MODELING AND ANALYSIS OF
LAN PROTOCOLS USING LABELED
PETRINETS

Mohamed G. Gouda and Michael K. Molloy

Department of Computer Sciences
University of Texas at Austin
Austin, TX 78712

TR-84-15 September 1984

ABSTRACT

Modeling and analvsis of a Local Area Network (LAN) protocol can be "tricky®.
It requires one to define and reason about the communications among n identical but
autonomous stations in the LAN, where n is a parameter that can assume any positive
integer value. In this paper, we demonstrate that the labeled Petrinets of Keller (5] are
useful for this task. In particular, we use these Petrinets to model and analvze the LAN
protocols, for a token ring, nonpersistent CSMA, virtual time CSMA, P-persistent
CSMA and Capetanakis’ collision reselution algorithm. In each case, the resulting model
of the protocol is clear and concise, and the analysis of its safety and liveness properties
is straightforward.

Table of Contents

. INTRODUCTION
. LABELED PETRINETS
. MODELING AND ANALYSIS OF LAN PROTOCOLS
. EXAMPLES OF LAN PROTOCOQOLS
4.1 A Token Ring Protocol
4.2 A Nonpersistent CSMA Protocol
4.3 A Virtual Time CSMA Protocol
4.4 A P-Persistent CSMA Protocol
4.5 A Collision Resolution Protocol
5. CONCLUDING REMARKS
REFERENCES

. 00 RO b

W bo e

[onw I <o TR S SR o1

L
§AD pes

[
o

1. INTRODUCTION

A Local Area Network (LAN) consists of n autonomous stations that communi-
cate by exchanging messages over a single communication medium, as shown in Figure
L. If at some instant, exactly one station starts to transmit a message over the medium,
and il no other station tries to transmit, then this transmission will complete
successfully. 1f two or more stations start to transmit over the medium, then a
collision will occur. A collision occurrence can be detected by all the stations in the
LAN, and will cause the colliding transmissions to be tried later by their stations until
they complete successfully. A LAN protocol is a set of rules that should be observed by
each station in the LAN to prevent, avoid, or resolve collisions as the stations try to
transmit over the medium.

Modeling and analysis of a LAN protocol involving n stations can be a "tricky"
task, especially since the protocol’s analysis needs to be carried out for any positive in-
teger value of n. The straightforward approach to solve this problem is as follows:
First, the LAN protocol under consideration is modeled by defining the local states and
state transitions of a typical station in it. Second, the protocol’s model is analyzed by
using the local states and state transitions of individual stations to reason about the
global states and state transitions of the total protocol. The problem with this approach
is that the number of global states and state transitions of any reasonable protocol is
"huge"; this complicates the analysis task by a large degree. Sasha, Penueli, and Ewald
[11] followed this approach to model and analyze some CSMA protocols using temporal
logic. However they assumed that all stations progress at equal speeds, thus reducing the
total number of reachable global states and greatly simplifying the analysis task. The
LAN protocol example in Gouda and Chang [4] has followed this same approach. But
the complexity of the analysis was contained by limiting the analysis to a specific value

for the parameter n (the number of stations in the LAN), rather than carry the analysis
for any value of n.

In this paper, we propose a new approach to solve the problem. The LAN
protocol under consideration is modeled by one labeled Petrinet, as defined by Keller
[5], with a fized number of nodes; i.e. the number of places and transitions in the
modeling Petrinet does not depend on the number of stations in the protocol. The fact
that there are n stations in the protocol is modeled by having n tokens in the Petrinet.
The modeling Petrinet is relatively small, and so its safety and liveness properties can
be easily established. We demonstrate the simplicity of this approach by using it to
model and analyze some real LAN protocols. (For a complete exposition to the modeling

and verification of communication protocols using Petrinet-based models, we refer the
reader to the excellent survey by Diaz [3].)

The paper is organized as follows. The labeled Petrinets of Keller [5] are presented

briefly in Section 2. The general approach of using these Petrinets to model and analyze
LAN protocols is discussed in Section 3. In Section 4, we demonstrate this technique by

Station 1 s @ o Station n

Communication

medium

Figure 1 Architecture of a LAN

odeling and analyzing five LAN protocols: a token ring, a nonpersistent CSMA, 2
virtual-time CSMA,; a P-persistent CSMA, and a collision resolution protocol. Conclud-
ing remarks concerning the advantages and disadvantages of this technique are in Sec-
tion 5.

2. LABELED PETRINETS
A labeled Petrinet of Keller [5] is a pair (X,G), where

X is a vector of variables, and

G is a directed labeled graph with two types of nodes called places and
transitions. Each arc in G is either from a place to a transition, or
from a transition to a place. Each transition t in G is labeled with an
expression of the form

when P (X) do X := I (X)

where P, is a predicate, and Ft; is a function over the vector X. Pt is

called the enabling predicate of t, and 17, is called the action function
of t.

For the sake of this paper, each transition in G is restricted to having one ingoing
arc and one outgoing arc. If there is an arc from place p to transition t then p is called
the input place of t. If there is an arc from transition t to place p, then p is called the
output place of t. We further restrict the model to the case where the input and cutput
places of any transition ¢t in G are distinet.

Let (X,G) be a labeled Petrinet. Associated with each place p in G is an implicit
variable i alled the place variable of p, whose value ranges over the natural numbers.
The place variables of G are distinct from the variables in vector X, (Referring to or-

dinary Petrinets [10], the value of a place variable n, indicates at any instant the num-
ber of tokens at its place p at that instant.)

Let (¥,G) be a labeled Petrinet, and let V be a vector of all the place variables of
G. A state of (X,G) is a pair (x,v) where x and v are values for vectors X and V respec-
tively. As suggested by Keller [5], it is possible to think of x as the "state of data” and

i
f

of v as the "state of control® for the labeled Petrinet.

Let {x,v) and (x’,v") be two states of a labeled Petrinet (X,G). State (x’,v) is said
to follow (x,v) over some transition t, denoted by (x,v)—t—(x’,v"), iff the following five
conditions are satisfied: (Let n, and n_ be the values of the place variables for the input
and output places of transition t in v, and let ni’ and n;} be their respective values in v'):

ton > 1

1 e

ion = n. -1

1 1
e +
HLong n, 1
iv. P (x) = true

v. ¥ = F (x)

Recall that P, and I, denote the enabling predicate and the action function of tran-
sition t.

Let (x,v) and (x’,v’) be two states of a labeled Petrinet (X,QG), and let bybgseety be
transitions in G. State (x’,v’) is said to be reachable from (x,v) over the transition se-
quence t,t,...t, denoted by (x,v)—=t t,...t, —(x",v’), iff there exists a sequence of states

(Xz’vi>’°“’(xk~‘r»i’Vkﬂ) of (X,G) such that
i. {X,V) == (Xl’vi)?
i (V) = (X Vi and

it for i==1,...,k, {xpvi)mti-ﬁ(xwl,viﬂ},

¥

A state (x7,v') is said to be reachable from a state (x,v) iff either (X'} = (x,v) or
there exists a sequence of transitions b bty such that (x,v)-ty..tkwf(x’,v"*

Je

A state of a labeled Petrinet (X,G) is identified as its ¢nitial state, and any state
of (X,G) is called reachable iff it is reachable from the initial state of (X,G)

In the next section, we discuss how to use labeled Petrinets to model and verify
LAN protocols in general; specific examples are discussed in the following section.

3. MODELING AND ANALYSIS OF LAN PROTOCOLS

It is sometimes helpful to "visualize” that zero or more tokens are assigned to
each place in the directed graph of a labeled Petrinet (as in the case of ordinary
Petrinets [10]). At each instant, the number of tokens assigned to any place p equals the
value of the place variable n, of p at the same instant. In this view, the state changes of
a labeled Petrinet can be considered as "moving" tokens between different places in the

Petrinet. We use this view to explain how to model a LAN protocol between n identical
stations using one labeled Petrinet (X,G):

i. Each state s of a typical station in the LAN is modeled as one place in G,
also called s for convenience.

ii. Bach state transition from a state s, to a state s, of a typical station in the
LAN is modeled in G as one transition with one ingoing are from place Sp
and one outgoing arc to place s,,.

iii. Each station is modeled by a single token. The fact that a station is at a
state s at some instant is modeled by assigning the station’s token to place s
at the same instant. The fact that a station changes its state from 8, to s, at
some instant is modeled by moving the station’s token from place 8, to place
S, in G.

iv. The variables in X and the enabling conditions and action functions for the
transitions in G are then chosen to control the token movements in accord-
ance with the modeled protocol.

Some examples of this modeling technique are discussed in the next section. But
first. we discuss the analysis of LAN protocols modeled as labeled Petrinets. There are
two types of properties that need to be proved for any LAN protocol:

i. Safety Properties: These properties assert that nothing bad happens
during the protocol’s execution. For example, they can assert
mutual exrclusion which can be stated as follows: Whenever one station is
transmitting successfully over the communication medium, no other station
can be transmitting successfully over the same medium. In our model, a
safety property can be deflined by an tnwariant, i.e. an always valid asser-
tion, based on the variables in vector X and on the place variables. To show
that such an assertion is indeed an invariant (i.e. always valid), it is suf-
ficient to use the induction principle of Keller, and prove the following two
properties [5]:

(a) The assertion is valid at the initial state of the Petrinet.

(b) If the assertion is valid at some state s and if state s’ follows s over
some transition, then the assertion is also valid at s,

ii. Liveness Properties: These properties assert that at any instant during the
protocol’s execution, something good (i.e., a successful transmission by one
station over the medium) can still happen at a subsequent instant. Although
this notion of liveness is rather "weak" in general (since it does not
guarantee that something good will ever happen), it seems adequate for most
LAN protocels where indeed there is no guarantee that a suecessful transmis-
sion by one station will ever occur. To establish liveness in our model, it is
sufficient to show that every transition t in the labeled Petrinet is "live™ at
any reachable state s, of the Petrinet. In other words, show that for any

transition t and any reachable state s., there exist two states s and s’ reach-

able from s_such that s—t—s'. As suggested by Keller [5], this can be ach-
ieved by showing the following two properties:

(a) Each transition t in the labeled Petrinet is "live” at the initial state
(i.e. show that for each transition t, there exist two reachable states s
and s’ such that s—t—s").

b) From any reachable state s_, the labeled Petrinet can still return to its
iy

initial state S (i.e. show that for any reachable state Sy there exist a

sequence of transitions t 5oty such that srmtle..tk—-?so).

Some LAN protocol examples are discussed next.

4. EXAMPLES OF LAN PROTOCOLS

In this section, we model and analyze five LAN protocols using labeled Petrinets.
They are a token ring protocol, a nonpersistent CSMA protocol, a virtual time CSMA
protocol, a P-persistent CSMA protocol and a collision resolution protocol. For these ex-
amples, we adopt the following notation: Places are named with upper case letters
AB,C,..., and each transition is named b; where 1 (j) is the name of its input (output)
place.

4.1 A Token Ring Protocol

In this LAN protocol [1], stations circulate a special message (called the "token")
in a round-robin fashion. Whenever a station receives the token, it can send at most one

message to another station; it then sends the token to its next neighbor in the round-
robin order, and so on.

A, Modeling

This protocol can be defined by the labeled Petrinet (X,G) in Figure 2. Vector X
consists of three variables; s of type O..n, and o and g of type boolean. (Recall that n is
the number of stations in the protocol.) The directed graph G has three places A, B,
and C that correspond to the three states of a station, namely "waiting for the token",
“transmitting”, and "waiting for the next round”. G also has three transitions tap tpos
and bear The initial state of this Petrinet is defined as follows:

s=1, a==false, p==false, n,=n-1, np=1, and n~=0,
where n, is the place variable of place p.

° Waiting for the token

1 o e BT -
whoen s=N or B

&= false ;

i

- Transmitting

pc

Waiting for the next round
£

C

A

A labeled Petrinet that models

a token ring protocol

B. Analysis

a. Proving Safety Properties: It is straightforward to prove that the following asser-
tions are invariants (= denotes logical implication):

i.ny, + np+n,=n (Proof is by induction)

ii.n, +s=n (Proof is by induction)

il ng + ng =s (Proof follows from i and ii)

iv.ng=1=s>1 (Proof follows from iii)

v. ng=1 = o= false (Proof is by induction making use of iv)
vi.ng < 1 (Proof is by induction making use of iv and v)
vil. a=false A fi=false = ng > 1 (Proof is by induction)

Invariant vi establishes the mutual exclusion property of this rotocol; invariant
vii is needed in the proof of liveness, discussed next.

b. Proving Liveness Properties: The state of this Petrinet is defined as the tuple
{s,a,ﬁ,nwnwncgg
and its initial state is Sy = [1, false, false, n-1, 1, 0]. It is straightforward to show that

o 3t -
s, tpcltaptpa)™™ toa S,

where s_is some reachable state, and t5(t ABtBC) toa 15 the sequence of transitions

consisting of one occurrence of tpee followed by n-1 occurrences of taptpes then fol-
lowed by tn,. Since this sequence of transitions contains at least one occurrence of each
transition, each transition is live at the initial state 8, It remains now to show that the
initial state is reachable from any reachable state S,.-

Let s, = [s,%ﬁ,nﬁ,nB,nC] be any reachable state. There are two cases to consider:

Case 1 {?sz—*G}: From invariant vii, either a==true or g=true.
If & = true,

then s —(t,ptpe) A (bga) (bap)—s, (the initial state).

If g = true,

then s, — (b0)"C (t5)—s,..

Case 2 [n —-1} In this case, s —(tBOtAB)nA bpo (tQA)n(tAB)»»sO,

This completes the proof that the initial state s, is reachable from S .

As discussed earlier, this proof of liveness merely establishes that any transition in
G can be made to fire starting from any reachable state s.. However, this fact coupled

with the fact that G is a simple cycle, guarantee that each transition in C will indeed
fire infinitely often.

4.2 A Nonpersistent CSMA Protocol

Whenever a station in this protocol [12] has a message to send, it changes its state
i &
from "idle" to "trying", and checks the current state of the communication medium:

i. If the medium is 7dle, indicating that no other station is currently sending
over the medium, then the station starts transmitting its message over the
medium. This leads either to a successful transmission of the message, or to
a collision if other stations start transmitting over the medium. In the case
of a successful transmission, the station returns to an "idle" state. In the
case of a collision, the station moves to a "waiting to try" state until at
some later time when the medium becomes idle, the station returns to a
"trying" state, and the cycle repeats.

ii. If the medium is busy, the station moves to a "waiting to fry" state until at
some later time when the medium becomes idle, the station returns to a
"trying" state, and the cycle repeats.

A. Modeling

This protocol can be defined by the labeled Petrinet (X,G) in Figure 3. Vector X
has four variables (r,i,s,c), each is of type 0..n, where n is the number of stations in the
protocol. G has six places and eight transitions. Each place corresponds to a different
state of a station:

Place I corresponds to the Idle state.

Place R corresponds to the Trying state.

Place T corresponds to the Transmitting state.

Place S corresponds to the Success state.

Place C corresponds to the Collision state.

Place W corresponds to the Waiting to try state.

As shown later, the values of variables r, t, s, and ¢ at any instant indicate the numbers

o1

tsal

tokens at places R, T, S, and C (respectively) at the same instant. The initial state of
this Petrinet is as follows:
fz:tzs:::;x:n?:ﬁTmnS:nJ:ﬁWmGamdnizn

This implies that initially all the stations are idle.

when s+e=0
do r:= r—1; b= t+l

when s+c>0
do ri= r-1

Walting W
to Try

when s+c=0
do r:i= r+l

when t+e=1
do ti= t-1; = g+l r——

when t+c> 1
do t:= t-ljc:= c+

when r={ when r+t=0

do ci= c~1

Figure 3 A labeled Petrinet that models

the nonpersistent CSMA protocol

B. Analysis

a. Proving Safety Properties: It is straightforward to prove that the following asser-
tions are invariants:

i.ny + np + np 4+ g + 5 + D=1 (Proof is by induction)
H.r=np At=mnpAs=1ngAc=n, (Proof is by induction)
jii.s >1=t+c=0 (Proof is by induction)
iv.s < 1 Asce=20 (Proof follows from iii)

Invariants iii and iv establish the mutual exclusion property of this protocol.
Whenever one station is successfully transmitting, then at the same time no other sta-
tion can be transmitting or colliding in its transmission (invariant iil), or even success-
fully transmitting (invariant iv).

b. Proving Liveness Properties: Because of invariant ii, the state of this Petrinet
can be defined as:

i;’,%;,s,c,npnwﬁ,
and its initial state is SO::[O,O,O,O,n,O]. It is straightforward to show that
S~k b brs et (b)” (ge)” (tp)” (bpw) Cow)® twgr = 5p
where s_is some reachable state. Since this sequence of transitions contains at least one
occurrence of each transition, each transition is live at the initial state So . It remains
now to show that the initial state is reachable from any reachable state.

Let srmir,t,&,c?ﬁi,nw} be any reachable state. There are five cases to consider:

Case 1 : 0 and t="0 and ¢==0):

o
!
~
/‘“"“«
,/

T4 Tear~1
W .
" tgr (bwi e brs bar) — 5

Case 2 (s==0 and t=1 and c¢==0):

/4 r

r-+n
L w
bf - ETS i\ LE}%‘VV ; %; t‘

tsr (bwr trr brg tep) — Sy
Case 8 (s=0 and t==0 and c==1):

’ . r+ny+1
S, T é\tRW} tcw U’Wﬁ tRT tTS ir"SI' — %

Case 4 (s=0and t +¢ > 1):
r \bebc rtttetng,

5, = (tpe) Cpw)” (tow)™ (bwr trr trs tsp) — 55

Case 5 (s=1): In this case, t==0 and ¢=0 from invariant iii. Hence,
- r+nw
s~ (tpw)” (tgp) (g bt brg tgy) %

This completes the liveness proof for this protocol.

4.3 A Virtual Time CSMA Protocol

Each station in this protocol [8] has two clocks, one for real time, and one for vir-
tual time. The virtual time clock progresses only when the communication medium is
idle; therefore it is always lagging behind the real time clock. Whenever a station has a
message to send, it changes its state from "idle” to "trying" and assigns the current
value of its real time clock to the message. Whenever the value of the virtual time clock
reaches the value assigned to the message, the station starts transmitting the message
over the medium. (Notice that this can happen only when the medium is idle, since only
then can the virtual time clock progress.) This message transmission leads to either a
successful transmission or a collision. In case of a sueccessful transmission the station
returns to its "idle" state. In case of a collision, the station returns to its "trying" state
and assigns the current value of its real time clock to the message and the cycle repeats.

A. Modeling

Figure 4 shows a labeled Petrinet (X,G) that models this protocol. Vector X has
four variables (r,t,s,c), each of them is of type O..n, where n is the number of stations in
the protocol. G has five places IR,T,S,C and six transitions. The initial state of this
Petrinet is as follows:

rx::tszCrsnsznTan:nCr—O and n==1.
B. Analysis

a. Proving Safety Properties: It is straightforward to prove that the following asser-
Lions are invariants:

L. nptnp+np+ngtn.=n (Proof is by induction)
ii. re=np At==npAs=ngAc=n, (Proof is by induction)
il s>1 = t+e=0 (Proof is by induction)
iv. s<<IAs.c=0 (Proof follows from iii)

The mutual exclusion property of this protocol is established by invariants iii and

when

do r

Idle
@?

Success S

\mmmjﬁ

Figure 4

true
i= rtl

Trying %)ﬂ
s+c = 0
= r-1; ti= 4l -

Transmitting T

Collision @
o

L

A labeled Petrinet that models

the virtual time CSMA protocol

when t+c>1

do t:= t-~l; ci= c+

when t=0
do c:= c-1

10

a

b. Proving Liveness Properties: This proof is similar to previous liveness proofs,
and so we omit it.

4.4 A P-Persistent CSMA Protocol

In this protocol 7,12}, whenever a station has a message to send and the medium
is idle, the station changes its state from "not trying" to "flipping a coin.” In the state
of "flipping a coin,” the station decides with probability P to transmit its message, and
with probability I-P to defer its transmission. If the station decides to defer and dis
covers shortly that the medium has remained idle, it reconsiders its decision with the
same probability distribution. This continues until one of two outcomes occurs. (a) The
station while in a "defer" state sees the medium become busy. (b) The station moves
to a "transmitting” state. In the first case, the station enters a "waiting to try" state
until at some later time when the medium becomes idle, it returns to the "flipping a
coin" state. The second case leads either to a successful transmission by the station (in
which case the station returns to its "not trying® state), or to a collision with other sta-
tions (in which case the stalion enters the "waiting to try" state until at some later
time it returns to the "{lipping a coin" state.)

A. Modeling

This protecol can be defined by the labeled Petrinet (X,G) in Figure 5. Vector X
has six variables (f,t,s,c,d,r), each is of type O..n, where n is the number of stations in
the protocol. G has eight places named N,F,T,8,C,D,W, and R, and eleven transitions.
As shown later, the values of [)t,s,c,d, and r al any instant indicate the numbers of
tokens in places F,T,5,C,D and R (respectively) at the same instant. The initial state of
this Petrinet is as {ollows:

[=t=g==c=d= =Np=Np=Dg=Ny==Np=n=n0p=0 and Dy==1.
B. Analysis

a. Proving Safety Properties: It is straightforward to prove that the following asser-
tions are invariants:

Loy pt gt g g ny b np==n (Proof is by induction)
ii. ?:::11}‘;’\,?13nT/\SznSACmncf\danArmnR (Preof is by induction)
i s>1 = t+e=0 (Proof is by induction)
iv. s<<1As.c=0 (Proof follows from iii)
v.r>1 = t=0 (Proof is by induction)

As in the previous protocol, invariants iii and iv establish the mutual exclusion

11

property of this protocol. Invariant v establishes the fact that a station can be in a
"retry" state only if no other station is in a transmitting state.

b. Proving Liveness Properties: The proof is similar to that in previous protocols
and so we omit it.

4.5 A Collision Resolution Protocol

In this protocol [2], each station remains in a "not-trying® state until (2) it has a
message to send over the medium, and (b) all activities over the medium (i.e. successful
transmissions and/or collisions) cease. When these two conditions are satisfied for some
station, the station changes its state from *"not-trying" to "transmitting®, and starts to
transmit its message over the medium. This leads either to a successful transmission (in
which case the station returns to a "not-trying” state, and the cycle repeats), or to a
collision (in which case all the stations involved in the collision take part in a resolution
phase that ultimately leads each of them to transmit its message successiully, and
return to a "non-trying® state).

In a resolution phase, each of the stations taking part in the resolubtion "flips a
coin™; there are two possible outeomes:

i. A stalion gets a "head”: In this case, the station transmibs its message over
the medium. This leads either to a successful transmission (in which case,
the station returns to a "not-trying" state, and the cycle repeats), or to a
collision (in which case each of the colliding stations takes part in a resolu-
tion phase by flipping a coin, and the cycle repeats).

ii. A station gets a "tadl": In this case, the station assigns itselfl a "rank" of
value one, and continues to observe the medium:

a. Il it observes a collision, it increments the value of its rank by one, and
continues to observe the medium.

b. If it observes no activity for some time, or a successful transmission, it
decrements the value of its rank by one (provided that its value is al-
ready greater than one), and continues to observe the medium.

This continues until the rank of the station becomes zero, in which case the
station transmits its message over the medium. This leads either to a suc-
cessful transmission (in which case, the station returns to 2 "not-trying"
state, and the cycle repeats), or to a collision (in which case, each of the col-
liding stations takes part in a new resolution phase, by flipping a coin, and
the cycle repeats).

N Het Trying

s+oo= 0
- -
fi= £+l
j/¥?\ Flipping a coin
P ///' 1-p
=0 E:fff//// when r=0
fi= £-1; do fi= £-1
cr=t+l d:= d+l
[=0 when =0
£ 0 - and t=0
= d-1 W } Waitding do d:= d-1;
to try ri= r+l
t+ste = 0 when d = 0
fi= 41 do ri= r-1;
£r= £41
the = 1 — when t+c>1
=0 and £=0
a=0 and d=0
= t“"l, g{.?. L= t"}.;
= g+1 c:= o+l
Ltrue when t=0
= a1 do c:= c~1

igure 5 A labeled Petrinet that models the

P-persistent CSMA protocol. (For one-persistent

CSMA, the enabling predicate of tFD is

modified from r=0 to false.)

12

A, Modeling

This protocol can be defined by the labeled Petrinet (X,G) in Figure 6. Vector X
consists of fourteen variables:

i. Bach of the ten variables t, s, ¢, f, d, p, r, 1, 1, 2 is of type O..n, where n is
the number of stations in this protocol. (As shown later, the values of these
variables at any instant indicate the numbers of tokens in the corresponding
places in G at the same instant.)

ii. Eacl of three variables a, g, and ~ is of type boolean.

iit. Variable "rank® is of type stack whose elements are taken from the set
{e,s}, where "e" denotes a regular element, and "s" denotes a separator
element. There are four functions to operate on stack rank:

"rank.push(e)" adds an e element at the top of rank.
"rank.push(s)" adds an s element at the top of rank.
"rank.pop" removes the top element of rank.
"rank.top” refers to the top element of rank.

Stack rank is used to order the stations that have gotten "tail" in their last

flipping of coin with respect to their rank values, according to the following
four rules:

a. Each element in the stack corresponds to one station that has gotten a
"tail™ in its last flipping of coin.

b. The top element in the stack correspond to a station whose rank value
is minimum.

c. Two consecutive elements in the stack, where the top element is e cor-
respond to two stations with identical rank values.

1. Two consecutive elements in the stack, where the top element is s cor-
respond to two stations such that the rank of the station corresponding

to the bottom element is higher than that of the station corresponding
to the top element.

The initial state of this Petrinet is as follows: t =5 = ¢ = f = d — pe=r=]

|

i:zan:::nszzncmannDznpan:annixnzx(},nNmn,a

= g == true, v = false, and stack rank is empty.

s

Figure 6 A labeled Petrinmet that models
a collision resolution protocel.

Not Trying

ien stetf+d+ptr+l+itz=0
v rr=rtl

Transmit

en t+c

y Li=0—

when t+e>»1
do ti=t-1; c:=c+l

— i

; =g+l

Success Collision

en true
- s:=g~1

onctptrdi4z=0 when ctpt+r+it+z=0
fe=f-1; doi=d+1 do fi=f-1; 1:=1+1

if o

then rank.push(s,
=g 1= false

else rank.push(e;

if £=0 then oL I=LT

en 1=0 and d+r=1
v di=d-1; pr=p+l

when f=0 and d+r>

do di=d~1; ri=r+l

1ien Ltrue
; pi=p~-l; et 1= true

when d=0

do ri=r-1; fo=f+1

en f4d+ptr=0

nd 8ranketop=e and Bor gj

—when f+d+ptr+i=0
and rank-top=s
®:=trues
if rank-top=s tjﬁﬁ19:=falge; b
rank-pop :

do 1:=1-1;
. zi=z+1;
Final rank-pop

‘}—When true

do z:i=z-1

.en not F

ir=i-1; foi=f+1; g i=true

13

B, Analysis

a. Proving Safety Properties: It is straightforward to show that the following asser-

tions are invariants:

Lbt+s+e+f4+d+l+p+r+idz=n

’ai.t::nT/\anS/\c:nGAfmnF/\danA
lxnL,f\p::ﬂp,/\rmng/\i:::n{/\anZ

i.s > 1=t+c=0

iv.s <1 Asc=0
v.i+d+l+p+r+i+z>1l=t4+s5=0
viisp =0Asr=0A81l=0As2=0
vibd+1l4+p+r+i+z>1=t+c=0
vill. p.c = 0A LLe =0 A z.c = 0
ix.p>l=d+r+i4+2z2=0

P < 1TApi=0Apz=0
¥xlz>1=14+i=20

xi.z <1 Azi=0

x1ii. The number of elements in stack rank = ny

(Proof is by induction)

(Proof is by induction)
(Proof is by induction)
(Proof follows from iii)
(Proof is by induction)
(Proof follows from v)

(Proof is by induction)

(Proof follows from vii)

(Proof is by induction)
(Proof follows from ix)
(Proof is by induction)
(Proof follows from xi)

(Proof is by induction)

Invariants iv, vi, vii, x and xii establish the mutual exclusion property of this

protocol.

b. Proving Liveness Properties: The proof is tedious, but follows the same pattern

as previous liveness proofs, and so is omitted.

5. CONCLUDING REMARKS

The above approach to modeling and verification of LAN protocols has the follow-

ing features:

i. Concise Modeling: Each LAN protocol is completely defined by one
labeled Petrinet whose size (i.e. number of its places, transitions, and edges)

14

is fized, and does not depend on the size (i.e. number of stations) of the
LAN protocol under consideration. This conciseness makes the modeling
Petrinets easier to construct, understand, and explain. In fact, the hardest
part for us in preparing each of the above five examples was to understand
the informal description of the protocol. In each instance, once a protocol
was understood, constructing its modeling Petrinet took a couple of hours.

ii. Straightforward Analysis: The safety and liveness properties of a LAN
protocol are mapped directly to the safety and liveness properties of its
modeling Petrinet. The latter can be established in a straightforward fashion
using the techniques discussed by Keller in [5]. We hope that the simplicity
of these techniques is demonstrated by the above five examples.

iii. Disadvantage (Abstract Modeling): The main drawback of this tech-
nique is that synchronization mechanisms in some LAN protocols are not
modeled explicitly; only their effects are modeled. Consider for example, the
labeled Petrinet in Figure 2 that models a token ring protocol. The special
message called token in this protocol is not modeled explicitly in the
Petrinet. Instead, only its effect of ensuring that the stations transmit one at
a time without any collisions is modeled. Another more subtle example of
this phenomenon is in the labeled Petrinet of Figure 6. According to this
Petrinet, all stations in the "not-trying® state will remain in this state until
all activities over the medium (including collision resolutions) cease. The
Petrinet, however, does not explain the mechanism by which a station in the
"not-trying"” state knows that a current collision resolution phase is over. In
other words, the Petrinet does not model this mechanism explicitly; it merely
models its effect. (For a curious reader, the mechanism is simple [6]: Each
station keeps track of the "highest" existing rank in the LAN by con-
tinuously observing the sequence of successful transmissions, collisions, and
inactive periods over the medium. It then recognizes that the current col-
lision resolution phase is over when it computes that the highest existing
rank is zero.) From these examples, a synchronization mechanism may be
modeled, using our technique, in an abstract fashion, showing only its effects
rather than its details. This seems a "reasonable" price to pay for the
technique’s simplicity and elegance.

The analysis of LAN protocols discussed in this paper does not address the perfor-
mance issues, such as response time and throughput, of these protocols. Thus, an inter-
esting problem that deserves further research is to investigate how to extend the
analysis of labeled Petrinets to cover such performance issues. (An example of such
analysis for regular, unlabeled Petrinets is discussed in Molloy [9].)

Hoy

REFERENCES

[1] Bux, W., "Local area subnetworks: a performance comparison," Proceedings
of the IFIP W.G. 6.4 Local Area Networks Zurich Workshop, North-Holland
Press, August 1980, pp. 171-1686.

|2] Capetanakis, "Tree algorithms for packet broadcast channels,” IEEE Trans-
actions on Information Theory, Vol. 1T-25, Sept. 1979, pp. 505-515.

(3] Diaz, M., "Modelling and analysis of communication and cooperation
protocols using Petri net based models," Proceedings of the [FIP W.G. 6.1
Second International Workshop on Protocol Specification, Testing and
Veri fication, North-Holland Press, 1982, pp. 465-510.

[4] Gouda, M. and C. K. Chang, "Proving liveness for networks of communicat-
ing finite state machines," Tech. Rep. TR-84-04, Dept. of Comp. Sc., Univ.
of Texas at Austin, Feb. 1984, Submitted for journal publication.

[5] Keller, R. M., "Formal verification of parallel programs,” Communications
of the ACM, Vol. 19, No. 7, July 1976, pp. 371-384.

6] Massey, J., "Collision resolution algorithms and random-access
communication," UCLA Tech. Report UCLA-ENG-8016, 1980,

[7] Metcalfe, R. and D. Boggs, "Ethernet: distributed packet switching for local
networks," Communications of the ACM, Vol. 19, No. 7, July 1976, pp.
395-404.

(8] Molle, M., "Unification and extensions of the multiple access communica-
tions problem," UCLA Tech. Report CSD-81073, June 1981.

[9] Molloy, M., "Performance analysis using stochastic Petri nets," IEEE
Transactions on Computers Vol. C-31, No. 9, Sept. 1882, pp. 913-917.

[10] Peterson, J., Petri net theory and the modeling of systems, Prentice-Hall,
1981,

[11] Sasha, D. E., A. Pnueli, and W. Ewald, "Temporal verification of carrier-
sense local area network protocols,” Proceedings of Principles of Program.-
mang Language 1984, pp. 54-65.

[12] Tobagi, F., "Multiaccess protocols in packet communication systems," IEEE
Transactions on Communications, Vol. COM-28, No. 4, April 1980, pp.
468-488,

