TID - A TRANSLATION INVARIANT DATA
STRUCTURE FOR STORING IMAGES

David S. Scott and S. Sitharama Iyengar®
Department of Computer Sciences
University of Texas at Austin

Austin, Texas 78712

TR-84-16 June 1984

*Louisiana State University at Baton Rouge.

ABSTRACT

There are a number of techniques of representing pictorial
information, among which are borders, arrays, and skeletons. Recent
research on quadtrees has produced several interesting results in dif-
ferent areas of image processing. Recently Samet [1] applied the
concept of skeleton and medial axis transform to images represented by
quadtrees and defined a new data structure called QMAT. All the
techniques described in the literature for storing pictorial informa-
tion based on quadtrees suffer from sensitivity to the placement of
the origin.

This paper introduces a new structure for storing images
called a TID (for Translation Invariant Data structure). TIDs have
the following characteristics:

1) A TID is invariant under translation

2) The image does not have to be a square of size 2" x 2™,

Any square (or rectangular) image can be converted to a
TID.

3) The TID of an image will have (many) fewer black nodes

than the corresponding quadtree or QMAT.

4) The space/time costs of computing a TID are (almost)

linear in the number of black modes.

Keywords and phrases: Quadtree, TID, image processing, algorithm.

CR categories 3.63, 8.2

1. INTRODUCTION

Efficient methods for region representation are important for
use in manipulating pictorial information. There are a number of
techniques of representing pictorial information, among which are
borders, arrays, and skeletons [l]. The quadiree has recently become
an important data structure in image processing. The early history of
quadtrees may be traced in papers by Alexandridis, Klinger, Dyer,
Hunter, Steiglitz and Tanimotto, Pavlidis, ([2], [3], [4], [5], [6]
(7.

Recent research on quadtrees has produced several interesting
results din different areas of image processing. For details, see
papers by Dyer, Rosenfeld, Samet ([8], [9], [10]). Much work has been
done on the quadtree properties and algorithms for translations and
manipulations have been derived by Samet ([11], [12], [13] [14], [17],
[181), Dyer and Schneir ([15], [16]) and others. The question of
efficient quadtree storage was addressed by Gargantini, Jones, Iyengar,
Grosky, Jain and Samet [19-23].

Recently Samet [1] applied the concepts of skeleton and medial
axis transform to images represented by quadtrees and defined a new
data structure termed QMAT. Basically, this data structure results in
a partition of the image into a set of nondisjoint squares having
sides of arbitrary length (but not arbitriry centers)rather than, as
in the case of quadtrees, a set of disjoint squares having sides of
lengths which are powers of 2. This definition is due to Samet. For

more on this refer to [1].

The data structures proposed by Samet, Dyer, Rosenfeld, Jones,
Iyengar, Gargantine and others, can be very sensitive to the placement
of the origin. In this paper, we demonstrate the usefulness of new
structure called a TID (Translation Invariant Data structure) with the
following characteristics.

(1) TIDs do not have to start with a square of size 2n X 2n

Any square (or rectangular) array of pixels can be turned
into a TID.

{2) The TID of an image will generally have many fewer black

nodes than other corresponding structures.

The main advantage of a TID over other structures (Gargentine,
Ivengar, Samet) is that it is translation invariant. Details will be
discussed in Section 3 of our paper.

The remainder of the paper is organized as follows: Section 2
describes previous methods of storing images and reveals their sensi-
tivity to the placement of the origin. Section 3 defined TIDs and
presents a formal algorithm for computing them (which will be pre-
sented in pseudo-Pascal). Section 4 discusses storing and searching

TIDs efficiently. Section 5 summarizes the advantages and dis-

advantages of TIDs.

2. COMPARISON OF SENSITIVITY

2.1 Current Representation Methods--A Quadtree is a tree

structure with the restriction that any node must have either four
offspring (or children or descendants) or none. In a quadtree repre-
senting a picture, the root represents the whole picture. Each
offspring represents one quadrant in the order Northwest, Northeast,
Southwest, and Southeast. In turn, their offspring each represents a
subquadrant of the four quadrants and so on until every terminal node
represents a region which is either all black or all white. Figures 1
and 2 show a typical picture of a simple region and its quadtree
representation. In quadtrees, parents are labelled 'GRAY' and leaves
are either 'BLACK' or 'WHITE.'

Various improvements in quadtrees have been suggested
including forest of quadtrees [20, 21], hybrid quadtrees [23, 24],
linear quadtrees [19], optimal quadtrees for image segments [21]. All
of these methods try to optimize quadtrees by removing some or all of
the grey and white nodes. All of them maintain the same number of
black nodes.

Recently Samet [1] presented a modification of gquadtrees
called QMAT (for quadtree medial axis transform). In a QMAT, black-
nodes in the original quadtree are allowed to expand to absorb
adjacent smaller black nodes. Thus whiie quadtrees decompose the
image into certain disjoint squares of Z-power order, (QMATs cover the
image with squares of arbitrary order (but not of arbitrary center)
which are not disjoint in general. Black nodes in QMATs are allowed

to expand so that they overlap the boundary of the image. Thus QMATs

can lead to a significant reduction in BLACK nodes compared to the

original quadtree.

2.2 Sensitivity of Placement

All the methods of representing images given above suffer from
sensitivity to the placement of the origin. Two images which are
translations of each other can give rise to very different looking
structures. We examine this phenomenon for the above methods

nanZH*l black square embedded in a 2"k

using the example of a 2
image. In case A the black square is in the upper left corner while

in case B it is translated down and right by one pixel. TFigure 1

shows cases A and B for n=3.

Z[H[o|o

& v e @ o e

: Case A - Case B

Figure 1. Sample regions

Figure 2 gives the quadtrees for these two patterns and Figure 3

gives the number of each kind of node.

(7 QLI
n <1l
J KL M
Figure 2. Quadtrees for Case A and Case B of Figure 2.
CASE A CASE B
Grey Node 1 13
White Node 3 27
Black Node | 1 13
Figure 3: Number of each kind of node in the quadtrees for n=3.

Column A in figure 3 is constant for all values of n. We will

now derive the entries in column B for arbitrary n.

THEOREM 1.

2n+1+

Proof:

relations among certain subtrees.

The quad tree

2%43n-6 white nodes, and 2

Let gi(n), bi(n), and wi(n) (for i=1, 2,

grey,

senting specific 2%z arrays of pixels.

black,

and white nodes

are given in Figure 4.

Figure 4.

respectively

nt+l
for placement B has 2

A

in the gquadtrees

+2n—3n~2 black nodes.

-3 grey nodes,

To prove the formulas it is necessary to derive recurrence

5) be the number of
repre-

The five arrays of interest

7

=
il
fiaN

The following recursion formulas are satisfied

la) gl(n)
b) bl(n)
c) wl(n)

1+ 2gl(nﬂl)
2 + 2b1(n—1)

0+ Zwl(nal)

&

2a) gz(n)
b) bz(n)
c) wz(n)

I}

gl(n)
wl(n)

bl(n)

3a) g3(n) = g, (0) 4a) g, (n) =1+ 2g, (n-1) + g, (n-1)
b) bB(n) = bz(n)-l b) b4(n) =1 + Zbl(n—l) + ba(n-l)
c) w3(n) = wz(n)+1 c) wa(n) = 2wl(n~l) + wa(n—l)

5a) 85(n) =1+ gs(n"l)

b) bS(n) = bS(n—l)

= -+ -
c) ws(n) 3 w5(n 1)
For example la) comes from the fact that subdividing the image

yields one grey node, two black squares, and two subimages of type 1.

The boundary conditions are

gl(O) =0 g,(0)=0 g,(0) =0 g, (0) =0 g5 (0) =0
bl(O) =0 bz(O) = 1 b3(0) = 0 ba(O) = 0 bS(O) = 1
wl(O) =1 w2(0) =0 w3(0) =1 wa(O) =1 wS(O) = 0
The solutions are

g (n) = 2"-1 g, (n) = 2"-1 g,(n) = 2M-1

wl(n) = 2" wz(n) = an+1—2 wB(n(= 2n+1_1

by (n) = "2 by = 2" by(n) = 271

g4(n) = 2™ gs(n) = n .

wa(n) = 2n+1_1 ws(n) = 3n

ba(n) = 2n+2—3n—4 bs(n) =1

Finally the quadtree for case B can be seen to have one subtree

(2“‘1x2“'1) of type 4, two of type 3, and one of type 5. Thus, the

case B quadtree has

1+ ga(n-l) + 2g3(n~1) + gS(n—l)

1+ 2% (n-1)-2 + 2% -1) + n-1 n+l

H
(]
[
w

grey nodes. Similarly it has

+
AL

i

ba(n—l) = 2b3(n—1) + bs(n—l)

black nodes and

o+l o0y 3ho6

H
N

wA(n—l) + 2w3(n—1) + ws(n—l)

white nodes. O

OBSERVATION 1

The guadtree for case B grows exponentially in n while the
gquadtree for case A has 5 nodes independent of n. How do the various
representation schemes apply to case B? Most of the schemes eliminate
some or all of the pointers and white nodes but do nothing to black
nodes. Thus linear quadtrees, compact quadtrees, hybrid quadtrees,
and forests of quadtrees all are inevitably forced to store

ntl

2 + 2" -3n-2 black nodes plus perhaps some others. The only scheme

capable of eliminating black nodes is Samet's QMAT.

OBSERVATION 2

The QMAT for case B has an interesting structure. Most of the
image is covered by only four nodes but a sequence of decreasing sized
nodes is needed to cover the rest. Figure 5 shows the 172 black
blocks for case B with n=6. The four blocks labeled A expand to cover
most of the square but the blocks labeled B are needed to cover the
rest.

Based on the above observation, we can state the following

theorem.

10

11

|

HEEREN

? .

L]

L]

!

I

[

L LT LT T T I T T T T

Figure 5: Shows the 172 black blocks For Case B with n=6.

12

THEOREM 2. For n > 5 the QMAT for case B has
2n-2 black nodes
4n-6 white nodes and

2n~-3 grey nodes.

Procf. The QMAT has the structure ()

vy

The subtrees A and B are reflections of each other and A has the form

(n=5) times

Thus the number of black nodes is 2x(n-5) + & = 2n-2
The number of white nodes is 4(n-5) + 14 = 4n-6
The number of grey nodes is 2{(n-5) + 7 = 2n-3.

0

Sensitivity to the placement of the origin is particularly annoying
when translating dimages (for example when several images are
combined). As the above example shows, even small translations can
make enormous changes din the underlying representation. The
possibility for black nodes to overlap the boundary in QMATs creates a
further obstacle to correctly combining several QMATs. In the next
section we introduce a new data structure for storing images which is

translation invariant.

13

MAIN RESULT
3. TID - A TRANSLATION INVARIANT DATA STRUCTURE
3.1 The Medial Axis Transform
The maxnorm (or infinity norm) of a point (a,b) is max{ a , b

The distance between two points (a,b) and (c,d) is
D((a,b), (c,d)) = max(a-c , b-d).

The set of all points B which are a distance o from a fixed point A is
a square of size 2a centered on A.

The medial axis transform with respect to the maxnorm (®-norm)
is the set of all maximal black sguares contained in the image. This
concept was exploited by Samet in deriving QMATs. The medial axis
transform (MAT) of an image is clearly translation invariant since it
only depends on the intrinsic geometry of the image. In this section
we will investigate various aspects of MATs. 1In particular section

3.5 discusses the desirability of eliminating redundant squares.

3.2 Computing Distances

Before determining the maximal squares in an image, it is
first necessary to compute the distance from each black pixel to the
nearest white pixel (or boundary). This is not a simple task which
may explain why MATs have not been investigated previously in this
context.

The essential problem is shown in figure 3.2.1. All the

pixels are black except A, B, and C. A is the closest white pixel to

14

).

15

D, A and C are equally distant from E but C is closest to F and B is
irrelevant. Any algorithm which sequential processes D, E, and F must

be capable of moving smoothly from considering A to considering C

while ignoring B.

NN

N

Figure 3.2.1 Sample region to comptake the distance 7rom each black
pixel to the nearest white pixel (A,B,C).

One approach is to compute the distance from each white pixel
to every black pixel and simply maintain the minimum distance at each
black pixel. This is easy to code but it is a quadratic algorithm.
The algorithm we present here is more complicated but it is also more
efficient.

&®

The algorithm to compute the maxnorm distances has two stages.
In the first stage the pixels are accessed by row and each black pixel
is assigned the distance to the nearest white pixel (or boundary) in
its row. The first stage algorithm is simple. Pixels in a row are

visited from left to right and the distance from the closest white

pixel on the left is recorded. Whenever a white pixel is encountered

16
after K black pixels, the last K/2 ©black pixels are revisited to
replace their horizontal distances with the smaller distance from the
white pixel just encountered.

The algorithm for stage 1 follows.

Each pixel ali, j] has three fields
Color (black or white)
horiz (horizontal distance to white)

dist (the final distance to white)

procedure rowpass(a,numrow,numcol)
(* stage 1 - set horizontal distances)
begin
for i:=1 to numrow do
begin
lastwhite:=0;
for k:=1 to numcol do
if afi,k].color=black
then ali,k].horiz:=k-lastwhite (¥ set preliminary value ¥*)
else begin
if lastwhite <> k-1 then left (i, lastwhite, k,a);
ali,k].horiz:=0;
lastwhite:=k
end;
if lastwhite # numcol then left (i, lastwhite, numcol+l, a);
end;

end;

procedure left (i,jl1,j2,a)
(* back up to set final horiz values
begin
m=j2-((j2-j1) DIV 2);
for k:=j2-1 downto m do
ali,k].horiz:=j2-k;

end;

wta
W

17

18

0000 00
doojgloo
olga 4]0'0
ol 227110
1723110 O
{12410 0.0
12 4]0 0|0
00 00 00

Figure 3.2.2 Result of applying rowpass algorithm to a particular
image.

It should be clear that the above algorithm in linear in the
number of pixels. In particular, each white pixel is visited once,
each black pixel is visited either once or twice, and at most half of
the black pixels are visited twice. Figure 3.2.2 shows the result of
applying rowpass to a particular image.

The second stage of the algorithm is more complicated. All
the information needed to correctly compute the distance function for
all the pixels in a column is contained in the column. However it
seems to be impossible to do the calculation in time which is linear
in the number of pixels in the column. ’As in stage 1, the stage 2
algorithm will visit each pixel from top to bottom, computing the
distance to the nearest white pixel above the current pixel, back-
tracking whenever a white pixel is encountered after a black pixel to
set the final wvalue. In the horizontal algorithm all distances are

computed with respect to a fixed white pixel (lastwhite) until the next

white pixel is encountered. Unfortunately this is not true for the
vertical algorithm as shown in figure 3.2.1.

For a fixed column (say the ith), let horiz(j)=horiz(j,i) be
the horizontal distance from (j,i) to the nearest white pixel in the
jth row (as computed by stage 1). (If the (j,i) pixel is white, then
horiz(j,1)=0.) For k>j the distance from the white pixel in the jth

row to (k,i) is

D(k,j,i)=D(k,j) = max(horiz(j),k-j). (3.2.1)

As k idincreases, D(k,j) is constant {equal to horiz{(j,i)) until
k-j=horiz{(j,i). D(k,j) increases linearly for all larger values of k.
The distance recorded at (k,i) should be the minimum value of D(k,j,i)

for all j<k.

Definition: For fixed k (and i) the row j for which the minimum

distance occurs is called the active row. (If several rows yield the

minimum distance, choose the largest row index.)

Thus for each k it is necessary to find the active row. The following

results makes this process easier.

&£
Lemma 1. If j<2 and D(k,2)<D(k,j) then for all m>k, D(m,2)<D(m,j).
Proof. Induction.

The basis step is part of the hypothesis.

Assume that D(m,2)<D(m,j), i.e.

19

20

max (horiz(£) ,m-2)<max(horiz(j),m-j) (3.2.2)

The only way that D{(m+1,2)}>D(m+1,3i) can occur is if the following 3

equations hold

(1) D(m*1,£)=D{m,2)+1
(2) D(mtl,3)=D{m,j)

(3) D(m,2) = D(m,j)

From (1) we get horiz(£)<m-2
From (2) we get horiz{(j)>m-j

From (3) we get horiz(j)=m-2

Combining the last 2 inequalities yields j>f£ which is a contradiction..

Corollary 1. If A(k) is the active row index of step k then A(k) is

an increasing function of k.

Corollary 2. If row j is not yet active at step k and

horiz(k)=D(k,k)<D(k,j) then row j will never be active.

These results would seem to lead to a linear algorithm.
Simply move down the column from one active row to the next. Un-
fortunately there is no way to recognize jthe next active row without
examining the column down to k. Instead we will keep a 1list of

potentially active rows. The algorithm has three parts:

1. Add the pair (k,horiz(k)) to the list of potentially active rows.
2. Set the distance for the (k,i)th pixel to D(k,j) where j is the

top element of the list.

21

3. If m is the second element in the list (if it exists) and

D(k,m) = D(k,j) then delete j from the list.

The Add process requires more explanation. The list is to
contain all the potentially active rows in order with the active row
at the top. It is not sufficient just to append row k to the bottom
of the list. This would imply that each row in turn becomes active
which is contradicted by figure 3.2.1. Rather it may be necessary to
delete some rows from the bottom of the list before appending row k.
Corollary 2 gives the appropriate criterion for deleting a row from

the list. In particular, row j is deleted from the list at step k if

D(k,j)>D(k,k)=horiz(k).

This dinsures that rows which can never become active are deleted from
the list.

Thus each row is added to the list and either it survives to
become an active row, it is deleted from the list when some later row
is added, or it may possibly still be in the list when the bottom of
the column is encountered.

To finish showing that the algorithm is correct, it is
necessary to show that each row which reaches the top of the list is

actually the active row. The following lemmas are sufficient.

22

Lemma 2. If j1<j2<...<jm are the rows in the list at any time, then
horiz(jl)<horiz(j2)<...<horiz(jm).

Proof. Suppose not. Let £ and p be two rows on the list with £<p but

horiz(2)>hdist(p). Then at step p
D(p,2)>D(p,p)

which means that row £ would have been deleted when row p was added to

the list. O

Lemma 3. If j.<j.<...<j are the rows in the list at the beginning of
Lemita 2 172 - g 2

step k then

D(k,jl)gn(k,j2)<n(k,j3)<...<D(k,jm).
The first inequality follows from part 1 of each step which deleted j,
from the list at any step £ for which D(Q,j1)=D(2,j2) and since dis-

tances change by at most from one step to the next it is impossible for

D(k,jl)>D(k,j2) without having D(Q,j1)=D(2,j2) for some previous £.
&

Suppose D(k,jl) <D(k,2) >D(k,p) for L£<p both in the 1list.

Examining the second inequality we find

max(horiz(ﬂ),k~2)imax(hdist(p),kmp)

23

By assumption £<p and by Lemma 2 horiz(£)<horiz(p) and so we must have

horiz(2)<k-1 (=)
horiz{(p)>k-p

k-2>horiz(p)

From the first inequality (¥) we have

max(horiz(jl),k~j1)§max(horiz(£),k—2) (#%)

By lemma 2 horiz(jl)<horiz(2) and by (¥) horiz(£)<k-£. Substituting

pe

these in (¥%) yields

k-3, <k-2

which contradicts j1<2. O

Thus the distances are strictly increasing except perhaps for the
first omne. Thus the active row is always at the top of the list
except when equality occurs compared to the second element. This is
precisely when part 3 of the algorithm will delete the top element and

&
restore the invariant that the active row is at the top of the list.

24

THEOREM 3. For each black pixel the above algorithm correctly com-
putes the distance to the nearest white pixel which is in the same or

earlier row.

Proof: Discussion above.

It is clear that after a downward pass through a column, it is
necessary to have an upward pass to finish computing the correct
distance. The only difference in the upward pass is that the extra
information available from the downward pass (that is the distance to
the closest white pixel above the current one) allows some potential

savings.

Lemma 4. If at step k of the upward pass horiz(k)> dist(k) then the
distance computed in the downward pass, then row k need not be added

to the list.

Proof: There must be some j<k with D(k,j)<horiz(k) in which case
D(m,j)<D{(m,k) for all m<k and so row k will not influence any of these
distance values. [
e

The formal algorithm for the vertical pass follows. The addi-
tional data structure needed is LIST. LIST is a record with three
fields TOP, BOTTOM, and ROWS. TOP and BOTTOM are integer pointers and
ROWS [1..NUMROW,1..2} is an array of integers. TOP points to the
active row, BOTTOM points to the bottom of the 1list, and the

two elements in ROWS are of the form k, horiz(k). LIST starts with

25
BOTTOM=1, TOP=1 and ROWS(1,1)=0 and ROWS(1,2)=0. This zero row repre-

sents the virtual white pixel at the boundary.

procedure columnpass({a,numrow,numcol,list)
(* Stage 2 vertical pass - sets distances %)
begin
for i:=1 to numcol do
begin
lastwhite:=0;
init(list,0);
for k:=1 to numrow do
if afk,i].color=black
then begin
add (k,alk,i].horiz,list);
alk,i].dist:=distk(k,list.top,list)’
checklist(list)
end
else begin
if lastwhite # k-1
then up{i,lastwhite,k,list,a);
init(list,k);

end;

if lastwhite # numrow then up(i,l%hstwhite,numrow +1, list,a);

end;

end;

{(* part 1
(* part 2 -
(* part 3 *

the subsidiary modules follow:

26

procedure init (list,k)

(* initialize list with a white pixel in row k %)

begin
list.top:=1
list.bottom:=1;
list.rows[1,1]:=k;
list.rows[1,2]:=0;

end;

27

The next module of the algorithm computes the infinity norm

distance from k to row £ of list.

28
function distk(k,£,list)
(* compute infinity norm distance from k to row £ of list)

distk:=max(abs(k-list.rows[£,1]), list.rows [£,2]);

procedure add(k,horizk,list)
(* locate place to add new row *)
begin
j:=list.top;
done:=false;
while not done do (* linear search for insertion point *)
if j > list.bottom
then begin
assign (k,horizk,j,list);
done:=true
end
else
if hdistk < distk(k,j,list)
then begin
assign (k,horizk,j,list);
done:=true
end e
else j:=j+l;

end;

procedure assign (k,hdistk, j,list)
(* put row k in list *)
begin

list.bottom:=j;

list.rows[j,1]:=

i
e

list.rows[j,2]:=hdistk

end;

procedure checklist (k,list)
(* delete top of list if appropriate *)
begin
if list.top # list.bottom
then if distk(k,list.top,list)=distk(k,list.top + 1,list)
then list.top:=list.top *+ 1;

end;

30

procedure up(i,jl,j2,lista)
(* make an upward pass from j2-1 back to jl+1 %)
begin
init(list,j2);
for k:=j2-1 downto j2+1 do
begin

if alk,i].dist>alk,i].horiz then add (k,alk,i].horiz,list); (¥*part 1%)

alk,i].dist=min(alk,i].dist,distk[k,list.top,list]); (*part 2%)
checklist(k,list); (*part 3%)
end;

end;

The stage 2 algorithm is almost linear in the number of
pixels. Each white pixel is visited once and each black pixel is
visited twice. The amount of work at each step is constant except in
the procedure ADD. ADD must search a list to determine where to place
row k. The length of the 1list is not bounded by a constant and may
have O(numrow) entries in it. The procedure ADD given above uses a
sequential search, for simplicity, which yields O(numrow) bound on
time. Thus the total time for the algorithm as given is bounded by
O(numcol*numrowz). However the list is ordered and stored in an array
and so the given ADD could be replaced by a binary search whch has a
time bound of O0(log{(numrow))}. Thus the time bound for the entire
algorithm could be reduced to O(numcol*numrow*low(numrow)). Finally
if numrow<numcol the stages of the algorithm could be reversed. So we

have:

31

32

THEOREM 4. The time required by the distance algorithm is

0 (numrow®*numcol®log{min{numrow,numcol})).

Proof. Discussion above.

Even the above bound is pessimistic. We now show that if the
horiz wvalues are independent then the expected length of the list is
only log(numrow) even ignoring the fact that rows are eventually
deleted from the top of the list.

Theorem. Assuming that all permutations of the horiz values
are equally likely, then the expected number of elements in list is

6 (log(numrow)) after numrow adds.

Proof. Start from the bottom of the column and work up. The bottom

row is in list with probability 1. The next to bottom element has

1

probability of % of being in the list, and so on. Thus the expect
length of the list is
numroy

b3

i=1 *

which is well known to be log{numrow)+8(1).

Cor. The expected running time of the algorithm to compute maxnorm

@
distances is

8 (numrow*numcol*log{log(min(numrow,numcol})))

3.3 Locating Maximal Squares

Let D(i,j) be the distance from (i,j) to the nearest white
pixel as computed by the algorithm in section 3.2. The square
centered on (i,j) will be the largest black square centered on (i,j)
(which will always be of odd order with side s = 2% D(i,j)-1. A

constant 2-square will be a 2x2 square of pixels which all have the

same D value. The square centered on a constant 2-square will be the

largest black square centered on the 2-square {which will have even
order with side equal to twice the constant D value). Two pixels will
be considered adjacent if they share a common side or cormer. Two
adjacent pixels will be called neighbors. The key result for locating

maximal squares is stated in the following theorem:

33

THEOREM 5 A black square is maximal if and only if either:
(1} It is centered on a constant 2-square or
(2) It is centered on (i,j) and both
(a) D(i,j) is a local maximum of D.

(b)Y (i,j) is not part of a constant Z-square.

Proof. {(—>) Let Q be a maximal square. Suppose §Q has even order and
let T be the 2-square which Q is centered. Suppose T is not constant.
Let D(i,j)>D(k,m) for two pixels in T. Then the odd ordered square
centered on (i,j) strictly contains Q which is a contradiction. So T

must be constant. This completes the l-part of the theorem.

Suppose Q has odd order with center (i,j). Suppose (k,m) is adjacent
to (i,j) with D{(k,m)>D(i,i). Then the square centered on (k,m) will
strictly contain Q which is a contradiction. This is 2a. Suppose
(i,j) is part of the constant 2-square T. Then the square centered on
T strictly contains @ which is a contradiction. This is 2b. This

completes (—>)

{(<—) Let Q be the square centered on the constant 2-square T and
suppose Q is strictly contained in some larger black square 5. Let
(i,j) &T and (k,m)eT be such that (i,j) ;s closer to the center of §
then (k,m). Then the square centered on (i,j) is contained in § and
contains no boundary squares of S, which contradicts the definition of

D(i,j). Thus Q must be maximal.

34

35
Suppose Q is centered on (i,j) and both 2a and 2b hold and suppose Q

is strictly contained in a larger black square 8.

Suppose S is of odd order centered on (k,m). By symmetry we may
assume either (a) i=k and j<m or (b) i<k and j<m. In case (a)
D(i,3j+1)=D(i,j)+1. In case (b) D(i+l,j+1)=D(i,j)+1l. Both possibili-

ties contradict 2a and so S may not be of odd order.

Suppose S is of even order with central 2-square T. Let (k,m) be the
pixel in T closest to (i,j). If (i,j)#(k,m) then the odd order square
centered on (k,m) strictly contains Q. This is the previous case

which contradicts 2a.

Finally suppose (i,j)=(k,m). If (n,p) is some pixel in T then D(n,p)
cannot be greater than D(i,j) by 2a and if D(n,p) is less than D(i,j)
then Q is not contained in S. Thus T is a constant 2-square which

contradicts 2b. Hence Q is maximal. O

The characterization of maximal squares given in Theorem 5 is
local. This leads immediately to a linear algorithm for locating
maximal squares. For each black pixzel, simply examine all adjacent
pixels to determine whether 1 or 2 hozds. The algorithm can be
improved somewhat by reducing the constant. For reasons which will be
made clear in the next section, the algorithm presented below only
locates which pixels are local maxima of D. The algorithm processes

the rows from top to bottom and left to right in each row. The

current distance value is always compared to its W and NE neighbors.

36

Depending on the comparison with the W neighbor it may or may not be
compared to its NW and N neighbor. The algorithm requires special

processing of the first row, first column, and last column teo avoid

illegal array subscripts.

procedure maxima(a,numrow,numcol)

(* mark local maxima by horiz=1 and horiz=0 otherwise *)
begin

2.

v special first row *)

1

(

N

for k:=1 to numcol do a[l,k].horiz:=a[l,k].dist;
(* other rows ¥)
for i:=2 to numrow do

begin

~~
ot
i

special first element of row *)
ali,1].horiz:=ali,1].dist;
if ali-1,2).dist=2 then a[i,l1].hdist:=0;
(* generic row element *)
for k=2 to numcol-l do test (i,k);
(* special last element *)
ali,numcol].horiz:=ali,numcol].dist;
if ali,numcol-1]}.dist=2 then afi,numcol].horiz:=0;

end;

38

procedure test (i,k)
begin
ali,k].horiz:=1;
if ali,k].dist = 0
then a{i,k].horiz:=0
else begin
{(* test NE neighbor *)
if ali,k].dist<a[i-1,k+1].dist then a[i,k].horiz:=0;
if a[i,k].dist>ali-1,k+1].dist then ali-1,k+1] . horiz:=0;
(* test W neighbor and (NW and N if necessary) *)
if a[i,k].dist<ali,k-1].dist
then ali,k].horiz:=0
else
if ali,k].dist=afi,k~1].dist
then begin
if a[i,k].dist<a[i-1,k-1].dist then a[i,k].horiz:=0; (* NW *)
if ali,k].dist<al[i-1,k].dist then al[i,k].horiz:=0; (* N %)
end
else begin (* ali,k}.dist>ali,k-1].dist *)
ali,k~1].horiz:=0;

@

if afi,k].dist>a[i-1,k-1}.dist then al[i-1,k-1].horiz:

i}
o

if ali,k].dist>ali~1,k].dist then al[i-1,k].horiz:=0;
end;
end;

end;

3.4 Eliminating Redundant Maximal Squares

Not all maximal squares may be needed to cover an image.
Figure 3.4.1 displays a black rectangle which is the union of two
squares. However the dimage contains six maximal squares (each
centered on a 3). It is clearly desirable to eliminate these
redundant squares. The squares at the ends are needed and all of the
others are redundant. In this case a unique pair of maximal squares
covers the image.

If we make the rectangle 11 wide instead of 10 then one
additional square is needed. Both ends are still required but any one

of the five dinterior squares could be used. (See figure 3.4.2).

111/2/2/112141411
1122 272 22 27211
1123 3% 33 %3 21
112 2 2222 22
[RERERERERE R R L]

Figure 3.4.1 Displays a black rectangle which is the union of
two squares.

39

40

1121 11 1T1]1
11212 2 2/2/2'2/2 214
112131313333 3121
1222212 2l2 22!y
14142 1/414114121211

Figure 3.4.2 Expansion of the rectangle described in Fiaure 3.4.1

A maximal square is redundant if it is covered by the rest of
the maximal squares.

For simplicity we will first discuss determining whether an
cdd order maximal square 1is redundant. A maximal square Q dis
redundant if it is covered by itwo or more maximal squares. The most
common situation is when Q is covered by two squares (from opposite
sides). The two covering squares may be the same size as Q (figure
3.4.1), larger than Q (figure 3.4.3), or mixed (figure 3.4.4). It is
impossible to cover § with only two squares if one of them is smaller

than Q.

41

14]1]171]

112272 ¢

112132 1/41/1 1

1212222 21

L/11/12122 32 1
1122 2 1
11111

Figure 3.4.3

FIEAR

212 2

12 3

12 2

111 12

Figure 3.4.4

Let Q be the redundant square and let (i,j) be its center. In
all three figures we see that D(i,j-1)=D(i,3j)=D(i,j+1l). We now prove
that this (or the vertical analog) always occurs if Q is covered by

two other squares.

42

Lemma 1. Let Q be a maximal square centered on (i,j). Q can be
covered by two other sguares if and only 1if one of the following
holds:

a) D(i,i-13=D(i,j)=D(i,ji+1)>1.

b) D(i-1,3)=D(i,j)=D(i+1,j)>1.

Proof. (<——) By symmetry we may assume a) holds.

Let S. by the square centered on (i,j-1) and let T be the square
centered on (i,j+1). S covers all of Q except the right most column.
T covers all of Q except the left most column. Since D(i,j)>1, Q SUT.
Neither S nor T are contained in Q and hence each must be contained in

some other maximal square. Hence Q is covered by two maximal squares.

(—>) If D({(i,j)=1 then Q intersects no other maximal square and so
D(i,j)=1 is impossible. Let Q _ SUT where Q, S, and T are distinct
maximal squares. Since Q S, there must be some edge of Q which § does
not cover at all, say the right edge. T must cover the entire right
edge and hence D(i,j+1)>D(i,j). Since Q is maximal D(k,j+1)>D(i,j) is
impossible and so D(i,j+1)=D{(i,j). Since Q T, T must not cover any of
the left edge of Q. Hence S covers the entire left edge of (Q and so
D(i,j~1)=D(i,j). If S doesn't cover the bottom (or top) edge of Q

then D(i-1,3j)=D(i,j)=D(i+l,j) instead. O

Lemma 1 gives a simple local characterization of redundant squares
which are covered by 2 other squares. Unfortunately, it dis much
harder to characterize maximal squares which take 3 or more squares to
cover them. Figures 3.4.5, 3.4.6, and 3.4.7 give three examples of

such squares.

|1
1
1
o)
O
0

Figure 3.4.5: Examine the upper right corner of the red squave for maximal square.

(The big red square is covered by the 3 small red squares)

Figure 3.4.6: Examine th2 en%ire right edge of the red squars for maximal squares.

(The big red square is covered by the 3 small red squares)

colof1a]1(1]1]0
i1 21722 2/1}0
12 2 "i’":’i“‘l")
112333 2|1]1
1] 432211
nh 1513 12
olL 22201
ojL i 1141
ol1 TOEOZ‘O

Figure 3.4.7: Examine the wheole square for maximal sguares.
(The big red square is covered by the 4.small red squares)

43

44

As can be seen from the figures there is no local way of
determining whether a maximal square is covered by 3 or more other
maximal squares. In figure 3.4.5 it is necessary to examine the upper
right corner of the red square. In figure 3.4.6 it is necessary to
examine the entire right edge of the red square and in 3.4.7 it is
necessary to examine the whole square! These cases are much rarer
than when only two squares are needed. Furthermore if we modify

figure 3.4.5 to figure 3.4.8 we see that the red square is still

olojojoj11L
olololo ¢]2 1
EA AR)
L2 2/21o0/o
11 1lolo
oloj1]2/4 0|0
ooj1]1i1loo

figure 3.4.8: Modification of figure 3.4.5 to show that the red
square is still redundant.

redundant but that it would be better to keep the red square and
eliminate the two squares centered on the circled 2's. In general
there is a complex set of dependencies whf&h are expensive to compute.
Once having computed them it is then a difficult task to determine an
optimal set of squares to delete.

For these reasons only redundant squares which can be covered

by 2 other squares will be considered for deletion. By lemma 1 such

45
squares are always signalled by a consecutive sequence of pixels
(either horizontally or vertically) with constant D value. Only local
maxima of D need be considered for elimination, so we assume all of
the pixels are local maxima except possibly the ends. Let the D value
be k and let n be the maximum number of consecutive pixels with

constant D Value.

n pixels

k1 k] Kjeceoocessosos o5 2 5s0cs o k

How many of the squares are redundant? Two squares cover everything
in between provided that at most 2k-2 centers lie in between. Thus to
determine which squares to include, start at one end, include the end
square, delete 2k-2 square, include the next, delete the next 2k-2,
include the next, and so on until the end is reached. Always include
the other end. If the endpoints are not local maxima then they are
"included" in whatever larger square contains them.

Figure 3.4.9 shows an example with k=2 and n=8. Note that

both endpoints are not local maxima. 2k-2=2 so two squares are

Tl N S
= P gl

1|1
214
e | 2‘ 1—
N éé’ELf

SN fo| po o
b b e P

Figure 3.4.9

46
deleted for each one kept. If the algorithm starts at the left end
the circles centers are Kkept. The endpoints are covered by the
circled 3's. Obviocusly which squares are kept may depend on whether
the algorithm starts at the left or right end but the number of
squares deleted is the same.

Assuming that the algorithm always goes left to right (and top
to bottom) then the results of the algorithm on one sequence are

fixed. The only remaining question is what happens when a horizontal

and a vertical sequence intersect. Does it matter which sequence is
processed first? The answer is yes. Processing in the wrong order
may cause retention of one more square than necessary. In figure

3.4.10, if the row is processed first then the six circled centers are
kept. If the column is processed first. Then the central square is
deleted before the row is processed. This breaks the row into two
separate pieces which are processed separately. This results in the

marked sqguare being deleted.

=

|

figure 3.4.10 Example Region

b~

This phenomenon has nothing to do with which sequence is
longer. It can occur only when the central square would be deleted in
both directions. The problem has a simple solution. Process all
horizontal sequences first. Whenever a square is about to be deleted

check to see if the center of the square is part of a vertical

sequence. If yes then do not delete the square and start the delete
count over (i.e. delete te next 2k-2 squares). The vertical pass is
unaffected.

There remains the question of even order maximal squares. As
shown in Theorem 5, an even order maximal square is characterized as
centered on a constant 2 square. As for odd order maximal squares,
there are a variety of ways in which an even order maximal square

might be redundant. We will only consider two of them.

.}

48
THEOREM 6. Let T be a constant 2-square. The maximal square Q

centered on T is redundant if either 1 or 2 holds:

1. None of the four pixels in T are local maxima of D.
2. There exist two other constant 2-squares R and 3 such that

R#T# S and T <R 8.

Proof. If a pixel P is not a local maximum of D then the square
centered on P is contained in some larger odd order square. If all
four of the pixels in T are not local maxima then Q can be covered
with four larger odd order squares. Hence Q is redundant.

The only way 2 can hold is if there is a 2x8 rectangle of
constant D walues with T being the central square. Then Q is covered

by the sguares centered on R and S and Q is redundant. O

Theorems 5 and 6 together indicate that we need only concern
ourselves with pixels which are local maxima of D. Redundant squares
in sequences of equal squares (or equal 2-squares) can be handled in
the same way. The code given in section 3.3 marks local maxima with
horz=1. The follow code scans the pixels looking at local maxima to
see if 1) they can be deleted as part of a constant sequence and 2)
whether they can be expanded to coﬁ;tant 2-squares. Possible

horizontal sequences are checked first for possible deletions followed

by vertical sequences. Essential constant 2-squares are marked by
) 2 |2
setting the horz wvalues to 3 |2 . If two essential constant
, 31312 32
2-squares overlap then they will end up marked as or .
21212 212

212

49
Thus the value 3 is used as a marker for the NW corners of essential

constant 2-squares.

50

procedure deletesquares (a, numrow, numcol)
(* delete unneeded local maxima and mark essential constant 2-squares *)
begin

deleterows (a, numrow, numcol);

deletecols (a, numrow,numcol);

end;

procedure deleterows (a, numrow, numcocl)
(* delete unneeded local maxima by scanning rows ¥)
(* counts the number of consecutive deleted squares *)
begin
for i:=2 to numrow-1l do
begin
d:=0;
for k:=1 to numcol-1 do

if ali,k].horiz#l or (al[i-1,k].dist = a[i,k].dist and
a[i+l,k].dist=a[i,k].dist

then begin
d:=ali,k].dist;
count:=0;
maxcount :=2%{(d-1)
end
else

if a[i,k].dist#d

then begin
twosquare (i,k,no);
if a[i,k]}.horiz#3 then twosquare (i~1,k);
d:=ali,k].dist;
count:=0;
maxcount:=2%(d~-1)
end
else
if count=maxcount
then begin
twosquare (i,k);
if ali,k].horiz#3 then twosquare (i-1,k);
count:=0;
end
else
if afi,k+1].dist=d
then begin
count:=count+l;
ali,k].horiz:=0

end;

51

52

procedure deletecols (a, numrow, numcol)
(* delete unneeded local maxima by scanning columns *)
begin
for k:=2 to numcol-1
begin
d:=0;
for i:=1 to numrow-1 do
if ali,k].horiz#l
then begin
d:=ali,k].dist;
count:=0;
maxcount:=2%{d-1)
end
else
if ali,k].dist#d
then begin
twosquare {i,k)};
if ali,k].horiz#3 then twosquare (i,k-1,no);
d:=ali,k].dist;
count:=0;
.
maxcount :=2%(d-1)

end

53
else
if count=maxcount
then begin
twosquare {(i,k);
if ali,k].horiz#3 then twosquare (i,k-~1,no);
count:=0
end
else
if afi+l,k].dist=d
then begin
count:=count+l;
afi,k].horz:=0
end;
end;

end;

procedure twosquare (i,j)
(* check if a[i,j] is the NW corner of a constant 2-square *)
begin
d:=ali,j].dist;
if a[i+l,j].dist=d and a[i,j+1].dist=d and al[it+l, j+1].dist=d
then begin
ali,jl.horiz:=3;
ali,j+1].horiz:=2;
a(i+l,j] .horiz:=2;
al[i+l,j+1] .horiz:=2;
end;

end;

54

55

3.4 Storing and Seavching a TID

Each maximal square in a TID is characterized by three number
(two to specify a location and one to specify size). Using the center
of the square for location does not work well for even order squares,
and so we will use the coordinates of the upper left corner of the
square and its size as the three parameters. Thus each square in a
TID has the representation (i,j,s).

Unfortunately, wunlike linear quadtrees, such triples of
numbers do not have a natural linear ordering. The best that can be
done is to choose some priority order for the coordinates and then
order them lexicographically. We will assume that i and j are sorted
in increasing order but for reasons which will become clear shortly,
we will assume that s is sorted in decreasing order. By symmetry we
may assume that i is ordered before j. Thus the question is which of
the three possible orderings

a) (i,j,s)

b) (i,s,j)

c) (s,i,j)
is the best. There is no definitive answer to this question. It
depends on whether storage or access is of primary concern.

Storage is conserved when the primary subdivision are large
since the wvalue of the primary variable Qlll only be stored once. On
this grounds, plan a can be eliminated since there can be at most one
maximal square with corner (i,j) and so no savings can be obtained at
the second division compared to plan b or plan ¢. Plan b may be
better since there may be several squares of the same size with the

same i value.

56

For storage purposes the competition is between b and c. For
most images ¢ is superior since there will be many small squares
around and so the subsets of size 1, 2, and 3 should be quite large
allowing for a much greater space savings than can be obtained by plan
b.

For searching it is dimportant to shorten the length of the
search whenever possible by skipping to the beginning of the next
primary or secondary classification. The following discussion assumes
that the purpose of the search is to decide whether pixel (k,m) is
black, i.e. whether (k,m) is contained in some square in the TID.

On this basis plan ¢ can be ruled cut since it is impossible
to determine anything given just s. On the other hand with plan a or
b we can stop the search as scon as k<i. There remains the question
of whether plan a or plan b allows more skipping of squares. For a
fixed i, plan a skips all sgquares with j>m. Plan b skips all squares
with s<k-i. Which set is larger? This obviously depends on the
image. For the purpose of analysis we make the following assumptions:

1) Every value of j is equally likely.

2) All possible values of s (i.e. 1 to numrow-i+l) are

equally likely.
Assumption 1 is true only for ''random" squares only if they have size
1. For larger squares the distribution ®is skewed, favoring smaller
values of j. Assumption 2 is even less reasonable. In most images
there will be many more small squares than large squares.

For fixed i, plan a skips all squares (£,j,s) with £2=i and
j>m. By assumption 1 this will be about half the squares with £=i for

a random (k,m). Plan b will skip all squares (£,j,s) with £=i and

57
£+s<k. By assumption 2 this will be about half the squares with £=i.
Thus by analysis the two plans are about the same. However both
biases in the assumptions favor plan b, particularly the second omne.
Thus plan b is better.

Unfortunately only some constant fraction of the squares can
be skipped and so the search time is still linear in the number of

squares.

58

4. Pros and Cons of TIDs

(1) The greatest advantage of TIDs over other methods of
storing images is that TIDs are translation invariant. This 1is
particularly important if several images are being combined into one
composite.

{2) A second advantage of TIDs is the fact that the image
itself need not be a square of 2-power order. A square of any order
or even any rectangular image can be represented without having to
imbed it in a square of 2-power order.

For example, if a black square of order (2k+1)x(2k+1) needs to
be stored, the TID would just be the black square. To store it as a
quadtree requires that it be imbedded in a 2k+1x2k+1 square. The best
imbedding would require 2k+1+2 black leaves.

(3) The third advantage of a TID is that the number of black
squares stored may be significantly less than the number in the cor-
responding Quadtree. This is important in such tasks as drawing the
image where the time required will be proportional to the number of
squares. For example in [CACM March 84 p. 248-9] Markku Tamminen
quotes 5,198 black 1leaves for the quadtree encoding the circle
inscribed in a 210X210 square. The corresponding TID has 601 black
squares, an 88% reduction.

The computation cost of TIDs is f;ttle higher than gquadtrees.
Although the cost is almost linear in the number of pixels the
constant is not as small as it is for quadtrees. A quadtree can be
computed by examining each pixel only once. Procedure distance
examines each white pixel twice and each black pixel at most 4 times.

Procedure maxima examines about 3 pixels for each black pixel and

59

procedures maxsquare examines about 8 pixels for each local maximum of
the distance function D. Maxima and Maxsquare could be overlapped to
lower the number of accesses.

In principle the TID for a 2"x2" image vrequires 3n bits for
each maximal square. In practice this can be reduced by techniques
described in section 3.4. But the savings is never more than a factor
of 3 (the last parameter at least must always be stored for every
square). Thus the circle example from section 4 could not be stored
in less than 6010 bits. {(In fact this particular example would take
about 15000 bits since there are only four squares of each size which
is not much less than the 17,905 quoted by Tamminen.)

We analyze the union of two regions arising (or suitably pro-
jected) from different screens and superposition of images using TID
is described in our other paper [25]. The reader is referred to our
paper for the basic idea behind manipulation algorithms on TID and its
relation to other representation.

Representation of three-dimensional digital images using TID
structure is presently under investigation and the results will be
reported shortly in a different paper. Detailed testing of this
method is presently underway and the software 'TIDSOFT' will be

available for users by this summer (84).

[1]

[4]

[6]

[8]

[91]

[10]

[11]

[12]

[13]

€0

References

H. Samet, "A Quadtree Medial Axis Transform,'" Communications of
the ACM, Volume 25, No. 9, pp. 680-693, September 1983.

N. Alexandridis and A. Klinger, "Picture decomposition, tree
data-structures and identifying directional symmetries as node
combinations," Comput. Graphics Image Processing, no. 8, pp. 43-
47, 1978.

A. Klinger and C. R. Dyver, "Experiments in picture representa-
tion using regular decomposition,”" Computer Graphics and Image
Processing, vol. 5, pp. 68-105, 1976.

G. M. Hunter, "Efficient computation and data structures for
graphics,” Ph.D. dissertation, Department of Electrical Engineering
and Computer Sciences, Princeton University, Princeton, NJ, 1978.

G. M. Hunter and K. Steiglitz, "Operations on images using
quadtrees," IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 1, pp. 145-153, 1979.

G. M. Hunter and K. Steiglitz, "Linear transformation of pictures
represented by quadtrees," Computer Grapics and Image Processing,
vol. 10, pp. 289-296, 1979.

S. Tanimoto and T. Pavlidis, "A hierarchical data structure for
picture processing," Computer Graphics and Image Processing,
vol. 4, pp. 104-119, 1975.

C. R. Dyer, A. Rosenfeld, and H. Samet, "Region representation:
boundary codes from quadtrees," Communications of the ACM, vol. 23,
pp. 171-179, March 1980.

H. Samet, "Region representation: quadtrees from binary arrays,”
Computer Graphics and Image Processing, vol. 18, pp. 88-93, 1980.

H. Samet, "Region representation: quadtrees from boundary
codes," Communications of the ACM, vol. 23, pp. 163-170, March
1980.

e
H. Samet, "An algorithm for converting rasters to quadtrees,”

IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 3, pp. 93-95, 1981.

H. Samet, "Algorithms for the conversion of quadtrees to rasters,”
to appear in Computer Graphics and Image Processing, 1983 (also
University of Maryland Computer Science TR-979).

H. Samet, "Connected component labeling using quadtrees,” Journal
of the ACM, vol. 28, pp. 487-501, July 1981.

[14]

[151]

[16]

[17]

[18]

(19]

[20]

[20a]

[21]

[21a]

[22]

[23]

[24]

H. Samet, "Computing perimeters of images represented by quad-
trees,'" IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, vol. 3, pp. 683-687, 1981.

C. R. Dyer, "Computing the Euler number of an image from its
quadtree," Computer Graphics and Image Processing, vol. 13,
pPp. 279-276, 1980.

M. Shneier, "Path~-length distances for quadtrees,' Information
Sciences, vol. 23, pp. 49-67, 1981.

H. Samet, "Distance transform for images represented by quad-
trees,”" IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 4, pp. 298-303, 1982.

H. Samet, "Neighbor finding techniques for images represented by
quadtrees," Computer Graphics and Image Processing, vol. 18,
pp. 37-57, 1982,

I. Gargantini, "An effective way to represent quadtrees,'" Com-
munications of the ACM, vol. 25, pp. 905-910, December 1982.

L. Jones and S. S. Iyengar, '"Representation of regions as a
forest of quadtrees," Proceedings of the IEEE Conference on
Pattern Recognition and Image Processing, Dallas, 1981, 57-59.

L. P. Jones and S. Iyengar, ""Space and time efficient virtual
quadtrees,'" IEEE-PAMI, vol. 6, no. 2, March 1984, pp. 244-247.

W. I. Grosky and R. Jain, "Optimal quadtrees for image segments,"”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol.5, pp. 77-83, 1983.

D. J. Abel and J. L. Smith, "A data structure and algorithm
based on a linear key for a rectangle retrieval problem," to
appear in Computer Graphics and Image Processing, 1983.

H. Samet, "Data structures for quadtree approximation and com-
pression,” Computer Science TR-1209, University of Maryland,
College Park, MD, August 1982.

V. Raman, S. Iyvengar and Kundu, "An pptimized quadtree structure
for pictorial data representation using top and bottom compaction
techniques," Proceedings of IEEE-SMC Conference, Bombay, Dec. 1983.

S. Iyengar and V. Raman, "Properties of the Hybrid Quadtrees,” to
appear in the Proceedings of the 7th International Conference
on Pattern Recognition {(July 1984).

David Scott and 5. Iyengar, "A New Data Structure for Efficient
Storing of Images,' submitted to Pattern Recognition Letters
{June 1984).

[26] Markku Tamminen, 'Comment on Quad- and Octtrees, Vol. 27, No. 3
2
pp. 248-249, March 1984.CACM

