BOUNDEDNESS, EMPTY CHANNEL
DETECTION AND SYNCHRONIZATION
FOR COMMUNICATING FINITE AUTOMATA

Louis E. Rosier and Hsu-Chun Yen

Department of Computer Sciences
University of Texas at Austin
Austin, TX 78712

TR-84-13 May 1984

ABSTRACT

In this paper, we consider networks of communicating finite state machines (CFSM’s), that
explicitly allow zero testing (i.e. empty channel detection). In our main result, we show that the
boundedness problem is decidable for the class of FIFO networks consisting of two such CFSM’s,
where one of the two machines is allowed to send only a single type of message to the other. This
result, we feel, is somewhat surprising since the zero testing capability is precisely the required
extension needed in order to render the problem undecidable for the related class of vector ad-
dition systems with states (VASS's) of dimension two. Note that both have the ability to store
two nonnegative integers which can be conditionally tested for zero. The reason for the disparity
appears to be that such a class of extended VASS's would be capable of more synchronized be-
havior (since the actions of the two counters can be controlled by a single finite state control).
The rest of the paper examines other classes of networks which allow empty channel detection.
These results seem to indicate that our main result can not be extended.

O Ut e) DO e

Tabie of Contents

. INTRODUCTION

. COMMUNICATING FINITE STATE MACHINES
. THE MAIN RESULT

. RELATED UNDECIDABILITY RESULTS

. PRIORITY NETWORKS WHERE THE PRIORITY RELATION IS NOT FIXED
. REFERENCES

N

26
29

1. INTRODUCTION

Models for distributed communication systems have included Petri nets, or equivalently
Vector Addition Systems(VAS's), and more recently networks of communicating finite state
machines(CFSM’s). Many communication protocols can be modeled as a network of two finite
state machines that communicate by exchanging messages over two one directional, FIFO
channels[3,4,7,19,23,26]. (Generalizations of this model permit any number of CFSM’s, each pair
of which communicate as above.) Such models have been shown useful in the detection of many
protocol design errors. Design errors considered in the literature include state deadlocks, un-
specified receptions, nonexecutable receptions, channel boundedness and channel overflow (c.f.

[3,4,7,19,23,26,27]). Petri nets have also been used to model communication protocols. (See e.g.
2,17,24].)

Informally, the communication between two CFSM's machines is said to be bounded iff
there is a nonnegative integer k such that in each "reachable state" of the network, the number
of messages in each channel is no more than k (i.e the number of distinct reachable network
states is finite). Similarly, a VAS is bounded iff each vector position is so bounded. If the chan-
nels in any such protocol are bounded, then the protocol can be validated by generating the set of
all reachable states and checking this set for any of the aforementioned problems. If the chan-
nels, on the other hand, are potentially unbounded, then the network cannot be built. Con-
sequently, a basic problem to consider concerning CFSM’s (and VAS's), is whether the com-
munication in a given network is bounded. Unfortunately, this problem is known to be undecid-
able in general[4]. However, for VAS’s and certain restricted classes of CFSM’s this problem is
decidable[4,6,7,12,18,19,26]. In this paper, we closely examine what features of a communication
system, modeled by various extended types of VAS's and networks of CFSM’s, contribute to the
undecidability of the boundedness problem. We find that the asynchronous behavior of such sys-
tems plays an important role in this problem, and our results indicate that in some simple cases
asynchronous systems may be easier to analyze than their synchronous counterparts. Before

proceeding, however, we give some important historical background on known results concerning
various types of VAS’s and CFSM’s.

In [6], the boundedness problem was studied for the class of networks consisting of an ar-
bitrary number of CFSM’s, each pair of which communicate by exchanging a single type of mes-
sage. Since such networks can be modeled by VAS's[12], decision procedures for this class are
well known[12,18]. In particular, each such network can be represented by a VAS, where each
channel corresponds to a potentially unbounded vector position and the state of each machine
corresponds to a sequence of bounded vector positions. Equivalently, such a network can be
modeled by a vector addition system with states (VASS) [9], where the channels are represented
as above but where the states are represented in the states of the VASS (i.e. a state of the VASS
contains a state for each CFSM in the network). The main intuitive difference, in these models,
is that a VAS does not readily illustrate the asynchronous behavior of the CFSM’s; and in fact
may camouflage it. On the other hand, a VAS may exhibit very synchronous behavior. For this
reason, we feel that VAS’s (and VASS's) are not good models for asynchronous communication
systems as there seems to be no clear way to see that two or more independent entities are ex-
ecuting simultaneously, which can communicate, only by sending and receiving messages. Net-
works of CFSM'’s, however, do illustrate this desired asynchronous behavior.

The boundedness problem was examined for networks consisting of two CFSM’s, each of
which could only send a single type of message to the other machine, in [26], and a more efficient
algorithm than the one given in [6], was presented. This result was extended in [19], where the
class of communication networks consisting of two CFSM’s, in which one of the machines sends
only one type of message (the communication in the other direction is not constrained), was
shown to have a decidable boundedness problem. In fact, the problem was shown to be nondeter-
ministic logspace complete and thus boundedness can be decided in polynomial time[5]. Both of
the preceding results[19,26], were derived by taking advantage of the networks asynchronous
properties. As a result, the techniques (and thus the complexity results) do not appear to general-
ize to the class of VAS’s which have no more than two potentially unbounded positions (or equiv-
alently, to the class of VASS's of dimension two).

These models of communication systems have not allowed, with the exception of [20], the
communicating entities to realize or act upon any information regarding the channels, with the
exception of reading the next available message. For example, no process is allowed to determine
if a channel is devoid of messages and move accordingly. Examples illustrating the limitations of
the modelling power of VAS’s are considered in [1] and [13]. See also [15-17]. In both cases, the
limiting factor is precisely the inability of the VAS to test a potentially unbounded position for
zero and take action on the outcome of the test. As a result, the literature contains many exten-
sions to the basic model of VAS’s (Petri nets). Such extensions use a variety of mechanisms each
of which allows zero testing. These include "inhibitor arcs", "constraints", "priorities", "timing
constraints", etc. (c.f. [8,17]). Recently, priority networks of CFSM’s were introduced, where
messages are received based on a fixed, partial-ordered priority relation[7]. (Unrelated messages
can be received in any order.) This model is equivalent, in computational power, to certain
classes of extended Petri nets, in particular those with priority tokens[8]. However, the CFSM
model is more concise (since the channels and their contents are not modeled explicitly), and so is
more convenient to use in modelling communication protocols and distributed systems.

The results in {7] focus on the problem of whether the communication of a priority network
is bounded. Specifically, it is shown that the problem of detecting boundedness is undecidable
even if the machines exchange only two types of messages. Also considered is the case where one
of the two channels is known to be bounded, and it is shown that three types of messages can
make the problem undecidable in this case. (This problem is decidable in the case of FIFO
networks[4].) The same problem becomes decidable if only two types of messages are allowed.
Also considered is the case where one of the two machines sends one type of message. The
problem is undecidable if the other machine sends three or more types of messages, and is decid-
able if the other machine sends two or less types of messages. (Both problems are decidable in
the case of FIFO networks[4].) However, the latter result can be generalized to the case of three
or more messages, if only two message types are mentioned in the priority relation. If the
priority relation is the null set (i.e. all messages are received on a random basis), then the

boundedness problem is essentially the same as that of a VAS. (Such machines are called Ran-
dom CFSM’s in [7].)

In most of the extended VAS models, where zero testing is allowed, only two potentially un-
bounded positions are necessary to render the boundedness problem undecidable. This is also the
case for the undecidability results concerning Priority CFSM's. The reason is that such extended

VAS’s or networks can utilize the potentially unbounded positions (or channels) to store two non-
negative integers and thus can be used to simulate the computation of a two-counter machine [14]

with no input. See {7,8,17]. Since the computational power of two-counter machines is equivalent
to that of TM’s, the result follows.

In this paper, we consider networks of CFSM’s (FIFO, Priority and Random), that explicitly
allow zero testing (i.e. empty channel detection). In section 3, we consider FIFO networks of two
CFSM’s, only one of which is restricted to send a single type of message, where each machine can,
make the following types of transitions:

1. moves in which a message is sent or received
. €-moves

. conditional moves in which the input channel is checked for emptiness

W o

. conditional moves in which the output channel is checked for emptiness

For this class, we are able to show that the boundedness problem is nondeterministic logspace
complete. Such machines are clearly a generalization of those studied in [19], where only moves
of the first type were allowed. Recall that the boundedness problem was also shown to be decid-
able in nondeterministic logspace for this simpler class. The approach taken in {19] was to con-
struct a deterministic one counter automaton (doca)[25], that would simulate, in some sense, the
computation of a given network. The results then followed from properties of doca. Here,
however, we consider a class of networks that cannot, in general, be simulated by doca; and hence
the techniques of [19] do not appear to generalize when moves of type 3-4 are allowed. On the
other hand, our approach is similar in that we construct a simulating automaton for each net-
work. However, the automata we consider are more powerful than doca’s and are, as far as we
know, unique. The difference in the networks considered here, of course, is that the two channels
can be conditionally tested for zero (and nonzero) by each machine. Note, that since a machine
can test both its input and output channel for emptiness, it can therefore ascertain something
about the computation of the other machine (and hence some synchronized behavior may result).
This result, we feel, is surprising since the zero testing capability was precisely the required exten-
sion that the class of VAS's, with two potentially unbounded positions (or equivalently, the class
of VASS’s of dimension two), needed in order to render the boundedness problem undecidable.
Note that both have the ability to store two nonnegative integers which can be conditionally
tested for zero. The reason for the disparity seems to be that such a class of extended VAS's
would be capable of more synchronized behavior (since the actions of the two counters can be
controlled by a single finite state control). The same synchronous capabilities can be instilled in
these CFSM's, however. For example, if we allowed the CFSM's to have the “ability to
synchronize" provided by a single "bit" of "shared memory", the problem would become un-
decidable. (This would not be the case if only moves of the first two types were allowed.)

In section 4, we examine the simplest classes of FIFO, Priority and Random empty-channel-
detecting CFSM’s for which the boundedness problem remains undecidable. These show that the
result in section 3 cannot be extended. In particular, we show that the boundedness problem is
undecidable for the following classes:

1. Networks of three empty-channel-detecting FIFO CFSM's. This result holds even if

each machine is restricted to send a single type of message, and only one of the
machines is allowed type 3-4 moves. Only type 3 (4) moves are needed, however, if two
of the machines are allowed conditional moves. (Recall that the boundedness problem
is undecidable for networks of two FIFO CFSM’s, which exchange two types of mes-
sages, even when no moves of type 2-4 are allowed[4].)

2. Networks of two empty-channel-detecting Priority CFSM’s where one machine sends a
single type of message and the other machine sends two types of messages. This result
holds even if each machine is restricted to only moves of type 1-3 (or type 1-2 and 4)

3. Networks of two empty-channel-detecting Random CFSM’s where one machine sends
a single type of message and the other machine sends two types of messages. This
result holds even if each machine is restricted to only moves of type 1-2 and 4.

Without the empty channel detection capability, each of the three aforementioned problems be-
comes decidable. See [4,7]. Results 2 and 3 indicate that the FIFO result of section 3 is somewhat
of an anomaly in that no corresponding case arises for Priority and/or Random Networks.

In the last section, we consider priority networks where the priority relation is not fixed.
For example, consider the case where a (possibly) different priority relation was assigned to each
node in the CFSM's. Most of the results given in [7] extend in a straightforward manner to
priority networks of this type. However, the results concerning priority relations that mention
only two message types do not seem to generalize. (In fact, some are no longer true.) Here, we
illustrate the differences resulting when the priority relation is allowed to vary from node to node
and we use the techniques of section 3, to handle the case of two machines where one sends a
single type of message and the other sends at most two types of messages.

2. COMMUNICATING FINITE STATE MACHINES
FIFO Networks

A (empty-channel-detecting) CFSM M is a directed labelled graph with the following five
types of edges: sending edges, receiving edges, empty input channel edges, empty output chan-
nel edges, and ¢ edges. A sending (receiving) edge is labelled send(g) (receive(g)) for some mes-
sage g in a finite set G of messages. An empty input (output) channel edge is labelled E; (E,),
and may be traversed only when the input (output) channel is empty. An € edge is labelled ¢, and
may be unconditionally traversed. One of the nodes in M is identified as the initial node; each
node is reachable by a directed path from the initial node. A loop L Pj—Pgo—...—p, is a directed
path on M, where P; = p, and p; £ Pj for all i and j, i<j where i £ 1 and j £ n. The charac-
teristic value of [, denoted by C(l), is equal to (# of sending edges - # of receiving edges) in /.

Let M and N be two CFSM’s with the same set G of messages; the pair (M,N) is called a
FIFO network of M and N. A state of network (M,N) is a four-tuple (v,w,x,y), where v and w are
two nodes in M and N respectively, and x and y are two strings over the messages of
G. Informally, a state (v,w,x,y) denotes that the executions of M and N have reached nodes v and
w respectively, while the input channels of M and N contain the message sequences x and y,
respectively.

The initial state of a FIFO network (M,N) is (vg:Wg,E,E) where vy and W are the initial
nodes in M and N respectively, and E denotes the empty channel.

Let s=(v,w,x,y) be a state of network (M,N); and let e be an outgoing edge of node v or
w. A state s’ is said to follow s over e iff one of the following ten conditions are satisfied:

i.e is a sending edge, labelled send(g), from v to v’ in M, and s'=(v",w,x,y’), where
y'=y.g, ("." is the usual string concatenation operator).

ii. e is a sending edge, labelled send(g), from w to w' in N, and s’=(v,w’'x")y), where
. X'=x.g.

ili. e is a receiving edge, labelled receive(g), from v to v’ in M, and s'=(v',wx")y), where
¥
x=g.x".

iv. e is a receiving edge, labelled receive(g), from w to w’ in N, and s'=(v,w’,x,y’), where

y=g.y'

v.e is an empty input channel edge, labelled E,, from v to v in M, x=E and
s'=(v",w,E,y).

vi.e is an empty input channel edge, labelled E, from w to w’ in N, y=E and

s'=(v,w' x,E).

vil. e is an empty output channel edge, labelled E, from v to v in M, y=E and
s'=(v',w,x,E).
vili. e is an empty output channel edge, labelled E,, from w to w' in N, x=E and
s’'=(v,w"E,y).
ix. e is an € edge, labelled ¢, from v to v’ in M, and s'=(v",w x,y).
x. ¢ is an ¢ edge, labelled ¢, from w to w’ in N, and s'=(v,w' x,y).
o Let s and s’ be two states of a FIFO network (M,N); s’ follows s iff there is a directed edge

e in M or N such that s’ follows s over e.

Let s and s’ be two states of (M,N); s’ is reachable from s iff s=s’ or there exist states
Sps---»S; such that s==sy, s’=sr and Sit1 follows s; for i=1,...r-1.

A state s of a FIFO network (M,N) is said to be reachable iff it is reachable from the initial
state of (M,N).

- A finite computation (path) of a network is a sequence of states 80--»8; 10 which Sg 1s the
initial state of the network and 8;41 follows from s, 0<i<r-1. An infinite computation is such
- a sequence of infinite length.

The communication of a FIFO network (M,N) is said to be bounded iff there exists a non-
negative integer k such that for any reachable state (v,w,x,y), Ix|<k and |y|<k where |x| is the
number of messages in the string x. If there is no such k, then the communication is unbounded.

B. Priority Networks:

Let M and N be two CFSM’s, as defined earlier, with the same set G of messages, and let <
be a partial ordering on G. The triple (M,N,<) is called a priority network, where < is called
the message priority relation of the network. If two distinct messages g, and g,, in G, are such

that (g,,8,) is in <, denoted by g1 <8y, then g, is said to have a higher priority than g

A state of a priority network (M,N,<), over G, is a four tuple (v,w,x,y), where v is a node
in M, w is a node in N, and x and y are two multisets of messages in G.

The snitial state of (M,N,<) is (VO,WO,E,E), where vy is the initial node of M, w; is the
initial node of N, and E denotes the empty multiset.

Let s=(v,w,x,y) be a state of a priority network (M,N,<), and let e be an outgoing edge of
node v or w. A state s’ of (M,N,<) is said to follow s over e iff one of the following ten con-
ditions are satisfied:

i. e is a sending edge, labelled send(g), from v to v’ in M, and s'=(v',w,x,y') where y’ is
obtained from y by adding one message g.

ii. e is a sending edge, labelled send(g), from w to w’ in N, and s’=(v,w’x",y) where x is
obtained from x by adding one message g.

iii. e is a receiving edge,labelled receive(g), from v to v’ in M, and s'=(v’,w,x"y) where x
contains at least one g, and x’ is obtained from x by removing exactly one g, and if v
has an outgoing edge labelled receive(g’), where g<g', then x may contain no message
g

Iv. e is a receiving edge,labelled receive(g), from w to w’ in N, and s'=(v,w’ x,y’) where y
contains at least one g, and y’ is obtained from y by removing exactly one g, and if w
has an outgoing edge labelled receive(g’), where g<g', then y may contain no message

¥

g.

v. - x. are defined the same as for FIFO networks.

The last parts of conditions iii and iv mean that messages are received in accordance with

their priorities; the message with the highest priority must be received first; unrelated messages
can be received in any order.

The definitions of reachability, computation and bounded communication for a priority net-
work are similar to those, discussed earlier, for a FIFO network.

C. Random Networks:

A random network is a priority network whose message priority relation is the empty set.

3. THE MAIN RESULT

In this section, we provide a nondeterministic logspace decision procedure, to determine
whether the communication is unbounded, for the following class of communication networks:

C: The class of FIFO networks consisting of two (empty-channel-detecting) CFSM's in

=

which at least one of the two machines sends only one type of message to the other

machine (i.e. each edge labelled by a send, in one of the machines, mentions the same
message of G).

Since the problem has already been shown to be nondeterministic logspace hard [19], for the
subclass of C, in which only sending and receiving edges were allowed, it follows immediately that
the boundedness problem, for these classes of networks, is nondeterministic logspace complete.
(See [10] for motivations and definitions of nondeterministic logspace hard, nondeterministic
logspace complete, etc. See also [11,21,22].)

These results do generalize, to some degree, the earlier results concerning boundedness in
[19]. A perhaps more interesting comparison, however, is the related problem for extended VAS
(or, equivalently VASS) models, where some sort of zero testing is allowed. In most of the ex-
tended VAS (VASS) models, where zero testing is allowed, only two potentially unbounded posi-
tions are necessary to make the boundedness problem undecidable. (Note that the problem is
decidable[12,18] when zero testing is not allowed, i.e. for VAS's and VASS’s.) However, here we
show that in some cases the introduction of the zero testing capability for CFSM's does not make
the boundedness problem harder. This result, we feel, is surprising since the zero testing
capability was precisely the extension that the class of VAS's needed in order to render the
boundedness problem undecidable. The difference seems to be that such a class of extended
VAS’s would be capable of more synchronous behavior (since the actions of the two counters can
be controlled by a single finite state control). The same synchronous capabilities can be instilled
in these CFSM’s, however. For example, if we allowed the CFSM’s to have the "ability to
synchronize" provided by a single "bit" of "shared memory", the problem would become un- -
decidable. (This would not be the case if only sending, receiving and € edges were allowed.)

Based on above evidence, we find that the asynchronous behavior of these systems plays an
important role in the boundedness problem, and thus our results indicate that in some simple
cases asynchronous systems may be easier to analyze than their synchronous counterparts.

Let (M,N) be an arbitrary network in C. (See Figure 3.1.) Without loss of generality, we
assume that N sends only one type of message to M. A useful technique [19] for dealing with net-
works of two CFSM'’s, of this variety, is to run the machine N faster than the other; always insur-
ing that no more than a single message is in Cy (N's input channel) at all times. The resulting
computations of the network can then be simulated by a one counter automata, whose counter is
bounded in all possible computations iff Cp (M's input channel) is bounded in the network. (The
boundedness of Cy; is handled separately. See [19].) However, when empty channel edges are
allowed, it is not always the case that the restricted computations, where CpN contains at most
one message, have the same related boundedness property. For instance, consider the unbounded
network (M,N) in figure 3.2. The outgoing edge at node 3 (of M) is an E, move. This move can
be executed only when Cy 1s empty, which implies that N has to first transfer all the messages in
CN to Cyy- Similarly, the following E; move on M can be utilized only by first moving all the
messages in Cyg back to Cpp. (In order to do this, M must execute the loop between nodes 4 and
5 (of M) until Cpp is empty.) By letting M repeatedly execute the loop containing node 1, in this
manner, it can be seen that the channel contents of (M,N) can grow arbitrarily large. In fact, this
loop must be executed for the channel contents of (M,N) to grow. It appears, therefore, that a

-

C

>

N

Figure 3.1 A class C newtork (M,N).

U

Figure 3.2 An unbounded network (M,N).

Figure 3.3 A restricted 3-counter machine.

simulation by one counter automata will not work in the case of C networks, because all the mes-
sages cannot be stored in a single channel. To overcome this difficulty, we introduce a new class
of automata, which we call restricted 3-counter machines, that are better able to simulate C' net-
works. Later, we will show that the boundedness problem for the class of simulating machines is
decidable in nondeterministic logspace. As a result, we will have that the boundedness problem
for C networks is nondeterministic logspace complete.

As shown in figure 3.3, a restricted S-counter machine W is a device with a finite state
control, a one-way read-only input tape, and three counters (CR, Cp, and Cyw), each of which is
capable of storing a nonnegative integer. (Actually, we refer to them as storing a nonnegative
number of tokens.) Roughly speaking, the actions of W are to read an input and then depending
on the current state and the contents of the counters, W can change it's state, alter the contents
of counters, (either add one to Cw or subtract one from CRr) and move its input head 0 or 1
positions to the right. (More will be said about the operation of W shortly.) Independent from
W, tokens may arbitrarily be moved from Cw to Cj and/or from Cp to Cp. We ascribe this
action with what we call the daemon. It's actions are to be considered totally asynchronous with
those of W. Note that W can only subtract tokens from CR or add tokens to Cw; and that the
daemon can only move tokens from Cyw to Cj or from Cj to CR. No other movement of the
tokens is allowed.

Formally, the machine W is a 7-tuple (Q,Z,P,B,qO,ZO,F), where Q is the set of states, Y is
the (finite) input alphabet, I ={Z,B} is the stack alphabet (note that the bottom-of-stack symbol -
Z can never be erased), § is the transition function which will be described in detail later, qq is
the initial state, Zg 1s the bottom-of-stack symbol, and F is the set of accepting states. A con-
figuration ¢, of W, is described by a 4-tuple (q,x,y,z), where qeQ represents the current state,
X,y,and z are nonnegative integers representing the contents of Cgr, O}, and Cw, respectively.
lel=x+y+z. ¢9=(qq,0,0,0) is the initial configuration. A move c—c’ is a transition (specified by
the transition function) that leads from configuration ¢ to ¢’. A computation c—w—c' is a se-
quence of transitions, beginning in configuration ¢ and ending in ¢’, which causes the machine W
to read the input string w. A configuration c is said to be reachable iff there exists a computation
cg—w—c for some input string w. The machine W is said to be unbounded iff for every integer
k>0, there exists a reachable configuration (q,x,y,z), such that (x+y+z)>k. We say that W ac-
cepts an input w iff Cg—wW—qy, for some qp in F. A loop is a sequence of moves {: CpCo—.—rey
such that ¢y and ¢ are in the same state, and no other intermediate configurations have this

property. We define the characteristic value of !, denoted by C(l), to be (# of w moves - # of r
moves) in {, where w and r moves stand for "write to Cw" and "read from CR", respectively.

Now we define the moves or transitions of W. Let W be represented as a directed graph
whose set of vertices is Q and whose edges are the transitions . All edges, in this graph, can be
given a label which describe two things—a precondition on the counter values necessary in order
for this transition to execute and the subsequent change in the counter values due to the tran-
sition being executed. (The associated state change is, of course, implicit.) The possible labels
and their semantics is given as follows:

Counter Subsequent Counter
Label Precondition Action
CRj (0<j<|M|) Cgr=ij none
Cj; O<i<M|) Cp=j none
Cro Cr>0 none
Clo Ci>0 none
r (read) Cr>0 Cri=Cgr-1
w (write) none Cwi=Cy+1
€ none none

We now describe the restricted 3-counter machine W that will simulate the network (M,N).
The finite state control of W will contain the following entities:

V:

W:

BUFF:

P_ flag:

SBUF:

dlz
dQ:

contains the current state of M. Its initial value is Vg, Where Vg is the initial
node of M.

contains the current state of N. Its initial value is W, Where W is the initial
node of N.

a buffer, of size one, used to contain a message in G, or the value E (empty). 7
BUFF contains the contents of Cy (if any) which will, in the simulation, be no

more than a single message. The initial value of BUFF is E.

0/1 valued; P__flag is zero iff both Cj and Cp were zero since the last E, move
on N was simulated. Initially, P_ flag equals 0.

a bounded counter whose value may range from 0 to |M|2*|N]2, which is used
to indicate the number of consecutive E, moves simulated on N, since the last
send move was simulated on M.

a variable in which to store a value between 0 and |M|.

a variable in which to store a value between 0 and [M].

A state of W, contains a value for all the entities described above. However, in most cases, we
are only interested in the values of V, W, and P_ flag. Therefore, in most cases, we will simply
use (v,w)p flag t© indicate a state of W instead of listing the value of each entity.

10

The operation of W can be expressed as the following algorithm. (Although we never explicitly
describe the labelled graph describing W, it is implicit in what follows, and is used in many of the
subsequent proofs.) Let l=(]Ml2+]N]2)*(!Gl+5). Notice that the total number of possible moves
that can be made from any network state is no more than I Hence, the possible moves of the
network can, for any network state, be indexed by 1,...,l. In other words, we let 2={1,...,0}.

A. The code for W if BUFF=E
then Cy:=Cyy+1; W:=w;
else halt:==1;

initialize variables; endif
halt:=0;
while halt=0 do
begin .) e) e-move on either machine: v—c—y’
read an input symbol a in 5 (W—emw)
simulate the move indicated by a;
phase check; if BUFF=E
end then Vi=v'; (W:=w";)
else halt:=1;
endif

B. Simulation of network moves

- 1
a) receive on M: v—r—v’ f) E; move on M: v—E;—v

if Cp7%0 A BUFF=E if Cp=0 A BUFF=E

then then V:=v’;
Cp:=Cp-1; else halt:=1;
N endif

else halt:=1;

endif

g) E; move on N: w—E—w

if P_ flag=0ACy=0AC{=0ABUFF=E

b) send(g) on M: v—s(g)—v' then W:=w’;
if BUFF>£E else halt:=1,;
then halt:=1; endif
else SBUF:=|M|?*|N|% BUFF:=g; V:=v';
endif

h) E_ move on M: v—E —v’'

if P“ﬂag=0/\CW=O/\CI=O/\BUFF=E

c) receive(g) on N: w—r(g)—w’ then Vimy’;
if BUFFs£g else halt:=1;
then halt:=1; endif
else BUFF:=E; W:=w";
endif

i) E, move on N: w—E —w

if SBUF0 A Cyy=0 A BUFF=FE

d) send on N: w—s—w'

11

then
P_ flag:=1,
Wiz=w';
else halt:=1;
endif

C. Subroutine Consume(V,d,,d,)

\each of the conditions to be checked in Con-
sume are to be evaluated nondeterministically)

Subroutine Consume(V,d;,d,)

if
There is a path to a reachable loop,
from v in M, with both receiving and
sending (but no E,) edges where at
least d; receiving edges occur before
the first E; move.

then return "0";

if
M can consume d1+d2 messages by
executing some path (but mno loop)
from v to some v’ on M where at
least d; receiving edges occur before
the first E; move.

then return "1";

if
There is a path to a reachable loop,
from v in M, with receiving (but no
sending or E) edges where at least d;
receiving edges occur before the first
E; move.

then return "2";

else return "3";
endif

(Note that in what follows, we sometimes
use "yes" to indicate that the subroutine
returns "0", "1" or "2"; "po" to represent
u3u)

D. Phase Check

\to handle the existence of a send loop on M\

determine if a send loop, a loop with no
recelving or E, edges, has been executed
on M. (This condition can always be
checked nondeterministically by checking
to see if the current value of V has been
repeated without the intermediate
simulation of either a receive or an E,
move on M.)

if so

then
loop
CW:=CW+1;
forever

endif

\C| should always be empty when P _ flag=0\

if P__flag=0 A Ci540
then halt:=1;
endif

\to detect the end of a phase change\

if P_flags£0

then
if Cp=0 A Cr=0
then P_ flag:=0;
endif

endif

\to detect M’s ability of consuming those
messages in Cp and Cp\

if P_ flags£0

then
if d1<min{|M],CR}
then halt:=1;
else d;:=min{|M|,CR};
endif
if d; <|M|

then d2:=min{lMl-dl,CI};

12

else d2:=0;
endif

t:=consume(V,dl,d2);

if input="EO on N" A t>0
then SBUF:=SBUF-1;
endif

if t==3 then halt:=1; endif
endif

Thus far, little has been mentioned concerning the operation of the daemon, other than that
its moves occur asynchronously from those of W. In the construction above and the subsequent
proofs, however, we implicitly assume that the daemon does not move any tokens during the
period in which W is executing a pass of its while loop; thus the daemon is assumed to only be
active before and after W executes an iteration of its loop. This assumption is not necessary, but
it simplifies our constructions and many of the ensuing arguments.

For the sake of brevity, W has been described via an algorithm. However, many of the en-
suing proofs utilize certain facts regarding the labelled state graph of W. We now list these facts.

1. Cy is always zero, in any configuration of W, where P__flag=0, that occurs during a
pass of the loop, unless halt=1.

2. CIj and CRj moves, where 0<j<|M|, can only be made by W when Pflag=1. Fur-
thermore, a CU move is made only when the sum of tokens in CR and Cj is less than

M.

3.Ifa CRj move is made by W for some 0<j<|M|, then no Cgr move, for I>], can be
made by W unless in an intermediate configuration P __flag was zero. Thus, the value
of Cp does not grow while P__flag=1 once it becomes less than IM[. (Actually, it is
possible that Cr may grow by a single token just previous to a loop iteration that is
to simulate a receive move on M. Note, however, that no subsequent CRj move is
made until after the additional token has been removed from Cgr-)

The truth of these facts should be reasonably easy to see from a straightforward encoding of the
algorithm.

The simulation of the network (M,N) by W can be viewed as oscillating between phases;
those where P _ flag is zero which correspond to portions of the network’s computation where Cn
is small (or potentially empty), and those where P__flag is one which correspond to portions of
the network’s computation where Cp 18 small. Any portion of the network’s computation where
Cp is empty can be simulated directly, as long as P_ flag is zero; since then E, moves on N and
E, moves on M can be simulated whenever both Cp and Cyy are zero. (Recall that Cy is always
zero when P _ flag is zero.) Otherwise, W always runs (or simulates) N fast (whenever CN is to
contain more than a single message) in order to keep the size of BUFF (CN) small. So that W can ;

13

simulate portions of the network’s computation where Cpp 1s empty, E, moves on M are allowed
to be simulated whenever CR 1s zero and E_ moves on N are allowed to be simulated whenever
Cyy is zero. (Certain additional checks are made by W, however, to insure that N does not run
too fast and proceed beyond a point where M would have blocked its movement.) Thus, the por-
tions of the network’s computation, where Cy is empty, are simulated by running the moves of N
early and storing the output temporarily in Cw or Cy. After the simulation of an E, move on N,
P _ flag is set to one, indicating that both Cgr and C| must later become zero before an E, move
on M or E; move on N can next be simulated. Furthermore, the feasibility of this happening is
rechecked (by Phase Check and Consume) after each subsequent simulated move, until P_ flag is
reset to zero. This insures that for each E, move on N simulated, that M will later (on W) receive
enough messages, before its next E, move, for Cy to have actually been empty. Notice, as W
oscillates between phases: That while P_flag is zero Cj is also zero; and then while P_flag is
one, first CR goes to zero and then Cj goes to zero ultimately causing P_ flag to be reset to zero.

The reader should recall this cyclic behavior of W as it will be analyzed in detail in the sub-
sequent discussion.

In what follows, we show that the network (M,N) is unbounded iff the corresponding
machine W (as described above) is unbounded. To prove this, we require the following lemmas

Lemma 3.1: The state (v,w,x,E) is reachable in (M,N) iff the configuration ((v,w)o,x,0,0) is
reachable in W,

Proof :

If Part : Let c=((v,w)y,x,0,0) be a reachable configuration of W. Suppose ¢ is reachable via the

computation path P. We prove that the state (v,w,x,E) is reachable in (M,N) by induction on the
number of E_ moves on M or E; moves on N simulated in P.

Induction Base : If there is no such move in P then M could, in the network, run fast enough,
compared to N, so that Cpp would always be empty unless M’s next move were to be a receive.
This strategy allows the E; moves on M and E, moves on N to always be executable. Hence, by

executing the same sequence of moves on M and N, but interleaved differently, the network could
reach (v,w x,E).

Induction Hypothesis : Assume that the assertion is true for n such moves.

Induction Step : Consider the case in which there are n+1 of these moves. Let
c1=((v1,wl)0,x1,0,0), 02=((v2,w2)0,x2,0,0) be the configurations just after the n-th and (n+1)st
such moves in P. Clearly, no E, move on M or E, move on N is simulated from ¢y to ¢, unless ¢y
and ¢, are adjacent on P. By the induction hypothesis, the state (VI’WI’XI’E) is reachable. Now,
consider the path from €y to cy. Since there is no E, move on M or E, move on N, M can always
run fast, so that the empty channel moves can be progressed without being blocked. Hence, the
state (VQ,WQ,XQ,E) is reachable. Moreover, since there is no E, move on M or E; move on N simu-
lated from ¢y to c, the state (v,w,x,E) is then reachable.

14

Only If Part : For a path P that leads to the network state c=(v,w,x,E), we prove that the con-
figuration ((v,w),,x,0,0) is reachable by doing induction on the number of intermediate states in
which N’s input channel is empty.

Induction Base : For the initial state (vO,WO,E,E), it is obvious that the configuration
((vgswg),0,0,0) is reachable.

Induction Hypothesis : Assume that the assertion is true for any reachable state of the form
(v,w,x,E), in which, only n intermediate states have Cp empty.

Induction Step : Consider a reachable state c=(v,w,x,E), via path P, such that there are n
previous states with Cp empty. Let c1=(v1,w1,x1,E) be the last state before ¢ such that Cn is
empty. According to the induction hypothesis, the configuration ((VI,WI)O,XI,O,O) 1s reachable.
During the period from ¢, to c, no E, move on M or E; move on N is executed (unless ¢; and ¢
are adjacent on P). Therefore, in the simulation from ¢y to c, the messages output by N can be
stored in Cj, so that E, moves on M will not be blocked. The only case in which this might fail is
when the simulation gets blocked by a zero SBUF. Without loss of generality, we assume that no
state repeats in P, and each time the subroutine Consume is called, it will return "yes" as long as
M can indeed consume those tokens in Cy and CR- Moreover, we assume the subroutine will
return "0" if there exists some reachable loop on M with both sending and receiving edges. In
other words, the subroutine returns "1" or "2n only when no such loop exists. Now, let
d;=(v;,w;,E,y;) (i=1,...,k) be the configurations just after the E, moves on N between c¢; and
c. Since the original computation from ¢y to ¢ can be proceeded, it must be the case that the
subroutine will always return "yes" for those d;'s. Based on this fact, the simulation can be
blocked only if during some period, dg to dy v2* N|2, the subroutine will always return "1" or
"2", and therefore, SBUF becomes 0. Let ((vs,ws’)f,xs,ys,O) be the configuration after simulating
the E) move at d.. Consider the path on M from W' to w; M can send at most |M| segments of
messages. Now, consider the period from dg to dg MlQ*INfQ; M can send at most |M| segments of
messages and N will not receive any message. Without loss of generality, we also assume that the
same E move on N is not executed twice without an intermediate send or receive move. Thus for
every |[N| E moves there must be at least one intermediate send move on N executed; and also a
read move on M executed. Between at most [M| of these, M can send a segment or sequence of
messages. Thus, there must exist a sequence of at least [IM]*IN] of the d;’s for which no inter-
vening sends on M occur. Therefore, there must be some p and q, such that dp=dq, which im-
plies that states repeat in P, which, of course, contradicts our assumption. Hence, during the
simulation, SBUF will not become zero. It is then clear that the configuration ((v,w)o,x,0,0) is
reachable. |

Lemma 3.2: If the configuration c=((v,w)},x,y,2) is reachable in W, then one of the following
must be true: Let t=x+y+z.

1. There is a reachable send loop on N.

15 -

2. There exists a reachable state (v,w'x'y') in (M,N), such that
¥ > (MNP M)/ M),

Proof : Let P: ¢c,—c be a computation where Consume returns zero whenever there is a reach-
able loop on M containing both receiving and sending edges. In other words, the subroutine
returns "1", "2" or "3" only if no such loop exists. Let c;=((v{,Wy)y> X1,0,0) be the configuration
just after the last E_ move on M (or E; move on N) in P. Let co=((vy, W9y, Xo, Yos 2g), after ¢y,

be the configuration just after the last time that Consume returns “0". Now, consider the follow-
ing cases:

(Case 1:) ¢y £ ¢ and (x2+y2+z2)§_t-|M|4*lN]3.

Then from ¢y to ¢, N must add at least [M|**|N|3 tokens to Cyy- Since Consume cannot yield a
zero response between c, and ¢, we have that no more than |M| sends on M (and hence [M| reads
on N) can occur during this period unless a send loop was executed on M. In the latter case (2) is
true, otherwise no more than |M|%*|N|? E, moves may occur between any two of these sends,
since SBUF would be decremented for each occurrence. However, for one of these [M| periods at

least IM]3*lNl3 tokens are added to Cyy. Consequently, during this period a send loop must have
been executed on N. So (1) is true.

(Case 2:) cg 7 ¢ and (xg+yy+ze)>t-[M|4¥|NJ3,

Let v, and v, be the states of M in the configurations ¢y and c,, respectively. Since
Consume(vy,d;,dy)=0 at c,, there exists a loop [on M with both sending and receiving edges.
Now, by executing machine M fast, we can reach the state vy. Then, M can enter the loop ! while
consuming at most [M| messages. After that, M repeatedly executes the loop I In this way a

state (v',w’x",y') with y’>(t-]M[4*]N[3-[M[)/|MI, is reachable since [must send at least one mes-
sage for every |[M| messages received). So (3) is true.

(Case 3:) co=c.
Similar to Case 2. O

It follows directly from lemmas 3.1 and 3.2 that the network (M,N) is unbounded if the
machine W is unbounded. The next lemma provides the converse.

Lemma 3.3: If the network (M,N) is unbounded, then the machine W is unbounded.

Proof :

(Case 1:) Suppose that the channel Cpp 1s unbounded. Consider a computation path ! such that
Cpp gets arbitrarily large along this path. Consider an arbitrary state c=(v,w,x,y) on the path
such that x>|M|*|N]. Let ¢;==(v;,w;,x;,E) be the last configuration before ¢ in which Cy is
empty. Then according to lemma 3.1, ((v1,w)9x1,0,0) is reachable in W. Now, consider the com-
putation P: ¢;—c. Since there is no E, move on M (or E; move on N) in P, W can, basically, run

16

~—

N fast by using Cy to store those messages output by N (and hence get at least x tokens in the
counters). The only case in which this might fail is when this simulation gets blocked by a zero
SBUF. By the same argument as was used in lemma 3.1, SBUF cannot become zero, and hence, a
configuration ((v",w"),x",y",z") with x"+y"+z" > x is reachable.

(Case 2:) Suppose that the channel Cyp 1s bounded by k.

Consider a computation path ! of the network, such that CnN sgets arbitrarily large in which no
state repeats. Then, there can be only a finite number of E, moves on M or E; moves on N in {
(otherwise, a state would repeat). Let ¢;=(v;,w,X,E) be the configuration just after the last of
these moves. Furthermore, we assume that there is no send loop on M in {; otherwise, this send
loop would be detected during phase check and, it would follow immediately that W is un-
bounded. Therefore, M must have an infinite number of receiving moves in I. Consequently, N
must have an infinite number of sending moves in . After ¢}, by using Cj to store those messages
output by N, it is then clear that W is unbounded. 0

From lemmas 3.1-3.3, we obtain:
Theorem 3.1: The network (M,N) is unbounded iff the corresponding machine W is unbounded.

From the following series of lemmas, we are able to ascertain a simple method by which we can
determine whether the simulating automaton W is bounded. The general idea here is to show that
the number of tokens stored by W can only grow by a fixed amount unless either W executes a
simple "pumpable" loop ! (with C({)>0), of the type considered in Lemma 3.5 or W continually
oscillates between states where P__flag=0 and states where P__ flag=1. Lemmas 3.6-3.8 analyze
this cyclic or oscillating behavior. Lemmas 3.9-3.10 show that certain "complex” loops, where the
value of P__flag oscillates (and the characteristic value is greater than zero) are pumpable, while
lemmas 3.11-3.12 show that if the number of tokens stored by W grows by so much then such a
complex pumpable loop must have been executed, if a simple pumpable loop was not.

Lemma 3.4: Let c=(q,x,y,2z) and ¢'=(q’,x’,y",2') be reachable configurations of W such that {:
c—w—c’ (for some input w), where

1. x'+y'>|M| and Consume(v’,x",y")="yes" (v' is the state of M in c’),
2. no E, move on M in |,

then the Clj (0<j<|M|) moves in { can be replaced by C’yg) Without affecting the computation of
l

Proof : Let I’ be the new computation in which all CU moves are replaced by C'lo- The only
possible difference would be having I' fail at some intermediate configuration c'=(q" x",y",2").
In other words, Consume(v",x",y")=="yes" but Consume(v"”,x",|M|)="no". However, since (1) is
true, there must exist a loop (with receiving edges), on M, reachable from c’. Moreover, (2) im-
plies that the loop must be also reachable from ¢” without traversing an E, move. Therefore, it

17

must be the case that Consume(v''x”,|M|)="yes". As a consequence, I will lead to the same
configuration c¢’. O

Lemma 3.5: Let c¢=(q,x,y,z) and c¢'=(q,x’,y’,2’) be reachablé” configurations of W such that

xX'+y'+2’>x+y+z , and where {: c—w—c' is a computation (for some input w) that satisfies at
least one of the following conditions:

1. There is no CWO move in {.
2. There is no CIO move in {.

Then W is unbounded.
Proof : The proof is by cases.

(Case 1:) Suppose that there is no Cwgo move in . Let I ¢g—¢y—...—c, where cy=c and ¢ =c.
We construct a new computation [c¢'g—c’y—...—¢’y such that c'y=c and ¢’ =(q,x,y,z+h)
where h=(x"+y'+2')-(x+y+z). Clearly, such a computation could be "pumped” and hence W
would be unbounded. The computation !’ will execute exactly the same sequence of moves (of W)
that are executed in /. The only difference will be in the action of the daemon. After each step,
of the computation !, the daemon moves the fewest number of tokens possible in order to allow
the next step of the computation of W to proceed. Clearly, then if ¢’ p1=(q"x",y",2") then
x"<z and y”"<y. At this point the daemon moves just enough tokens to allow the last move to

result in c’n.

(Case 2:) Suppose there is no Cyp move in I. If there are no CIj moves {(or no Cyyg moves) in I,
the proof is similar to that of case 1. We assume therefore, without loss of generality, that { con-
tains both CIj and Cyy, moves. Since a CIj move is made only when the value of CRr+Cy is less
than [M|, Cg can not increase in . This is true since P__flag must always be 1; otherwise a Cro
move will be made. The value of Cy also can not decrease (since it ends up in the same state, d,
must be the same), hence the value of CR is identical in all ¢; in I. Since P_ flag always is 1 over
l, any Cyy move must be the result of simulating an E, move on N. Consider the sequence of
moves in { of M.

case 1: no send moves.

Then from c to ¢, there is no receiving move on N. Moreover, since the states repeat in ¢ and c’,
and SBUF will not be reset during the path from ¢ to ¢’ (because there is no send move on M), it
must be true that the subroutine will always return "0"; otherwise, SBUF would have been al-
tered. Therefore, the computation on N, from ¢ to ¢’, can be executed an infinite number of
times, hence, W is unbounded.

case 2: only send moves.

This send loop will be detected during the phase check, hence W is unbounded.

18

case 3: Ei and send moves.

Note that after the first E, move, CR becomes zero. Furthermore, since P_ flag equals 1 throu-
ghout [, the daemon cannot move any token to Cr- Therefore, W is unbounded.

case 4: receive and send moves (or E;, receive and send moves).

The Clj or C'|g move makes no difference now, since the “subroutine" can response "yes" for any
number of tokens to be consumed (i.e. can replace all CIj moves in [by C’[). O

In what follows, let L=2*|Q|3 and U=2*|Q|>+2*|Q|%, where |Q| is the number of states in
W.

Lemma 3.8: Let ¢=(q,x,0,0) (or (q,0,0,2)) and ¢'=(q'x,0,2’) be two reachable configurations,
such that P: c—w—-c’ is a computation. If for each ¢"=(q"x",y",2") in P, we have:

1. L<|e”|<U,
2. P_flag of ¢ is zero,
then one of the following must be true:

A. W is unbounded.

B. if x’<(L/2), then (q,x+h,0,0) (or (q,0,0,z+h))~w’—>(q’,x’,0,z’+h) 13 a computation for
some input w’.

C. if x’>(L/2) then (q,x+h,0,0) (or (q,0,0,z+h))—w’~+(q’,x’+h,0,z’) is a computation for
some input w'.

Proof : (By induction on the number of Crg moves in P)

Since P _ flag equals zero throughout the entire path P, no E move on N will be simulated
in P. So, we may assume that Cy=0 for all ¢” in P.

Induction Base : Assume that there are no CRro moves in P. We consider the case where
c=(q,x,0,0) first. Let c1=(q1,x1,0,z1) be configuration just before the last Cwp move in
P. Clearly, the next configuration can, without loss of generality, be c’1=(q'1,x1+z1,0,0) (since Cy
is always empty) where, of course, X;+zy>L. Now, if we start with (q,x+h,0,0), since there is no
Cgp move from c¢ to ¢y, we can certainly reach (q’l,x1+zl+h,0,0) by following the same com-
putation path . Then, if x’>(L/2), the configuration (a'x’+h,0,2’) can be reached by executing
the same computation from ¢y’ to ¢’. Therefore, (C) is true. On the other hand, if x'<(L/2),
then it must be the case that, from ¢y’ to c¢’, at least L/2 of the tokens in Cgr were consumed.
During the same period, some tokens were added to Cyy- Therefore, there must exist a loop, with

19

no Cyyg or Ci moves, whose traversal caused a transfer of tokens from CR to Cyy. One of the
following three cases must therefore occur:

1. There exists such a loop {; such that ¢(f;)>0.

2. There exists such a loop lj such that c(lj)=0.

3. All such loops have characteristic value less than zero.

Case 1: Lemma 3.5 implies that W is unbounded.

Case 2: Then the loop lj can be iterated in order to transfer the h additional tokens from Cp to
Cyw- As a consequence, (q',x’,0,2’+h) is reachable.

Case 3: Then to consume those tokens in Cp, at least 2*|Q|? lodps should be executed (each such
loop can have at most |Q[/2 w moves). However, each loop will cause the net loss of at least one
token. Consequently, there must be a net loss of at least 2*{Q12 tokens in the computation from
¢’y to ¢’. This, of course, contradicts assumption 1. '

Now, consider the case where c==(q,0,0,z). If there are no Cyyg moves in P, (q',x",0,2’+h) can
be reached from (q,0,0,2+h), by following exactly the same path. Otherwise, let ¢9==(qg,X,,0,0) be
the configuration just after the first Cwo move in P. By having the daemon move those h ad-
ditional tokens to Cp just before the Cwo move, (qg,X9+h,0,0) is reachable. Hence, it follows
directly from the previous argument that either A, B, or C must be true.

Induction Hypothesis : Assume that the assertion is true for K Cr(moves.

Induction Step : If there exist K+1 CRro moves in P, we want to show that the assertion is still
true. We consider the case where c=(q,x,0,0), first. We divide the computation ¢—c’ into two
subcomputations, c—c; and c;—c’, where clr-—-(ql,0,0,zl) is the configuration just after the first
Cro move in P. Therefore, in cy;—c’, there are at most K CRro moves. According to the base
case, if we start with (q,x+h,0,0), (q1,0,0 z;+h) is reachable. Then by hypothesis, one of the
three cases A, B, or C is true. So, the assertion is true for K+1 CRg moves.

The same argument can be used to deal with the case where ¢=(q,0,0,z). O

Lemma 3.7: Let c=(q,x,y,0) and ¢’=(q’,0,y",2’) be reachable configurations, such that P: ¢ —w-
¢’ is a computation, and if for each ¢” =(q"x",y",2") in P, L<|c”|<U, P_ flag=1, and x>0
(unless ¢"'==c’), then one of the following is true:

A. W is unbounded.

B. if x<(L/2), then either y’>(L/2) and (a,%,y+h,0)—w'—(q',0,y'+h,z") or (qx,y+h,0)—
w'—(q’,0,y",2"+h).

C.if x>(L/2), then either y'>(L/2) and (@, x+h,y,0)—w'—(q,0,y'+h,2') or
(q,x+h,y,0)—w’—»(q',(),y’,z’-%—h).

20

Proof : Let ¢;==(q,x;,y;,0) be the configuration after the last Cwg move. Let cy be the last
time before ¢’ that Cr+Ci>IM|. According to lemma 3.4, all CIj moves from ¢ to cy can be
replaced by C'yy. Let c3 be the configuration just before the first CRj move.

If x<(L/2), it follows from the assumptions that ¥y>(L/2). If ¢4 occurs in between ¢ and <y
then y;>L/2 (since Cy cannot increase after a CRj move). So, by following exactly the same

computation from c to ¢’, we have (4,%,y+h,0)—w—(q’,0,y'+h,2"), and y>L/2. If cg occurs after
¢y, then we have the following two cases:

case 1: y; > L/2.
Using the same argument as above, (q’,0,y’+h,z’) with y'>L/2 is reachable.

case 2: y; < L/2.

Then we must have x;>L/2. By allowing the daemon to move h tokens from Cp to CR, we can
reach (q;,x;+h,y;,0) with x;>L/2. Now, consider the path from ¢y to c3. M must have traversed
some loop, without CRj or Cyy moves, in order to transfer tokens from Cgr to Cyy, whose
characteristic value is zero; otherwise, either W is unbounded or we have a contradiction (same

reasoning as in the proof of lemma 3.6). By using that loop, we are able to reach the configura-
tion (q’,0,y’,2’+h).

Now, consider the case where x>>(L/2). We want to show that if we start with x+h tokens
in Cp, we can move those h tokens to either Cj or Cyy. Counsider the following two cases:

case 1: x;>(L/2).

In this case, there must exist a loop ! between ¢y and cg such that C({)=0, and there is no Cwo
move in I. We then can use that loop to transfer those h additional tokens from Cg to Cyy,
hence, (q',0,y’,z'+h) is reachable by following the same path from cg toc'.

case 2: x; <(L/2).

In this case, if the loop has no Cwg move, we have the same result as in case 1. Otherwise, since
x;<(L/2), it must be the case that ¥1>(L/2). By using the loop (possibly with Cwg moves, but
no Cli moves), clearly those h additional tokens can be moved to Cy- Then by following the same
path from cg to ¢, the configuration (q',0,y’+h,2’) (y'>(L/2)) is reachable. O

Lemma 3.8: Let ¢=(q,0,y,z) and ¢'=(q,0,0,2") be two reachable configurations, such that P:

c—w—c’ 1s a computation. For each c"=(q",x"y",z"") in P, if ¢" satisfies the following three
conditions:

1. L< eI,

21

2. x"'=0,
3. P_flag of ¢ is always one (except at c’),
then one of the following must be true:
A. W is unbounded.
B. if y>(L/2), then (q,0,y+h,z)—w'—(q’,0,0,2'+h) is a computation.
C. if y<(L/2), then (q,0,y,2+h)—~w'—(q’,0,0,2’+h) is a computation.

Proof :
(Case 1:) y>(L/2).

Let c; be the last configuration of P in which Cp=L/2. Let cq be the last configuration of P in
which CI>]MI. Clearly, between ¢ and cy, all CIj moves can be replaced by C'|o- Between ¢y and
<o) there are no Cwpg moves; otherwise, Cy would then be greater than L/2. Moreover, there must
exist a loop I, between ¢, and c,, with C({)=0 which traverses no Cywo edges. The rest is similar
to the proof of the lemma 3.7.

(Case 2:) y<(L/2).

If there is no Cyy move in P, then (q',0,0,2’+h) can certainly be reached from (9,0,y,z+h). As-
sume that there are some Cyy, moves in P. After the last Cwg move, the configuration can be
(q",0,y"+h,0) and y">(L/2). By using the same argument as in case 1, (C) is then true. O

Lemma 3.9: Let c=(q,x,0,0) ((q,0,0,2)) and ¢’=(q’,x"+h,0,0) ((4',0,0,2’+h)) be two reachable
configurations, such that P: c—w—c' is a computation. If for each ¢” in P, L<|e”|<U, and
P _ flag==0 for states q and q’, then (q,x+h,0,0) ((9,0,0,2+h))—w'—(q',x’+2*h,0,0) ((4,0,0,2’+2*h))
is a computation.

Proof : To prove this, we divide the computation from ¢ to ¢’ into phases. Each phase starts
and ends with a change of the P__flag. Hence, there are two kinds of phases, namely, 0-1 phases
and 1-0 phases. A 0-1 phase is the period which begins when P _flag changes from 1 to 0, and
ends when it next changes from 0 to 1. The 1-0 phase is defined similarly. In the following, we
want to show that the additional h tokens can be moved across each phase.

We consider the case where ¢=(q,0,0,z) and ¢’==(q',0,0,z'+h) first. The proof is by induc-

tion on the number of phase changes. A phase change is the combination of two consecutive
phases, 0-1 and 1-0.

Induction Base : no phase change.

It is given that ¢ and ¢’ have P__ flag==0. Furthermore, since there is no phase change Cj is

22

always zero. Then by an induction on the number of Cwo moves (and also by induction on the

number of Cp, moves in between two consecutive Cwgo moves) in P, we can show that
(q,0,0,z+h)—w'—(q’,0,0,2’+2%h) is a computation. So, the base case is true.

Induction Hypothesis : Assume that the assertion is true for K phase changes.

Induction Step : Consider the case that there are K+1 phase changes in P. Let cl=(q1,x1,0,z1)
and ¢’;==(q;,x;,2{,0) be the final two configurations at the end of the first 0-1 phase . Let
¢9=(q,,0,0,25) be the one that appeared after the first phase change. Let c, =(q;,0,y,,2;) be the
first configuration (after ¢’;) in which CR is zero. Now, if we start with (q,0,0,z4h), then accord-
ing to lemma 3.8, we are able to reach

L. (ay,xy,21+h,0), if x; <(L/2)

2. (qy,xy+h,24,0), if x;>(L/2)
Then, from lemma 3.7, we can reach
L. (qq,0,y,+h,z), if yi>(L/2)

2. (qy,0,y,,2+h), if y, <(L/2).

Now, following the result of lemma 3.8, we can therefore reach (q2,0,0,22+h). By using induction
hypothesis, it follows immediately that (q',0,0,2'+2*h) is reachable. o

Lemma 3.10: If there is a reachable computation P as described in lemma 3.9, and
¢’=(q,x+h,0,0) ((4,0,0,z+h)) (i.e. ¢ and ¢’ have the same state), then W is unbounded.

Proof : For any integer k>0, let d=[k/h]. From lemma 3.9, by executing the computation from
¢ to ¢’ d times, we are able to reach the configuration ¢’=(q'x+h*([k/h1),0,0) (or
(4',0,0,z+h*([k/h1))), and clearly, |c'|>k. Therefore, W is unbounded. O

Lemma 3.11: Let I: c—w—c' be a reachable computation, where c=(q,x,y,z) and c'=(q,x"y",2").
and satisfies the following conditions:

1 xX'+y'+2' >x+y+z.
2. for each ¢ in [, [¢"|>2*|M]|
Then one of the following three things must be true:
1. W is unbounded,
2. there exists a configuration (q”,x”,0,0) in {,

3. there exists a configuration (q"",0,0,2") in I.

Proof : There are three cases for [

23

(Case 1) P_flag =0 throughout /.

Clearly, no E_ move on N can occur in /. If there is a Cyyo move in I, it must be for simulating
an E, move on M (or an E; move on N). Consequently, a configuration of the form (q",x7,0,0) is
in {. On the other hand, if there is no Cwpo move in [, it follows directly from lemma 3.5, that W
is unbounded.

(Case 2) P _flag changes in [.
It is clear that a configuration of the form (q"",0,0,2") is in L.
(Case 3) P__flag = 1 throughout /.

If Cp>|M| throughout /, then no CIj move need be in [(Lemma 3.4). Therefore, lemma 3.5 im-
plies that W is unbounded. If a CRj move occurs in /, then it must be the case that Cgr=] throu-
ghout [(since the state repeats in ¢ and c’, and Cg is nonincreasing). Moreover, CIj and Cyyq
moves must occur in [; otherwise, according to lemma 3.5, W is unbounded. After a Cywo is ex-
ecuted, C; will be greater than [M|. Therefore, all cIj moves in | can be replaced by C'yg- Hence,
lemma 3.4 implies that W is unbounded. O

Lemma 3.12: The machine W is unbounded iff a configuration ¢, with fe| > U, is reachable.

Proof : Clearly we need only concern ourselves with the if part. Without loss of generality, as-
sume that b is the first configuration such that [b|=2*|Q|3+2*|Q|2. Consider the computation
from cy to b, where ¢ is the initial configuration. Let a be the last configuration before b such

that, [a]=2*|Q|3. Clearly, each configuration between a and b contains between 2*|Q[3 and
2*|Q[3+2*|Q|? tokens.

Define intervals (a;, b;), 0<i<2*|Q|-1, where a;= the last time before b that

|ai|=2*]Q]3+i*lQ[, b;= the first time after a, that]bi|=2*|Q‘3+(i+l)*[Q[. Now between time a
and b;, we must have executed some loop, say l,, in which there is a gain of the counters. This
must be the case, since during the interval (a4, b;), the machine W gains |Q| tokens and at least
|Q| steps were executed. See Figure 3.4.

Now consider the loops I, (0<i<2*|Q|-1). According to lemma 3.11, there must exist a con-
figuration of the form d;=(q",x"",0,0) or e,=(q",0,0,2") in loop l;, otherwise, W is unbounded im-
mediately. For the configuration d; (or €;) (0<Li<2*|Q|-1), there must be two configurations d
and d, (or e, and e;) such that they are in the same state of the machine W, and [d¢|>1dg] (or
leg|>legl). Therefore, according to lemma 3.10, W is unbounded. O

Theorem 3.2: The boundedness problem for W can be decided in nondeterministic logspace.

Combined counter value

2%|q] *+2x|q| 4

v dmn - — — o ——— —_— ——_ o ot i oo oommatr mirsn oy v it o e wovmn o o

or e e e ey - @ — ——— Y- G o —— W Ve o oo

- e e P P V0 UV U

L e e o " - - —— — — — ——

e e e e G — A M " S by T v mm weas e oy

T L e e e - e e —— e o
.

|
|
{
I
|
|
i
a

.—Iom
—d

number of moves (time)

Figure 3.4 An unbounded computation of W.

o

24

Proof : This follows immediately from lemma 3.12. 0

4. RELATED UNDECIDABILITY RESULTS

In this section, we examine the simplest classes of FIFO, Priority and Random empty-
channel-detecting CFSM’s (CFSM’s whose moves may include, in addition to those already al-
lowed, conditional moves in which any input and/or output channel is checked for emptiness) for
which the boundedness problem remains undecidable. These show that the result in the previous
section cannot be extended. The undecidability proofs given in this section are similar in tech-
nique and style to those of [7]; and hence in each case we only provide an outline of the actual
proof.

Theorem 4.1: The boundedness problem is undecidable for networks of three empty-channel-
detecting FIFO CFSM'’s.

Proof: For an arbitrary 2-counter machine T [10,14], we construct a network (M,My,M;) that
will be bounded iff the 2-counter machine halts. Since the halting problem for 2-counter machines
is undecidable, the boundedness problem for this class of networks is undecidable.

Roughly speaking, the machine M, is used to simulate the finite control of T; the machine
M, acts as an "echoer" that transmits the contents of its input channel to its output channel and
the machine M3, acts as a "synchronizer" that coordinates the actions between M, and M,. At

certain instances, the number of messages in the channel from M, to M; will equal ol x 3l where i
and j are the two integers currently stored in the counters of T. The simulation proceeds in
phases. First M; will process the number of messages from M, sending the output back to M,
After which, in the next phase, M, will send them back again so that M, can continue with its

next phase. In each case the end of a phase takes place when the active machine’s input channel
becomes empty. The following phase does not begin, however, until the currently active machine
signals the other with a message via Mgs. The remaining details are left to the reader. O

This result holds even if each machine is restricted to send a single type of message, and
only one of the machines is allowed type 3-4 moves. Only type 3 (4) moves are needed, however, if
two of the machines are allowed conditional moves. The reader should recall the definition of
type 1-4 moves from section 1. (Recall also that the boundedness problem is undecidable for net-

works of two FIFO CFSM’s, which exchange two types of messages, even when no moves of type
2-4 are allowed|[4].) ~

Our last two results concern Priority and Random CFSM's [7]. Recall that for these types
of networks the channel contents, at any given time, are represented by a multiset of messages
(over a finite number of distinct message types). Such a channel is considered to be empty iff the
channel is devoid of each type of message. The last two theorems also indicate that the FIFO
result of section 3 is somewhat of an anomaly in that no corresponding case arises for Priority
and/or Random networks.

25

Theorem 4.2.: The boundedness problem is undecidable for networks of two empty-channel-
detecting Priority CFSM’s where one machine sends a single type of message and the other
machine sends two types of messages. This result holds even if each machine is restricted to only
moves of type 1-3 (or type 1-2 and 4).

Proof: Here we construct a Priority network (M,N) to simulate the 2-counter machine T. Let M
be the “simulator" and N be the "echoer". We choose N to be the machine which can send two
types of messages. In other words, M’s input channel contains two types of messages -- a lower
priority message (g;) and a higher priority message (85)- The number of g, messages is used to

represent the value gl * 3j; the message 8o is used to activate a new phase on M. In this simula-
tion N determines the end of its phase when its input channel is empty and signals M that it may
begin the next phase with a gy message. M determines the end of its phase in the same manner,
but has no way to signal N that it may begin the next phase. Thus, N nondeterministically
guesses the beginning of its next phase and sends a high priority message to M that signals this
decision. M will then block if N has begun its next phase before M has finished the current one.
Again, the details are left to the reader. a

Theorem 4.3.: The boundedness problem is undecidable for networks of two empty-channel-
detecting Random CFSM’s where one machine sends a single type of message and the other
machine sends two types of messages. This result holds even if each machine is restricted to only
moves of type 1-2 and 4.

Proof: Here we construct a Random network (M,N) to simulate the two counter machine T. Let
M be the “simulator” and N be the "echoer". We choose M to be able to send two types of mes-
sages, "red" and “green", to N. Furthermore, each machine is allowed to execute only type 1-2
and 4 moves. Intuitively speaking, in order to avoid the mixture of messages sent back by N when
M is still progressing, M will change the color of its sending messages from phase to phase. Figure
4.1 shows two consecutive phases of M and N. Notice that each phase of M starts with an E,
move, which indicates that the opposite machine N has finished its operations and therefore M
can proceed. After finishing, M sends a message (either "red" or “green", depending on the cur-
rent phase) to activate machine N (which must be waiting at node 8 or 4). Since the color of the
messages sent from M change from phase to phase, any mismatch of the speed between the phases
of M and N will block the entire simulation. Thus, for example, while N is at node 5 (or 6), M
cannot traverse its edge from node 5 to node 6. This insures the proper synchronization between
M and N. The rest of the details are left to the reader. O

We do not know, at this time, whether Theorem 4.3 holds when only moves of type 1-3 are
allowed. The reader should note that, in each of the above theorems, a two counter machine can
be simulated because the CFSM's were able to synchronize their actions before and after each
phase of the simulation. This capability was precisely what was absent in the previous section.
Lastly, we note that without the empty channel detection capability, each of the three aforemen-
tioned problems becomes decidable. See [4,7].

Two consecutive phases of M and N.

Figure 4.1

26

5. PRIORITY NETWORKS WHERE THE PRIORITY RELATION IS NOT
FIXED

Recently, priority networks of CFSM’s were introduced, where messages are received based
on a fixed, partial-ordered priority relation(7]. (Unrelated messages can be received in any order.)
This model is equivalent, in computational power, to certain classes of extended Petri nets, in
particular those with priority tokens[8]. However, the CFSM model is more concise (since the
channels and their contents are not modeled explicitly), and so is more convenient to use in
modelling communication protocols and distributed systems. The results presented in [7] focus on
the problem of whether the communication of a priority network is bounded. Specifically, it is
shown that the problem of detecting boundedness is undecidable even if the machines exchange
only two types of messages. Also considered is the case where one of the two channels is known to
be bounded, and it is shown that three types of messages can make the problem undecidable in
this case. (This problem is decidable in the case of FIFO networks[4].) The same problem be-
comes decidable if only two types of messages are allowed. Also considered is the case where one
of the two machines sends one type of message. The problem is undecidable if the other machine
sends three or more types of messages, and is decidable if the other machine sends two or less
types of messages. (Both problems are decidable in the case of FIFO networks(4].) However, the
latter result can be generalized to the case of three or more messages, If only two message types
are mentioned in the priority relation.

In this section, we consider priority networks where the priority relation is not fixed. To be
precise, we consider the case where a (possibly) different priority relation were assigned to each
node in a CFSM. The results given in [7] extend in a straightforward manner to priority net-
works of this type, with two notable exceptions. Specifically, the results concerning priority rela-
tions that mention only two or three message types do not seem to generalize (at least the proofs
given in [7] do not seem to generalize). In fact, some are no longer true. For example, consider
the case of two machines where one sends a single type of message and the other sends at most
three types of messages. For fixed priority relations that mention only two types of messages, the
boundedness problem is decidable. However, if the priority relation is allowed to vary from node
to node the problem becomes undecidable. This can be seen directly from the proof of Theorem 2
of [7], where the fixed priority constructed mentions three message types, but only two need be
mentioned at any one node.

Lastly, we consider the case where only two message types are mentioned in the priority
relation. In what follows, we use techniques similar to those of Section 3, to show that the
boundedness problem is decidable for these cases of two machines where one sends a single type of
message and the other sends at most two types of messages. Without loss of generality, we con-
sider an arbitrary (M,N) where N sends a single type of message and M sends at most two types
of messages. Let {g;,g5} be the set of messages sent by M. For any state s=(v,w,x,y), let #(s)
(#,(s)) denote the number of 8} (89) messages in y. Now the priority relation at each node of N
is either {g;<g,}, {go<g;} or ¢. (Since M can receive only one type of message a priority rela-
tion need not be assigned to the nodes of M.)

To show that the boundedness problem is decidable, we require the following lemmas:

Lemma 5.1: For a network (M,N), the input channel of M is unbounded iff one of the following
two conditions is satisfied:

27

A. There are two reachable states s=(v,w x,y) and s’=(v,w,x",y’) such that the following
three conditions hold:

i. s’ is reachable from s via a path P.

ii. For every state s in P, #,(s")>0 and #ols)=#(s") (or #5(s")>0 and
#1(s)=+#(s")

iii. x| > [x| and [y’| > [y].

B. There are two reachable states s=(v,w,x,y) and s'=(v,w,x",y") such that the following
three conditions hold:

i. 8’ is reachable from s via a path P.

ii. #1(s)=#(s") and #o(s)=#(s")=0 (or #,(s)=H#(s") and #1(s)=+#1(s")=0)
i x'] > |x]

Proof:

(If Part:) Clearly, if either (A) or (B) holds, the computation P can be "pumped"; hence, M's
input channel is unbounded.

(Only If Part:) Since M's input channel is unbounded, there must exist a path [such that, along
[, the number of messages in M’s input channel gets arbitrarily large. Consider any such computa-
tion [in (M,N); then the moves in I can be rearranged into a computation ' such that at any
intermediate state s in I’, N will be executed next as long as #1(5)>0 and #,(s)>0. (Note, that
the moves of I’ on M may be a finite prefix of the moves of I on M if after some point on /[, N
stops reading. However, in either case the moves of N on [and I’ are the same.) In other words,
we can always proceed N fast as long as N's input channel contains both types of messages.
Without loss of generality let { be such a path. Along this path let E={s]s is in {, #,(s)<1 and
#o(s)=0}, F={s|s is in [, #0o(s)<1 and #,(s)=0}. Then we have the following two cases:

Case 1. Both E and F are finite.

If this is the case, then after a time, every state s along ! has #1(s)>0 (or #5(s)>0). Since M’s
input channel is unbounded, there is an infinite sequence of reachable distinct states
slz(v,x,xl,yl), 52=(v,w,x2,y2),... of (M,N) such that the following conditions hold:

i. For i=1,..., Sit1 is reachable from S;-
ii. For i=1,..., #4(5;)>0 (or #1(s;)>0).

iii. There exist i and j (i<j), such that #1(5i)=#1(5j) (or #Q(Si)=#2(8j)), |xj[>[xi] and
Ile_?.lyil-

-~

Hence, (A) is true.

Case 2. Either E or F is infinite.
Without loss of generality, assume that E is infinite. Then there exists an infinite sequence of

28

reachable distinct states sl=(v,w,x1,y1), 32=(v,w,x2,y2),... of (M,N) such that the following con-
ditions hold:

1. For 1=1,..., Si+1 is reachable from 8-
ii. There exist i and j (i<]), such that #l(si)=#l(sj), #Q(Si)z#z(sj)=0 and |xj|>{xi[.

Hence, (B) is true. O

Lemma 5.2: Assume that M’s input channel is bounded. Then the network (M,N) is unbounded
iff there exist two reachable states s=(v,w,x,y) and s'=(v,w,x,y’) such that s’ is reachable from s
via some path [, and one of the following conditions is satisfied:

A.For every s" in I, either (#,(s")>0, #,(s")=#;(s) and #o(s')>#4(s)>0) or
(#1(5")>0; #Q(SY)‘—-—#Q(S) and #1(5’)>#1(5)>0)-

B. There is a reachable send loop on M.

Proof: Assume that M’s input channel is bounded by K.
(If Part:) Clearly, the path ! can be pumped, hence, N's input channel is unbounded.

(Only If Part:) Since N's input channel is unbounded, there exists a sequence of configurations
$0s51:-+-,5, Where s;=(v,w,x,y) and |y| > 2 * K * [M| * [N| + K * [M|.

One can construct from this computation another computation 5gs---»S¢ by interleaving the
identical sequence of moves made by M and N in such a way as to always execute the next move
of N, as long as N's input channel contains both types of messages. Clearly, sy==3;. Also, consider
the state si=(v’,w’,x’,y’) immediately after the last move of N. It must be the case that |x’| <
K. Without loss of generality, we assume that #(s;)<1. Now, consider the following two cases:

Case 1: #,(s;) < 2 * K * [M| * |N].
Then from s; to s;, M will send more than K * |M| messages to N, and therefore M must have
traversed a send loop; (B) is true.

Case 2: #,(s;) > 2 * K * [M| * |N].
Let s; be the last state before s; in which #Q(Sj)z(). Then on the path from s; to s;, (A) must be

]
true. O

From lemmas 5.1 and 5.2, we have the following theorem.

Theorem 5.1: Consider the class of priority networks where a different priority relation (that
mentions at most two messages) is assigned to each node in a CFSM. Then the boundedness
problem is decidable for such networks of two CFSM’s where one sends a single type of message
and the other sends at most two types of messages.

—~—

29

6. REFERENCES

(1] Agerwala, T.and Flynn, M., Comments on Capabilities, Limitations, and
"Correctness’ of Petri Nets, Proceedings of the First Annual Symposium on Com-
puter Architectures, New York: ACM, 1973, pp. 81-86.

[2] Berthelot, G. and Terrat, R., Petri Net Theory for the Correctness of Protocols,
IEEE Trans. on Comm., Vol. COM-30, No. 12, December 1982, pp. 2497-2505.

[3] Bochmann, G., Finite State Description of Communication Protocols, Computer Net-
works, Vol. 2, 1978, pp.361-371.

[4] Brand, D. and Zafiropulo, P., On Communicating Finite-State Machines, J. ACM,
Vol. 30, No. 2, April 1983, pp. 323-342.

[5] Cook, S., Characterizations of Pushdown Machines in Terms of Time Bounded Com-
puters, J. ACM, Vol. 18, 1971, pp. 4-18.

[8] Cunha, P.and Maibaum, T., A Synchronization Calculus for Message-Oriented
Programming, Proc. 2nd International Conf. on Distributed Computing Systems,
April 1981, pp. 433-445.

[7] Gouda, M. and Rosier, L., Priority Networks of Communicating Finite State
Machines, accepted for publication in the SIAM Journal on Computing.

(8] Hack, M., Decidability Questions for Petri Nets, Ph.D. dissertation, Department of
Electrical Engineering, MIT, 1975.

[9] Hopcroft, J. and Pansiot, J. On the Reachability Problem for 5-Dimensional Vector
Addition Systems, Theor. Computer Science, Vol. 8, 1979, pp. 135-159.

[10] Hoperoft, J. and Ullman, J., "Introduction to Automata Theory, Languages, and
Computation", Addison-Wesley, Reading, Mass., 1979.

[11] Jones, N., Lien, Y. and Laaser, W., New Problems Complete for Nondeterministic
Logspace, Math. Systems Theory, Vol. 10, 1976, pp. 1-17.

[12] Karp, R. and Miller, R., Parallel Program Schemata, J. of Computer and System
Scsences, Vol. 3, No.2, 1969, pp.147-195.

(13] Kosaraju, S., Limitations of Dijkstra’s Semaphore Primitives and Petri Nets, Operat-
sng Systems Review, Vol. 7, No. 4, Oct. 1973, pp. 122-126.

[14] Minsky, M., "Computation: Finite and Infinite Machines", Prentice Hall, Englewood
Cliffs, NJ, 1967.

[15] Parnas, D., On a Solution to the Cigarette Smokers’ Problem (Without Conditional
Statements), Communications o f the ACM, Vol. 18, No. 3, March 1975, pp. 181-183.

(18] Patil, S., Limitations and Capabilities of Dijkstra’s Semaphore Primitives for Coor-
dination Among Processes, Group Memo 57, Project MAC, MIT, February 1971, 18
pages.

[17] Peterson, J., "Petri Net Theory and the Modeling of Systems", Prentice Hall,
Englewood Cliffs, NJ, 1981.

30

[18] Rackoff, C., The Covering and Boundedness Problems for Vector Addition Systems,
Theor. Comput. Sci., Vol. 8, 1978, pp. 223-231.

[19] Rosier, L. and Gouda, M., On Deciding Progress for a Class of Communication
Protocols, in the Proceedings of the Eighteen Annual Conference on Information
Sciences and Systems, Princeton Univ., 1984.

[20] Raeuchle, T. and Toueg, S., Exposure to Deadlock for Communicating Processes is
Hard to Detect, Tech. Rep. No. 83-555, Cornell University, Department of Computer
Science.

[21] Savitch, W., Relationships between Nondeterministic and Deterministic Tape Com-
plexities, J. o f Computer and System Sciences, Vol. 4, No. 2, 1970, pp. 177-192.

[22] Sudborough, I, On Tape-Bounded Complexity Classes and Multihead Finite
Automata, J. Computer and Systems Sciences, Vol. 10, No. 1, 1975, pp. 62-76.

[23] Sunshine, C., Formal Modeling of Communication Protocols, USC/Inform. Sc. In-
stitute, Research Report 81-89, March 1981.

[24] Tannenbaum, A., "Computer Networks", Prentice Hall, Englewood Cliffs, NJ, 1981.

[25] Valiant, L. and Paterson, M., Deterministic One-Counter Automata, J. of Computer
and System Sciences, Vol. 10, 1975, pp. 340-350.

[26] Yu. Y. and Gouda, M., Unboundedness Detection for a Class of Communicating Finite
State Machines, In formation Processing Letters, 17, December 1983, pp. 235-240.

[27] Zafiropulo, P., et. al., Towards Analyzing and Synthesizing Protocols, IEEE Trans.
on Comm., Vol. COM-28, No. 4, April 1980, pp. 651-661.

