RECTANGULAR CODING
FOR BINARY IMAGES

Y. C. Kim
J. K. Aggarwal

TR=84-1-23 February -1984

Laboratory for Image and Signal Analysis
Department of Electrical Engineering
The University of Texas
Austin, Texas 78712

This research was supported in part by a grant from IBM Corporation,
and in part by the Air Force Office of Scientific Research under

Contract F49620-83-K-0013.

1
ABSTRACT

an algorithm is presented for constructing a rectangular code from
the array representation of a binary image. The rectangular code
represents the object regions of an image. 1t is a compact
representation and enables efficient storage and transmission of
binary images. In addition, for simple operations on the image such
as scaling, translation and crotation by multiples of 90 degrees,
equivalent operations in the corresponding rectangular code can be
determined. The computation of measures such as the area OX centroid
of an object is easily performed. The execution time of the algorithm
is proportional to the number of pixels in the image. The extension

of this algorithm to gray level images is straightforward.

1. INTRODUCTION

In general, digitized images are typically represented as 2-D
arrays of pixels. However, in operating with 2-D arrays, the storage
and processing requirements grow as n? for (n x n) images. in
addition, 2-D arrays are not always amenable to, or efficient for, the
intended operations. By selecting an appropriate data structure for a
problem, the operations to be performed may be greatly simplified in
terms of the time and storage requirements. These considerations
pecome especially important in a processing environment where it may
be necessary to perform several different classes of operations. Use
of a single data structure in this environment may result in
inefficient use of time and space and thus unacceptable processing or
storage overhead. Therefore a considerable interest has been shown in
developing data structures for representing binary images. These
structures should possess the characteristics of efficient processing
and comparatively low storage requirements (over that of the 2-D
array) for the intended application. In developing such data
structures, two broad approaches may be distinguished --- the first
makes use of information at the boundaries of object regions and the

second makes use of the area covered by the object.

Most of the earlier work was concentrated on representing binary
images with ‘boundary information®. Boundary coding and its
properties have been studied by Freeman ([1]. Montanari [2] reduced
the difficulties encountered in extracting a minimal length polygonal
contour from a digitized image by first smoothing the contour chalans.
Following this the polygonal approx imations are extracted. Zahn [3]

used a similar approach, e.g., smoothed contour lines to describe 2-D

3
binary patterns. in his method, each of the contour lines is

described by its direction and length. Merrill [4] proposed 'TCB'
representation scheme (tightly closed boundary) . A 'TCB' consists of
sets of ordered X-coordinates of boundary points which have the same
y-coordinate. This data structure is efficient for searching areas of
the image. panielsson [5] improved Morrin's [6] and Cederberg's [7]
chain coding algorithms by introducing the use of adjacency maps and

nesting trees.

More recently, hierachical data structures have been proposed to
represent binary images, e.g., the image pyramid [8][9], quadtree
2101[111[12][13][14] etc. The second approach described above
exploits the fact that a binary image may be represented Dby
descriptions of either of the uniform regions (l's or 0's). In oxrder
to describe a uniform region, a certain amount of information has to
pe encoded in the descriptions. One method would be to introduce a
set of elementary shapes which may be used to represent a uniform
region. Circles, triangles and rectangles have been proposed as such
elementary shapes {153 A circle reguires the least number of
parameters (the X and ¥ coordinates of the center and the radius) to
represent a uniform region. However an image array is comprised of
discrete samples measured on a rectangular grid. This makes it
difficult to represent an object precisely with a set of circles.
Rectangles reguire 4 parameters (the X and Y coordinates of one
vertex, width and height) to describe them and represent a natural way

to describe uniform regions on a rectangular grid.

In describing regions using rectangles, it is of interest to

4

minimize the number of rectangles required to describe a given region.

A nunber of research efforts have focused on this problem.

roki [15] developed an algorithm to compress image data using
rectangular region coding of a binary image. For the rectangular
region coding, he used an image pyramid ([8][9] of the binary image.

The algorithm consists of two main steps.

1. Find and encode the largest possible rectangle in a uniform
region. This is repeated for any remaining unencoded area
of the image. The choice of rectangles is determined based
on a criterion of efficiency [15].

2. Describe the pixels which are not encoded by the rectangles
as a set of explicit point-by-point data.

It is pointed out in [15] that repeatedly determining the largest
possible rectangle for the remaining unencoded area of a uniform
region does not minimize the number of rectangles required to describe
the region. A disadvantage of this algorithm is that an image pyramid
should be initially constructed. This in itself may require a

significant amount of processing.

Ferrari et. al. [16] developed an algorithm to £find a minimal
rectangular partition of a digitized blob. His formula which finds
the minimum number of rectangles is N - L + 1, where N is the total
number of concave vertices on the boundary of a digitized blob, and L
is the maximum number of nonintersecting chords that can be drawn
between cogrid concave vertices [16]. However this algorithm is not
applicable to regions with holes. For example, for the object region
in Fig 1-1, N is 10 and L is 3. The minimus number of reguired
rectangles is 8 as given by the above formula. However the object

region can be partitioned into 7 rectangles.

I — - S D
l_ 1 2 % _ I]
- _ 8 . _ _
1 LA [4
l_ 7 | 10 4 6
- _ > °©7

6
R O USRS DR P

5

SR SRR R B DR - |

Figure 1-1: An example for which the algorithm
in [16] is not applicable.

In this paper we propose a representation scheme for binary images
referred to as rectangular coding. This scheme follows the second of
the two approaches outlined earlier. it provides a compact
representation of binary images and possesses a number of useful
properties discussed in the following sections. The algorithm does
not result in an optimum solution in the sense of minimizing the
number of rectangles. It provides a sub-optimum solution which is
shown to be more efficient than several other commonly used technigues
including Aoki's algorithm [Fig. 6-1]. Ferrari's algorithm can not be
compared with others because it is not applicable to regions with

holes.

In describing the algorithm, PASCAL like notations [18] are used in

the remainder of this paper.

2. DEFINITIONS AND NOTATIONS
Let 'I' be a binary image produced by digitizing a picture on a

rectangular grid.

pefinition 1: An object in a binary image 'I' is a 4-

neighbour connected region of pixels each of value 1.
The X, Y coordinate system of an image 'I1' is defined as follows;

The X-axis is coincident with the uppermost row of the

array and the Y-axis is coincident with the leftmost column of
the arraye.

pefinition 2: The rectangular code of an object is a set
of rectangles which partitions the object completely. Each

rectangle is represented by the X, Y coordinates of the upper

left vertex, width and height.

The description of each rectangle is stored in the following manner
during the process.
RECT = RECORD
X,Y,W,H : INTEGER;

NEXT : “RECT;
END; (* RECT *)

where the X and Y fields are the (x, y) coordinates of the
upper left vertex of the rectangle, the W field is the width
and the H field is the height of the rectangle. The NEXT

field is a rectangle pointer which points the next rectangle
in the 1list.

an image ‘'I' can be represented as a rectangular code of all the

objects in it assuming that the background consists of pixels whose

value is Q.

pefinition 3: A concave vertex 1is a point on the boundary
of an object at which the exterior angle is less than the

interior angle.

7
pefinition 4: A chord is a line of finite length which

divides a wuniform region in 'I' into two regions and is

incident on at least one concave vertex .

pefinition S5: Any two rectangles A and B are adjacent if
and only if there exists a chord which is common to both

rectangles as a side or a part of a side.

pefinition 6: A closed chain code is a chain code which
returns to (ends at) the starting point (the starting pixel)

on the boundary.
3. ALGORITHM

3.1. Rectangular Coding

In partitioning an object region into a set of rectangles, the
minimum number of rectangles is unique, however, the partitioning of
an object region into the minimum number of rectangles may not be
unique. In this section we present a heuristic algorithm for
constructing rectangular codes that may not provide the optimum
solution but provides a compact representation and requires only a

single pass through the image.

The process 1is performed by scanning the array row-by-row from the
upper left corner of the image. pDuring the process, this algorithm
maintains two lists. Oone is a 1list of °‘temporary’ (growing)
rectangles and the other is a list of 'fixed' rectangles. These two
1ists are referred to as RTEMP and RIMAGE respectively. 1In scanning a
row, runs of 1's are determined. For each such run, a temporary

rectangle P is created with the following information:

8

1. X, Y COORDINATES = X, Y coordinates of the starting pixel
of the run.

2. WIDTH = length of the run.

3. HEIGHT = 1.
The list RTEMP is updated with this temporary rectangle P. Consider
the process of growing rectangle Q in RTEMP to include the temporary
rectangle P, where, ‘'growing' means the height of rectangle Q 1is
incremented by 1. If rectangle Q is grown, the rectangle P is
modified accordingly (width and/or X coordinate of it should be
changed), otherwise it is removed from RTEMP and placed in‘RIMAGE.
This process will be continued until all the rectangles in RTEMP are
examined or the width of rectangle P becomes zero. Upon completion,
if the width of the rectangle P is not zero, P is added to RTEMP. For
a given temporary rectangle Q in RTEMP, the following conditions
determine whether or not it may be grown to include P (or a part of

P).

Conditions :

1. The last row of the rectangle Q is adjacent to the current
scanning row.

2. The starting columns of both rectangles P and Q are the
same and the width of rectangle P is greater than or equal
to that of rectangle Q.

3. The last columns of the both rectangles P and Q are the
same and the width of rectangle P is greater than or egqual
to that of rectangle Q.

For any rectangle Q in the list RTEMP, if condition 1 is
false, then the rectangle Q is fixed and moved to RIMAGE, else
if condition 2 or condition 3 is true, the rectangle Q may be
grown.

These processes are continued until scanning of all the rows in the

array is completed. At this point all the remaining rectangles in

9
RTEMP are fixed, so they should be moved to RIMAGE. RIMAGE contains

the rectangular code of the original image.

Consider the following example in which the rectangular code for
the object region of a sample image is constructed. In scanning the
2nd row, two temporary rectangles 1=(1,1,1,1) and 2=(3,1,2,1) are
started, and in scanning the 3rd row, temporary rectangle 1 is grown
and a new rectangle 3=(2,2,5,1) is added to RTEMP. At this point
rectangle 2 does not satisfy the growing conditions, but it still
remains in RTEMP because its last row is adjacent to the current
scanning row. On scanning the 4th row, rectangles 1 and 3 grow, and
rectangle 2 is removed from RTEMP and inserted in RIMAGE [Fig. 3-1 a]l.
Actually at the 2nd column of the 4th row, a temporary rectangle P =
(1,3,6,1) is created in RTEMP. However with the growth of rectangles
1 and 3, this rectangle P vanishes. After scanning the 5th row,
rectangles 1 and 3 are still growing and a new rectangle 4=(7,4,1,1)
is added to RTEMP. After scanning the 6th row, rectangles 1 and 4 are
growing, 3 is fixed and two more new rectangles (5 and 6) are added to
RTEMP [Fig. 3-1 b]. After scanning the 7th row rectangle 3 is moved
to RIMAGE and rectangles 1 and 5 are fixed, and 4 and 6 are growing.
puring the scanning of the 8th row, rectangles 1 and 5 are moved toO
RIMAGE and rectangle 4 is fixed and 6 is growing. After having
completed scanning of all the rows in the array, the remaining

rectangles in RTEMP (4 and 6) are moved to RIMAGE [Fig. 3-1 c].

10

e _ _ _ _ _ _ . _ _ RIMAGE
I _ - b /l,// o - 1 3.1,2,1)
- _ 72
_]! 3 _ _| RTEMP
| | (1,1,1,3)

(2,2,5,2)

a) After scanning the 4th row.
- e e e e W _ _ _ . _ . __ RIMAGE
_ _ - - l,// _ o o1 312,10
- _ //4%/2 L1 _]|
I — _ _| RTEMP
-] 3 (1,1,1,5)
|- — e 4 (2,2,5,3) <--- fixed
l 3 l g ' 6 (7,4,1,2)

(2,5,2,1) <--- new

(6r51111) {omw= NEW

b) After scanning the 6th row.

i1

e e e e RIMAGE
| — - — S - _ (3,1,2,1)
7 2 7
| -%/’ {/%2% L1 | (2,2,5,3)
A7
7 7 _ | (1,1,1,5)
(2,5:2,1)
’///
I4I &
% (7 1,3)
27 (6,5,1,3)
27/
Z
|
¢) Final result.
Figure 3-1: Processing sequence of the algorithm

for a sample image.

3.2. Compression of the Rectangular Code

It is possible to exploit certain regularities in the rectangular
code and further reduce the storage requirements. Consider Fig. 3-2.
Some of these rectangles can be grouped based upon regular spatial
relations between them. For example, rectangles 1, 2, and 3 have the
same heights and their widths increase symmetrically about X direction
in equal increments, and also have the same difference between the X
coordinates of two consecutive rectangles in the group. Similar
relations are in evidence for the groups (4, 5, 9, 10, 11, 12) and (6,
7, 8). 1If these relations can be encoded, it is possible to arrive at
a more compact representation than that obtained by encoding all the
rectangles individually. A group of rectangles will be represented as

follows. The first rectangle in a group is selected as a reference

12

RIMAGE

l_ _ ! - - - -] (2,0,1,1)
2 ____ . | LD

(OI 2'5[1)

(0,3,2,1)

(1,4,2,1)

[J ol e o 2 742,1,3)

R P I L Ll (6,3,1,2)

T D A e | (5,4,1,1)

T T Y P P s (2,5,2,1)

(3,6,2,1)
(4,7,2,1)
(5,8,2,1)
(8,8,1,1)

Figure 3-2: Regularities in a rectangular code.

rectangle.

GROUP = RECORD
X, Y,W,H,N : INTEGER;
DX,DY,DW,DH : INTEGER;
NEXT : “GROUP;
END; (* GROUP *)

where X, Y, W, H are the parameters of the reference
rectangle, N is the number of rectangles in the group, and DX,
DY, DW, DH are the differences in each field of consecutive
rectangles in the same group.

The numnber of data elements required to represent a group Iis
greater than that required for two individual rectangles and less than

that required for three. Therefore a group has to have at least three

13

or more rectangles in order for this scheme to be advantageous. The
grouped rectangular code for the object regions in Fig. 3-2 is as

follows;

123

Rectangle (8, 8, 1, 1)
The first group
The second group
The third group

(2, 0, 1, 1, 3,-1, 1, 2, 0)
(0, 3, 2, 1, 6, 1, 1, 0, O)
(7 2, 1, 3, 3,-1, 1, 0,-1)

09 pa OO

iIn this case all the rectangles in a group are adjacent to each other.
But it is not necessary to restrict the rectangles in a group to be
adjacent to each other. However there should be a systematic way of
grouping rectangles efficiently. The grouping should not be
arbitrary. We therefore introduce the folloﬁing constraint in order

to make the grouping process systematic.

In order for two or more rectangles to be grouped together,
either the WIDTH or the HEIGHT of the rectangles should be
equal.

With +this constraint, a group ’of rectangles can be constructed
systematically, and either the DW or DH field of a group code will
always be zero. Therefore one integer field may be removed from the
group code, and a boolean field can be added to indicate whether it is
the height or width that are egqual. As a result a group code may be
redefined as follows;

GROUP = RECORD
X,¥,W,H, N : INTEGER;
DX,DY,DS : INTEGER;
SAMEH : BOOLEAN;
NEXT : "“GROUP;
END; (* GROUP ¥)

where, if SAMEH is TRUE, the heights of rectangles in a
group are equal, otherwise the widths are. The DS field
corresponds to the difference in width or height of two
consecutive rectangles in a group. All the remaining fields
are as defined earlier.

14

This grouping process may be per formed in two ways. One 1is
grouping the rectangles after constructing the complete rectangular
code of the image and the other is to perform the grouping every time
a fixed rectangle is moved from the list RTEMP to RIMAGE. In the case
of the former approach, all the rectangles to be checked are already
constructed and it can be done by a recursive process. By using this
grouping technique we can compress a rectangular code providing a more

compact representation.

4. OPERATIONS USING RECTANGULAR CODES

It is often the case that after encoding the image, it is required
to transform the original image, e.g., by scaling, translation etc.
In this case it becomes necessary to reconstruct the 2-D array from
its encoded data structure, apply the regquired transformation and
encode the +transformed image. If it is possible to apply these
transformations to the rectangular code of the original image, the
rectangular code of the transformed image may be obtained directly.
This section investigates the types of transformations that can be

applied directly to rectangular codes.

Scaling can be performed simply by multiplying the X, ¥
coordinates, the width and the height of each rectangle by the scal ing
factor. Translation can be performed also easily by adding the amount
of shift to the X, Y coordinates of every rectangle. Rotation by
multiples of 90 degrees is not difficult because it does not change
the partitions of an object. However, in this case the rectangular
code which is constructed from the rotated image may be different from

that obtained by rotating the initial rectangular code. Computation

15

of measures such as area Or centroid of objects can be performed
easily. The area of the object region is equal to the sum of the
areas of all the rectangles, and the center of each rectangle is

obtained as follows;

i

The X-coord. of center (X-coord. of rectangle) + (Width-1) /2

The Y-coord. of center (f-coord. of rectangle)+ (Height-1) /2

If an object consists of K rectangles, then the area of the object

region is
k
A= 2 (W * Hjy)
i=1

where W; and H; are the width and height of the i-th
rectangle.

Let the K rectangles of the object, of areas Ay, Bogy o o 4 By, have
coordinates of the centers (Xy, Y1) s (X5 Yo)r o o ¢ (Xy o ¥y) o
respectively. Assume that the object is in the gravity field, so that
the area of a rectangle can be treated as its mass. Then the single
force A*g which passes through the centroid of the object has a moment
about any axis which is equal to the algebraic sum of the moments of
the weights Al*g, Az*g, e o ¢ B*g, which pass through the centers of
each rectangle. Let (X, ¥) be the coordinates of the centroid of the
object. Then the x-coordinate of the centroid of the object can be
obtained as follows;
A*p*¥g = Xl*Al*g + xz*Az*g + o *+ Xk*Ak*g
Therefore

K
X = {2_(X; * Ay }/A

i=1

In similar fashion, the corresponding expression for the y-coordinate

16
of the centroid of the object is

K
Y = {Zl(Yi * B;) }/A
i=

5. ANALYSIS OF THE ALGORITHM

The algorithm consists of two stages; constructing rectangles and
grouping them. A single pass through the image is required to
construct the rectangles and therefore the processing time for the
first stage is of the order of number of pixels in the image. The
time spent in the grouping process depends on the nunber of rectangles
checked. If K is the total number of rectangles in the list RIMAGE,
the number of rectangles checked is upperbound by K(K-1). This 1is
because the list RIMAGE is already sorted by the row number of the
last row of each rectangle and each rectangle is checked with all the
rectangles following it in the list. This process is performed twice;

once for the 'same height', once for the 'same width'.

In the remainder of this section the storage requirements of
rectangular codes are examined and compared with those of other
commonly employed representation schemes. This includes examining the
increase in storage requirements for the different schemes as the
corresponding images undergo a transformation, in this case scaling by

an integer constant.

For a 2" by 20 image, o« 2 pits of storage are necessary for the
2-D array representaion, and if the size of the image is increased by
a factor of N, i.e. to (N*Zn) * (N*Zn), Nz*zn*Zn bits are required.
Therefore the amount of storage required is increased by a factor of

2

2

17

For a chain code representation, if M is the number of closed chain
codes, and L is the total length of chains of the image, the storage
requirements will be (2n*M + 2L) bits for 4 - connected chain codes

and (2n*M + 3L) bits for 8 - connected chain codes, When the size of

the image is increased by a factor of N, the number of bits required
to represent a coordinate of a starting point is increased to n +
{logzN] and the total length of chains of the image will be NL +
(N-1)K, where K is the number of convex vertices of the object.
Tthere fore the amount of storage required will become 2(n + [logzN])M +

3[N*L + (N-1)K] for an 8 - connected chain code.

For a run - length code [17], if C is the number of codewords and L
is the average length of a codeword, then L*C bits are required for a
given image. 1If the size of the image is increased by a factor of N,
storage requirements increase by O(N). This is due to the fact the
number of codewords is increased by a factor of N when the number of

rows is multipied by N.

For a gquadtree representation [10]1[12], as the image size
increases, there is no need to increase the storage because the
storage requirements for a quadtree depends only on the number of
nodes of the tree and the number of nodes is not increased even when
the size of the image is increased. However if the scaling factor is
not a power of 2, it should be stored along with the original gquadtree
in order to retrieve the scaled image correctly. 1f the number of
nodes of a quadtree is M for a given image, 2M bits of memory are
required because we can store a quadtree only with the colors of the

nodes if the order of tree traversal is predefined, and the color of a

18

node can be represented with 2 bits of memory.

Consider the rectangular code. For a 2" by 2" image array, the X
and Y coordinates, the width and the height of a rectangle can each be
represented with n bits. So if the number of rectangles for a given
image is K, 4Kn bits of memory are required for this rectangular code.
and when the size of an image is increased by a factor of N, the
nunber of rectangles remains same but the number of bits required to
represent a field of a rectangle is increased to n + [logzN].
therefore the necessary storage is increased by 4K*{logéN] for a
rectangular code. But if we use the grouped rectangular code, the
storage requirements will be reduced further. For a 27 by 27 image
array, the DX, DY and DS fields of a group code are bounded by n-1
bits because a group has at least three rectangles in it. Then the
storage requirement for +his case will be 4Kn 4+ [5n + 3(n-1) + 1]G =
4kn + 2(4n - 1)G, where G is the number of groups in the code.
fherefore if the size of the image is increased by a factor of N, the
nunber of bits required for each field of the code (except the SAMEH
field) is increased by [logzN]. So the increase in regquired storage

will be 4 (X + 2G)*[log2N]. These results are summarized in Table 5-1.

19

Table 5-1: Comparison of storage requirements.

represen- for a given | for an image order of '
tations image scaled by incease in
(20 * 2™ a factor of N storage
| 2-D array | 4" | VR N2 | * N2 |
chain code 2nM + 3L 2 (n+[log,N|) M +2M[log,N|+
(8-neigh) (note 1) +3 [NL+ (N=1)K] 3(N-1)(E+K)
run-length L*C L*C*N * N
code (note 2)
quad tree 2M (M is the| 2M (note 4)
4 of nodes)
grouped 4Kn+2 (4n-1)G 4K(n+[log2N])+ +4 (R+2G) *
rectangular| (note 3) 2[4(n+flog2N]) [logzN]
code ~-11G
note:
1. M is the number of closed chain codes.
L is the total chain length.
2. C is the number of codewords.
L is the average codeword length.

3. K is the number of individual rectangles.
G is the number of groups.

4. If N is not a power of 2,
the increase in storage is +flog2N].

20
6. EXAMPLES

The storage regquirements of a rectangular code and some commonly
employed representation schemes are compared for a series of sample

inages in this section. Nine sample images were selected ranging from

a comparatively 'simple' image to a 'complex' one [Fig. 6-3 - 6-111.
rig. 6-1 shows the data reduction ratios of various types of
representations in terms of bits per pixel, where the data reduction

ratio of one particular representation scheme is defined as follows;

(storage requirements for the representation in bits)

__...——-—.——-—-—————-—-————.-.-_.-_.._--..—-—-——-.—-——--—..———.——-.——-———-.—

(total number of pixels in the image)

i.e. the storage requirements for a 2-D array is the normalization
factor. This ratio should be less than unity for the scheme to be of
interest. Fig. 6-2 shows how the actual storage requirements vary
when the size of the image is increased by a factor of N. These two
graphs indicate that the grouped rectangular code provides a more

compact representation of a binary image than the other schemes .

21

Data reduction
ratio (bits/ pxi)
T l »
1.5} i L b2
it T
.4} reference: i /." 20
2~ =], ;o 4
13k Darray=1.0
1.2 -
i -
1.0
9
.8
4 VA
.G il _-/‘ /.-——'\
e -t
Qg
-5 e Quodtree
b - ¢ Run-lengih
3 4+ Aoki's Code
o L X Choin Code
: @ Rect Code
A
O ! ! 1 ! : ! H $ i Sample -
I 2 3 4 5 & 7 g o Image

Figure 6-1: Comparison of data reduction ratios

22

Storage
Requirements (100 bits)
/ :
! A
e r J /
i I
) I
48t / /l:
/ ,/'_:
d Is
40 / /¥
! /'_- T Quaodiree
{ /‘.-' e Run-length
32 / /s + 2-D Arroy
/ / X Chain Code
24 / / © Rect. Code
I
! /X
/I
8 //‘/".
;17/"...1-_._...'{.._._‘['_...-7—.._:{'
8 i :..'/o//)/
O 1 H] 3 il N pa—
! 2 4 8 16 32
{32x32) {1024 x 1024}
Figure 6-2: Storage requirements when an image is

scaled by a factor of N (for sample image 8)

23

B0 D=8 BB) B8 B 58 Bt 629 D) 50 G0 On0 ol Ong Ded vl BeS Bh D3 Bt Bed P Df Db D09 GG G Db Bt

8 1
13 8
8 L
& 8
L} L]
2 8
8 @ e s EE R 8
8 [3
3 a8 E N EaE R 1]
& §
L] B EEREBEEER 8
& 8
8 € X 88 EEEE A 8
8 8
8 EEHE NS E NSRS 8
& L)
“ BEERREEEEEE R ES]

8
[} WOHB R BEEHE YRS N RS [
8 &
3 EHEE TR EEEEEERRE R EN 2
L g
8 B EEEBAEEEE TS EER RS i]
8 8
“ U Y EXESSEREREREEEREREERSR B

8
4 BB EEYE R R EREEE NN R EREE D
e 8
8 BH R E T YR REEEERE R EEEHE R HE RS
§ e
8 BB E R EREAEEEE N R R KSR R EE KSR RRER D
[] €
” BE BB EEEEEE R TR AE R T EERE KRR BB R D

8
I8 6 48 &8 € & 688848 a &
2 L]
8 BB REEE R R &
g 1
8 S RE USRS EH [
8 3
“ E T AR EE s [}

&
8 LA BE AR IR R 8
L] 8
8 LS) 13
8 8
8 ® 8 o« 8
8 8
§ ® 1]
[3 8
& 8
8 8
13 8
L3 8
8 []
3 L]
L3 1]
L} 8
§ 8
L] 8
3 8
8 Ed
8]

B9 0o Bod Do B (g (g Ded DG Do Bet fod o0 =8 4 Bed Bl Do0 B0 Dok Do fod g Ded Dg BeF 8xd D9 g Bed

1

image

Sample

Figure 6-3:

B0 Ot Bod Bn% 020 00 Gf G0 Gut S8 Gui Po0 Bod Dok Dot B0 O God fud Bn0 D8 G Gn9 B Du0 OO Qod o8 o0 P

Bb B8 Ued Bt o3 B3 0@ oD Bod Dud Bd Brd Be@ 60 el God Gud oo Ged Pred Bud Dot d Bed Dok Dmd Dot GE Gt Do

8 8
& 1
] [}
[} L
3 8
& 8
8 B8 SR w 8
e 8
f EEEEeeas "
)

& BEBEUE TSR 8
8 8
[¥ EEEBRE R U “
[}

§ BB ERYBEERSEES S 8
8 8
8 B EEERESEE YR 8
2 §
[B ERE ST EHRETESR SR g
[&
2 BB EE R BRI T EE N “
[}

1 EHEEERES EEE N REESE Y EE S 8
8 8
8 B EEERENEE R QR E RS EREEES &
& 8
] "BEEEREB VT BEE U B RYE Y KRR RE D
e L]
) EYUEBREGYBEEEEEUERYEEESEEEEREP
[8
a B EEEEEREEREERES ERE AR EEERER O
& @
8 ®BEEYREEEEE S SEEEEYERESTRE S RE KBS D
8 B
B8 &8 68 % &8 888 8
8 8
1 "B EEE BB R SR & 8
[} B
8 € 8 AN REEKER S L3 4 i3
¢ §
8 e E R R E 8 8
& a
] LR B SE R 2R AR s @« 8
& 8
B & a8 e e ® & 8
3 [}
] ® 8@ ! & 2
8 L]
[% ® & 8
a #
8 @ & 8
g 3
& ® & 8
8 [3
8 ® ¥ 8
2 [3
L] o & [}
L] 8
L] & ® 8
8 L]
13 & ® [
8 B
§ 8

2

image

Sample

Figure 6-4:

24

Bt G0 Gx0 5% B0 Gnt B B ©0 Bo§ B0 009 Po0 550 Bud Ond GG S0 B0 Dud B9 50 B Dud G Bed B0 B9 B9 B0

0]
& 2
8 B
8 8
8 8
” B S DN “
H I RN R ER R "
' IR EERERERR “
” IR EREEEREERENER:E] “
“ FBEBEUEAEEABE "
” EERB LT RETREEEER "
.. BEEREREE T TEEBED R a-
n aBEE R AP EARTER G N R "
“ EE B BE BN KRR EEE W NEE ”
" @R D EREBRY TSN RT R EEE RN N “
1 t*tttttttttutttttat-*taati“
u a'titatn*tﬁttittuttttaattan"
n t**tﬁitt’sttatn*tttt*t*t*ta:"
”ttﬂtﬁt*att*!tttttttﬁtaaa*ﬁi"
“attatﬁwtttttaﬁﬁ u
" EURER N KBRS RSN u
“ LN N R R LR ”
” IER SRR s ae8 b ¥ "
" ®« R E A FRERD PR "
" LI 2 IR EERREY B & “
” ® & e @B EES X SRS “
u ® R EEEEERE R EES “
u BEREHAR B NN “
H @B YN B AR RN "
” B W E R B W W RN “
" B NN R RS "
“ BN “
8 8
? ® & []
”IIII!I!I!!II!IIIIIIIIIIIIIIIII"

3

image

e

Sample

Figure 6-5:

G 8 Db Bed o) Ped DS GG Do Suf D0 G0 OmD G50 Dx0 Gn0 B9 Gug Pod Pt Bod Pu0 B Ons OnG B0 Dot Bt On9 B

& g8 E IS
2 688 aEs B 8 es ess &y

EEEEEREEERIBEREEEEEEE G

e EEEREEREEERES LI
L BB LR BB E D
wE B & s B e ® @ BB
& & f & B H e’ & ® B w8
/BB B ® & & ® & &
a8 s ® | u ® & ® R
LR A & 8§ @ @ B8 @
L AR 25 I L2 I @ 8@
88U EEEREREEE YR EE RS SRS
BB R Y BREN YR EEESEESES BER RSB

BB EEEREEUREREEEEY B

SRR B ERPECAROERPEC PN PPN P R PN eSO R R TR RR R RNP IV RB R
PR e LT L A L S ALl A R bl it At b

Pog B4 Bb BB Bof Pug Bed G4 fud Bu0 G0 D=0 Dof Pod Gud Dod Dot God P Bed Bed B Gt Dot foed Bod fod g Bed D

4

image

Sample

Figure 6-6:

25

LA R ek ol

]

8

0 B &

]

§ @@

]

8 I3
°

b LI
o

0 6 b oa
[]

] Bk w
o

0 LI
8

[8 &
®

1 LRI
]

] U I B
1

B BB KRR D
4

g e RE SRS
8

BE &Y f 'Y
[I] B &
8

[3K 3 & @
1

“ ® & [
0 * B o®
]

o ® &«
]

1 LI Y
8

0 LI
]

] LI R
]

3 | @@
]

9 ® 6k
8

0 ®@®mx
]

8 B @
]

] & @
8

] &
]

[] & &
]

] o o«
]

] " w®
]

§ o bl Boe O Ond 00 fond Defd

B0 B0 0o O3 D D D0 Brd B0 Gud Bt Do) B9 Dol De0 GG Qv Dol O Ded B Bew

% "% % R AR R D

I s ¢« & 2 &« 9 2 % & 2 & &
I« 2 & 2 2 % 2 % 2 2 & @

& & & £ & ¥ @ % & @

I 2 % & & ¢ % ¢ % ¥ X 2 X X & K T 2 2o F ¥ Q2R EFT LY
Itlt'ﬁQﬁt*iit'ﬁt*ﬁtﬁii'**i"ﬂ!

& % & R 4 % K ¥ @ F B ® B T AR AL

&
E §
€
a
&
%
-
@
s 88 EES
BB 88 u&
B E & a8
6 Ea s e
‘ *
& &
- &
« ®
& “
® L
®
«
&
&«
«
&«
LR 3 I N ¢
LR SE 2E B 4
R B U KR
% REEESR

® @ ®* & & ¥ ® & ¥ BH R R YR LT E R
€ & * " A% H B E e R B R AR D
L 2K 2 2 B B R 2 25 I TR I N IR AN

® % % *
® a4 % R

® % % @

@

2 % %« ®

&«

% % % ®
® u ® %R

@

® % % & ® 2 @

®

B ot Ged P9 Bod Dd Bnd Dud Gnd Owd

& ' @

% R % @
% & W ®
4 & ¢ #
€ ® #® %

@ @

L3

* & ® % @

& & & @
& & @ %
&

% & 2 ®

g Dt Oud Do

PP TR PR N P NRCT TN RSP RUARC e R ERNsReRCe ! Roreoene PrReeIDOBO®

5

image

Sample

Figure 6-7:

#

8

8 ®
a

[} LR
&

& L IR A 4
3

B € R B ESR
8

[£ B BB

&

8 B8 E

[}

L] LR

L]

B LB

B

LA

8

§ LR
8

8 LB BRI
[}

[3 8 & ¥
[}

8

8

[}

B

13

8

&

8

B L ® 8 ® & @
8

8 ® ¥ E S ® 8 & ER
8

8 ® 8K ® 8 & EE
8

8

&

1

8

8

g

8

8

8 ® &

8

il ® e 8K
8

8 a R &8

8

] e E ¥ &

8

' ¥ B

1

§ ® o

[}

8 L S 3

13

@ Bed Dut Dk Duq bed ped Omd Do 0= 0§ M & & ¥

8 8 &
L
LR A)

L)

&
L]
®

®
%
&®

% @

% ® % " % % &

& &
& o®

LR
& @
® &

o
«

®
*

® % 7 % A "
% w &

o N
a2 @
& @

&

&
*

& Z & R
% % % %

& & & %
% % % % % & % N

®
R
*®

%
®

& ' % %

%
&

% % ® ¢ @« % & & & 2 2

Dot 652 08 G50 66 Bod D28 o6 B0 Dot Po0 00 GG Bm0 o9 Bt GG Pug O Bed B0 Ot Gof Uu§ od GG B9 B0 0 B

® % & £ 2 2 % B A

% % % B & &% * %

% ® 2 2 % & ¥ &

® & % & @
% %
P e L L L L T e T L L A Lt A b bl

®
1
1
I
I

6

image

Sample

Figure 6-8:

26

Boh g B0 B0 o s Do D g $u0 D9 Ded G50 B0 B9 Do% Onf Bug Bet B0 D50 B OcY g oS3 0 0§ D3 0t

&]
H]
® 8
] 8
] a ® 8
8 e
e % &]
]]
8 @ @ 0
¢ [
8 a8 @asEE 4 8
8 8
8 66 a e e waBEBEE o [
8]
8 EsaaER &8 S8 KE €6 8
8 8
[& & g8 BEEEE ®E& ¥u §
¢

] xS s 8 SEBERE ®E @S 2
1

§ exaaBER EE BE EE 68 1]
8 8
8 & @B & g8 EBE BEAS K]
® 8
s a % 48 SESEH :
1 “ @ 8
8 [
8 & &]
% §
8 « 8
] e
8 8
8]
8 8
8 8
8 8
e 8
8 R R E R E R EE R T I I I @
8 8
' G EEE BT S EEEEESBER Y EE s
] & @ []
[]
8 ® N 8
8]
] RRER & a]
g 8
g ® BB E WS IR e
8 B
8 an e @« H
]]
1 PR]]
1]
] ® &8 8
] R L]
8 ® o & 1
8 [}
] # % 8
8 ¢
8 X 8
8 8
1]

ug God Bt G0 Po0 (6 B9 Ped D50 Dok Ovk Dmb G B0 Bv0 Pod Dot Bud Do §o4 $n0 Ood o0 God g Dl Od B Bod Bed

7

image

Sample

Figure 6-9:

-----Q-I-ﬁu-.-.--C-..ﬂ.--..ﬂ---...-..--.‘.n-‘.;.‘.-..9..--..-.-
®
@
®
»
#

Gt Pug O Bxd Cof B9 §oF D9 G54 000 B850 Tod o8 B0 D0 50 50 B0 B0 0u0 B D0 B0 B9 B9 0ol @

L

% @

e @
2 & & & ®
& 2 @ %=
® % 2 %

=

]

L]

&

&

A
@
L3

*
&
&

&
&
&

“
e ® €& % 2 2 @

&«

®

L]
& w % ® @
% % & @

&«

&
&

"B S
LI 3
&8 8@ @

*
&
®
®
%
&
&
o
®

EREEE SRR EEFTEERREE

et g B (o 9n0 Bt bod B B0 Od Bed DG Bek g BB Dot Dokt Bt Dot Bud Do

&
@
«

®

%

@
@

[

L
&
s

k3

®
£
«

@
®
L

«
&
&«

&
&

¢ % ® % B W BB UG KW R E T B RS RE SR DG & & @

«
&
®

St B Bmg Dma G

b4
b

.-n--.-n--.---n'.....---n-.--e---.---.u---...----on---.-o..-o-.

o4 ot Bug

8

image

Sample

Figure 6-10¢

27

Amevecw § dowes Low Yoo ¥ Leeee ¥ % R YoscPes e fv-- oo & ® @

o B By

% & % & % & @

& % 7 & @« @
@

®

#
B & R ®

® & % ®

%
#

&

* K &R ®

® w N @
¢ " E RS
® % & @ % ¥ *
% ® %

L]

=g =t

@

® @

®

%
% % % &

&

% & % %
® ® % % W

® % %
& ® & & ° %
& & & % ® ¥ %

¥ % & & & % % @

-

B8 Bod Bt D

&

" R
% % ® 7

%

«

2 & ® 2
® % ® % 2

& & & @
% & % & % @

@

% B #® ¢ @ € &
® & % % & ¢ & @

Bs B8 Bt

®

« % & &
® % % %

@

&
% %R R % fewew Ree Pewe R Revowcovorreveae % ¥Pe foe Semee ¥ W %

9

]

image

Sample

Figure 6-11:

28
7. EXTENSION TO GRAY LEVEL IMAGES

Gray level images are typically represented as 2-D arrays of
integer values each of which represents the gray level of a pixel.
The rectangular coding algorithm described in the previous sections
deals with only binary images; a special case of gray level images.
If a LEVEL field is introduced in both rectangle code and group code,
this algorithm can accomodate gray level images. However a few minor
changes are necessary for the algorithm to be able to handle gray

level images.

Modifications:

1. LEVEL fields should be added in both rectangle code and
group code.

2. In scanning a row, find runs of each gray level instead of
finding only runs of 1's, and create a temporary rectangle
for each run.

3. When the 1list RTEMP is updated, the following growing
condition should also be considered. --- In order for a
temporary rectangle Q to be grown to include the rectangle
P, the gray levels of both rectangles must be equal.

4. During the grouping process, another constraint should be

added, i.e., === Gray levels of all the rectangles in the
same group must be equal.

This algorithm is more efficient when an image consists of large
uniform regions in terms of the gray level. However, in practice,
large regions of constant gray level rarely occur. This is due to the
fact that as the number of gray levels increase, sensitivity to noise,
differences in lighting, shading etc. also increases. Therefore this
algorithm may not be efficient for images with a large gray level
range. But this algorithm will be efficient when gray level range is

small or multilevel thresholding is employed so that an image has a

29

reasonably small number of gray levels and consists of uniform regions

of those gray levels.

This scheme may be applied also to color images. Each pixel in a
color image has three primary color components and each component has
an intensty value. 1In other words, a color image consists of three 2-
D arrays, one for each primary color. Each 2-D array is same as a
gray level image except that it represents intensity values of one of
the primary colors. Therefore, by applying this algorithm three
times, once for each array, a color 1image can be encoded as

rectangular codes.

An examnple is shown in Fig. 7-1 and Fig. 7-2. A bar-chart was used
in this example. First it was digitized with a gray level range of O
to 255, and multilevel thresholding was applied. After thresholding
the image, the modified rectangular coding algorithm was applied to

encode it.

30

Figure 7-1: Digitized image of a bar-chart

31

i
i
i
t
i
|
§
t
t
i
'
{
|
i
i
i
i
1
!
i
H
!
{
t
i
i
i
]
i
t
i
i
i
!
i
t
1
1
i
!
b
]
i
i
|
1
]
i
i
i
$
]
!
i
]
i
i
|
I
t
}
1
1

Fod bk b peod bt dwd Gd bed bed pod bed deed bed Bad boof bod bod Dud bued d Bd Bk o bod bod bed peod Bed B Bod

MninnnnoD
010N

v e
SR RU RV RV L EC RO RC AV EORUR R R Y]

OGNV EURVECEURURUEV RV VRS RY R

el oyl ~f oyl et

vt wd ol gd vl

S A g e i Sie Sl SRc A B SRS <

C A i e B i i A e B A i

et o ped oy ved vt wd v
[EREVETEC RN
OGN

(>4 v ved T et v ved oy

bod tood bk o el bl bed Boed Bod bud G od Bed P Bod el Bed beed bt Bed bed Bl Bed by dond bbbt B bt Bt

vl
N
iy

-
3 0
M

443344211

i
!
!
i
i
i
1
§
i
i
i
i
t
i
t
t
i
'
1
!
i
t
!
!
i
t
!
¥
i
1
1
}
!
1
|
I
I
!
1
1
{
1
!
!
]
1
1

THE IMAGE ===

#*#2 RECTANGULAR CODES OF

i

P T RN

F) e (O e

vt e 0 vt O
Rl

10

w0 e e O Of g

L

a3

[t

12

vt {3

™ e

Py

P i)

-

T~

L]

ot

[

1

(IR

-t

s

™

"

e

i)

-0
L&)

m

-t

i

"l

f]

]

o
L]

26

i3]
o

Image of the bar-chart after multilevel
thresholding and its rectangular code

Figure 7-2:

32
8. CONCLUSION

An algorithm has Dbeen presented for the construction of a
rectangular code for binary images. A comparison with several other
data schemes indicated that rectangular codes were very efficient,
possessing low storage regquirements. According to the resulting
analysis, this algorithm was found to bDe especially suitable for
images such as bar charts (sample image 8 in Fig. 6-1). The
processing time is proportional to the number of pixels in the image.
One of the advantages of this algorithm is that each pixel of the
image is examined only once during the process, therefore it can be
applied to construct a rectangular code directly from a raster scan.
It is very simple to perform some basic operations directly on it,
such as scaling, translation, rotation by multiples of 90 degrees, and
computing the area and the centroid of an object. This is due to the
fact that an object is partitioned into a set of rectangles and the
position and the size of each rectangle are known. This algorithm can
be easily extended to graylevel images simply by adding a LEVEL field
in both rectangle code and group code. Improvement in the efficiency
of encoding gray level images will be the next problem to receive more

attention.

9, ACKNOWLEDGEMENT
We thank S. Yalamanchili, W. N. Martin and A. Mitiche for their

many helpful suggestions and advice.

15.

16.

170

18.

34

quadtree, IEEE Trans. on Pattern Analysis and Machine
Intelligence, Vol. 1, NO. 2, pp.145-153 (1979)

M. Aoki, Rectangular region coding for image data
compression, Pattern Recognition, Vvel. 11, pp.297-312
(1979) .

L. Ferrari, P. V. Sankar and J. Sklansky, Minimal
rectangular partitions of digitized blobs, Proc. of 5th
Int. J. Conf. on Pattern Recognition, pp.1040-1043 (1980).

Standardization of group 3 facsimile apparatus for document
transmission, International Consultative Commitee for

J. Tiberghien, The PASCAL Handbook, Cybex Inc. (1981).

