THE GRADUAL ENCROACHMENT OF
ARTIFICIAL INTELLIGENCE

Elaine Rich

Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712

TR-84-05 February 1984

ABSTRACT

Many tasks that require ingelligence and that are now being done by people can be partially transferred
to computers as individual parts of the problems become well-enough understood. This gredual
encroachment of artificial intelligence {A.l) means that Al can be of practical significance now, even
though some problems remain unsolved. Examples of areas in which this is occurring will be discussed.



1. Introduction

The goal of artificial intelligence is to produce programs that rival human performance at a wide variety
of so-called "intelligent® tasks. Although in some areas, that goal is close to being attained (see, for
example, some of the current work in ezpert systems'), in others it remains a good deal farther away.
But even in those more difficult areas, in which we do not yet know how to construct programs that
perform well on their own, we can use what we do know to build programs that can provide significant
assistance to people who are trying to perform a task. In other words, we do not have to wait until we
have a complete understanding of an area before A.l can contribute to it. Long before that, A.L. may
contribute by taking some, albeit not all, of the load off the person responsible for the task. In fact,
rather than a sudden take-over by a program of a task previously performed autonomously by a person,

we may expect to see a gradual shifting of the burden from the person to the machine.

This approach to the computer solution of difficult problems can be described as the gradual
encroachment of artificial intelligence. It is not 2 new idea. For example, a similar technique, called
incremental simulation was used in the design of a speech understanding system® when some of the
component processes were not initially well enough understood to be automated. Those processes were
simulated by people, who communicated with the rest of the system in the same way in which the other
system modules did. Gradually, the simulated modules were transformed into code as the techniques that

they were using became apparent.

There are two important ways in which programs that have been encroached upom by artificial
intelligence differ from their more conventional counterparts. The most important is their use of a large
amount of structured knowledge about their domains. The second is their exploitation of heuristic search
(search that is guided by knowledge) as a technique for solving problems for which a direct mechanism
cannot be found3. The importance of these two things suggests one reason why the encroachment of A.L
often is gradual. As the amount of knowledge that a program possesses increases, and as the accuracy of
its search-controlling heuristics (which are themselves a kind of knowledge) grows, the performance of the
program itself usually improves. Since the build-up of the necessary knowledge is usually gradual, so too

is the encroachment of the knowledge-based program into its problem arena.

In the remainder of this paper, several domains in which the encroachment of artificial intelligence is

occurring will be discussed and the ways in which it is happening will be described.

2. Programming
The most fundamental task in which people interact with computers is programming, since without that,
the other things would not exist. Eventually, we would like to have access to programs that can

themselves do much of the programming that is now done by people.



2.1. Helpin'g People Program

Automatic programming has as its goal the construction of exactly such programs, which can transform
a set of specifications into a program meeting those specs. Although some progress has been made in this
area, the field is still in its infancy and the bulk of programs must still be written by people. Yet there

are many ways in which computers can assist people in their programming efforts.

Compilers for high-level languages enable people to write programs using constructs that are closer to
the natural structures of their problem domains than are the primitive operations that the target machine
can execute. The compilers translate those higher-level constructs into the primitive ones. This can
typically be done rather straight-forwardly, although as we move toward optimizing compilers that
attempt to produce more and more efficient target code, we begin to see the increased use of the two
main tools of artificial intelligence, search (e.g. to find patterns of use of variables) and knowledge (e.g. to

store special-purpose, highly-tuned code segments).

Very high-level languages for specific domains go even farther in allowing people to specify abstract
problem solutions and leave the details to the machine, which must exploit its database of domain-specific
knowledge to complete the task. One widely used system that is an excellent example of this is
MACSYMA, a program developed by the MATHLAB group at MIT, that performs symbolic mathematics.
For example, the following are legal MACSYMA commands:

INTEGRATE(SINCQ #%3,%0 ;
which computes the indefinite integral with respect to x.

DETERMINANT (M) ;

which computes the determinant of the matrix M using a method similar to Gaussian
elimination.

MACSYMA is one of the earliest examples of the class of programs now known as ezpert sysiems, since
these programs perform tasks that were previously done only by human experts. The key to the success
of these programs is the knowledge that they have of their task domain. Although MACSYMA knows a
lot about symbolic mathematics, it cannot do much on its own. Its importance lies in the fact that it can

be used as an intelligent aide to a human mathematician in solving hard problems.

Another way in which artificial intelligence has begun to encroach upon the programming process is
illustrated by the Programmer’s Apprentice®. The Programmer’s Apprentice knows about general
programming structures rather than about specific constructs geared to a particular problem domain.
This knowledge about programming structures is contained in a library of plans, which can be combined
to form complete programs. An example of the kind of thing that is described as a plan is the "trailing
pointer list enumeration loop.® This plan contains code that moves a pointer down 3 list, starting at the
second element, and looks for a desired value, while at the same time, trailing a second pointer one
element behind the first one. By using its plan library, the Programmer’s Apprentice can help the

programmer construct a new program. It can also help the programmer edit an existing program without



causing undesirable side effects. It can do that because it knows how pieces of the program relate to each

other.

Simple spelling correctors {such as the Do What I Mean (DWIM) facility of INTERLISP) use a small
amount of knowledge about programming language syntax and current context to correct user errors.
Verification systems, timers, and portability checkers provide programmers with additional sources of
assistance. As the amount of knowledge contained in proérams such as these grows, the amount of
responsibility they can assume will also increase until all that is left for the person to do is to provide an

accurate set of specifications (itself no simple task).

2.2. Helping People Learn to Program

Since we are still a long way from the destination point of automatic programming, there is yet another
way in which artificial intelligence can begin encroaching on programming. It can be used to build
systems that help people learn to program. Several efforts are currently underway to do this {for
example, MENO®.)

To build an effective programming tutor, it is necessary to be able to analyze a student’s program and

to detect three classes of things:

o Plans, such as the ones in the Programiner's Apprentice, that implement programming
concepts.

o Bugs, which are places where the student’s program differs from a correct program.

e Misconceptions, which are flaws in the student’s understanding that are made obvious by the
observed bugs. . .

Although such a tutor constitutes a form of computer-aided instruction (CAI), its structure needs to be
radically different from that of the traditional frame-based CAI system, in which the order in which
material will be presented is determined in advance of any particular tutoring session. Instead, the
programming tutor must be structured as a knowledge-based reasoning program. In the rest of this
section, the LISP tutor we have built will be described, since it illustrates how programming knowledge
and search can be combined into a rudimentary programming tutor. Then the limitations of this
approach will be described and some suggestions for how further encroachment into this area may arise
will be presented.

The LISP tutor works by assigning the student a program to write. The tutor has been given an
abstract outline for solving the problem that the program must solve. From that outline, it uses a set of
programming plans to synthesize one or more programs that solve the problem. From then om, the tutor
relies heavily on a matching process to guide its behavior. First the tutor compares the student’s program
to its own programs and selects the one of its programs that most closely matches the student’s code. For
many programming languages, the first step toward doing this is, of course, to parse the student’s
program. The MENO system mentioned above, which is a tutor for PASCAL, does this. But because of



the syntax of LISP, the LISP tutor can skip this step and go immediatedly to the next one at which the
use of specific programming plans is identified. For example, the tutor might have synthesized both an
iterative and recursive solution to the problem and it must choose to continue with whichever approach
the student used. This one program that is known to be a solution to the assigned problem gives the
tutor somewhere from which to start in analyzing the student’s program. The next thing that the tutor
does is to try to transform its program so that it is as similar to the student’s program as possible. It
does this by comparing (matching) its program to the student’s, and using the differences it finds to select,
from a set of meaning-preserving program-transformation rules, those that should be applied to its

program. Some examples of program transformation rules are shown in Figure 2-1.

(1) (PWsAB — (PWUSBA

(20 (PLUS A1) — (ADDL A

(3 (NOT (AND A B)) — (CR (NOT &) (NOT B))
(4) (<AB) — (NOT (OR (> AB) (= AB)))
(5) (aND (W) (B) — (AND (B) (A

(6) (COND (PRED ACTIONS1) (T ACTIONS2)) —
(COND ((NOT PRED) ACTIONS2) (T ACTIONS1))

Figure 2-1: Some Program Transformation Rules

Of course, since the student’s program may not be correct, an exact match between the student’s and
the tutor’s programs cannot usually be obtained. But differences that cannot be eliminated pinpoint bugs
in the student’s program. So when the tutor has no more meaning-preserving program-transformation
rules that appear to reduce the difference between its program and the student’s, it begins to apply
another set of rules, which introduce bugs. If, by doing s0, a match between the tutor’s program and the
student’s can be achieved, then the tutor will have identified the bugs in the student’s code. The final
step is then for the tutor to determine what underlying misconceptions led the student to make the errors

he made. Appropriate advice can then be given to the student.

Figure 2-2 shows an example of what the tutor can do. The student has been asked to write a program
that accepts as its input a list of positive numbers and returns as its value the maximum element in the
list. The student has written an iterative program to do this. The first program in the figure is ome
synthesized by the tutor, which also synthesized other programs, including a recursive one. But the tutor
selected this one because it most closely matched the student’s code. The program iterates through the
list, keeping the biggest number so far in ?AC. The second program was written by the studenmt. It
contains two bugs. AC should have been initialized to zero rather than NIL. There also must be an
explicit RETURN statement or the value NIL will be returned from the PROG. The tutor notices some
semantically irrelevant differences between its program and the student’s. It applies transformations to its

program to reduce these differences. The third program is the tutor’s program after those meaning-



preserving transformations have been applied to convert COND into OR, merge two SETQs into one, and
convert > into NOT <« and NOT ==. The differences between the transformed version of the tutor’s
program and the student’s program are now due entirely to the bugs in the student’s program. These

différences can now be found by the bug detection rules and the bugs are easily identified.

Example: One synthesized Program for the MAX-EL Task:

(DEFUN ?FUNCTION (?LIST)
(PROG (?AC ?LIST-LEFT)
(SETQ 7AC 0)
(SETQ 7LIST-LEFT ?LIST)
?LO0P (COND ((NULL ?LIST-LEFT) (RETURN ?AC))
(T NIL))
(COND ((> (CAR ?7LIST-LEFT) 7AC)
(SETQ ?AC (CAR 7LIST-LEFT)))
(T NIL))
(SETQ 7LIST-LEFT (CDR ?LIST-LEFT)
(GO ?7LO0OP))) )

Example Student Program:

(DEFUN MAX (LIST)
(PROG (AC LIST-LEFT)
(SETQ AC NIL LIST-LEFT LIST) ;;;BUG: AC INIT TO NIL
CONTINUE
(OR LIST-LEFT AC) ;;:BUG: SHOULD BE (RETURN AC)
(OR (OR (< (CAR LIST-LEFT) AC) (= (CAR LIST-LEFT) AC))
(SETQ AC (CAR LIST-LEFT)))
(SETQ LIST-LEFT (CDR LIST-LEFT))
(GO CONTINUE)))

Tutor’s Pro-gram after Transforms:

(DEFUN 7FUNCTION (?LIST)
(PROG (7AC TLIST-LEFT)
(SETQ 7AC 0 ?PLIST-LEFT ?7LIST)
7LO0P (OR ?LIST-LEFT (RETURN ?7AC))
(R (OR (< (CAR 7LIST-LEFT) 7AC)
(= (CAR TLIST-LEFT) 7AC))
(SETQ ?7AC (CAR ?LIST-LEFT)))
(SETQ ?LIST-LEFT (CDR 7LIST-LEFT))
(Go 7LOOP)))

Figure 2-2: An Example of the Programming Tutor

The LISP tutor illustrates the point that the power of an intelligent system comes from its use of a
substantial knowledge base coupled with 3 judicious use of heuristic search. The tutor’s knowledge of the
problem to be solved is contained in its outline for the problem’s solution. Its knowledge of programming
is contained in four places: its plans for generating code from outlines, its meaning-preserving program-
transformation rules, its bug-introduction ruies, and its mappings between observable bugs and underlying
misconceptions about programming. In addition, the tutor exploits knowledge about individual students
and about typical types of students (in the form of stereotypes’) in order to conmstrain its search for

appropriate transformation rules and to enable it to give advice that is tailored to the needs of each



individual student. All of this knowledge enables the search-based matching process employed by the
tutor to focus the attention of the tutor on exactly the part of the student’s program where attention is

needed — the bugs.

The LISP tutor as just described works, but its effectiveness is limited to small, fairly simple programs.
The reason for this is that without more control over the search process, the size of the space becomes
unreasonably large if the program that is being analyzed is of even medium size. To correct this, and to
enable the tutor to expand its scope and to encroach farther into the tutoring domain, several
modifications are necesséry. Some of these modifications just require that ideas that are already present
in the tutor be expanded. For example, plans need to play a much bigger role and the catalogue of known
plans needs to be expanded. But some dramatic changes to the structure of the tutor are also necessary.

Two of these will be discussed briefly.

The LISP tutor has several types of rules that are used in different parts of its operation. To keep the
system manageable, some degree of modularity is necessary. This can be achieved by dividing the system
into a set of quasi-independent knowledge sources that communicate via a shared data structure called a
blackboard®. Each of these knowledge sources can then contain its own working data structures
independent of the others. When one knowledge source is operating, the fact that a large number of rules
exist in other knowledge sources is of no concern to it. Its matcher can and will ignore them, thus limiting
its space of possible matches to a manageable size. This organizational structure is important to the
gradual encroachment of A.I. As the capabilities of a system are increased, it is not necessary to create a

dinosaur. Instead we grow a bee hive.

Another important modification to be made to the tutor’s structure is to incorporate the idea of top-
down problem decomposition. There are at least two ways this needs to be done. The first is to enable
the tutor io analyze a large program into smaller subprograms that have restrictied interactions with each
other. (Of course, this will only be possible if the original program possesses such a structure, which it
should.) Then the detailed matching operations described above need only be applied to reasonable sized
units at a time. The second thing that needs to be done is to separate the search for probable program
structures from the proof of the existence of those structures. Heuristic rules that outline program
transformations can suggest correspondences between the tutor’s program and the student’s. A program
verification system can then be used to reason precisely and confirm (or demy) the suggested
correspondence. For example, consider transformation (5) of Figure 2-1. That transformation is meaning-
preserving provided that there are no side effects in either A or B. Since functions normally do not have

side effects, it is a good transformation to try, but it is not always correct.

Current work on the design of programming tutors is attempting to build these capabilities into tutors

that will then be able to go even further than the current ones do toward helping people learn to program.



3. Using Traditional Programs

Computer systems that perform straightforward tasks such as document formatting now exist in
abundance. The bulk of the problem solving that must be done to achieve a user’s goal (e.g. a properly
formatted paper) is done by the user when (s)he selects the commands to be given to the system. Some
systems offer the user rudimentary assistance in choosing those commands by providing on-line help
facilities that access stored text via a predefined set of keywords. Ultimately one might envision a system
that does not use commands at all but instead goes directly from an abstract statement of the user’s goal
to a final output. Such a system would have to be able to perform all of the problem solving now done by
human users. Although we do not yet know how to build such a stand-alone system, we can begin to
move in that direction by retaining the requirement that users write straightforward commands, but, at
the same time, providing them some assistance in writing those commands. Notice the obvious analogy

here to the programming domain discussed above.

The encroachment of artificial intelligence into this arena can proceed in steps. The first is to leave the
user with the responsibility for deciding when (s)he needs help and to build a system that can respond
intelligently to such requests for assistance. The next step is to build a system that itself takes on some of
the responsibility for deciding when help is needed. Such a system would volunteer advice and assistance
without being asked. Both of these steps will be discussed below, the first in more detail than the second

since it is closer to being possible now.

3.1. Answering Questions

The idea of an automated help facility that answers users’ questions is not new. (For a survey, see®.)
Simple keyword-based systems are widely available. To use one of these systems, the user must already
have solved a great deal of his or her problem, since it is necessary to know the name of the program or

command about which help is being solicitgd. So one can say, for example,
HELP FTP

The response to this command will be a paragraph of information about how to use the file transfer
program FTP. But FTP is hardly an obvious name. A user who is really in need of help needs to be able

to say

How can I copy a file from one machine to another on the
network?

The goal of current research in automated help facilities is to bring us closer to the point at which a user

will be able to ask this latter question.

A complete interactive help system must contain all of the components shown in Figure 3-1 if it is to be

able to handle dialogues such as the following:

User - 1 need to delete 2 of my files.

System - Use the DELETE command.



User - I tried that.

System - Have you checked the protection on the files?

To participate in this dialogue, the system had to: recognize the indirect question contained in the user’s
first statement; find an ax{swer to that question; recognize the user’s second statement that DELETE
didn’t work; figure out why it did not; and suggest the next action that the user should take in
appropriate terms (it believes that this user understands how the protection mechanism works and just
needs to be reminded). Although no current system possesses all of these pieces, work is being done on

several of them.

R English ey N Question
Parser ~ Answerer
Dialogue
Maintainer
' English ¢ User
€ Generator - Modeler

Figure 3-1: The Structure of an Interactive Help System

In the UNIX help system project at Berkeley!? three of these components are being built: the English
understander, the question answerer, and the English generator. Their system, UC, can answer questions
such as, *How can I delete a file?® or "How can I get more disk space?® The natural language front end
to the system was built using a general-purpose English analyzer, which was modified to handle the
specific language forms that are used in talking about UNIX. The problem-solving component of UC is
interesting because it exploits the powerful, general-purpose (as we have already seen) idea of stored plans
that can be used to satisfy goals. UC’s representation of a UNIX command includes a statement of the
preconditions that must hold for the command to work and the state changes that are caused by the
command. Simple requests, such as *How do I delete a file," can be answered directly by finding a
command whose result matches the result the user desires. But to answer more complex questions, the
interactions between goals and plans must be considered. For example, although one can get more disk
space by deleting all one's files, most of the time that is not an acceptable solution because it conflicts
with another goal of preserving one’s previous work. To answer this type of question, UC maust consider
such interactions and find a way of satisfying the stated goal that does not, as a side effect, undo other,

possibly unstated goals.



Another approach to the design of a system that answers questions about another program (the target
program) is to give the target program itself to the question answerer and to provide the question
answerer with the ability to reason about programs. This is the approach we are taking in the help

system we are building, which answers questions about the document-formatting program, Scribe.

There are two significant advantages to be gained by using Scribe itself as the database for its help
system. The first is that the effort that would otherwise be required to construct a database specifically
for the help system is avoided. The second is that any separately constructed database will almost surely
pot describe every detail of the target system’s behavior. This means that the help system will necessarily
shottom out® when the level of the user’s questions exceeds that of the help system’s knowledge. This is
particularly important in Scribe, which is a complex system with many features that interact in
unpredictable ways. The code for Scribe is not enough, by itself, to serve as the knowledge base for a help
system. It must be augmented with some additional information, particularly a lexicon that maps
between internal program objects (such as particular variables and procedures) and concepts in the
problem domain (e.g. left margin, justification). In addition, a practical system needs to remember the

answers it has computed so that simple, commonly-occurring questions can be answered quickly.

The Scribe help system can answer questions like, "How do I get my paper right justified?® or *How can
I get double columns?® Although the complete system must possess all of the components shown in
Figure 3-1, the current version of the system contains only the reasoning mechanism. Questions to the

reasoning mechanism must be stated in a formal query language.

The help system answers users’ questions by matching the questions against portions of the Scribe code
and then chaining through the code to find answers at the appropriate level. The following examples
illustrate this process. Although chaining can be described as 3 syntactic search procedure, it relies on
semantic information to decide which paths to follow and which to prune. It is here that the help system
must exploit knowledge about programming and about the individual users it is dealing with. The

following examples show how the help system finds answers to common types of user questions:

1. *How do I get my paper right justified?® - Find the place in the code where justification is
done. Find out what determines how it is done (e.g. a particular variable value). Then find
out what user-controllable event(s) can cause the variable to be set appropriately. Notice that
it is necessary to understand the scope of an action, since the user does not want to know how
to get a single line right justifed but rather it is the whole paper that must be considered.

2. ®What is the difference between the itemize and the enumerate commands?® - Find the code
that is executed for each of the two commands. Compare them and report significant
differences.

3. *What will happen if I put @bibliography in the middle of my file?® - Find the code that is
executed when the command is processed. This code represents the highest level of description
of what happens. Chain down through it (by looking at each procedure that is called and
perhaps at each procedure that each of them calls, and so forth) until a description at the
desired level of detail is found.



10

The power of the help system derives from its use of the two main tools of artificial intelligence:
knowledge and heuristic search. The major source of domain-specific knowledge in the system is the
Scribe code itself. The way that this code is organized and represented is thus critical to the performz{nce
of the help system. The needs of the help system suggest both a particular programming language design
and a programming discipline to be followed by people who code the systems for which-belp facilities are
desired. Fortunately, the demands of the help system compliment, rather than conflict with, many of the
other demands placed upon programs (such as that they be readable, maintainable, and verifiable), so it is
reasonable to expect them to be met. The help system also appeals to a database of knowledge about the
individual users with whom it is communicating. In addition to its specific knowledge about Scribe and its
users, the help system must exploit more general programming knowledge in order to derive answers to
questions by examining code. This more general knowledge forms the basis of its heuristic search through
the code to look for appropriate answers. Interestingly, this more general knowledge looks a lot like the
programming knowledge contained in the plans of the Programmer’s Apprentice and the plans of the LISP
tutor. As our catalogue of such programming knowledge grows, the effectiveness of these programs that

use that knowledge grows and further encroachment happens.

3.2. Volunteering Advice

Direct help facilities, such as the ones described above, are useful when users know that they need to
know something. But one of the things that shared knowledge enables ome to do is to increase the
bandwidth of a communication channel. To exploit knowledge to increse the bandwidth between a user
and a program requires that the program take a more active role in vecognizing when it needs to apply its
knowledge. It must then apply the knowledge appropriately to provide indirect assistance to the user.
Some of the circumstances in which this is needed include: when a complete statement of a required
command is long but the need for the command can be inferred from context, when an explicit error is
made in a command, when a correct command is used in a way that will not produce the result that the
user desires, and when there is a better way to do what the user is doing. Sometimes the user should be
given explicit advice. At other times, the system should just proceed and do what it knows the user

intended.

Simple indirect assistance is already provided on many systems. For example, on some systems you can

type
edit pap<esc>

instead of
edit paper

provided that you have only one file whose name begins with *pap®. Simple error correcting capabilities
are provided by such systems as DWIM in INTERLISP. If a2 command is in error, DWIM will perform
simple changes (such as transposing a pair of letters) to see whether it can derive a legal command. But
such systems work completely syntactically. They exploit no semantic knowledge of the sort a person

who was looking over your shoulder would have. Artificial intelligence can enmcroach into this arena,



12

elucidation process consists of three steps:

@ Plan, which means to analyze the data and produce candidate substructures that can be used
to constrain the later search process.

e Generate possible structures that are consistent with the results of the planning step.

e Test those structures, using additional chemical knowledge to determine whether the proposed
structures are consistent with the observed data.

DENDRAL bas been used extensively in chemical research. It has contributed to the analysis of several

reviously unknown organic molecules. DENDRAL's power comes from two sources:
P Y

e Its ability to search systematically through a large space of structures and to find all of the
ones that match a given problem.

e Its ability to exploit knowledge about chemical structures to constrain its search to only those
molecules that are likely matches for a given problem.

Thus we see the two common threads of artificial intelligence appearing yet again.

A more recent part of the DENDRAL project is meta-DENDRAL, which is a program that infers
structure elucidataion rules of the sort that are used in DENDRAL. Thus meta-DENDRAL constitutes
one further encroachment step over that taken by DENDRAL, which relied on people to supply its rules.

4.2. An Interactive Assistant
DENDRAL helps chemists analyze existing chemical compounds. Apother important task that chemists
must do is to discover ways to synthesize desired compounds. Artificial intelligence is also encroaching on

the performance of this task.

To synthesize a desired molecule, it is usually necessary to perform 2 sequence of reactions that lead
from available starting molecules to the desired structure. Planning such a sequence requires both
knowledge (of the individual reactions that are known to occur) and search to conmstruct a plausible
sequence that will lead to the desired result. Artificial intelligence can encroach on this process in the
following stages:

1. Provide efficient access to the large database of known reactions that must be considered. At

this stage, the human chemist must select appropriate reactions and decide how to combine
them.

2. Infer new structures to be added to the database. This can happen in two ways. First, the
experience from stage 1 can be used to improve the organization of the reaction database so
that stage 1 can be performed more efficiently and so that further planning can be automated.
Second, new reactions can be inferred {rom patterns of existing ones.

3. Select a sequence of reactions that is likely to accomplish a desired synthesis.

There exist several system designed to perform step 1 (for example, Wipke’s systemu). But as the size

of the reaction database grows, the speed of these systems decreases substantially because of the large



