ON THE NOTION OF EQUIVALENCE
FOR COMMUNICATING FINITE
STATE MACHINES

M. G. Gouda and C. H. Youn

Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712

TR-84-14 May 1984

ABSTRACT

We prescnt o new notion of equivalence for communicating finite state machines that ex-
change messages via one-to-one, unbounded, FIFO channels. This notion has a number of inter-
esting properties: for example, 1t is decidable for any two communicating finite state machines M
and N, whether M and N are equivalent. Moreover, if M and N are equivalent, then for any com-
municating finite state machine P, the commuunication between M and P can reach a nonprogress
state iff the communication between N and P can reach a nonprogress state. We also show that
this notion of equivalence applies not only to individual communicating finite state machines but
also to networks of such machines.

I. INTRODUCTION

Many communication protocols can be modeled as networks of communicaling finite state
machines that exchange messages via one-to-one, unbounded, FIFO channels [3,7,9,10]. Each
machine in such a network is defined as a directed graph where nodes represent the "machine
states” and edges represent “state transitions.” Each edge of a communicating finite state
machine is labelled. The syntax and semantics of edge labels are discussed in Section II; we settle
here for some informal explanation. An edge, labelled +g/C, from node v to node v’ in machine M
informally means that if the "head® message in channel C is g, and if M is currently at node v,
then M can remove message g from C, and become at node v'. An edge, labelled -g/D, from node
v to node v' in machine M informally means that if M is currently at node v, then M can add
message g to the "tail" of the current contents of channel D, and become at node v'.

As an example, consider the two communicating finite state machines M and N 1n Figures
1a and 1b, respectively. Machine M starts from its initial node, node 1, by sending a Data mes-
sage via channel A, then waits to reccive either an Ack (for acknowledgement) or Nak (for nega-
tive acknowledgement) via channel B before returning to node 1. Machine N starts from its initial
node, node 1, by sending a Data message via channel A; it then either waits to receive Ack via
channel B, or waits to receive Nak via channel B. Now, let us consider the following question.
Are M and N equivalent? Of course, the answer depends on what we mean by equivalent. If we
view M and N as regular finite state machiunes, then the answer is “yes" since both machines ac-
cept the same regular language [8]. On the other hand, if machine P in Figure Ic is allowed to
communicate with M and with N, then its communication with M is guaranteed to progress in-
definitely, while its communication with N can reach the following nonprogress state: Machipe N
is at node 2. machine P 1s at node 1, channel A is empty, and channel B has one Nak message.

This example demonstrates that the notion of equivalence for regular {inite state machines
is not appropriate for communicating finite state machines. In this paper, we characterize a new
potion of equivalence for communicating finite state machines that satisfies the following three
properties:

i. It is decidable for any two communicating finite state machines M and N whether M
and N are equivalent. (The same is true for regular finite state machines.)

i, ¥ M and N are equivalent, then the regular language accepted by M is identical to
that accepted by N. {The same is true for regular finite state machines.)

i, If M and N are equivalent, then for any communicating finite state machine P, the
communication between M and P can reach a nonprogress state iff the communication
between N and P can reach a nonprogress state.

We also show that this notion of equivalence applies as well to networks of communicating finite
state machines.

II. COMMUNICATING FINITE STATE MACHINES

A Communicating Finite State Machine M is a directed labelled graph with three types of
edges called null, sending, and receiving edges. A null edge is labelled with the empty string E. A
receiving (sending) edge is labelled +g/C (-g/D), where

g e o e e e e e e Ge e G e e e e e o e de ROy

B
4/ st
D T N O AV S T b bl il "
ﬁ ﬂ ff ¢
- §
% ¢ 1
H g i
i i
i 1
! :
! |
§ s
iiiiiiiiiiiii ¥ 1
!]
$ <L < ,
(R« 2} B S (s3] ;
A 1 R g\~
R P SV N 4 kY ! ol
< M PO z 8 o X
i i «G o
—ebd o tlthfwﬂti i [S b 1 ¢ 8]
H i et
1
D | |
{\ i !
§ t
i i
! i
{ $
H]
i t

+Ack/B
-Data/A
+Nakf8
(a) M
i
AN
‘—*-t
¥
1
i
}
b
%
!
EH
1
1
B 1

%

g

,

S L T

-

Initial
node

First Example

(d) ©

igure 1,

™

r

g is a message from a finite set Gy of messages,

C is an input channel from a finite set Iy, of input chanels,

D is an output channel from a linite set Oy, of output channels, and

Ly MOy = 0 {the empty set).
One of the nodes in M is identified as its ¢nitial node, and each pode in M is reachable by a
directed path from the initial node.

A communicating finite state machine s called deterministic iff 1 has no null edges, and
the outgoing edges of each of its nodes have distinct labels. Otherwise, 1t is called nondeterminis-

Lic,

Let M and N be two communcating finite state machines such that Gy, = Gy, Iy, = Oy,

and Iy = Oyy, then the pair [M,N] is called a network of the two machines M and N.

Let [MUN] be a network of two communicating finite state machines. A state of [M,N] is a
four tuple [v,w,x,y], where

v is a node 1n M,

w is a node in N,

x is a string of symbols of the form g/C where g is in Gy and Cis in Ly and

v is a string of symbols of the form g/D where g is in Gy and Dois in by
Informally a state [v,w,xy] indicates that the executions of the two machines M and N have
reached nodes v and w respectively. It also indicates that the contents of the input channels of M
are defind by string x, and the contents of the input channels of N are defined by string v.

The initial state of [M,N] is {VOJVO,E,E}, where v and w_ are the initial nodes of M and N
¥
respectively, snd I denotes the empty string. {This implies that initially, all the channels between
M and N are empty.) -

Let s==[v,w x,y] be a state of [M,N] and let e be an ontgoing edge of node v or w. A state s’

o 19

1s said to follow s over e iff one of the following six conditions is satisfied:
i. e is a null edge from v to v’ in M, and s'=[v",w,x,y].

ii. e is a null edge from w to w’ in N, and s'==[v,w' x,y

P

iii. e is a receiving edge labelled +g/C from v to v’ in M, and &'=[v',w,x'x"y], where
x=x"g/Cx" and x" does not have any symbol of the form g'/C, for some message g'.

e is a receiving edge labelled +¢g/D from w to w’ in N, and s'==[v,w’ x,y".y"], where
y=y'.g/D.y" and y’ does not have any symbol of the form g'/D, for some message g'.

v.e is a sending edge labelled -g/D from v to v’ in M, and s'={v’,wx,y’], where
y'=y.g/D.

[

vi.e is a sending edge labelled -g/C from w to w' in N, and s’==[v,w' x|y}, where
x'=x.g/C.

The next three deflinitions are based on the above definition of "follow over.” Let s and ¢
be two states of [M,N].

i.s’ follows s iff there is an edge e in M or N such that s’ follows s over e.

ii. s is reacheble from s iff either s==s', or there exist states s;,..s_such that s==s;,

s'=s, and Si+1 follows s, for i==1,...r-1.

iii. 8" is reachable iff it is reachabl from the initial state of (M,N}.

We have introduced a number of generalizations to this model of communicating finite state
machines over previous models [2,11,12]. In particular, we allowed each machine to be nondeter-
ministic, and allowed wore than two channels between any two machines in a network. The
reason for these generalizations is to make the definition of "equivalence,” although primarily in-
tended for machines, applicable to networks of machines as well. This will become apparent in
Sections V and VI

III. NONPROGRESS STATES

As mentioned earlier, the main reason for our dissatisfaction with the definition of equiv-
alence for regular finite state machines as it applies to comimunicating finite state machines is
that it does not capture the notion of "nonprogress.” In this section, we formally characterize this
notion.

A node in a communicating finite state machine M is called finel AT it bas no outgoing
edges. A nonfinal node in M is called a recetving node ifT all its outgoing edges are receiving. A
nonfinal node in M is called an escape node iff it has at least one outgoing null edge and each of
its outgoing edges is either null or recciving. A trap T in M is a set of escape nodes in M such
that each outgoing null edge of any node in T must be ingoing to some (possibly the same) node
in T.

Let v be a node in a communicating finite state machine M. The expectancy Exp(v) o/ node
v is defined as follows:

B

i 1f v is a final node, then
Exp(v)==0 {the empty set) _

it If v is a receiving node, then
Exp{v)={g/Clthere is an outgoing edge of node v labelled +g/C}

iii. If v is an escape node in a trap, then
Exp(v)={g/Cleither there 1s an outgoing edge of node v labelled +g/C, or there is a
directed path, whose edges are all null, from node v to some node with an outgoing
edge labelled +g/C}

iv. Otherwise,
Exp{v} is undefined.

Let [v,w,x,¥] be a state of a network [M,N]. A symbol g/C in string x is called the head
symbol of channel C in x iff x is of the form x".g/C.x", and x’ does not have any symbol of the
*

form g'/C for some message g'. Similarly, we can define the head symbol of some channel D 13
string y.

A reachable state [v,w x,y] of network [M,N] is called a nonprogresa state ilf the following
two conditions are satisfied:
i. The expectancy of node v in M is defined, and for any head symbol g/C in x, g/C is
not 1 Exp{v).

218

/5

gomes

ii. The expectancy of node w in N is defined, and for any head symbol g/D in y,
not in Exp{v).

e8]

informally, a nonprogress state of a network is reached when and only when each machine

in the network either reaches a final node, or is "stuck™ at a receiving node or in a trap waiting

to receive a message g; from channel C; to get out, but each of the channels Cj is either empty or
£

has 3 “head message’ other than g;. {Notice that if 2 machine is stuck v a receiving node, then it

can no longer progress, and if it is stuck in a trap, then it can only progress over null edges.)

Nouprogress states can be distinguished into different classes such as proper termination
tates, improper termination states, deadlock states, unspecified reception states [7}], and so on.
l iis classification, however, is irre%h‘mnt to the current paper, and so we choose to ignore it.

Now, we are ready to present our notion of equivalence for communicating finite state

machines.

IV. EQUIVALENCE OF COMMUNICATING FINITE STATE
MACHINES
Let M be a communicating finite state machine, and let p be a finite directed path that
starts from the initial node in M; i.e. p can be defined as a finite sequence <ey,...e > of directed
edges in M. The word w(p} of path pis a string of symbols x;. ... x_, where x; is t,hs label of edge

Ji==1,...r, and "." is the concatenation operator.
Let v be a node in a communicating finite state machine M. The language of node v is
defined as the set

Liv)={w{pilp is a finite directed path that starts from the initial node and ends at node v
in

M.

-

The language of machine M 15 defined as the set
g

—

L{M)={w(p)|p is a finite directed path that starts from the initial node in M.}

Clearly, L{v) and L{M) are reguluar languages, and so can be deflined by regular expressions [8].

Let M and N be two communicating finite state machines, and let v be a node in M, and
Wy, w, (for some r>1} be some nodes in N. Node v is said to cover nodes wy,...,w_ iff the fol-
lowing two conditions are satisfied:

i If Exp(v) is defined, then for all i (1<i<r) Exp(w;) is defined and is a subset of

Exp(v)

i L{v) € L{wy) U..U I{w), where 1{v) is the language of node v, and "U" is the set-

anion operator.

fekg)

Let M and N be two communicating finite state machines. M is sald to cover N, denoted by
M>N, iff for each node v in M, there exist nodes wy,..,w, (for some r>1) in N such that v
covers Wy,... W,

Two communicating finite state machines M and N are said to be equivalent, denoted by
M=N, iff M>>N and M<N.

The following theorems prove some interesting properties for the above definition of
"equivalence."

Theorem 1: It is decidable for any two communicating finite state machines M and N, whether
M==N.

Proof: Let M and N be any two communicating linite state machines. It is decidable for any
node v in M and any set of nodes W, W in N whether v covers Wiy Wy Since N has a finite
number of nodes, then it is decidable for any node v in M whether there exist a set of nodes
Wi W, in N such that v covers wy,.,w,. Since M has a finite number of nodes, it s decidable
whether M>N. By symmetry, it is also decidable whether N>M. Hence, it is decidable whether
M=N. O

Theorem 2: If M=N, then L{M}=1L{N). {The converse is not necessarily true.}

Proof: To show that if M=N, then L{M)=L{N}, it is sufficient to show that if M>N, then L{M)
C L{N). Assume that M>N. Then for any node v in M, there exists a set of nodes w,...,w_in N
such that

L(v) C LGw) U U LG,

U L{v)

in

U L{w), and
w 1is in N

<}
et
w
=]
o]
=

L)

N

LN .

To show that the converse is not necessarily true, consider the two machines M and N in
Figures la and 1b respectively. O

Theorem 3: If M==N, then for any communicating finite state machine P, network [M,P] can
reach a nonprogress state [v,z,x,y], iff network [N,P] can reach a nonprogress state [w,z.x,yl.

Proof: Assume that M==N, and let P be any communicating finite state machine such that the
petwork [M,P] can reach a nonprogress state of the form s==[v,z,x,y]. We show that the network
[N,P| can reach a nonprogress state of the form [w,z,xy].

Since M covers N, node v must cover some nodes wy,...,w_in N. Since [v,e,x,¥] 13 a non-

progress state, then Exp(v) must be defined, and so are Exp{w),....Exp{w). Let the paths that M

and P traverse to reach state s be A and B, respectively. Since v covers w.,...,w_, there is a path
i L &

8

¢ that is identical to A, and that ends at some node w in N, where w 1s one of the nodes
W W Path C in N can communicate with path B in P so that the network [N,P] reaches a
state s’==|w,z,x,¥]. Since s is a nonprogress state, and since Exp{w) CExp(v), then s’ is a non-
progress state. 0

Example 1: To show that the two communicating finite state machines M and N in Figures Ia
and 1b (respectively) are not equivalent, it is sufficient to show that at least one node in N does
not cover any node in M. Since in machine M, Exp(l} is undefined, and Exp(2) =
{Ack/B,Nak/B}, and since in machine N, Exp(2) = {Ack/B}, then node 2 in N does not cover
any node in M; hence M and N are not equivalent. (Node 3 in N also does not cover any node in
M.}

Omn the other hand, the two communicating finite state machines M and Q in Figures 1a and
id, respectively, are equivalent based on the following facts:
Node | in M covers node 1 in Q.
Node 2 in M covers node 2 in Q.
Node 1 in Q covers node 1 in M.
Neode 2 in Q covers node 2 in M.
Node 3 1n Q covers node 2 in M.

V. EQUIVALENCE OF BOUNDED NETWORKS

In this section and the next, we show that our notion of equivalence can be applied to net-
works of communicating machines. But first, we need to generalize our definition of a network.

As defined carlier, a network [M,N] of two communicating finite state machines M and N
“elosed.” This is because each output channel of M is an input channel of N,
and vice versa, In other words, there are no channels for the external environment to communi-

can be desceribed as

cate with or to “"observe™ M or N. This is a severe restriction; it is relaxed by introducing the

(LIPS

concept of an "open” network, next.

Let M and N be two communicating finite stale machines such that GM::G\% imﬂﬁ
i i iv

and O NOx=0. Then, the pair (M,N) is called an open network. Any channel in UYIRISNIRY
(;Ng“;QM) is called an internal channel of the open network. Any channel in LU0, UL U0,
that is not an internal channel is called an external channel of the ocpen network. Notice that any
closed network is a special case of an open network where all the channels are internal. Therefore,
the following definitions for open networks are generalizations of previous definitions for closed
networks,

A

A state of an open network {M,N) is a four tuple [v,w,x,y], where

v is a node in M,
w 13 a node in N, -
x is a string of symbols of the form g/C where g is in Gy, aud Cis an internal channel

in IM’ and

y is a string of symbols of the form g/D where g is in Gy, and D is an infernal channel

in II\"

From this definition, only the contents of internal channels are part of the open network state;
the contents of external channels are not part of the state.

The initial state of (M,N}is [v_,w_,E,E] where v, and w are the initial nodes of M and N

respectively, and [0 denotes the empty string.

Let s==[v,w,x,y] be a state of an open network {M,N}, and let e be an outgoing edge of node
v or w. A state s is said to fellow s over e iff one of the following six conditions is satisfied:

i. e s a null edge, or is a receiving edge labelled +g/C, where C is external, or is a send-
ing edge labelled -g/D, where D is external, from node v to v’ in M, and s'=[v",w x,y]

it. ¢ is a null edge, or is a receiving edge labelled +g/D, where C is external, or is a send-
ing edge labelled -g/D, where D is external, from node w to w’ in N, and 8'=[v,w’ x,y]

iii. e is a receiving edge labelled +g/C, where C is internal, from node v to v’ in M, and

é} o o A 3 1
s'=[v,w x,y".y"], where y==y"g/C.y" and y’ doecs not have any symbol of the form
g'/C for some message g’

iv. e is a receiving edge labelled +g/C, where C is internal, from node w to w’ in N, and
s'==[v’,w,x'x"y], where x==x g,/(x" and x' does not have any symbol of the form
g'/C for some message g'.

v. e is a sending edge labelled -g/D, where D is iuternal, from node v to v' in M, and
s'=[v'wx,y'], where y'=y.g/D.

vi. e is a sending edge labelled -g/D, where D is internal, from node w to w’ in N, and

==[v.w X" y], where x'==x.g/D.

£

RBased on this definition of “follow over,® we can define the "reachable states” of an open net-

work in the same way as they are deflined for a closed network earlier.

An open network is said to be bounded iff the set of its reachable states is finite. Otherwise
it 1s called unbounded.

ot (M,N) be a bourded open network. Define R(M,N) as the communicating finite stul
machine constructed from (M,N} using the following steps:

i. For each reachable state s of {M,N}, add a node, also called s for convenience, to
R(M,N).

ii. The node in R{M,N) that corresponds to the initial state of (M,N} is identified as the
initial node of R{M NJ.

iil. For any two reachable states s and s’ of {M,N), if s’ follows s over an edge ¢ in M or
N, then add a labelled directed edge r from node s to node 8" 1n R{M,N}. Morcover,
the label of r depends on the label of e as follows:

a. If e is labelled E, or is labelled +g/C where C is internal, or is labelled -g/D
where D is internal, then r is labelled E.

b. If e is labelled +g/C where C is external, then r is labelled +g/C.

c. If e is labelled -g/D where D is external, then r is labelled -g/D.

Let {M,N) be a bounded petwork, and let P be a communicating finite state machine. Net-
work (M,N) and machine P are said to be equivalent iff R{M N}=P.

Let (M,N) and {P,Q) be two bounded networks. The two networks (M,N) and (P,Q) are said
to be equivalent T RIM,N)=R(P,Q).

Therefore, the notion of machine equivalence in the previous section can be used to establish
the equivalence of bounded networks as well.

Example 2: (An Alternating Bit Protocol) Consider the network of four communicating
finite state machines S, M, N, and K in Figure 2a. Machine S (Figure 2b} is a source that keeps
on senpding Data messages via channel A, while machine K is a sink (Figure 2¢) that keeps on
receiving Data messages via channel D. The "service" performed by the two machines M and N
is to transmit the Data messages, without corruption, from channel A to channel D. This is not a
simple task, since we assume further that any transmitted message between M and N may be cor-
rupted by "external noise.” M and N employ an Alternating-bit protocol with the following rules

[1]:

i. M attaches one bit to each Data message it sends to N.

ii. Whenever N receives a Data message, it checks its check-sam. If it detects a corrup-
tion 1nn the received message, it sends a negative acknowledgement to M; otherwise, 1t
sends a positive acknowledgement to M.

it Whenever M receives a negative acknowledgement or a corrupted acknowledgement, it
resends the “last® data message, with the same value for its attached bit.

iv. Whenever M receives a positive acknowledgement, it sends the “"next” data message
after assigning a different value for its attached bit (different from the "last” value of
the attached bit).

Machines M and N in Figures 2d and 2e {respectively) exchange the following messages:

Datai {i==0,1) is a Data message whose attached bit has the value 1.

Acki (i==0,1) is a positive acknowledgement for Datai, and a negative acknowledgement for
Datali + 1 mod 2}).

Err is a "virtual” message used to simulate a message corruption situation: The situation
that M sends a Datal message which is later corrupted into Err before it is received by
N is simulated by M directly sending an Err message to N.

The pair {(M,N) constitutes an open network where channels B and C are internal, and
¥ ? 3

channels A and D are ex?wnai Thus, a reachable state of (M,N} is a four-tuple [v,w x,y], where x
defines the contents of channel C and v defines the contents of channel B. The communicating

finite state machine R{M,N} is shown in Figure 2f. Each node in R{M,N} corresponds to a reach-
able state of (M,N); for example,

\
Source A < Sender Receiver D Sink
£ C &
5 M < N K
{a) Network

i Initial g

g node .
~-Data/A : 1) @ +Data/D

+Ack0/C

-BErr/B

{e} N

figure 2. An Alternating-Bit protocol

exanple.

9

node 1 in K(M,N) corresponds to state [1,1,E,E],
node 2 in R(M,N) corresponds to state [2,1,E,], and
node 3 in R{M,N} corresponds to state [3,1,5,Err/B].

In order to show that R{M,N) is equivalent to machine L in Figure 2g, it is straightforward
to show the following facts:

Node 1 in L, covers node 1 {or 15) in R(M,N}.

Node 2 in L covers node 8 {or 22} in R(M,N}.

Fach of the nodes 1, 9, 10, 11, 12, 13, 14, 15, 23, 24, 25, 26, 27, 28 in R{M,N) covers node { wm L..

Fach of the nodes 2, 3, 4, 5,6, 7, 8, 16, 17, 18, 19, 20, 21, 22 in R{M,N) covers node 2 in L

Three comments concerning this example are in order:

i. Although R(M,N) has many null cycles (i.e. cycles whose edges are all null), the equiv-
alent machine L does not have any such cycle. This demonstrates that our definition
of equivalence is implicitly based on the following fairness assumption: If a com-
municating finite state machine M reaches a null cycle that has a way out, then in a
finite time M will choose the way out. (A null eycle with no way out in M is equivalent
to a final node without outgoing edges. See Section V1I.)

ii. Machine L in Figure 2g defines the "service” [4], as seen by an external observer, of
the open network (M,N}: L. merely transmits the Data messages, one by one, from
channel A to channel D,

iii. After showing that machine L is equivalent to the open network (M,N), it is possible
to replace (M,N} by L during the analysis of the closed network [S,M,N,K]. In par-
ticular, to prove that [S,M,N K} cannot reach a nonprogress state, it is sufficient to
prove that [S,LK] cannot reach a nonprogress state, which is a much simpler task. O

Vi. EQUIVALENCE OF UNBOUNDED NETWORKS

The above definition of equivalence can be extended te communicating infinile state
machines {i.e., communicating machines as defined earlier except that they have nfinite numbers
of nodes and edges, however cach node has a finite number of ingoing and outgoing edges). This
is an important extension siuce it allows us to define the notion of equivalence for unbounded
open networks. For the sake of discussion in this section, let M and N be two conmwnicz;t‘ing

{finite or infinite} state machines.

Let v be a node in M, and let wy,w,,... be {possibly an infinite number of) nodes in N. Node

v is said to cover nodes W W iff the following two conditions are satisfied:

i. If Exp{v) is defined, then for all 1 (i>1), Exp(wé} is defined and is a subset of Exp{v).
0
L(v) € (U Lwy)

M is said to cover N, denoted by M>N, iff for each node v in M, there exist {possibly an
infinite number of) nodes Wy, W, in N such that v covers W W
ot A

M and N are said to be equivalent, denoted by M==N, iff M>N and M<N.

Initial

(f) R(M,N)

~Data/D +Data/A

Figure 2., Continued.

10

With this extension to communicating infinite state machines, the decidability result of
Theorem 1 is no longer valid. However, both Theorems 2 and 3 are still valid.

If (M,N} is a bounded {unbounded) open network, then R(M,N) is a communicating finite
{infinite) state machine.

Let {M,N) be a {bounded or unbounded) open network, and let P and Q be two com-
municating (finite or infinite) state machines. Network (M,N} and machine P are said to be equiv-
alent iff R{M,N)=P. Also, the two networks (M,N} and {P,Q) are said to be equivalent iff
R(M,N)=R(P,Q).

Example 3: Consider the two communicating finite state machines K and L in Figure 2¢ and 2g
respectively. The pair (K,L) is an open network with one internal channel D, and one external
channel A. A reachable state of this network is a triple [v,w x] where v is a node in K, w is 2
node in L, and x defines the contents of the internal channel D,

Network {K,L} is unbounded since it has an infinite number of reachable states. Hence,
R{W L} is a communicating infinite state machine. A portion of R(K,L} is shown in Figure 2h:
For i==0,1,2,...,
node m; in R{IX,L) corresponds to the reachable state [1,1,(Data/D)'] of (L), and
<L

node n, in R{I{,L) corresponds to the reachable state [2,3,{13&?;1}1)?} of (K,L).

R{K L} 1s equivalent to the communicating {inite state machine R in Pigure 2i. This can be
proved by showing the following:

Node 1 in R covers node m_ in R{IK,L).

For i==0,1,..., node m; in R(K,L} covers node 1 in R.

For i==0,1,..., node n; in R{K,L) covers node 1 in R.

Therefore, the unbounded network (I 1.} is equivalent to machine R. r

Vil. NONDETERMINISM

As a side-effect to the above definition of equivalence, nondeterminism cannot always be
removed from communicating finite state machines. For example, it is impossilile to construct a
deterministic communicating finite state machine that is equivalent to machine N in Figure 1b.
{This is different from the corresponding phenomenon for regular finite state machines where
nondeterminism can always be removed [8].)

As mentioned earlier, nondeterminismm can be expressed in a communicating {inite state
machine M using two mechanisms: Fither M has a node with two or more identically-labelled out-
going edges, or M has a null edge. These two mechanisms are equivalent in the following sense:

i. For any communicating finite state machine M, it is possible to construct a com-
municating finite state machine M’ such that M=M’, and the outgoing edges of each
node in M" have distinct labels,

ii. For any communicting {inite state machine M, it is possible to construct a com-
municating finite state machine M’ such that M=M’, and M’ has no null edges.

Initial
! node
£,

(e

+Data/A

«

n

N

ey

=

jeal

+Data/A

IS

cewe

(h) R{X,L)

Figure 2.

+Data/A

Continued.

@0w“

(i) R

il

The proof for assertion i is straightforward. Assertion ii is proved by presenting two trans-
formmations that can be applied repeatedly to any communicting finite state machine M yielding,
after a finite number of applications, a machine that is equivalent to M, and has no null edges.

The first transformation is illustrated in Figure 3a, where M and M’ denote the machines
before and after the transformation, respectively. This transformation consists of removing all
the null self-loops at a node u. It is straightforward to show that node u in M covers node u’ in
M’, and vice versa; hence M=M".

The second transformation {illustrated in Figure 3b) consists of the following steps:
a. Remove a null edge from one node u to another v.

b. For cach edge from some node a; to u, add an edge with an identical label from 2, to

Y.

c. For each edge from v to some node d;, add an edge with an identical label from u to
dy-

To show that this transformation from M to M’ is equivalence-preserving {i.e. M=M'}, it is
straightforward to show the following:

Node a; in M covers node a; in M’, and vice versa.

Node bj in M covers node %)3 in M’, and vice versa.

Node ¢ in M covers node ¢} in M/, and vice versa.

Node dy in M covers node d} in M, and vice versa.

Node u in M covers node v' in M.

Nede v in M’ covers node v in M.

Node v in M covers node v’ in M,

Node u' in M’ covers node v in M.

VIII. CONCLUDING REMARKS

We have presented a new notion of equivalence for communicating finite state machines
that exchange messages via FIFO chanunels, and shown that this notion satisfies some desirable
properties. This notion is "robust,” as it applies to finite and infinite machines, and to bounded
and unbounded nctworks with any number of machines. This notion can also be applied {with
minor modifications) to commuuicting finite state machines that exchange messages via priority
or random channels [5,6].

This notion of equivalence for communicating finite state machines is useful in two respects:

i. It can be used to simplify the task of proving freedom of nonprogress (e.g. freedom of
deadlocks) for "large" networks of communicating finite state machines. This can be
done by repeatedly replacing some open {sub)networks within the network with equiv-
alent simple communicting finite state machines, and showing that the resulting
reduced network cannot reach nonprogress states. We have demonstrated this tech-
nique with the Alternating-bit protocol example, where the network [S,MNK] is
reduced to [S,R} whose analysis is straight{orward.

M ; M

{a)

Identical

Fooeldentical
labels

M M*

Figure 3. Two eguivalence-preserving transformations.

i2

ii. The existence of an "equivalence® criterion for communicating finite state machines,
encourages one to search for "cost” criteria for such machines to discriminate between
equivalent alternatives. One possible criterion is the number of nodes in the com-
municating machines, the less the number of nodes in a machine the better. (For ex-
ample, based on this criterion machine R in Figure 2i is infinitely better than the
equivalent machine R{IK,L) in Figure 2h.}) This point needs (and deserves) further
research.

REFERENCES

[EE Bartlett, K. A., R. A. Scantlebury, and P. T. Wilkinson, "A note cn reliable full-
duples trapsmission over half-duples links,” Comm. ACM, Vol. 12, May 1969, pp.
260-261.

[2] Brand, D.and P. Zafiropulo, "On communicating finite-state machines,” Journal
ACM, Vol. 30, No. 2, April 1983, pp. 323-342.

o

Rochmann, G. V., "Finite state description of communication protocols,” Computer
Networks, Vol. 2, 1978, pp. 361-371.

,...,.‘
Lt
e

[4] Bochmann, G. V. and C. Sunshine, “Formal methods in communication protocol
design,” IEEE Trans. on Commun., April 1980, pp. 624-631.

[5] Gouda, M. G. and L. IN. Rosier, "Communicating finite state machines with priority
chanpels,” in Proc. of the Eleventh International Colloquium on Automata, Lan-
guages, and Programming (1CALP), 1984,

6] Gouda, M. G. and L. E. Rosier, “Priority networks of communicating finite stale
machines,” to appear in SIAM Journal on Computing, Sept. 1984,

[7] Gouda, M. G. and Y. T, Yu, "Synthesis of communicating {inite state machines with
guaranteed progress,” TR-179, Dept. of Computer Sciences, Univ. of Texas at Austin,
June 1981. Revised Jan. 1983; revised Oct. 1983. To appear in IEEE Trans. on
Commun., July 1884,

[8] Hoperoft, J. E. and J. D. Ulhman, “Formal languages and their relation to automata,”
Addison-Wesley, Reading, MA, 1969.

[9] West, C. H. and P, Zafiropulo, *Automated validation of a communications protocol:
the CCITT X.21 recommendation,” IBM J. Res. Develop., Vol. 22, Jan. 1978, pp.
60-71.

[10] Yu, Y. T. and M. G. Gouda, "Deadlock detection for a class of communicating finite

state machines,” 1EEK Trans. on Commun., Dec. 1982, pp. 2514-2519.

[11] Yu, Y. T. and M. G. Gouda, "Unboundedaess detection for a class of communicating
finite state machines,” Information Processing Letters, Vol. 17, Dec. 1983 . 235-240.
< 2 b3 7 pp

[12] Zafiropulo, P., C. H. West, H. Rudin, D. Brand, and D. Cowan, "Towards analyzing
and synthesizing protocols,” IEEE Trans. on Commun., Vol. COM-28, No. 4, April
1980, pp. 651-661.

