3C], freedom of deadlocks [26,27,28,20] and unspecified receptions [10]. These are all
safety properties [22]; i.e. they merely guarantee that nothing bad will happen during the
course of communication. In order to guarantee that something good will happen
{infinitely often), we need to establish some liveness properties for the given network. In
this paper, we identify some liveness properties for networks of communicating finite
sinte machines, and present techniques to prove these properties for such networks.

The pioneering works of Pnueli [23,24], Owicki and Lamport [22], Misra and
Chandy [20,21], and Hailpern and Owicki [15] have established the foundations for
defining and proving general liveness properties of concurrent programs and distributed
systems. Pnueli [23,24] has introduced a version of temporal logic as a tool to specify and
verify properties of concurrent programs. Owicki and Lamport [22] have used Pnueli's
temporal logic to define ®proof lattices®, that are both rigorous and easy to understand,
to verify liveness properties of concurrent programs. Later, Hailpern and Owicki [15]
have used the same temporal logic in a modular verification methodology for distributed
systems, where the intended system’s assertions are verified using the assertions of the
different processes in the system.

Misra and Chandy [20,21] have introduced a novel and modular verification
methodology for distributed systems, that is not based on temporal logic. In their
methodology, safety and liveness properties of any process in the system are defined by
three assertions. Applying a *theorem of hierarchy®, the process’ assertions can be used
to verify the safety and liveness properties of the whole system {which are also defined
by three assertions).

The above approaches outline general frameworks where many types of liveness
properties can be defined and verified for general systems. In this paper, we restrict our
attention to defining and proving liveness for networks of communicating finite state
machines. This is a significant restriction. For instance, under this restriction, there is no
need for a general purpose temporal logic to define the required liveness properties of



these networks. In fact, we feel that only one property needs to be defined and verified
for any such network, namely that some state(s) in some machine(s) in the network will
be reached infinitely often during the course of communication under some fairness
assumption. {We characterize three graduated fairness assumptions that lead to three
degrees of liveness.] These restrictions and simplifications have led to sufficient
conditions that can be checked algorithmically for any given network, and if established
for a network, can ensure the liveness of that network.

The paper is organized as follows: Networks of communicating finite state
machines are defined in Section 2. The notions of ®infinitely often® and "fairness® are
defined in terms of three classes of *fair communication sequences® in Section 3. In
Section 4, we use these fair communication sequences to define three degrees of liveness
for networks of communicating finite state machines. Alsc in this section, we discuss
some simple sufficient conditions to establish liveness. Stronger sufficient conditions to
establish liveness are discussed in Section 5. Then, in Section 6, we apply our techniques
to establish the liveness of three networks that model some practical protocols.
Concluding remarks are in Section 7.

All the results in this paper are applicable to networks with any number of
cominunicating machines. But for the sake of clarity, we carry most of the discussion on
networks with only two machines. Later in Section 8, we discuss a network example with
three machines to illustrate how to apply our results in this case.

2. Networks of Communicating Finite State Machines

A communicating finite state machine M is a directed labelled graph with two
types of edges, namely sending and receiving edges. A sending (or receiving) edge is
labelled -g {or +g, respectively} for some message g in a finite set G of messages. One of
the nodes in M is identified as its initial node, and each node in M is reachable by a
directed path from the initial node. For convenience, each node in M has at least one
outgoing edge, and the outgoing edges of the same node must have distinct labels. A
node in M whose outgoing edges are all sending (or all receiving) edges is called a
sending (or receiving, respectively} node; otherwise it is called a mized node.

Let M and N be two communicating finite state machines with the same set G of
messages; the pair (M,N} is called a nefwork of M and N. A stale of network (M/N) is a
four-tuple [v,w,x,y], where v and w are two nodes in M and N respectively, and x and y
are two strings over the messages in G. Informally, a state [v,wx,y] means that the
executions of M and N have reached nodes v and w respectively, while the input
channels of M and N have the message strings x and y respectively.

The initial state of network (M,N} is [vy,wg,E,E] where vy and wy are the initial
nodes in M and N respectively, and E is the empty string.
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Let s==[v,w,x,y] be a state of network (M,N}; and let e be an outgoing edge of node
v or w. A state s’ is said to follow s over e iff one of the following four conditions is
satisfied:

i. e is a sending edge, labelled -g, from v to v’ in M, and s'=[v’ wx,y.g], where
= ® i5 the concatenation operator.

ii. e is a sending edge, labelled -g, form w to w’ in N, and s’==[v,w’ x.g,y].

ili. e is a receiving edge, labelled +g, from v to v’ in M, and §'=[v’,wx",y], where
3
x==g.x’.

iv. e is a receiving edge, labelled +g, from w to w’ in N, and s'=[v,w’ xy'],
where y=g.y".

Let s and s’ be two states of network (M,N), s’ follows s iff there is a directed edge
e in M or N such that s’ follows s over e.

Let s and s’ be two states of (M,N}, s’ is reachable from s iff s==s’ or there exist
states s;,...,s, such that s=s,, s'==s and s follows s; for i==1,...,r-1.

A state s of network (M,N) is said to be reachable iff it is reachable from the initial
state of (M,N).

The communication of a network (M,N} is said to be bounded iff there exists a
nonnegative integer K such that for any reachable state [v,wx,y] of (M,N), |x]<K and
ly] <K where |x| is the number of messages in string x. If there is no such K, then the
communication is unbounded.

In this paper, we characterize the notion of liveness for networks of communicating
finite state machines. In particular, we argue that the liveness of such a network shonld
guarantee that ®something good® will "occur infinitely often® during the course of
communication. This is better explained by an example.

Example 1 : A sender and a receiver exchange messages over a communication
medium that may corrupt transmitted messages. The sender sends data messages to the
receiver. For each received message, the receiver responds by sending back a positive
acknowledgement (if the received message has not been corrupted) or a negative
acknowledgement {if the received message has been corrupted by the medium). When
the sender receives a positive acknowledgement, it sends the next data message, and
when it receives a negative acknowledgement or a corrupted message, it resends the last
data message. (It is assumed that data messages have sequential numbers that enable the
receiver to detect message duplications.)

This protocol is modeled by the two communicating machines M and N in Figure
1a, where M models the sender, N models the receiver, and the exchanged messages are



as follows:

Ndata denotes a next data message.
Ldata denotes a last data message.

Ack denotes a positive acknowledgement message.
Nack denotes a negative acknowledgement message.
Err denotes a corrupted message.

Notice that the medium is not modeled explicitly as a separate machine. Instead,
its effect is simulated by both M and N. So at any node in M or N with an outgoing
sending edge where a message g is sent, we added another outgoing sending edge, where
a corrupted message Err is sent. Traversing this added edge simulates the effect of
message g being sent then later corrupted by the medium into an erroneous message.

The liveness requirement of this network can be stated by requiring that node 1 in
machine M be ®reached infinitely often® during the course of communication between M
and N. (Notice that if node 1 in M is reached infinitely often, then the sender M must
have sent Ndata messages to the receiver N infinitely often.) In general, it is possible
that M and N communicate forever without node 1 being reached infinitely often. For
instance, if M persists on sending Err messages, then node 1 will never be reached again.
Therefore, to ensure that node 1 in M will be reached infinitely often, it is important to
assume that both M and N will behave in some fair fashion during their communication.
(This fairpess assumption is equivalent to the assumption that the corrupting
communication medium between the sender and receiver is *fair®. In other words, if the
medium receives an infinite number of messages, then an infinite number of them will be
delivered without corruption and an infinite number of them will be corrupted.) The
notion of fairness for networks of communicating finite state machines is discussed next.

O

3. Fair Communication Sequences

A communication seguence of a network (M,N) is a, possibly infinite, sequence
<8g,81,-.-> of reachable states of (M,N) such that sg is the initial state of (M,N), and
5,41 lollows s i=0,1,... . I a communication sequence has a state that cannot be
followed by any other state, then the sequence is finite, otherwise it is infinite.

A network (M,N) is called sa fe iff the {ollowing two conditions hold:
i. Each communication sequence of (M,N} is infinite.

ii. If any communication sequence <(sg,sy,...>> of (M,N} has a state s;=[v,w,x,y]
such that v(w) is a receiving node and x(y} = E (the empty string), then this

[}

sequence must also have a subsequent state séziv’,w’,x’,y’} where x'(y') = g,



o

and g is one of the expected messages at node v{w).

The second condition implies that if a machine reaches a receiving node where it
must receive some message to progress further then this message will appear in its input
channel in a finite time, and so the machine can progress. Therefore, a network is safe iff
each machine can "progress infinitely often®™. A network can be proven safe using the
technique of closed covers [9], as discussed later in Section 5.

Let {(M,N) be a safe network. A node v in machine M is said to occur in finitely
often in a communication sequence <8,8;,...>> of (M,N} iff for any integer i there exists
an integer j such that j>i and s; is of the form |[v,w,x,y], for some w, x, and y. Similarly,
we can define that a node in machine N occurs infinitely often in a communication

sequence of (M,N).

Let {M,N) be a safe network. An edge e in machine M is said to occur in finifely
often in 3 communication sequence <sg,8y,...> of (M,N) iff for any integer i there exists
an integer j such that j>i and 841 follows s; over e. Similarly, we can define that an

j
edge in N occurs infinitely often in a communication sequence of (M,N).

Based on the above definitions, we can state that something %good® will occur
infinitely often in a safe network (M,N} by stating that a node in M or in N (identified as
being *good*® or *useful® by the network designer) is guaranteed to occur infinitely often
in every communication sequence of {M,N}. In {act, the node needs not to occur infinitely
often in every sequence. In particular, based on the assumption that both machines will
progress fairly, the node needs not fo occur in any sequence where one machine
progresses in unfair fashion. Next we define three types of fair sequences.

A communication sequence q of a safe network (M,N} is called weakly fair iff the
following condition is satisfied: For any node u in M or N, if u occurs infinitely often in
q, then at least one outgoing edge of u occurs infinitely often in q.

A communication sequence g of a safe network (M,N} is called fair iff the following
two conditions are satisfied for any node u, in M or N, that occurs infinitely often in g

i. Each outgeing sending edge of u must occur infinitely often in q.

ii. If there is an infinite number of states of the form [u,w;x,y;] (or [v;,ux;y]} in
q where message g is the head message in x; {or y;), and if u has an outgoing

receiving edge e, labelled +g, then edge e must occur infinitely often in q.

A communication sequence q of a safe network (M,N) is called strongly fair iff the
following condition is satisfied: For any node u in M or N, if u occurs infinitely often in
q, then each outgoing edge of u occurs infinitely often in q.

Informally, a weakly fair sequence is one where each machine in the network is



forced to progress infinitely often. (Recall that the network is safe, and so each machine
can indeed progress infinitely often.} A fair sequence is one where each machine is forced
to execute infinitely often each edge that it can execute infinitely often. A strongly fair
sequence is one where each machine is forced to execute infinitely often each edge that it
reaches infinitely often.

The following lemma follows immediately from the above definitions:

Lemms 1 : Let (M,N} be a safe network,
i. Every fair sequence of (M,N} is weakly fair.
ii. Every strongly fair sequence of {M,N} is fair.
]

The following theorem states that every safe network must have weakly fair and
fair sequences, but not necessarily strongly fair sequences.

Theorem 1 s Let (M,N} be a safe network.
1. {M,N) must have at least one weakly fair sequence.
ii. {M,N) must have at least one fair sequence.

iti. {M,N) may have no strongly fair sequence.

Proof : Since {M,IN} is safe, proving parts i, ii, and iii can proceed as follows:

i. (M,N} must have a communication sequence q==sy,s;,S,,... such that for
i==0,2,4,..., if 5, ; follows s; over an edge in M (or N}, then s, , follows s, ,
over an edge in N {or M). It is straightforward to show that this sequence is
weakly fair.

ii. (M,N) must have a communication sequence G=s4,8,8,,... that can be
constructed as follows:

a. First, the initial state s; of (M,N} is added to q.

b. After adding a state s==[v,w,x,y] to q, one of the outgoing edges, say e,
of v or w should be selected for execution; then the state s’ that follows
s over e should be added to q. If such an s’ exists, then e is said to be
executed; otherwise, e cannot be executed at this time.

c. To decide which of the outgoing edges should be selected for execution,
the following priority scheme is adopted. Let k_ be the number of times

an edge e in M or N is executed so far along g, on reaching a state



[v,wx,y] along q, the outgoing edge e of v or w with the smallest k_ is
selected for execution. If e cannot be executed at this time, then the
outgoing edge e of v or w with the next smallest k_, is selected, and so

on. This scheme guarantees that if an edge can be executed infinite
times along q, then it will be executed infinite times along q, ie. q is
fair.

iti. The proof is by a counter example: Network (M,N} in Figure 1b is safe and
has exactly one communication sequence: qg=<[1,LE,E], [2,1,E,g,], [2,2,EE],
(2,1,g,,E], [1,1,EE], ...>. This sequence is not strongly fair since node 1 in M
occurs infinitely often in q while one of its outgoing edges, the one labelled
+g,, never occurs in q.

O

From Theorem 1, the existence of a strongly fair sequence is not guaranteed for a
safe network. Nevertheless, when a strongly fair sequence does exist, one should be able
to prove its existence. (Since this is part of proving weak liveness, as discussed in Section
4.) This motivates the need for a checkable sufficient condition that ensures the existence
of a strongly fair sequence for a safe network. In order to state such a sufficient
condition (in Theorem 2 below), we first introduce the concept of a communication
subsequence.

A communication subsequence of a network (M,N} is a finite sequence <(ry,...,r,>
of reachable states of (M,N} where there exists a communication sequence <sy,8;,...>> of
{M,N), and there exists an integer j such that Ti==S8; i for i==0,...,k.

A pode v in M is said to occur in a communication subsequence <ry,...,1;> of a
network (M,N) iff one of the states in the subsequence is of the form [v,wxy] for some
w, %, and y. Similarly, we can define that a node in N occurs in a communication
subsequence of (M,N}.

- Anedgeein Mis said to occur in a communication subsequence <{rg,...,r; > of a
network (M,N} iff there exist two states r; and r; ; in the subsequence such that r;
follows r; over e. Similarly, we can define that an edge in N occurs in a communication
subsequence of (M,N}.

Theorem 2 : If a network (M,N) has a communication subsequence <r,...,r; > such
that the following conditions hold:

i. 1y is the initial state of (M,N},
il. there exists an i, 0<i<k, such that r;=r;, and

iii. if a node occurs in the subsequence <r;,...,r;>, then every outgoing edge of



the node also occurs in the same subsequence,

then (M,N) has a strongly fair communication sequence.

Proof : Assume that (M,N) has a communication subsequence <rg,t,r,t',rp,> that
satisfies conditions i, ii, and iii, where t and t’ are finite subsequences of reachable states
of (M,N). It is straightforward to show that the infinite sequence: <rg,t,rp,t'ryt'ry,...>
is a strongly fair sequence of (M,N].

O

To show that the sufficient condition in Theorem 2 is *reasonable®, the following
lemma states that this condition is also necessary if the communication of the considered
network is bounded.

Lemma 2 : Let (M,N) be a network whose communication is bounded. If (M,N} has a
strongly fair sequence, then (M,N} must have a subsequence that satisfies conditions i, ii,
and iii in Theorem 2.

Proof : Assume that (M,N) has a strongly fair sequence g. Since the communication of
(M,N)} is bounded, the number of reachable states is finite. Moreover, since q is an
infinite sequence of reachable states, there is one reachable state r=/[v,w,x,y] that occurs
infinitely often in q. Select from q a finite prefix <ry,,t,r> that satisfies the following
three conditions:

i. g is the initial state of (M,Nj.
ii. ¢ is a finite subsequence of reachable states of (M,N).

iii. For any node u that occurs a finite number of times in g, all the occurrences
of u in g must be in the finite prefix <ry,t,r>. (In other words, any node
that occurs in q after the finite prefix <ry,t,r> must occur infinitely often in

q.)

Extend the finite prefix < rg,t,r> into a still finite, but possibly bigger, finite prefix
<rg,b,r,t',r> such that the following two conditions are satisfied.

i. t' is a finite subseguence of reachable states of (M,N).

ii. For any node u that occurs in the subsequence <r,t'>>, each outgoing edge of
u must also occur in <r,t'>.

It is straightforward to show that the extended prefix <rjt,r,t',r> satisfies
conditions i, ii, and iii in Theorem 2.

O



Example 1 {Continues) :

Consider the safe network (M,N) in Figure ia. The communication of (M,N) is
bounded by 1. Hence, by generating and examining all reachable states, we can conclude
that (M,N} is safe. By Theorem 1, this guarantees that (M,N} has weakly fair and fair
sequences. Moreover, the following communication subsequence satisfies the three
conditions in Theorem 2: <[1,4EE], [2,4E Ndata}, [2,5,E,E], [2,4,Ack E], [1,4,EE],
[2,4,E Err], [2,6EE] [2,4NackE], [34EE], [2,4EFErm]|, [2,6EkFE]| [2,4ErE| [34EE]
[2,4,E,Ldatal, [2,5E.E], [2,4ErE], [34EE], [24FELdata], [25EE], [24AckE],
[1,4,E,E]>. This implies that {(M,N) also has a strongly fair sequence. As shown later
the existence of this strongly fair sequence is useful in establishing the weak liveness of
each node in network (M,N).

]

4. Liveness Properties

Based on the above three definitions of fair communication sequences, we present
three degrees of node liveness. In what follows, let {M,N} be a safe network, and let u be
a node in machine M or N.

Node u is said to be weakly live in (M,N} iff (i) (M,N)} has at least one strongly fair
sequence, and (ii) u occurs infinitely often in every strongly fair sequence of (M,N}.

Node u is said to be live in {M,N} iff u occurs infinitely often in every fair sequence
of (M,N).

Node u is said to be strongly live in (M,N} iff u occurs infinitely often in every
weakly fair sequence of {M,N).

Notice that in the definitions of liveness and strong liveness, we did not insist on
the existence of fair and weakly fair sequences {as we did in the definition of weak
liveness), this is because the existence of these sequences is guaranteed by Theorem 1.
The following two lemmas follow directly from the above definitions and Lemma 1.

Lemma 3 : Let (M,N) be a safe network and let u be a node in machine M or N.
i. If u is strongly live then u is live.

ii. If u is live and (M,N) has a strongly fair sequence, then u is weakly live.

Lemma 4 : Let (M,N) be a safe network, and let u; and u, be two nodes in the same
machine, M or N, such that there is a directed path p from u; to u,.
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i. If uy is strongly live and all the edges in p are sending edges, then u, is live.

ii. If u, is live and network (M,N} has a strongly fair sequence, then u, is weakly
live.

O

In [6], we show that the problem of ®whether a node u is weakly live (live or
strongly live) in a safe network (M,N)* is undecidable in general, we also characterize
some special classes of networks for which the problem becomes decidable. In the current
paper, we are interested in developing techniques to prove a positive answer for many
instances of the problem. In other words, we are interested in sufficient conditions which
can be checked easily and which, if satisfied by any instance of the problem, guarantee
that indeed node u is weakly live (live or strongly live) in {(M,N}.

In the remainder of this section and in the next section, we discuss two classes of
such sufficient conditions. The conditions discussed in this section are called siructure
conditions since they are conditions on the structures of the directed graphs of machines
M and N. The conditions discussed in Section 5 are called closed cover condilions since
they depend on the notion of closed covers discussed in [9]. Later we show that the
closed cover conditions are more powerful than the structure conditions {Lemma 5
below); however, the structure conditions are in general easier to check than the closed
cover ones.

The next two theorems, 3 and 4, state structure conditions that guarantee weak or
strong liveness. {Using the structure condition for strong liveness in Theorem 4, along
with Lemma 4 part i, one can establish liveness.)

Theorem 3 : Let (M,N} be a safe network that has a strongly fair sequence, and let u
be a node in machine M {N}. If there is a directed path from every mode in M (N} to
node u, then u is weakly live in {(M,N}.

Proof : It is sufficient to show that u occurs infinitely often in every strongly fair
sequence of {M,N). Let g be any strongly fair sequence of {(M,N}. Since q is infinite, it
must correspond to two infinite paths P and Q in machines M and N respectively. Since
M (N) is finite, at least one node v in M{N) must occur infinitely often in P(Q). Since
there is a directed path from v to u, then by induction on the number of edges in this
path, we can show that u must occur infinitely often in q.

0

Theorem 4 : Let (M,N) be a safe network, and let u be a node in machine M(N}. If
every directed cycle in M{N) contains node u, then u is strongly live in {M,N).

Proof : It is sufficient to show that u occurs infinitely often in every weakly fair
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sequence of (M,N). Let q be any weakly fair sequence of (M,N). Since q is infinite, it must
correspond to two infinite paths P and Q in M and N respectively. Since both M and N
are finite, each of P and Q must contain an infinite number of directed cycles in M and
N respectively. Since each directed cycle in M{IN} contains node u, then u must occur
infinitely often in q.

O

Example 1 {Continues) : Consider the safe network (M,N) in Figure 1a. Using the
structure conditions discussed in this section, we want to examine the liveness of each
node in machine M.

i. Since each directed cycle in M contains node 2, then node 2 in M must be
strongly live in (M,N}, by Theorem 4.

ii. Since {M,N) has a strongly fair sequence as shown earlier, and since there is a
directed path from every node in M to node 1(3) in M, then node 1{3) in M
must be weakly live, by Theorem 3.

From ii, nodes 1 and 3 in M will be executed infinitely often provided that M and
N do execute a strongly fair sequence. On the other hand, there is no guarantee that M
and N wiil execute such a sequence. Instead of assuming (the rather severe assumption)
that M and N will execute a strongly fair sequence, let us assume (the less restrictive
assumption) that M and N will execute a fair sequence. As mentioned earlier, this new
assumption has a natural interpretation, namely that the corrupting medium is *fair®;
i.e. if an infinite number of messages are sent through this medium, then an infinite
number of them will be corrupted and an infinite number of them will be transmitted
without corruption. Proving that nodes 1 and 3 will be executed infinitely often under
this new assumption is equivalent to proving that both nodes 1 and 3 are live.
Unfortunately, the structure conditions discussed in this section cannot be used to prove
that nodes 1 and 3 are live. This motivates the need for a new set of sufficient
conditions.

O

5. Proving Liveness Using Closed Covers

The technique of closed covers is presented in [8] to prove that a network is safe.
One advantage of this technique is that it can be used with networks whose
communications are unbounded. {No other technique seems to be successful with such
networks.} In this section, we extend this technique to prove node liveness. But first, a
brief presentation of closed covers is in order.

A closed cover C for a network (M,N) is a set of states of (M,N} that satisfies the
following four conditions:

i. The initial state of (M,N} is in C.
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iii.

v,

12

Each directed cycle in the directed graph of M or N must have at least one
node referenced in some state in C.

The acyclic version AM of M with respect to C can be constructed from M
by partitioning each node v, which is referenced in some state in C, into two
nodes: One node, called the input version of v, has all the output edges of v
and no input edges; the other node, called the output version of v, has all the
input edges of v and no output edges. Similarly, the acyclic version AN of N
with respect to C can be defined. The third condition can now be defined in
terms of these acyclic versions. If the network (AM,AN}) starts at a state s, in
C and if it reaches a state s, after which no other state is reachable, then
state s, must also be in C.

The following condition should be satisfied for any state [v,w x,y] in C, and
for any two paths p and q ,in the acyclic versions AM and AN, that start
with the input versions of v and w respectively, and terminate at the output
versions of some nodes: Let s; (r;} be the sequence of sent {received) messages
along path i, where i=p,q; then

either [ (x:sy<ry) and (v.s,<rg)],
or [ not(x.s,<r,) and not(y.s, <r],
where

* @ denotes the string concatenation operator, and
s <* denotes "is a proper prefix of®.

A proof for the following theorem is in [9].

Theorem 5 : If a2 network has a closed cover, then it is safe.

O

Example 1 (Continues) : We show that the set C = {[1,4E[E],[3,4EE]} is a closed
cover for the network (M,N) in Figure la:

il

.

iv.

. First, the initial state [1,4,E,E] of (M,N) is in C.

Since nodes 1 and 3 in M and node 4 in N are referenced in C, every directed
cycle in M or N has one node referenced in C.

The acyclic versions AM and AN of M and N (respectively) with respect to C
are shown in Figure 2a. If the network (AM,AN) starts at state [1,4,E,E], it
must end its communication at [1,4EJE] or at [34EE], both are in
C. Similarly, if {AM,AN) starts at state [3,4,E,E], it must end at either
[1,4,E.E] or [3,4,E E]

Each state [v,w,x,y] in C is such that x==y=E. Also, any path in AM or AN,
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that starts with the input version of some node and terminates at the output
version of some node, has exactly one sending edge and one receiving edge.
Therefore, for any two such paths p and g in AM and AN respectively, we
have

not(sq-<§p) and not(sp«:rq}
where
» <® denotes ®is a proper prefix of®, and
s;(r;) is the sequence of messages sent {received) along path i, for i=p,q.

This completes the proof that C is a closed cover of (M,N}, and so {(M,N) is safe {by
Theorem 5).

O

A closed cover C for a network {M,N) can be represented by a directed labelled
graph G, called the closed cover graph of C, as follows:

i. Each state s in C is represented as a vertex, also labelled s, in G. (Notice that
the *nodes® of G are called ®vertices® to distinguish them from the "nodes®
of machines M and N. For the same reason, the directed edges in G are
called ®arcs®.)

ii. Let AM and AN be respectively the acyclic versions of M and N with respect
to C. If the network {(AM,AN) can reach from state s in C to state s’ in C
over a finite sequence <eye;,...,e,> of directed edges in M or N*. then there
is a directed arc from the vertex labelled s to the vertex labelled s’ in G; this
arc is labelled with the set of edges {eg,e;,...,e,}-

iii. No multiple arcs with identical labels are allowed in G.

Example 1 (Continues) : Figure 2b shows the closed cover graph G of the closed
cover C={[1,4,E,E], [3,4,E,E]} for network (M,N} in Figure 1a. Notice that each directed
edge e in M or N is defined in G by a tuple (i, j, k), where

i is the source node of e,
j is the label of e, and
k is the destination node of e.

and each arc in G is labelled {eg,e,,...,e.}.
O

Let C be a closed cover for a network (M,N}, and let G be the closed cover graph
of C. The vertex in G labelled with the initial state of (M,N) is called the initial verfex
of G. A vertex (arc or directed cycle) in G is called reachable iff there is a directed path

*In other words, there exists a finite subsequence <sg,8q,...8, +1> of states of (AM,AN) such that

55, §'==§ and 8 foliows §; over e, i=0,1,....,%.

41 +1
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from the initial vertex of G to this vertex (arc or directed cycle). As an example, the
vertex [1,4,E,E] in G of Figure 2b is its initial vertex; also each vertex, arc, and directed
cycle in this G is reachable.

Let C be a closed cover for a network (M,N}, and let G be the closed cover graph
of C, also let u be 2 node in M or N, and e be a directed edge in M or N. Node u is said
to occur in an arc of G iff the finite set that labels the arc contains an ingoing or
outgoing edge of node u. Edge e is sald to occur in an arc of G iff the finite set that
labels the arc contains e. Node u or edge e is said to occur in a directed path (or cycle)
in G iff it occurs in at least one arc in the path {or cycle). Node u or edge e is said to
occur infinitely often in an infinite path in G iff it occurs in an infinite number of arcs
in the path. Based on these concepts, we can now state, in the next theorem, a sufficient
condition for a node to be weakly live.

Theorem 6 : Let (M,N) be a safe network that has a strongly fair sequence, and let C
be a closed cover for (M,N), and G be the closed cover graph of C. Also let u be a node
in M or N.If there is a directed path from every reachable vertex in G to an arc in
which u occurs, then u is weakly live in (M,N]}.

Proof : Assume that there is a directed path from every reachable vertex in G to an
arc in which u occurs, we show that u must occur infinitely often in every strongly fair
sequence of (M,N). Let q be any strongly fair sequence of (M,N}. Since q is strongly fair,
it corresponds to two infinite directed paths P and Q in machines M and N respectively,
such that every node occurrence in P or Q must also be in ¢, and vice versa. The two
paths P and Q correspond to one infinite directed path p that starts with the initial
vertex in G such that every node occurrence in P or Q must also be in p, and vice versa.
It follows that any node in M or N occurs infinitely often in path p iff it occurs infinitely
often in sequence g. Since p is an infinite path in a finite graph G, one of the vertices,
say vertex n, in G must occur infinitely often in path p. Let vertex n be labelled with
the state [v,w,x,y], therefore, nodes v and w occurs infinitely often in path p and so in
sequence q. Since there is a directed path from vertex n to an arc in which u occurs,
then there is a directed path either from v to u in M or from w to u in N (depending on
whether u is in M or N, respectively). Since g is strongly fair and both v and w occur
infinitely often in q, then u must occur infinitely often in q.

O

In order to state sufficient conditions for liveness and strong liveness (in Theorems
7 and 8 below), we need first to define basic and composite cycles in closed cover graphs
and to introduce the concept of a message being sent in a composite cycle. This is done
next.

Let C be a closed cover for a network {M,N}), and let G be the closed cover graph
of C. A reachable directed cycle L in G is called basic iff each vertex in G occurs at
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most once in L. Cycle L is called composite iff it consists of one or more distinct basic
cycles. For example, referring to the closed cover graph in Figure 2b, the self-loop at
vertex [1,4,E,E] is basic. Also, the directed cycle that consists of:

1. the arc from vertex [3,4,E E] to vertex {1,4,E,E],
2. the self-loop at vertex [1,4E E], and
3. an arc from vertex [1,4,E,E] to vertex {3,4,EEl

is composite, since it consists of two basic cycles.

Let C be a closed cover for a network (M,N), and let G be the closed cover graph
of C, and L be a composite cycle in G. A message g is said to be sent by M(N) in L iff
one of the following two conditions holds,

i. There exists a sending edge labelled -g, in M({N}, that occurs in L.

ii. One of the vertices in L is labelled with a state [v,w,x,y] where g is in y{x).

Based on these concepts, we can now state Theorems 7 and 8. The reader may find
the statement of Theorem 7 complicated at first, but the first paragraph in its proof
provides some useful insight about the theorem.

Theorem 7 : Let (M,N} be a safe network, and let C be a closed cover for (M,N} and
G be the closed cover graph of C. Also let u be a node in M or N. u is live in {M,N), if
for each reachable directed composite cycle L in G, one of the following three conditions
holds:

i. u occurs in L.

ii. There is a node in M or N, that occurs in L, but one of its outgoing sending
edges does not occur in L.

ili. For every message g sent by M(IN} in L, there exists a node d, in N(M], that
occurs in L such that d has an outgoing edge labelled +g. Moreover, for some
message g sent by M(N} in L, there is no edge labelled +g, in N{M), that
oceurs in L.

Proof : Before we prove the theorem formally, let us sketch the proof informally. For
node u to be live, it should occur infinitely ofien in every fair sequence of (M,N}. Any
fair sequence q of (M,N} must correspond to an infinite path p, that starts from the
initial vertex in G. Since p is infinite and G is finite, a maximal composite cycle L in
G must be repeated in p infinite times. As shown later, such an L  cannot satisfy
conditions ii and iii in the theorem; hence it must satisfy condition i. Therefore, node u
must occur in L_ .., and so it must occur in path p and in sequence g infinitely often;
this establishes the liveness of node u. (The exact reasoning for L, not to satisfy ii and
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iii is discussed later in detail; we give here some hints: If L satisfies condition ii, then
some node in M or N will occur in sequence q infinitely often but ome of its cutgoing
sending edges will not occur in q infinitely offen; this contradicts the assumption that g
is fair. If L, satisfies condition iii, then (a) sequence q must have an infinite number of

states of the form [v,w,x,y,|, where v has an outgoing edge e labelled +g and the head
message in X; is g, and (b) edge e does not occur infinitely often in g. These conditions

contradict the fairness of q.)

Assume that each reachable directed composite cycle in G satisfies either one of i,
ii and iii above, we show that u must occur infinitely often in every fair sequence of
(M,N). Let q be any fair sequence of (M,N}. Since q is fair, it corresponds to two infinite
directed paths P and Q in machines M and N respectively such that every node
occurrence in P or @ must also be in g, and vice versa. The two paths P and Q
correspond to one infinite directed path p in G, such that p starts with the initial vertex
in G, and every node occurrence in P or Q must also be in p, and vice versa. It follows
that any node in M or N occurs infinitely often in path p iff it occurs infinitely often in
sequence .

Since p is an infinite path in a finite graph G, a finite number of basic cycles in G
must occur infinitely often in p, let these basic cycles be L, Ly, ..., L. Let L be any
composite cycle that consists of Ly, Ly, ..., and L ; it is straightforward to show that a
node {or an edge} in M or N occurs in L iff it occurs infinitely often in path p {and in
sequence q}.

There are two cases to consider:

a. u occurs in L in which case u occurs infinitely often in sequence q.

max’

b. u does not occur in L., then there are two possibilities, and we show that
each of them leads to a contradiction,

1. L, satisflies condition ii. There is a node, say v, in M or N which
occurs in L., but one of its outgoing sending edges does not occur in
L . Therefore, v occurs infinitely often in q, but one of its outgoing
sending edges does not occur infinitely often in q. This contradicts the
assumption that g is a {air sequence.

2. L., satisfies condition iii. From condition iii, for every message g sent
by M(N) in L., there exists a node d, in N(M), that occurs in L
such that d has an outgoing edge labelled +g. (Notice that this
outgoing edge is not necessarily in L__ ..} This implies that every
message g sent by M(N) along q must be received by N{M) along
g. {Otherwise, let g’ be the first message sent by M(N} along q and
never received along q. Message g’ must be sent in L, then there

exists a node d’, in N(M]), that occurs in L such that d’ has an
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outgoing edge labelled +g’. Node d' must occur in q infinitely often, i.e.
there is an infinite number of states of the form [d',w,g x,y;] (or
[v;,d"x;,g".y;]), where v, and w; are any nodes in M or in N respectively,
and x; and y; are any strings of messages. Since q is fair, this message g’
must be received along q.) Also from condition iii, for some message g
sent by M(N) in L__ , there is no edge labelled +g, in N(M), that
occurs in L, . Since g is sent by M(N} in L then one of the
following two conditions holds:

max’

i. There is a sending edge labelled -g, in M{IN}, that occurs in L.
This edge must occur infinitely often in q, i.e. message g must be
sent by M(N) infinitely often along q, and so must be received by
N{M]) infinitely often along q. This implies that an edge labelled

+g, in N(M}, must occur in L, ., contradiction.

ii. There is no sending edge labelled -g, in M(N]}, that occursin L__;
instead, L_.  has a vertex labelled [v,wxy], where the y-
component (x-component) contains g. Since no edge labelled +g,
in N(M}, occurs in L_ ., then the y-component (x-component) of
each vertex in L_, must contain g. If a vertex in L is reached
along q, then message g must have been sent previously by M(N).
This message must be received by a receiving edge that does not
occur in L, but later, q must return to a vertex in L. (Since
each vertex in L must be reached infinitely often along q). But
by reaching this vertex, a message g must have been sent earlier
and so must be received later by a receiving edge that does not
occur in L., and so on. This means that some (receiving) edge
that does not occur in L must occur infinitely often along q,

contradiction.

O

Theorem 8 : Let {M,N) be a safe network, and let C be a closed cover for (M,N}, G be
the closed cover graph of C. Also let u be a node in M or N. If each reachable directed
basic cycle in G has at least one arc in which u occurs, then u is strongly live in (M,N}.

Proof : Assume that each reachable directed basic cycle in G has at least one arc in
which u occurs, we show that u must occur infinitely often in every weakly fair sequence
of (M,N). Let q be any weakly fair sequence of (M,N). Since q is weakly fair, then it
corresponds to two infinite directed paths P and Q in machines M and N respectively
such that every node occurrence in P or § must also be in g, and vice versa. The two
paths P and Q correspond to one infinite directed path p that starts with the initial
vertex in G such that every node occurrence in P or Q must also be in p, and vice versa.
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It follows that any node in M or N occurs infinitely often in path p iff it occurs infinitely
often in sequence ¢. Since p is ap infinite path in a finite graph G, p must include an
infinite number of reachable directed basic cycles of G. Since node u occurs in each of
these cycles, then it must occur infinitely often in path p. Therefore, u must occur
infinitely often in the weakly fair sequence q.

O

Example 1 (Continues) : Let us apply Theorems 6, 7, and 8 to establish liveness of
the different nodes of machine M in network (M,N) in Figure 1a. Referring to the closed
cover graph G of this network in Figure 2b, we observe the following:

i. Each vertex in G has at least one outgoing arc in which node 1(3}) in M
occurs. Hence node 1{3) in M is weakly live in (M,N) by Theorem 6.

ii. To show that node 1 in M is live in (M,N) by Theorem 7, the following steps
should be followed:

a. Remove from G all the ares where node 1 oceurs.

b. This leaves only the three self-loops at vertex [3,4,E,E]; each self-loop
constitutes one basic cycle.

c. From these three basic cycles, construct seven composite cycles, and
show that each of them satisfies condition ii in Theorem 7.

iii. To show that node 3 in M is live in network (M,N)} by Theorem 7, we follow
the same three steps in 1, except that this time there remains only one basic
cycle, namely the self-loop at node [1,4,E,E], and so only one composite cycle
needs to be considered.

iv. Node 2 in M occurs in every arc in G, hence it is strongly live by Theorem 8.
O

Theorems 6 and 8 state some closed cover conditions that can establish weak and
strong node liveness in some networks. Weak and strong node liveness can also be
established using the structure conditions in Theorems 3 and 4. It is interesting to
compare the cost and effectiveness of these two sets of conditions:

i. Examining the structure conditions requires only to examine the directed
graphs of the two machines in the network. This takes a time Ofe}, where e is
the number of edges in the two machines. By contrast, examining the closed
cover conditions requires to construct and examine a closed cover graph for
the network. In the worst case, this may require an exponential time with
respect to e.

ii. As shown in Lemma 5 below, the closed cover conditions in Theorems 6 and
8 are more power ful than the structure conditions in Theorems 3 and 4. This
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means that there is a node in some network which can be proven weakly
{strongly) live using the conditions in Theorem & (8), but which cannot be
proven so using the conditions in Theorem 3 (4). (Whether the conditions in
Theorems 3 and 4 are also more powerful than those in Theorems 6 and 8
remains an unanswered question.}

From these two observations, one should always try first to use the structure
conditions in Theorems 3 and 4 to establish node liveness. Only when these conditions
fail, should one resort to the closed cover conditions in Theorems 6 and 8&.

Lemma & : The closed cover conditions in Theorems 6 and 8 are more powerful than
the structure conditions in Theorems 3 and 4 respectively.

Proof : Consider the network (M,N} in Figure 3a. Node 2 in M does not satisfy the
sufficient condition in Theorem 3, therefore, its weak liveness cannot be established using
this theorem. On the other hand, it is straightforward to check that the set {[1,4,E E],
[2,5,E,E], [3,6,EE]} is a closed cover for this network, and so its closed cover graph is as
shown in Figure 3b. Using this closed cover graph, node 2 in M can be proven weakly
live by Theorem 6. Similarly, the strong liveness of node 2 in M can be established by
Theorem 8, but not by Theorem 4.

O

The closed cover conditions in Theorems 8, 7, and 8 are applicable even if the
considered closed cover C for network (M,N) is infinite, i.e. C contains an infinite
number of states of (M,N). However, in this case the closed cover must have a finite
representation so that its closed cover graph remains finite as required by the proofs of
Theorems 6, 7, and 8. One finite representation of an infinite closed cover is as follows:

C:{[V}’WPXPS{}]’ coey iVF,WE?X!;YEE} where

v, {i=1,...,1) is a node in machine M,

w. (i=1,..,r)  is a node in machine N,

X, (i=1,..,r)  is a (possibly infinite] set of message strings, and
Y. (i=1,...,r}  is a (possibly infinite) set of message strings.

Each four-tuple [v,w, X, Y;], called a state schema of (M,N}, represents a (possibly
infinite) set of states of {(M,N}, each state is of the form [v;,w;x;y;| where x; is a string in
set X, and y; is a string in set Y;. In this case, each vertex in the corresponding closed
cover graph G represents one state schema in C. Therefore, G is finite (i.e. has r
vertices) and Theorems 6, 7, and 8 are still applicable. However, condition iii in

Theorem 7 should be restated as follows:

iii. For every message g where there is a vertex labelled [v,w, X|Y] in L such that ¢
is in a string in Y{X), there exists a node d, in N{M), that occurs in L such that d has an
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outgoing edge labelled +g. Moreover, there is 2 message g such that there is no edge
labelled +g, in N(M), that occurs in L, and one of the following two conditions holds:

a. There is a sending edge labelled -g in M{N), that occurs in L.

b. One of the vertices in L is labelled with [v,w,X)Y] where g is in every string
in Y{X]).

6. Examples

In this section, we discuss three practical protocol examples and prove their node
liveness using the previous results. There are three objectives of this exercise. The first
objective is to illustrate {in Examples 2 and 3) the applicability of our results to
unbounded networks, i.e. networks where the number of reachable states is infinite.
Second, we want to discuss (in Example 3) how to construct and deal with infinite closed
covers. Third, we demonstrate (in Example 4} that our techniques are applicable to
networks with any number of machines not just two machines.

Example 2 (A Start-stop Protocol} : The Start-stop protocol was developed
to transmit data characters from a sender o a receiver over an asynchronous serial line
[17]. The line remains idle so long as the sender does not wish to send. For the sender to
send one data character, it follows the next steps:

i. First, the sender sends a start bit to indicate to the receiver ifs intention of
sending one data character.

ii. Then, the sender sends the character bit by bit to the receiver.

iii. Finally, the sender sends two stop bits to indicate the end of transmission.
The line returns to its idle state until the next character is sent.

This protocol is modeled by the two machines M and N in Figure 4a, where M
models the sender and N models the receiver, and the sent messages have the following
meanings:

idle indicates to the receiver that the line is in an idle state.
Start denotes the starting bit.

One, Two, Three, Four, and Five denote the five bits in a data character.
Stop denotes a stop bit.

Although this network seems simple, its communication is unbounded {i.e. the
number of its reachable states is infinite); hence, proving its safety and liveness is not
straightforward. [Nevertheless, we use Theorem 7 to show that each node in this
network is indeed live. (Notice that the fairness assumption in this case is equivalent to
the reasonable assumption that data characters will be transmitted over the line
infinitely often, and that idle periods of the line will occur infinitely often.)
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It is straightforward to show that {[1,1,EEl} is a closed cover for the network.
(Notice that although the network is unbounded, its closed cover is finite; in the next
example, we discuss an unbounded network whose closed cover is infinite.) The
corresponding closed cover graph is shown in Figure 4b. It has two self-loops, labelled A
and B. The self-loop labelled A satisfies condition ii in Theorem 7, and each of the self-
loop labelled B and the composite cycle that consists of the two seli-loops satisfies
condition i in Theorem 7, for each node in M or N. Therefore, each node of M or N is
live.

Notice that the liveness of some of these nodes (not all of them} can be also
established using the structure condition in Theorem 4 along with Lemma 3 part 1 and
Lemma 4 part 1.

Example 3 (An Alternating Bit Protocol) s The Alternating Bit protocol was
proposed [1] to ensure reliable transmission of data messages from a sender to a receiver
over a communication medium that can corrupt or lose transmitted messages. Since we
have already discussed (in Example 1) a medium that can corrupt messages, we discuss
in the current example a version of the Alternating Bit protocol where the medium can
only lose messages. This version of the protocol can be defined as follows.

i. The sender sends its data messages, one by one, to the receiver; but after
sending each data message, it must wait to receive an acknowledgement
before sending the next data message.

ii. The sender is provided with a timeout capability to resend its last data
message, if it does not receive any acknowledgement for some time.

iii. Whenever the receiver receives a data message, it should be able to detect
whether it has received an identical copy of this message earlier. For this
reason, the value of some bit in the sender is attached to each sent data
message. So long as a data message is being resent, the value of this bit
remains fixed, but whenever a new data message is about to be sent, the
value of this bit is altered (hence, the name ®Alternating Bit*).

Machines M and N in Figure 5a model the sender and the receiver respectively.
Instead of modeling the medium as a separate machine, the medium’s effect is modeled
as follows. Whenever a machine, M or N, sends a message g, it either sends g or sends a
special message L that denotes a lost message; on receiving L, the other machine must
remain in its current state. The other exchanged messages between M and N have the
following meanings:

D; (i==0,1) denctes a data message with a bit of value i attached to it.
A, (i==0,1) denotes the acknowledgement of D;.

Notice that the timeout capabilities in sender M are modeled by (i) the seif-loop
labelled -D;, at node 2, and (ii) the seif-loop labelled -D; at node 4.
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Proving liveness of this protocol comsists of proving that node 1 (where new Dy
data messages are sent), and node 3 (where new D; data messages are sent) are both live.
{Recall that if these nodes are live then they will be executed infinitely often provided
that the machines behave fairly. The fair behaviour assumption amounts in this case to
assuming that if an infinite number of messages are sent through the medium, then
infinite number of them will be delivered without loss.}) Next, we sketch a proof that
node 1 is live; a similar proof can establish the liveness of node 3.

It is straightforward to show that the following set is a finite representation of a
closed cover C for network (M,N):

C = {[1,5,(A;+L)5,(D;+L)¥, [L,8,(A;+L)¥,(D,+L)¥],
[2,5,(A;+L)5,(D, L)m(DG+L)"‘ ], 12,6,(A,+L)™(A +L)E™ (Do +L)K],
[2,7,(A, +L}mgqﬂ+L)k‘n (Dg+L)Y], [28(A1+L)k( S LDy L))
[3,6,(Ag+L)K,(Dg+L)K], [3,7,(Ag+L)K,(Dy+L)K],
[4,5,(Ag+L)™(A+L)™ (D, +L)Y], [4,6,(Ag+L)K,(Dg+L)™(D,+ L)k},
{4,7,{A0+L)k,(DG+L} (D+L)E™], [4,8,(Ag+L)™ A S (D L)}

{The two variables k and m can take any of the values 0,1,2,... such that k>m.)

A portion of the closed cover graph G of C is shown in Figure 5b. The labels of the
shown arcs are as follows:

U, ={(2-L,2),(5,+L,5})}
Ug.._{m +1,2),(5,+L,5)}
={(2,-L,2),(8L,5)}
3--{(2 -Dy,2),(8,-L,5)}
Ve={(2,+L,2),(8-L,5)}
V....._{(Q +A,,2),(8,-L,5)}
-L,2),(5,4+-D,8)}
Wg_—. +A,,2),(5,+D,8)}
X, ={(2,-1,2),(6,-A,,7}}
Xa={(2,-Dg,2),(6,-A,7)}
Xo={(2,+A,2),(6,-A,,7}}
Xo={(2,+L,2),(6,-A,,7)}
Y,={(2,-1,2),(7,+D;,6)}
Y,={(2,+A,,2),(7,4Dy,6)}
Z,={(2,-L,2),(7,+L,7)}
Zs={(2,+L,2),(7,+L,7)}

={(2,-
{2,

Ug=={2,-D;,2),(5,+L,5)}
U={(2,+A,2),(5,+L,5)}
Vo={(2,-L,2),(8-A,,5)}
V4’:{(2 D()v J,(8, Ap }}
Ve=1{(2,+1L,2),(8,-A,,5)}
Vg—{(2?+A]p“)( "Alf )}

Wgz{{zf”sz) (55+D378)}
W,={(2,+L,2),(5, +D3,8)}
Xo={(2,-1,2),(6,-1,7);

(2
X4““{("7 Doa )1(6 L 7)}
Xe=1{(2,+A,2),(6,-L,7)}
Xg={(2,+L,2},(6,-L,7)}
Yz““‘{(z D()v )’(7 %‘DO, )}
Y, ={(2,+L,2),(7,4D,,6)}
Zq={(2,-D,2),(7,+L,7)}
Zé"""’{(z +A17 ):(? +L 7)}

To show that node 1 is live, delete from the closed cover graph all the arcs where
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node 1 occurs, (this leaves only those solid arcs shown in Figure 5b), and show that any
remaining composite cycle must either satisfy condition ii or iii in Theorem 7. It is
straightforward to show that any of the composite cycles in Figure 5b satisfies either of
the two conditions.

Example 4 (A Carrier Sense Multiple Access Protocol with Collision
Detection - CSMA/CD) : The CSMA/CD protocol is used for local area networks
where many stations are connected to a single communication medium [19]. At any
instant, each station can start a transmission over the medium to some other station(s).
However, if two or more stations start transmitting at about the same time {they are said
to collide), then each of them detects the collision and backs off for some time before
trying retransmission again.

We model this protocol by a network {A,BM) of three communicating finite state
machines A, B, and M shown in Figure 6. Machines A and B model two identical stations
connected to the medium, while M models the medium itself. The network operates
indefinitely in successive stages. The following activities occur in a typical stage:

i. Each station A or B sends to medium M either a "Rqst® message (indicating
that it intends to send a sequence of data frames in the current stage), or a
sNorgst® message {indicating that it does not intend to send data frames at
the current stage).

ii. If both stations send *Norgst*® messages, the medium responds by sending an
sOff* (Carrier-Off signal} message to each of them. Both stations and the
medium teturn to their initial nodes (not necessarily at the same time), and
the next stage starts.

iii. If both stations send *Rqgst® messages, the medium responds by sending a
# Collision® message to each of them indicating that neither station can send
data frames at the current stage. Both stations and the medium return to
their initial nodes, and the next stage starts.

iv. If one station, say A, sends a ®Norgst® message while the other station, B,
sends a "Rqst® message, then the medium sends to A an *On® (Carrier-On
signal) message, followed by a sequence of data frames from B. Finally the
medium receives an *Off* message from B, then sends an *Off* message to
A and all machines return to their initial nodes, and the next stage starts.

It is straightforward to show that the following set C={[1,1,6,EEEE],
3,5,12,E.EEE], [5318EEEE]} is a closed cover for the network (A,BM). This
guarantees that the network is safe.

Proving liveness of this network consists of showing that both nodes 5, where data
frames are sent, in stations A and B will be executed infinitely often. One possibility is to
show that both nodes are live {i.e. if each machine behaves fairly, then the two nodes
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will be executed infinitely often). Unfortunately, this is not the case; for instance, neither
node will be executed at all along the fair sequence where both machines send “Norgst®
in stages 1,3,5,7,..., and both machines send *Rqst® in stages 2,4,6,8,... .

The only remaining possibility now is to show that both nodes 5 are weakly live.
Indeed, using the structure condition in Theorem 3 (which can be extended to networks
with any number of communicating machines}, one can show that both nodes 5 in
machines A and B are weakly live.

Weak liveness of the two nodes guarantees that those two nodes will be executed
infinitely often onfy if the three machines execute a strongly fair sequence. One way to
force the three machines to execute a strongly fair sequence is by using randomization
[19]. Whenever a station, A or B, returns to its initial node {node 1), it should flip a fair
coin to decide whether to send a “Rgst® or "Norgst® message in the next stage. It is
straightforward to show that if the two coins are fair and independent, then the three
machines will execute a strongly fair sequence along which both nodes 5 in stations A
and B will be executed infinitely often.

7. Concluding Remarks

The main result in this paper is a set of sufficient conditions (Theorems 6, 7, and 8)
that can be used to establish three degrees of node liveness in safe networks of
communicating finite state machines. An interpretation of these different degrees of node
liveness is discussed next.

Any safe network can be completely defined by a (possibly infinite} set of
communication sequences, where each sequence defines one possible infinite history of
the communication between the different machines in the network. Although the
network is capable of executing any one of these sequences, it ultimately ends-up
executing only one of them. Therefore, there are two alternatives to establish that a node
in one of the machines is live {i.e. will be executed infinitely often during the course of
communication):

Either i show that the node will be executed infinitely often along every
communication sequence of the network,

or ii. show that the node will be executed infinitely often along the
one sequence which the network ends-up executing.

Clearly, the first alternative is very restrictive; only the second one seems
applicable to a wide variety of interesting networks (that model ®real® protocols). The
second alternative can be divided into two parts:

A. First, show that the node under consideration will be executed infinitely often
along every sequence in some class {of sequences).
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B. Then, show how to ®restrict® the behaviour of each machine in the network
so that the resulting communication sequence of the network is guaranteed to
fall into this same calss.

In this paper, we have identified three classes of communication sequences, namely
weakly fair, fair, and strongly fair sequences. The relationships beiween these three
classes can be represented by the Venn diagram in Figure 7 (See Lemma 1}. Next we
discuss how to solve parts A and B for each of these three classes.

Weakly Fair Sequences: The sufficient conditions in Theorems 3 and 6 can be used
to solve A, and establish the strong liveness of the node under consideration. To solve B,
each machine in the network should be restricted {or forced) to progress infinitely often.
(Recall that the network is safe, and so each machine can indeed progress infinitely
often.)

Fair Sequences: The sufficient conditions in Theorem 7 can be used to solve A, and
establish the liveness of the node under consideration. To solve B, each machine in the
network should be restricted to be fair with respect to selecting its next action. {In the
proof of Theorem 1 part ii, we described a procedure by which each machine can ensure
a fair selection of its next actions.} Notice that, as shown in Examples 1 and 3, if a
medium that can corrupt or lose messages is modeled as one machine, then this
restriction merely corresponds to the familiar assumption of ®fair medium®.

Strongly Fair Sequences: The sufficient conditions in Theorems 4 and 8 can be
used to solve A, and establish the weak liveness of the node under consideration. One
way to solve B is by constructing a finite representation of a strongly fair sequence {as
discussed in the proof of Theorem 2). This finite representation is then provided to each
machine in the network, and each of them is restricted to behave according to it. In
some cases, randomization can be 2lso used to solve B as discussed in Example 4.

Notice that the sufficient conditions in Theorems 8, 7, and 8 can be checked
algorithmically for any given network provided that the next scenario is followed:

i. First, the network’s designer provides a set of states as a closed cover for the
petwork under consideration.

ii. Whether this set is indeed a closed cover for the given network can be
checked algorithmically. If the check fails, the designer is required to provide
a correct closed cover, and so on. This continues until a closed cover for the
network is established.

iii. Finally, the closed cover graph is generated, and the sufficient conditions in
Theorems 6, 7, and & can be checked algorithmically.

Although most of the discussion in this paper has centered around networks with
two communicating machines, the results can be extended in a straightforward manner



to networks with r machines {r>>2). {See for instance Example 4.} Also, the notion of
node liveness in this paper can be extended in a straightforward fashion to liveness of
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edges and to liveness of sets of nodes and/or edges.

The discussion in this paper suggests the following interesting question. Are the
three classes of communication sequences discussed in this paper *sufficient® for most
practical networks, or are there other interesting classes of sequences! This question is
still open, and seems attractive for further research. Another interesting question is
whether the sufficient conditions in Theorems 3, 4, 6, 7, and 8 are *reasonable® or more

relaxed sufficient conditions are needed in some cases.
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Figure 1. Network examples.



(a) Acyclic versions of M and N in Figure 1a with respect to {[1,4 EE], [3,4,E,E]}
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e
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List of labels in the closed cover graph:

A={(1, -Ndata, 2),(4, +Ndata, 5),(5, -Ack, 4),(2, +Ack, 1)}
B={(1, -Err, 2),(4, +Err, 6),(8, -Err, 4),(2, +Err, 3)}
C={(1, -Err, 2),(4, +Err, 6),(6, -Nack, 4),(2, +Nack, 3)}
D={(1, -Ndata, 2),(4, +Ndata, 5),(5, -Err, 4),(2, +Err, 3)}
E={(3, -Ldata, 2),(4, +Ldata, 5),(5, -Ack, 4),(2, +Ack, 1}}
F={(3, -Ldata, 2),(4, +Ldata, 5),(5, -Err, 4),(2, +Err, 3)}
G=/{(3, -Err, 2),(4, +Err, 6),(8, -Nack, 4),(2, +Nack, 3)}
H={(3, -Err, 2),(4, +Err, 6),(6, -Err, 4),(2, +Err, 3)}
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(b) Closed cover graph for the closed cover {[1,4,E,E], [3,4,E,E]}

Figure 2. Example 1.
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Figure 3. A network for the proof of Lemma 5.
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(a) Network (M,N)

Initial vertex

List of shown labels:

A={(1,-Idle,1),(1,+1dle,1)}

B=={(1,-Start,2),(1,+Start,2),(2,-One,3),(2,+One,3),
(3,-Two,4),(3,+Two,4),(4,-Three,5),(4,+Three,5},
(5,-Four,8),(5,+Four,8),(8,-Five,7),(6,+Five,7),
(7,-Stop,8),(7,+Stop,8),(8,-Stop,1),(8,+Stop,1)}

{b) A closed cover graph for network {M,N})

Figure 4. A start-stop protocol example.
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Figure 5. An Alternating Bit protocol example.
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Figure 6. A CSMA/CD protocol example.



