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ABSTRACT

A livelock arises in a communication protocol if the communicating entities in the
protocol keep on exchanging messages while no "useful work" is being done. We
investigate this phenomenon in networks of communicating finite state machines. In
particular, we show that it is undecidable in general whether the communication of any
such network can reach a livelock. We also discuss a number of efficient algorithms to
detect livelocks in some special classes of networks. These include: (i) networks of two
machines with bounded communication, (i) networks of two machines where only one
channel has bounded communication, (iii) networks of two machines where one machine
sends a single message type, and (iv) networks of any number of machines that have
closed covers. The basic idea in each of these algorithms is to construct an abstract
representation of the reachability graph of a given network; then search it to detect
livelocks. Such abstract representations are much smaller than the original reachability
graphs. (In fact, they are always finite whereas the corresponding reachability graphs
are often infinite.) We apply our algorithms to detect livelocks in several networks that
model various real protocols (the negotiation mechanism in virtual terminal protocols,

the alternating-bit protocol, a call establishment/clearing protocol, and a version of the
CSMA protocol).
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1. Introduction

The model of communicating finite state machines is useful in the specification
[4,28,29], analysis [2,5,9,12,13,15,20,21,23,24,26,28,29,30,31,32,33,34], and synthesis
[3,6,10,14,23] of communication protocols. The procedure for modeling and analyzing a
communication protocol using this model typically proceeds as follows:

e First, the protocol is defined as a network of communicating finite state machines.
Each machine in the network has a finite number of states and state transitions
(called nodes and edges respectively in this paper). Each state transition of a
machine is accompanied by the sending of a message into a channel or receiving
of a message from a channel. Channels are assumed to be directional (delivering
messages from one machine to another) and FIFO. In general, a network may
have an arbitrary topology.

e Second, the network defined is analyzed to ensure that its communication satisfies
some nice properties such as boundedness [33], freedom from deadlocks
[26,27,31,33] and freedom from unspecified receptions [11].

Examples of some realistic protocols that can be modeled and analyzed using this
procedure include: the alternating-bit protocol [1], the Binary Synchronous protocol [22],
and the call establishment/clearing procedures in X.21 [24,31] and X.25 [12,25].

One property that should be satisfied by networks of communicating finite state
machines modeling real protocols, is freedom from livelocks. A livelock occurs when the
machines in a network keep exchanging messages but no "useful work® is being done.
The characterization of livelocks in distributed systems and communication protocols
was considered by Hajek [17] and Lai [19]. Sherman and Rudin [30] characterized
livelocks in networks of communicating finite state machines and pointed out the
importance of detecting livelocks in such networks during protocol validation. In this
paper we extend the work of Sherman and Rudin by presenting a number of efficient
algorithms to detect livelocks in some special classes of networks. (As shown later, the

detection of livelocks in a general network of communicating finite state machines is
undecidable.)

This paper is organized as follows: Networks of communicating finite state
machines are presented formally in Section 2. The concept of livelocks in such networks
is defined in Section 3. In Section 4, we present algorithms to detect livelocks in
networks belonging to the following classes:

e Networks of two machines with bounded communication.
e Networks of two machines where one of the two channels is bounded.
e Networks of two machines where one machine sends a single message type.

e Networks with any number of machines that have closed covers (as defined in [9].)



Concluding remarks are in Section 5. Proofs of all our theorems are given in the
Appendix.

2. Networks of Communicating Finite State Machines

A communicating finite state machine M is a labelled directed graph with two
types of edges, namely sending and receiving edges. A sending (or receiving) edge is
labelled -g (or +g, respectively) for some message g in a finite set G of messages. A node
in M whose outgoing edges are all sending (or all receiving) edges is called a sending (or
receiving) node. A node in M whose outgoing edges include both sending and receiving
edges is called a mized node, and a node in M that has no outgoing edges is called a
final node. One of the nodes in M is identified as its initial node, and each node in Mis
reachable by a directed path from the initial node.

Let M and N be two communicating finite state machines with the same set G of
messages. Let (M,N) denote the network consisting of machines M and N connected by
two FIFO channels in opposite directions.

A state of network (M,N) is a four-tuple [v,w,x,y], where v and w are two nodes in
M and N respectively, and x and y are two strings over the messages in G. Informally, a
state [v,w,x,y] means that the executions of M and N have reached nodes v and w
respectively, while the input channels of M and N store the strings x and y respectively.

The initial state of network (M,N) is [vy,wg,E,E] where vy and w, are the initial
nodes in M and N respectively, and E denotes the empty string.

Let s=[v,w,x,y] be a state of network (M,N); and let e be an outgoing edge of node
v or w. A state s’ is said to follow s over e iff one of the following four conditions is
satisfied:

e e is a sending edge, labelled -g, from v to v’ in M, and s’=[v’,wx,y.g], where *.*
is the concatenation operator. -

e e is a sending edge, labelled -g, form w to w’ in N, and s'=[v,w’ x.g,y].

e e is a receiving edge, labelled +g, from v to v’ in M, and s'=[v’,w,x,y], where
Xx=g.x .

e e is a receiving edge, labelled +g, from w to w' in N, and s'=[v,w’x,y’], where
Y=gy
Let s and s’ be two states of network (M,N), s’ follows s iff there is a directed edge

e in M or N such that s’ follows s over e.

Let s and s’ be two states of (M,N), s’ is reachable from s iff s==s’ or there exist
states s;,...,5, such that s=s,, s'=s_and s, follows s, for i=1,....r-1.



A state s of network (M,N) is said to be reachable iff it is reachable from the initial
state of (M,N). Next, we use the concept of reachable states to define what it means for
the communication of a network (M,N) to be free from deadlocks and unspecified -
receptions, and to be bounded.

A reachable state [v,w,x,y] of a network (M,N) is a deadlock state iff (i) both v and
w are receiving nodes, and (ii) x=y=E (the empty string). If no reachable state of
network (M,N) is a deadlock state, then the communication of (M,N) is said to be
deadlock- free.

A reachable state [v,w,x,y] of a network (M,N) is an unspect fied reception state iff
one of the following two conditions is satisfied:

o x=g,.g ... & (k=1),and visa receiving node and none of its outgoing edges is
labelled +g;.

o y=g;8 - g (k=>1), and wis a receiving node and none of its outgoing edges is
labelled +g;.

If no reachable state of (M,N) is an unspecified reception state, then the communication
of (M,N) is said to be free from unspeci fied receptions.

The input channel of machine M (N) in network (M,N) is said to be bounded by K
iff for every reachable state [v,w,x,y] of (M,N), |x|<K (|y|<K). A channel in (M,N) is
said to be bounded iff it is bounded by K, for some nonnegative integer K. The

communication of (M,N) is said to be bounded (by K) iff each of the two channels in
(M,N) is bounded (by K).

3. Livelocks

A marked network is a triple (M,N,m), where (M,N) is a network of two
communicating finite state machines M and N, and m is a function, called the marking
of the network, that assigns to each edge in M or N either the value "p" or the value
“n®. Let e be an edge in machine M or N. If m(e)=p then e is called a progress edge,
otherwise m(e)=n, and e is called a nonprogress edge.

Let (M,N,m) be a marked network and let C and D be two directed cycles in M
and N respectively. The pair (C,D) is called a livelock in (M,N,m), iff the following three
conditions are satisfied:

i. All the edges of cycle C ,in M, are nonprogress.
ii. All the edges of cycle D ,in N, are nonprogress.

iii. There exists a sequence (sy,...,s;) of reachable states of network (M,N) such
that the following two conditions hold:



a. For i=1,...,r-1, state s, ; follows s; over an edge e; in M or N. Also
state s; follows s over an edge e in M or N.

b. The set of edges {e,e,,...,,} constitutes the two cycles C and D.

This sequence (sq,...,s,) is called a nonprogress cycle for the livelock (C,D).

(Notice that a livelock may have more than one nonprogress cycle.)

The livelock detection problem can be stated as follows: Decide for any given
marked network whether it is free from livelocks. Later we will show that this problem
is undecidable in general, but can be decided for some special classes of networks. But
first we motivate the problem by detecting livelocks in two protocols that are modeled as
marked networks.

Example 1 (A Symmetric Negotiation Mechanism in a VTP): The negotiation
mechanism in a virtual terminal protocol (VTP) is provided to allow different machines
(terminals or host computers) with different capabilities to agree on a common set of
capabilities (e.g. line length, page size, etc.) The negotiation mechanism is either
asymmetric or symmetric [7]. In an asymmetric mechanism, negotiation can be initiated
only by the host computer side. In a symmetric mechanism, negotiation can be initiated
by either side.

Consider the two communicating finite state machines M and N in Figure 1; they
model two virtual terminals in a symmetric negotiation mechanism. (Notice that the
two machines have the same structure.) The exchanged messages have the following
meanings:

CL, denotes a "capability indication® message sent by machine x.

CSy denotes a "capability selected® message. The subscripts are used in this
case to distinguish between different lists of selected capalilities. For
simplicity, we model the situation where there are only two possible
common sets of capabilities, i.e. y=1,2. (It is straightforward to extend the
model to a situation with n possible common sets of capabilities.)

Starting from node 1, machines M and N exchange CI messages that indicate the
lists of capabilities they can support. After receiving the CI message of the other
machine, each machine analyzes both lists of capabilities and selects a common set of
capabilities. They then exchange the selected capability lists via CS messages. If the
two selected capability lists are identical, the agreement is reached and each machine
goes to node 6. Otherwise, each of them has to return to node 3 and selects another
common set of capabilities.

One natural marking m for this network is as follows: In each machine, only the
two edges from nodes 4 and 5 to node 6 are marked progress; all other edges are marked



+CS;  +C8, +CS, 408,

M N

Figure 1. A symmetric negotiation mechanism for a VTP.



DONprogress.

Let C, (D,) be the directed cycle in machine M (N) that starts at node 3, goes to
node 4, and then returns to node 3. Also let C, (D,) be the directed cycle in M (N) that
starts at node 3, goes to node 5, then returns to node 3. It is straightforward to show
that (C,,D;) and (C,,D,) are two livelocks for the marked network (M,N,m). Each of
these livelocks can cause the two machines to go through an infinite cycling of proposal
and counterproposal without effective progress.

There are two proposed solutions to prevent these livelocks. One solution [8]
requires a single, network-wide algorithm which the two machines execute to compute
the list of common capabilities from the list of possibilities. In another solution [18], the
“capability selected® message carries an eight bit random number. If a disagreement
occurs, the selected capabilities in the message with larger random number prevails.

O
Example 2 (The Alternating-Bit Protocol):  The alternating-bit protocol was
proposed by Bartlett et al [1] to ensure reliable transmission of data messages from a -
sender to a receiver over a communication medium that can corrupt or lose transmitted
messages. If a data message is corrupted or lost during transmission, or if its positive
acknowledgement is corrupted or lost, then the data message is retransmitted. The
retransmission can be triggered by any of the following:

e The sender receives a negative acknowledgement.
e The sender receives a corrupted message.

e The sender has waited for a specified time period, called a timeout period, to
receive a response but no response has been received (indicating that either the
original message or its response is lost.)

When the receiver has accepted a data message, it should be able to detect whether
it has received an identical copy of this message earlier. For this reason, the value of
some bit in the sender is attached to each data message sent. Whenever a data message
is being retransmitted, the value of this bit remains the same; but whenever a new data
message is about to be sent, the value of this bit is flipped (hence, the name "alternating-
bit protocol®).

Figure 2 shows a model of the alternating-bit protocol. Machines M and N model
the sender and the receiver respectively. Instead of modeling the medium as a separate
machine, the medium’s effects are modeled as follows:

e Whenever a machine (M; or N;) sends a data message g, it either sends g, or

sends a special message Cr that denotes a corrupted message, or sends a special
message Ls that denotes a lost message.
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Figure 2. An alternating-bit protocol.



e Whenever N sends a response message g, it either sends g, or sends a corrupted
message Cr, or sends a timeout message Tm to simulate the loss of g and force M
to resend the previously sent data message. Whenever N receives the message Ls,
it sends a timeout message Tm to force M to resend the previously sent data
message.

The other exchanged messages between M, and N, have the following meanings:

D, (i=0,1) denotes a data message with a bit of value uji* attached to it.
A, (i=0,1) denotes a positive acknowledgement message for D;.

One natural marking m for network (M,N) is as follows: Only the receiving edges
labelled +A and +A, are marked progress; all other edges are marked nonprogress.

Let C (D) be the directed cycle in M (N) that starts at node 2 (2), goes through the
edge labelled +Cr (-Cr) and reaches node 1 (3), then goes through the edge labelled -D,
(+Dg) and returns to node 2 (2). It is straightforward to show that (C,D) is a livelock in
the marked network (M,N,m).

This livelock represents the situation where M keeps on retransmiting the data
message Dy but the corresponding positive acknowledgements sent by N are repeatedly
corrupted. One solution to prevent this livelock is to implement a counter in machine M
to keep track of the number of successive message corruptions or message losses, and to
report the situation to its user after a fixed number of retries.

O

The above two examples demonstrate the importance of the livelock detection
problem in analyzing communication protocols. Unfortunately, the next theorem states
that this problem is undecidable in general. (Its proof is in [16].)

Theorem 1: It is undecidable whether any arbitrary marked network (M,N,m) can
reach a livelock.

-

Theorem 1 states that there is no algorithm to solve the livelock detection problem
in general. Next we identify some special (yet interesting) classes of marked networks
for which the problem is decidable.

4. Detecting Livelocks in Special Classes of Networks

In this section, we present efficient algorithms to detect livelocks in four special
classes of networks. The basic idea in each of these algorithms is to construct an
abstract representation of the reachability graph of the network under consideration, and
then search it to detect livelocks. The efficiency of these algorithms results from the fact



that these abstract representations are much smaller than the original reachability
graphs. In fact, the abstractions are always finite whereas the corresponding reachability
graphs are often infinite.

4.1. Two-machine networks with bounded communication

Let (M,N,m) be a marked network whose communication is bounded; i.e. the
number of its reachable states is finite. The (finite) reachability graph of this network is
a directed graph whose vertices represent reachable states, and whose arcs represent the
ufollow over® relation defined in Section 2. It is possible to examine this graph to decide
whether the given network is free from livelocks; however since the number of vertices
and arcs in this graph are usually large, a straightforward state exploration algorithm 1is
not efficient.

A more efficient algorithm is to examine the the fair reachability graph (to be
defined later) of the network. This is because fair reachability graphs usually have
smaller numbers of vertices and arcs than reachability graphs. In fact, it is shown earlier
that using fair reachability graphs instead of reachability graphs yields efficient
algorithms to detect deadlocks [27,32], unspecified receptions [27], and unboundedness
[33]. In this section, we discuss an efficient algorithm that uses fair reachability graphs
to detect livelocks, but first we state some definitions:

A state [v,w,x,y] of network (M,N) is fair iff |x|=[y|, where |x| is the number of
messages in string x. Obviously, the initial state of (M,N) is fair.

Let s and s’ be two fair states of (M,N); and let e and f be two edges in M and N
respectively. s’ fairly follows s over e and f iff there exists a state s* such that either
(s* follows s over e and s’ follows s* over f) or (s* follows s over f and s’ follows s" over

e).

Let s and s’ be two fair states of network (M,N); and let P be a directed path of
edges e;,...,e, iIn M, and Q be a directed path of edges f;,....f, in N. s’ is fairly reachable
from s over the edges of P and Q iff there exist fair states sy,s;,...s, such that
s==s(,8'=s, and s; fairly follows s; over e, ; and fj,, 1=0,...,r-1. s’ is fairly reachable

from s iff s’ is fairly reachable from s over the edges of some two directed paths P and Q

in M and N respectively. s’ is fairly reachable iff it is fair and is fairly reachable from
the initial state of (M,N).

The following algorithm, which is based on the notion of fair reachability, can be
used to decide whether any given bounded network (M,N,m) is free from livelocks.
Algorithm 1:

i. Construct the fair reachability graph G for the given network (M,N,m) as
follows:
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a. For each fairly reachable state s of the network, add one vertex, also
called s for convenience, to G. (G has "vertices® and ™arcs" so that
they are not confused with the nodes and directed edges of the
machines.)

b. For any two fairly reachable states s and §’, if s’ fairly follows s over
some edges e and f in M and N respectively, then add an arc, labelled
{e,f}, from node s to node s’ in G.

ii. If G has a directed cycle where each arc is labelled with a set {e,f} such that
m(e)=m(f)=n (such a cycle is called a nonprogress cycle in the fair
reachability graph G)
then (M,N,m) can reach a livelock
else (M,N,m) is free from livelocks.

O
Theorem 2 (Correctness of Algorithm 1): The communication in a network

(M,N,m) is free from livelocks iff there is no nonprogress cycle in the fair reachability
graph of (M,N,m).

O

Theorem 2 states that fair reachability graphs can be used to detect livelocks in
marked networks. This is advantageous since the fair reachability graph of a marked
network is far smaller than its reachability graph, and so it requires less execution time
and memory space to construct and to examine. As an example, the marked network
(M,N,m) in Example 2 is bounded. Its reachability graph has 34 vertices and 50 arcs,
but its fair reachability graph has 10 vertices and 26 arcs. Therefore using Algorithm 1
to detect livelocks yields a saving factor of about 2 in both time and storage.

As stated earlier, Algorithm 1 can be used when the communication of the given
marked network is bounded. However, this algorithm can be also used with unbounded
networks provided that their fair reachability graphs are finite. This is illustrated by the
following example.

Example 3 (A Connection Establishment/Clearing Protocol):  Consider the
two communicating finite state machines M and N in Figure 3a; they model two
machines in a simple connection establishment/clearing protocol. The exchanged
messages have the following meanings:

RQST  denotes a request to establish a connection.

ACPT denotes an acceptance of the request.

DATA denotes a data message to be sent over the connection.
CLEAR denotes a "clear the connection" message.

Starting from node 1, machine M can send a request RQST message to N and
waits at node 2. There are two possibilities:
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Figure 3a.A fair connection establishment/clearing protocol.
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i. An ACPT message is received. 1t implies that machine N accepts the
request, and the connection is established. M can now start sending data
messages. After M sends all its data, it sends a CLEAR message to N and
returns to node 1. -

ii. A RQST message is received. It implies that machine N also wants to
establish a connection yielding a request collision. In this case, machine M
wins and can start sending its data messages; but this win by M will be
remembered by both M and N so that when the next request collision occurs
N will win. In other words, the two machines alternate the priority to win
request collisions, and the protocol is fair.

Consider the following marking m: all edges are marked nonprogress except those
labelled +DATA and +CLEAR. The reachability graph of this network is infinite.
Hence it cannot be used to show that (M ,N jm) is free from livelocks. On the other
hand, the fair reachability graph of this network (in Figure 3b) is finite, and so can be
used to establish that the marked network is indeed free from livelocks.

O

4.2. Two-machine networks where one channel is bounded

Consider the class of marked networks where one of the channels is bounded; the
other channel may or may not be bounded. Detection of unboundedness, deadlocks, or
unspecified receptions for this class of networks has been discussed earlier in [5,26]; in
this section, we discuss detection of livelocks for the same class. Clearly, reachability
graphs for this class of networks can have an infinite number of states, and so they
cannot be used to detect livelocks. Instead, we show in the next theorem that fair
reachability graphs for this class is finite, and so they can be used to detect livelocks.

Theorem 3: Let (M,Nm) be a marked network where the input channel of M or N is
bounded. The fair reachability graph of (M,N,m) is finite.

g

Since the fair reachability graph for a network, where one channel is bounded, is
finite, then livelocks in such a network can be detected using Algorithm 1 in the previous
section.

Note that Theorem 3, along with the algorithm in [27], suggests a new algorithm to
detect deadlocks and unspecified receptions for the class of networks where one of the
two channels is bounded. Other algorithms to solve this problem have appeared earlier
in [5,26].
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4.3. Two-machine networks where one machine sends a single message type

Consider the class of marked two-machine networks where one machine sends a
single message type. Detection of unboundedness, deadlocks, or unspecified receptions
for this class of networks has been discussed earlier in [14,28]; in this section we discuss a
sufficient condition that ensures freedom of livelocks for this class. (Finding a necessary
and sufficient condition to detect livelocks is still an open question.)

Let (M,N,m) be a marked network and assume without loss of generality that
machine N sends only one type of message. Since N sends only one type of message, we
do not have to distinguish between the different messages in the input channel of
M. Only the number of messages matters. Therefore, a state of this network can be
represented as [v,wk,y] where v and w are nodes in machines M and N respectively, y is
a string of messages that defines the contents of the input channel of machine N, and k
is a nonnegative number that defines the number of messages in the input channel of

M.

A state [v,w,k,y] of this network is called limited iff |[y|<1. Notice that the initial
state [v,wq,0,E] is limited.

An abstract state of this network is a four-tuple [v,w,\w,y], where v and w are nodes
in M and N respectively, |y|<1 and w is a symbol that represents a "very large number®
of messages in the input channel of machine M.

Next we extend the definition of "follow over® to abstract states. Let s;=[v,ww,y]
be an abstract state of network (M,N,m). An abstract state s, is said to follows s; over
edge e iff one the following four conditions is satisfied:

e e is a sending edge labelled -g from v to v’ in M
and 82=[v’,w,w,y.g] where "." is the concatenation operator.

e e is a sending edge labelled -g from w to w’ in N,
and s,=[v,w’,w,y].

e e is a receiving edge labelled +g from v to v’ in M,
and sy=[v’,w,wy].

e e is areceiving edge labelled +g from w to w’ in N,
and s,=[v,w’,w,y’] where y=g.y’.

The following algorithm can be used to decide whether a marked network
(M,N,m), where M sends one type of message, is free from livelocks.

Algorithm 2:

i. Construct the limited reachability graph G for the given network (M,N m) as
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follows:

Initially G contains only one vertex labelled with the initial state of (M,N).

while G has a vertex labelld with a state (abstract state) s
such that vertex s has no outgoing arcs in G, and
there exists a limited state (abstract state) that follows state s
{* Notice that s refers to both the vertex and the state that labels the vertex *}
do if s is a limited state
then for each limited state s'=[v,w k,y] that follows s over edge e
do if vertex s is (or has an ancestor vertex) labelled with [v,w k’,y]
where k’<k
then if there is a vertex s" labelled [v,w,w,y] in G
then add an arc labelled e from vertex s to s*
else add a vertex s’ labelled [v,w,w,y] to G;
add an arc labelled e from vertex s to vertex s’
else if vertex s’ has an ancestor vertex s* labelled with
[v,w k’y] where k'=k
then add an arc labelled e from vertex s to vertex s"
else add a vertex labelled [v,wk,y| to G;
add an arc labelled e from vertex s to vertex s’.
else {* sis an abstract state *}
for each abstract state s'=[v,w,w,y| that follows s over edge e
do if there is a vertex s* labelled [v,w,w,y] in G
then add an arc labelled e form vertex s to vertex s",
else add a vertex s’ labelled [v,w,w,y] to G;
add an arc labelled e from vertex s to vertex s'.

ii. Remove each directed cycle in G whose arc labels are all edges in M or are all
edges in N.

iii. If G has a directed cycle where each arc is labelled with an edge e such that
m(e)=n (such a cycle is called a nonprogress cycle in the abstract
reachability graph G)
then (M,N;m) can reach a livelock.
else (M,N,m) is free from livelocks.

a

Termination of this algorithm is guaranteed by the fact that the number of limited
and abstract states is finite. This follows from the following three assertions. (Let
[v,w,k,y] be a typical limited or abstract state of (M,N).):

i. The number of distinct values of v (w) is bounded from above by the number
m (n) of nodes in M (N).
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ii. The number of distinct values of y is bounded from above by t+1, where t is
the number of distinct message types sent by M.

iii. The value of k is either w or bounded from above by m.n.(t+1).

Theorem 4 (Correctness of Algorithm 2): Let (M,N,m) be a marked network where
machine M sends one type of message. The communication of (M,N,m) is free from
livelocks if there is no nonprogress cycle in the limited reachability graph of (M,N,m).

a

As an example, consider the network (M,N) in Figure 4a. Machine M models a
user, while N models a clock. Clock N sends to the user one type of message, namely a
TICK message. The user on the other hand can send a RQST, message followed by a
RQST, message to modify the rate of the TICK’s sent by the clock. One possible
marking m of this network is as follows: Only the edges labelled +TICK or +RQST,
are marked progress; all other edges are marked nonprogress. Figure 4b shows the
limited reachability graph of (M,N,m). Since there are no nonprogress cycles in G,
(M,N,m) is free from livelocks.

4.4. Networks with closed covers

The technique of closed covers is presented in [9] to prove that a network is free
from deadlocks and unspecified receptions. One advantage of this technique is that it can
be used with networks whose communications are unbounded. (No other technique
seems to be successful with such networks.) In this section, we extend this technique to
detect livelocks in a marked network.

A closed cover C for a network (M,N) is a set of states of (M,N) that satisfies the
following four conditions:

i. The initial state of (M,N) is in C.

~

ii. Each directed cycle in the directed graph of M or N must have at least one
node referenced in some state in C.

iii. The acyclic version AM of M with respect to C can be constructed from M
by partitioning each node v, which is referenced in some state in C, into two
nodes: One node, called the input version of v, has all the output edges of v
and no input edges; the other node, called the output version of v, has all the
input edges of v and no output edges. Similarly, the acyclic version AN of N
with respect to C can be defined. The third condition can now be defined in
terms of these acyclic versions. If the network (AM,AN) starts at a state s; in
C and if it reaches a state s, after which no other state is reachable, then
state s, must also be in C.

iv. The following condition should be satisfied for any state [v,wx,y] in C, and
for any two paths p and q, in the acyclic versions AM and AN, that start
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with the input versions of v and w respectively, and terminate at the output
versions of some nodes: Let s; (r;) be the sequence of sent (received) messages

along path i, where i=p,q; then

either [ (x.sq<rp) and  (y.s,<r )],
or [ not(x.s;<r,) and not(y. s <r )],
where

» » denotes the string concatenation operator, and
» <" denotes "is a proper prefix of".

It is shown in [9] that if a network has a closed cover then its communication is
free from deadlocks and unspecified receptions. In this section, we show how to use the
closed cover of such a network to decide whether its communication is also free from

livelocks.

But first we give an example of a closed cover; in particular we state and

verify a closed cover for the network (M,N) in Figure 5a. M is a sender that sends data
messages to a receiver N, and N responds by sending replies back to M. The exchanged

messages between M and N have the following meanings:

STX denotes the start-of-text character in a data message.
TXT denotes a text character in a data message.

ETX denotes the end-of-text character in a data message.
RPL denotes a reply message.

Next, we show that the set C = {[1,1,EE],[3,2,E,TXT],[4,2,E,ETX]} is a closed

cover for the network (M,N) in Figure 5a:

i

1i.

iil.

iv.

First, the initial state [1,1,E,E] of (M,N) is in C.

Since node 3 in M and nodes 1 and 2 in N are referenced in C, every directed
cycle in M or N has one node referenced in C.

The acyclic versions AM and AN of M and N (respectively) with respect to C
are shown in Figure 5b. If the network (AM,AN) starts at state [1,1,E,E], it
must end its communication at [3,2,E,TXT]. If (AM,AN) starts at state
[3,2,E, TXT], it must end at either [3,2,E,TXT] or [4,2,E,ETX]; both are in
C. Similarly, if (AM,AN) starts at state [4,2EETX], it must end its
communication at [1,1,E,E].

For any state [v,wx,y] in C, and for any two paths p and g, in the acyclic
versions AM and AN, that start with the input versions of v and w
respectively, and terminate at the output versions of some nodes: Let s; (r;) be
the sequence of sent (received) messages along path i, where i=p,q; the
following boolean expression is true.

[ not(x.sq<rp) and not(y.sp<rq)],

This completes the proof that C is a closed cover of (M,N).
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The following algorithm can be used to decide whether a marked network (M,N,m)
that has a closed cover C, is free from livelocks.

Algorithm 3:
i. Construct the closed cover graph G for (M,N,m) as follows:
a. For each state s in C, add a vertex, also called s, to G.

b. Let AM and AN be respectively the acyclic versions of M and N with
respect to C. If the network (AM,AN) can reach from state s in C to
state s’ in C over a finite sequence <eg,e;,....,e,> of directed edges in M
or N,! then add an arc from vertex s to vertex s’ in Gj this arc is
labelled with the set of edges {eg,e;,...,e,}, provided that no such arc is
already in G.

ii. If G has a directed cycle where each arc is labelled with a set E={e ,...,.e; }

such that m(e)=n for each edge e in the set E (such a cycle is called a
nonprogress cycle in the closed cover graph G)

then (M,N,m) can reach a livelock.

else (M,N,m) is free from livelocks.

Theorem 5 (Correctness of Algorithm 3): Let (M,N,m) be a marked network and C
be a closed cover for network (M,N). The communication of (M,N,m) is free from
livelocks iff there is no nonprogress cycle in the closed cover graph of (M,N,m).

O

As an example, Figure 5¢ shows the closed cover graph G of the closed cover
C={[1,1LE,E], [3,2,E,TXT],[4,2,EETX]} for network (M,N) in Figure 5a. Notice that
each directed edge e in M or N is defined in G by a tuple (i, j, k), where

i is the source node of e,
j is the label of e, and
k is the destination node of e.

and each arc in G is labelled {eje,,...,.e,}. One possible marking m for the network is as
follows: Only the edges labelled +TXT in N are marked progress; all other edges are
marked nonprogress. Since none of the cycles in the closed cover graph in Figure 5¢ is a
nonprogress cycle, the communication of (M,N,m) is free from livelocks. The next
example demonstrates that this technique can be easily extended to protocols with any
number of communicating machines not just two machines.

1In other words, there exists a finite subsequence <SO’SI""’Sr+1> of states of (AM,AN) such that

5==5, §'=s and Si11 follows 5; over e, 1i=0,1,...,I.

r+1’ +
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Example 4 (A CSMA Protocol):  Consider the four communicating finite state
machines M;,My,M3M in Figure 6. Machines M ,M,, and M; model three identical
stations connected to a medium that is modeled by machine M. The exchanged messages
have the following meanings:

DATA denotes a data message.
IDLE denotes a "virtual message® indicating that the sending
machine M does not want to send a data message at this time.
CLSN  denotes a "virtual message® indicating the detection of a message collision.
OFF denotes a "virtual message" indicating the detection of a "carrier-off"
condition.

Starting at node 1, each of the three stations M;, M, and M, sends either a DATA
message or an IDLE message. There are three possibilities:

e If all the three stations send IDLE messsages, the medium responds by sending an
OFF message to each of them. All stations then return to their initial nodes.

e If only one station sends a DATA message, the medium responds by sending the
DATA message to each of the three stations. All stations then return to their
initial nodes. This corresponds to the successful data delivery situation.

e If more than one station send DATA messages, the medium responds by sending a
CLSN message to each of the three stations. All stations then return to their
initial nodes.

One natural marking m for this network is as follows: Only the edges labelled
+DATA and +OFF are marked progress; other edges are marked nonprogress. The
closed cover graph of this network is shown in Figure 7. Notice that the edge notation
in the arc label, (1,M,/-IDLE,2), represents an edge in machine M; which is from node 1
to node 2 and labelled with -IDLE. For simplicity reason, only source of the arcs are
listed. (The other arcs can be obtained by reordering the edges in the arc labels shown
in Figure 7.) Since the arcs labelled A, D, F, G are marked nonprogress and each of
them forms a cycle, the marked network (MI,MQ,M3,M,m) can reach a livelock. Each of
the nonprogress arcs represents a message collision situation.

g

5. Concluding Remarks

The problem of detecting livelocks in networks of communicating finite state
machines has been shown to be undecidable in general. However for some (interesting)
special classes of networks, the detection of livelocks is decidable and we have presented
three algorithms to do so.

A livelock in a network of communicating finite state machines is characterized in
this paper by a nonprogress cycle in the reachability graph of the network. This
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List of arc labels and their markings

A={(1,M,/-IDLE,2),(1,+IDLE/M,,2),(1,M,/-IDLE,2),(2,+IDLE/M,,3) nonprogress
(1,M,/-IDLE,2),(3,+IDLE/M,,4),(4,-OFF /M, 5),(2,M, /+OFF 1}
(5,-OFF /M,,8),(2,M,/+OFF,1),(6,-OFF /M,,1),(2,M3/+OFF, 1)}

B::{(I,Ml/—]DLE,Q),(1,+IDLE/M1,2),(1,MZ/JDLE,2),(2,+IDLE/M2,3) progress
(1,M,/-DATA,3),(3,+DATA/M;,7),(7,-DATA/M, 8),(2M,/+DATA,1)
(8,-DATA/M,,9),(2,M,/+DATA,1),(9,-DATA/M;,1),(3 M;3/+DATA 1)}

C={(1,M,/-IDLE,2),(1,+IDLE/M,,2),(1,M,/-DATA,3),(2,+DATA/M,,10) progress
(1,M,/-IDLE,2),(10,+IDLE/M,,7),(7,-DATA/M,; 8),(2,M, /+DATA,1)
(8,DATA/M,,9),(3,M,/+DATA,1),(8,-DATA/M3,1),(2,M3/+DATA, 1)}

D:{(I,Ml/-IDLEﬂ),(1,+IDLE/M1,2);(1,Mz/-DATA,3),(2,+DATA/M2,10) NONProgress
(1,M;/-DATA,3),(10,4+DATA /M,,14),(14,-CLSN/M,,15),(2,M, /+CLSN, 1)
(15,-CLSN/M,,16),(3,M,/+CLSN,1),(16,-CLSN/Mj,,1),(3,M;/+CLSN,1)}

E:{(1,Ml/-DATA,:%),(1,+DATA/M1,1l),(1,M2/-IDLE,2),(11,+IDLE/M2,12) progress
(1,M,/-IDLE,2),(12,+IDLE/M;,7),(7,-DATA/M, 8),(3 M, /+DATA,1)
(8,-DATA/M,,9),(2,M,/+DATA,1),(9,-DATA/M,,1),(2,M3/+DATA, 1)}

F={(1,M1/-DATA,3),(1,+DATA/M1,11),(1,M2/-IDLE,3),(11,+IDLE/M2,12) BONProgress
(1,M,/-DATA3),(12,4+ DATA/M,,14),(14,-CLSN/M,,15),(3,M, /+CLSN, 1)
(15,-CLSN/M,,16),(2,M,/+CLSN, 1),(16,-CLSN/Mj,,1),(3 M3 /+CLSN, 1)}

G={(1,M1/-DATA,3),(1,+DATA/M1,11),(1,M2/-DATA,3),(11,+DATA/M2,13) NONProgress
(1,M,/-IDLE,2),(13,+IDLE/M,,14),(14,-CLSN/M;,15),(3,M, /+CLSN,1)
(15,-CLSN/M,,16),(3,M,/+CLSN, 1),(16,-CLSN/M3,1),(2,M3/+CLSN, 1)}

Hz{(l,Ml/-DATA,B),(1,+DATA/M1,11),(1,M2/—DATA,3),(11,+DATA/M2,13) nonprogress
(1,M;/-DATA,3),(13,+DATA/Mj;,14),(14,-CLSN/M,,15),(3,M, /+CLSN, 1)
(15,-CLSN/M,,16),{3M,/+CLSN,1),(16,-CLSN/M3,1),(3,M,/+CLSN, 1)}

Figure 7. Closed cover graph for the CSMA protocol in Figure 6.
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characterization can be used to distinguish two types of livelocks, as suggested by Hajek
[17):

i. Temporary blocking: In this type of livelocks, there is a way for the network
to "exit" the nonprogress cycle after it is reached. Examples 1 and 2 in this
paper illustrate two instances of this rather *mild" livelock.

ii. Threshold of no return: In this type of livelocks, there is no way for the
network to exit the nonprogress cycle after it is reached. Examples of this
“severe® livelock can be found in [16,17].

It is straightforward to extend Algorithms 1 and 3 to check the type of a detected
livelock once it is detected. (Recall that Algorithm 2 does not detect livelocks; it can
only prove freedom from livelocks.)

This work suggests two open problems that merit further research. The first
problem is to find a necessary and sufficient condition to detect livelocks in networks of
two machines where one machine sends a single message type. (In Section 4.3, we have
merely presented a sufficient condition.) The second problem is to compute the
asymptotic complexity of the algorithms presented, and to estimate their efficiency for
very large communicating finite state machines.

Appendix

Proof of Theorem 2:

[If part]: We show that if there is a livelock in the marked network (M,N,m) then there
is a nonprogress cycle in the fair reachability graph of (M,N,m). Assume that there is a
livelock (C,D) in (M,N,m). Therefore, the following three assertions hold:

i. All the edges of cycle C |in M, are nonprogress.
ii. All the edges of cycle D ;in N, are nonprogress.

iii. There exists a sequence (s;,...,s,) of reachable states of network (M,N) such
that the following two conditions hold:

a. For i=1,...,;1-1, state s;; follows s; over an edge e; in M or N. Also
state s; follows s_ over an edge e, in M or N.

b. Each edge in {e,e,,...,e,} is either in cycle C or cycle D.

Cycles C and D are not necessarily fundamental; hence, without loss of generality, we
assume that they have an equal number of edges. Let q be the number of edges in C (or
D), then q=r/2. Since the state s, is reachable and since the sequence (sy,---8;) can be
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executed infinitely, there exist two infinite paths o and # in M and N respectively that
lead the network (M,N) into the sequence (s;,55,...,5;) and repeat the sequece infinitely.
These two paths a and 3 can be defined as follows:

O=2;8g. e WY CQOYermsrmsensens ¢qC1
B=bbo..b d s dqd1 ................. dqd1 .............
where  a; (i=1,...,n) are edges in machine M,

b, (i=1,...,m) are edges in machine N,

¢; (i=1,...,q) are edges in cycle C,

d; (i=1,...,q) are edges in cycle D, and
assume without loss generality that n>m.

Let o; and f3; be the i th edges in paths a and g respectively, and let s, denote the initial
state of (M,N,m). For i=0,1,..., let s, 4 be the fairly reachable state that fairly follows
the fairly reachable state s; over edges o; and f;, 1=0,.... Let Sp1=1V,W,X,y] and
sn+q+1=[v’,w’,x’,y’]. From s, to Sptq+lr machine M goes through cycle C once and
machine N goes through cycle D once, and the message sequence sent out by M (or N) is
the message sequence received by N (or M) as mentioned above. Therefore v=v' and
w=w’. Since x and x' both can be received by the same edge sequence of C, then x==x".
Similarly we can show that y=y’. In other words, s . =s/ +qtl Therefore the fairly
reachable states s, 4,8, o, -Sp4q form a cycle L in the fair reachability graph of the
marked network (M,N,m) where arc labels are the nonprogress edges of cycles C and
D. Hence L is a nonprogress cycle in the fair reachability graph of (M,N,m).

[Only If part]: This part is straightforward since the fair reachability graph is a
subgraph of the reachability graph of the network.

O
Proof of Theorem 3:

Each vertex in the fair reachability graph G of (M,N,m) corresponds to a distinct
fair reachable state s=|v,w,x,y], where |x|=]y|, of the network. Since the input channel
of M or N is bounded by some constant K, any fair reachable state [v,wx,y] of (M,N,m)
is such that |x|=|y|<K. Therefore, there is a finite number of distinct fair reachable
states of (M,N,m), and G is finite.

O
Lemma 1: The abstract reachability graph G of (M,N,m) is finite. In particular for
any reachable limited state s=[v,wk,y] in G, k is bounded by m.n.(t+1), where m is the
number of nodes in machine M, n is the number of nodes in machine N, and t is the
number of message types sent by machine M.

O
Proof of Lemma 1
Let state s=[v,wk,y] be a reachable limited state in G. Since in the path from initial
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state to s there can be at most m.n.(t+1) reachable limited states (otherwise, there is a
state [v,w,k’,y] in the path with k’<k and by Algorithm 3 state s must be an abstract
state [v,w,w,y] which violates the assumption that s is a limited state.), k<m.n.(t+1).
Therefore there are at most m2.n2.(t+1)% reachable limited states. Based on a similar
argument as above, the number of reachable abstract states is less than or equal to
m.n.(t+1). Hence the abstract reachability graph of (M,N,m) is finite.

g

Proof of Theorem 4:

We show that if there is a livelock in the marked network (M,N,m) then there is a
nonprogress cycle in the abstract reachability graph of (M,N,m). Assume that there is a
livelock (C,D) in (M,N,m). Therefore, the following three assertions hold:

i. All the edges of cycle C jin M, are nonprogress.
ii. All the edges of cycle D ,in N, are nonprogress.

iii. There exists a sequence (sy,...,s;) of reachable states of network (M,N) such
that the following two conditions hold:

a. For i=1,...r-1, state s;, follows s; over an edge e; in M or N. Also
state s; follows s, over an edge e, in Mor N.

b. Each edge in {e;,e,,...,e,} is either in cycle C oreycle D.

Cycles C and D are not necessarily fundamental; hence, without loss of generality, we
assume that they have an equal number of edges. Let q be the number of edges in C (or
D), then q=r/2. Since the state s; is reachable and since the sequence (sy,...,s;) can be
executed infinitely, there exist two infinite paths o and # in M and N respectively that
lead the network (M,N) into the sequence (s,,s,,...,5;) and repeat the sequece infinitely.
These two paths a and 3 can be defined as follows:

Q=2,8g. e C TN R CqCyresemsrersesnns cqC1
f=bby..bdj dqd1 ................. dqd1 .............
where  a, (i=1,...,n) are edges in machine M,

b, (i=1,...,m) are edges in machine N,

¢; (i=1,...,q) are edges in cycle G,

d; (i=1,...,q) are edges in cycle D, and
assume without loss generality that n>m.

Starting from the initial state, let machine N progress along path f as far as possible and
we can find a reachable limited state s;=[vy,w,k,E], where w is a receiving node since N
cannot progress any further. Then let M progress along path 8 until it sends a message
g to N, at that time we reach a limited state szz—_[v,w,k’,g] where k’<k. Then let M
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progress as far as possible again, etc. It is straightforward to show that the above
process can proceed forever along paths a and 3. By repeating the above process, we
can generate a sequence si——-[vi,wi,ki,yi], 1=0,1,..., of reachable limited states.

Assume without loss of generality that s=[v,,w.k;y,] be the first reachable
limited state generated by the above process, and nodes v, and w; are in cycles C and D
respectively. Since the messages sent out by M along cycle C can be received by N along
cycle D, based on a similar argument as that in proof of Theorem 2, there exists a
reachable limited state s, =[v,wk;y;]. Therefore the limited reachable states

Se:St4 10 Stk form a cycle L. There are two cases:

i. There exist two states s; and $; such that v;=v, w;=w, ka-<kj, and Y=Y
By Algorithm 3, sjz[vi,wi,w,yi] and there exists a cycle L’ in G whose vertices
are labelled with abstract states s}:[vl,wl,w,yl], {=t,...,t+k, and whose arcs

are all labelled with nonprogress edges of cycles C or D. Hence L’ is a
nonprogress cycle in the abstract reachability graph of (M,N,m).

ii. The other case.
By Algorithm 3, all the states in set S={s;| i=0,1,...,t+k} are reachable
limite states and there exists a cycle L’ in G whose vertices are labelled with
states in S and whose arcs are all labelled with nonprogress edges of cycles C
or D. Hence L’ is a nonprogress cycle in the abstract reachability graph of

(M,N,m).

Proof of Theorem 5:

—~

[If part]: We show that if there is a livelock in the marked network (M,N,m) then there
is a nonprogress cycle in the closed cover graph of (M,N,m). Assume that there is a
livelock (C,D) in (M,N,m). Therefore, the following three assertions hold:

i. All the edges of cycle C ,in M, are nonprogress.
ii. All the edges of cycle D ,in N, are nonprogress.

iii. There exists a sequence (sy,...,s;) of reachable states of network (M,N) such
that the following two conditions hold:

a. For i=1,...1-1, state s;,; follows s; over an edge e; in M or N. Also
state s; follows s_over an edge e, in M or N.

b. Each edge in {e;,e,,...,e.} is either in cycle C or cycle D.

Cycles C and D are not necessarily fundamental; hence, without loss of generality, we
assume that they have an equal number of edges. Let q be the number of edges in C (or
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D), then q=r/2. Since the state s, is reachable and since the sequence (sy,...,s,) can be
executed infinitely, there exist two infinite paths o and 8 in M and N respectively that
lead the network (M,N) into the sequence (s;,sy,...,5;) and repeat the sequece infinitely.
These two paths a and § can be defined as follows:

O=2780 e B Cenrererenenneienns CqCqeremsenseensees ¢qC1
B=bby..bdq . dqd1 ................. dqd1 .............
where i=1,...,n) are edges in machine M,

¢; (i=1,...,q) are edges in cycle C,
d, (i=1,...,q) are edges in eycle D, and
assume without loss generality that n>m.

-

Let AM (AN) be the acyclic machine of M (N) for the closed cover C. Since AM
(AN) contains all the possible edge sequence in M (N) from its input version nodes to its
output version nodes, there exists an edge sequence in AM (AN) that is a prefix of the
edge sequence in path a (f). Starting from the initial state sg, let machine M (N)
progress along path a () (or for that matter along a path in AM (AN)) until it reaches
an output version node in AM (AN). It is straightforward to show that the network
reaches a state s; in the closed cover C. Starting from s;, repeat the same process as
above, the network will reach a sequence of states s,,s5,...

Based on a similar argument as that in theorem 4, there exist nonnegative integers
t and k such that states s;,s; q,...,S¢ 4 form a cycle L. By Algorithm 4, there exists a
cycle L’ in the closed cover graph of (M,N,m), whose vertices are labelled with states
Sp:Sp4 1Stk and whose arc labels consist of the nonprogress edges of cycles C or
D. Hence L is a nonprogress cycle of the closed cover graph of (M,N,m).

[Only If part]: This part is straightforward since the states in the closed cover are
reachable. -

o
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