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Certain moments of the dipole oscillator strength distribution
of atoms and molecules can be calculated from theory (using "sum
rules") or deduced from experiment. The present work describes the
use of these moments to construct effective distributions which lead
to bounds and estimates of physical properties of interest. Asymp-
totic analysis is then used to obtain the high energy behavior of the
oscillator strength density and a previously unknown sum rule for
atoms and molecules. A new type of effective distribution, which
incorporates the information concerning the asymptotic behavior and
the new sum rule, is suggested. This new type of distribution is used
to calculate the logarithmic mean excitation energies for the ground
states of atomic hydrogen, atomic helium and the negative hydrogen
jon. The calculations for atomic helium and the negative hydrogen ion
require the evaluation of certain ground state expectation values.
These have been calculated using high accuracy wavefunctions contain-

ing the nonconventional terms shown by Fock to be necessary for a cor-

rect analytic expansion when both electrons are near the nucleus,
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CHAPTER I
INTRODUCTION

Nondegenerate perturbation theory is a useful technique for
evaluating properties of atoms and molecules. First order perturba-
tion quantities associated with a state may be evaluated if the cor-
responding wavefunction is known. However, evaluation of second and
higher order perturbation quantities requires knowledge of the en-
tire spectrum of states of the unperturbed Hamiltonian. With the
exception of simple systems such as atomic hydrogen, it is impossi-
ble to obtain the complete set of states required to perform the
evaluation.

The present work deals primarily with the evaluation of
second order perturbation expressions which require the knowledge
of the dipole oscillator strength between the state of interest and
all other states of the system. These expressions arise for proper-
ties characterizing interactions of atoms and molecules with static
electric fields, electromagnetic radiation and fast charged parti-
cles. Examples of the properties under consideration here are the
static and dynamic polarizability, the coefficient of the l/R6 term
in the Van der Waals interaction energy, the Verdet constant, and
the logarithmic mean excitation energies, all described in Chapter
IT.

The second order perturbation expressions under considera-
tion here can be evaluated if the dipole oscillator strength dis-
tribution is known. This iSvequiv;lent to knowing the entire spec-
trum of states (more precisely, those allowed by selection rules)
and is, of course, impossible to achieve except for simple systems
such as atomic hydrogen. However, certain moments (with respect to
the energy) of the oscillator strength distribution can be calcu-
lated in terms of ground state expectation values. Other moments of

the distribution can be deduced from experiment or calculated vari-



ationally. Chapter IT discusses how a set of accurate moments of the
distribution can be used to determine upper and lower bounds on the
properties under consideration. The method requires the solution to
a system of nonlinear algebraic equations and a new technique for
obtaining this solution is presented here. Extensive calculations
have been performed for atomic hydrogen.

Chapter III contains a discussion of the generalization of
the definition of the dipole oscillator strength to electric multi-
pole operators and a definition of multipole oscillator strengths is
developed. Applications of multipole oscillator strengths to static
electric field problems and radiation problems are then presented.

A procedure for performing variational calculations of the moments
of the dipole oscillator strength distribution is then described,
which is easily extended to deal with the multipole case. Varia-
tional calculations of the logarithmic mean excitation energies are
discussed and extensive calculations have been performed for the
hydrogen atom. These calculations generated an effective set of
states which has also been used to evaluate C6’ the coefficient of
the l/R6 term in the Van der Waals interaction energy. The result
has converged to 18 digits, apparently the most accurate calculation
to date. Finally, applications of variational calculations to the
evaluation of the low energy photoionization cross section is dis-
cussed and results are presented for atomic hydrogen.

Chapter IV contains a discussion of the high energy asymp-
totic behavior of the oscillator strength distribution of N-~electron
atoms and molecules. A derivation is presented which leads to the
coefficients of the first two asymptotic terms of the oscillator
strength density in terms of expectation values of the wavefunction.
Furthermore it is shown that truncating the contribution of these
first two terms beyond some cut off energy leads to a sum rule for
the third moment of the resulting modified distribution. None of
these results have previously been known.

Chapter V uses the results derived in Chapter IV to provide

a more efficient method of computing the logarithmic mean excitation



energies and the high energy photoionization cross section. This
technique is then applied to atomic hydrogen with very encouraging
results.

Finally, the method described in Chapter V is utilized in
Chapter VI to compute the logarithmic mean excitation energies of
the ground state of atomic helium and the negative hydrogen ion.
Various values required for the calculation were taken from the
literature, however certain ground state expectation values were not
available. 1In order to evaluate these expectation wvalues, calcula-
tions were performed using a Fock type wavefunction with up to 162
terms. Results are also presented which allow the calculation of
the high energy photoionization cross section for the ground state of

atomic helium and the negative hydrogen ion.



CHAPTER II
USES OF DIPOLE OSCILLATOR STRENGTH SUMS IN PERTURBATION THEORY

A. INTRODUCTION

Many properties of atoms and molecules arise from second order
perturbation theory due to some kind of electric dipole interaction.
In these cases the property can be written as a perturbation expres-
sion involving a sum over the dipole oscillator strengths between
states and the associated energy differences. For higher order multi-
pole interactions, quadrupole matrix elements, octupole matrix
elements, etc. appear in the expressions, but here only the dipole
case will be considered. Examples of these dipole interaction
expressions include the static and dynamic polarizability, the Verdet
constant, the coefficient of the l/R6 term in the Van der Waals
interaction energy, and also the logarithmic mean excitation energies
required for calculations of the Lamb shift and collisions of fast
charged particles with atoms and molecules.

The difficulty in a straightforward evaluation of the pertur-
bation expression of course arises from the fact that all oscillator
strengths (i.e. all states of symmetry allowed by selection rules)
must be known. This is possible to do explicitly only with the hydro-
gen atom. Accurate variational calculations for states are possible
only for low lying bound states which by themselves are not sufficient
to allow evaluation of the perturbation expressions. However more
will be said about variational techniques for generating useful
"approximate" oscillator strength distributions in Chapter III.

The problem of the requirement of complete knowledge of all
states can be overcome to some extent by the use of dipole oscillator
strength sums. Dipole oscillator strength sums, S(k), are moments of
the dipole oscillator strength distribution. For k =2, 1, 0, -1,
these sums are calculable as ground state expectation values and for

k =~2, =4, -6, they can be deduced from experiment. It has been

4



shown earlierl that these sums can be used to construct an effective
distribution of states (which consists of a collection of effective
dipole oscillator strengths and associated energies). The perturba-
tion expressions may be evaluated with this effective distribution to
yield upper and lower bounds on various physical properties.

The construction of the effective distribution has been
described elsewherel, but here a simplified solution is presented,
based on Prony's method of exponential interpolationz. An immediate
consequence is a closed form solution for an upper bound to the static
polarizability in terms of S(-1), S(0), S(1), and W, , the energy
difference between the ground state and the lowest excited state
having nonvanishing oscillator strength with the ground state. Var-
ious bounding properties are discussed and illustrated with extensive

calculations which have been carried out on the hydrogen atom.
B. PERTURBATION THEORY AND DIPOLE OSCILLATOR STRENGTH DISTRIBUTIONS

The properties of primary interest here are the dynamic pol-
arizability, the Verdet constant, the coefficient of the 1/R6 term in
the Van der Waals interaction energy and the logarithmic mean excita-
tion energies. The perturbation expressions corresponding to these
properties have different functional dependences upon the oscillator
strength distribution, yet the effective distributions to be con-
structed will yield bounds on all of these expressions. The perti-
nent physical quantities shall be briefly described below. For more
details the reader is referred to the comprehensive review articles by
Fano and Cooper3 and Hirschfelder, Byers-Brown and Epstein4

The dynamic polarizability tensor for a state ln> is defined5

to be

T () = ZZ $nl E replbp (bl Tnuln) (B, - EW)
/ b (Eb"EhY" w?*

(D



where b ranges over all states such that Eb #E , I3 and ¥ vrange over

all electrons of the atom or molecule, and rlp = X Top T Yuos and
Tan = Zpm- The ''damping term' sometimes included in the denominator
and associated with the natural width of the spectral lines has been
neglected. Here, and throughout the remainder of this work unless
mentioned otherwise, the energies shall be taken in atomic units (i.e.
twice the ionization potential of atomic hydrogen) and the frequencies
shall be taken in units of twice the Rydberg frequency (i.e. twice the
ionization frequency of atomic hydrogen). The polarizability is ex-

pressed in units of the cube of the Bohr radius of the hydrogen atom

( ﬁ2/(e2m) ). The average polarizability is then given by

‘ (“3 ( (h)
OK(")((*)‘) :*3‘ (o(n +°<22 +0<33 (2)

The oscillator strength between Jny and |bp is defined by

fup = 5 (KNI ZX )+ 100 Syl by Kol T 2050 o

(3)

where w4 = Eb - En. Therefore the average polarizability may be

written

£

(n —rb

A w) = ig:: 2 (4)
C > b w“b - wz' ¢

For the following discussionln} will be taken to be |6) , the ground

state and o(“)(w) will be denoted by tx(u)). The dipole oscillator

strength sum of order k is defined by

S(kY = E}'&b(wwy (5)

where fOb and W, are the oscillator strengths and energy differences
between the ground state and the excited states.

The dynamic polarizability may be written as a power series in
o) using S(k). This is known as the Cauchy expansion6_8 and con-
verges for W less than the first transition frequency. The deriva-

tion 1s quite straightforward:
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The dynamic polarizability is required for calculations invol-
ving the elastic scattering of light by atoms and moleculesg-lz.
Knowing the dynamic polarizability allows the evaluation of the
Rayleigh scattering cross section %gf“ﬂ which 1s obtained by averaging

over all polarizations of the light and orientations of the atom or

molecule,

ds () = 5 (12 o) [orelD]*

where 8 is measured from the direction of propagation of the light,
and ry = ez/(mcz) is the classical electron radius. The polarizability
is also needed to determine the index of refractiong. The index of
refraction, n, satisfies the Lorentz-Lorenz equation

el (e ) N ) @

where N is the number of atoms or molecules per unit volume. If the
medium is a dilute gas then n will be close to unity, hence the Lorentz

factor ( n2 + 2 )/3 will also be close to unity. The equation then

becomes

n-1 = 49 Nux(w | (9)



Knowledge of the oscillator strength distribution also allows
the evaluation of the Verdet constant, which characterizes the Faraday

effectlo’l3’la.

The Faraday effect consists of the rotation of plane
polarized light passing through a medium in a magnetic field. The ro-
tation is a result of the difference in the index of refraction of
right and left-hand circularly polarized light. The Verdet constant

is proportional to ﬂ(uﬂ where

£y
Blw) = 2 . le)z ‘ (10)

kN
b (wob -

This is clearly related to w(w) by

Blw) = 5T W 4*3'%}‘ (11)

and a ""Cauchy expansion' for p(w) yields
Blw) = SEDwr+ 25F) w¥+35C-Bwb+--. 2

The coefficient Cyg¢ of the 1/R6 term in the Van der Waals
interaction energy between two ground state atoms § and § is due to
a dipole-dipole interaction. Using second order perturbation theory

it is found4 that

_ é_ ch(x) 'Pon(g)
Ca's T2 Z:.__ ; LWam (¥)+ Won (8)] weoml¥) way, (§) 13

Note that the summations range over the oscillator strength distri-
butions of both atom § and atom § .

The logarithmic mean excitation energies are defined15 by

LG = % Fe (wob>k/(/f\~(wob> . (14)



These are required for the following computations:

1. Small-angle scattering of fast charged particles with atoms and
molecules.
a. L(-1) - For total inelastic scattering cross section - Inokuti,

et.al.l6, 1967.

b. L(0) - For stopping power (mean energy loss) - Bethel7, 1930.
c. L(1) - For straggling(mean fluctuation of energy loss) -
FanolS, 1963.
2. L(2) - For the Lamb shift - Bethelg, 1947.
Note that L(2) is also of interest for excited states. 1In this case
the definition of L{2) requires that the absoclute value of the argu-
ment of the logarithm be taken but excited states will not be consi-
dered here. It is easily seen from equations (5) and (14) that L(k)

is merely the slope of S(k), i.e.

L(k) = ‘2% S(x) (15)

x=2k -

C. EVALUATION OF DIPOLE OSCILLATOR STRENGTH SUMS

In this section the techniques used to obtain the set of S(k)
required to construct the effective distribution shall be reviewed.
1f a good wavefunction is available it is possible to compute accu-
rate values of S(k) for k = 2, 1, 0, -1 using the so called "sum
rules'. Measurements of the refractive index and the Verdet constant
over a range of frequencies allows the determination of S(k) for
k=-2, -4, -6, ... and k = -4, -6, -8, ... respectively.

The well known ''sum rules”B’ZO express S(2), S(1), S{(0) and
S(~1) in terms of expectation values of the wavefunction. Given an
accurate wavefunction, these sums may be readily computed. For a state

PP> the S(k) can be written as

m N A
S(z)-:ig-—é: Z,(‘Plg‘g(w)}“@ (16)
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N 2
SOy =2y (T )Y a7
S() = N (18)

(19)

where ?} is the position operator, f} is the momentum operator, the
index j ranges over the N electrons and & ranges over the nuclei
with atomic number Z, . Sum rules for S(3), S(4), S(5), ... may also be
derivedZI, but are not useful for atomic and molecular ground states
because S(k) diverges at k = 2.5 for these wavefunctions. This is
easily shown for atoms by the following argument. The value of S(2)
for a ground state must be greater than zero if it has a non-vanishing
oscillator strength spectrum. This is because for a ground state

all fOn and “JOn must be positive which of course implies that
5(’&)"—%\__#0110)5“ must also be positive. The divergence at k = 2.5
follows from the behavior of the oscillator strength in the continuum
at high energies. The asymptotic form of df/dg for any atomic wave-

function (as will be proven in Chapter 1V) is

Z -3, 3
%{E B &g%rﬁ S(2) €% = 22°5(2)€ -,

Clearly if S(2) # O then the continuum integration contribution to
s(k),

©df (e k
5 o (e E.) de,

will cause S(k) to diverge at k = 2.5. A similar argument may be used

to show that S(k) diverges at k 2.5 for molecular ground states.
Alternative methods are needed to compute S(k) for k other
than -1, 0, 1, 2. The static polarizability (which is just S(-2))

can be accurately obtained using variational perturbation methods.



This is sometimes considered a sum rule because it can be calculated
without explicit reference to physical oscillator strengths. The
static polarizability can also be accurately measured. Hirschfelder,
Byers-Brown and Epstein4 note that S$(-3) is twice the norm of the
first order perturbation wavefunction for a dipole interaction. This
would seem to indicate that if an accurate value of S(-2) is obtained
using a variational basis, the same basis should yield a good value
for S(-3). Further discussion of variational techniques for ob-
taining S(k) shall be deferred to Chapter III. Note that the method
to be described of constructing effective distributions is capable of
yielding exact bounds on perturbation expressions only 1if given an
exact set of S(k). Therefore, additional S(k) are useful only if they
are accurate.

Ab initio techniques are questionable for obtaining accurate
S(k) for k< -3, but fortunately it is possible to obtain certain S(k)
in this range from experiment. As described above, the dynamic pol-
arizability and the Verdet constant may be written as a Cauchy expan-
sion in terms of S(k) with k ranging over even negative integers.
For a dilute gas the index of refraction, n, will be close to unity,
hence equation (9) may be approximated by

n(w) = 1| + 2 Nx(w) | (21)

Substituting the Cauchy series expansion (6) for‘x(uﬂ yields

h(w)= | +2aNLSC2)+ SCEPw? +Skgwte] | (22)

The standard method of utilizing this equation is to truncate the
series on the right hand side and keep terms only up tocﬂ6 or¢»8.
Then a polynomial least squares fit is performed to extract S(-2),
S(-4), and S(-6), using experimental values of n(w) over a range of
& (such that W is appreciably less than the first transition fre-
quency). For details see Langhoff and Karpluszz. A similar proce~

dure may be followed for the Verdet constant using the Cauchy expan-
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sion for B(w) given by equation (12).
D. CONSTRUCTION OF THE EFFECTIVE OSCILLATOR STRENGTH DISTRIBUTION

Once an accurate set of S(k) has been obtained, the effective
distribution may be constructed. The effective distribution consists
of a finite number of discrete "states', each having an associated
oscillator strength and energy difference with the wavefunction of
interest (usually the ground state). The construction of N effective
states requires the specification of 2N parameters, the N effective
oscillator strengths and the associated N effective energy differences.
There are many conceivable ways of constructing the effective set of
states, but only two of these prove to be useful for the purpose of
bounding perturbation expressions. The effective states are con-
structed by demanding that the effective distribution satisfies the
set of known S(k). This results in a system of 2N algebraic equa-
tions which must be solved to obtain the N effective oscillator
strengths féb and the associated N energy differences u%b with the
state of interest {mw) (note b =1, 2, ..., N). An effective state (55
is completely specified by knowledge of f%b andcu;b.

Before describing the two methods of construction it should be
emphasized that the effective distribution will provide bounds only if
the actual distribution from which the S(k) are being obtained has no
negative energy differences (and therefore no negative oscillator
strengths). Clearly if the state of interest lh> is the ground state
there is no problem. However, for excited states it is possible to
have nonvanishing dipole matrix elements with lower energy states la),
which results in oscillator strengths in the distribution associated

with negative o The problem can be eliminated by applying

na °
the method described here to only the ''modified oscillator strength
distribution" which consists of only those states |a) such that
Ea>]%f In order to carry the procedure through, the actual oscilla-
tor strengths and energy differences for the states la> with Ea< En

must be known. To construct the "effective modified oscillator
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strength distribution" one must use "modified" Sm(k) which are obtained
from the usual S(k) by subtracting the contributions of the physical

states |a) which satisfy Ea< E, i.e.

Sm(k> = S<k> - ; me wi‘a . (23)

E.<E,

Using a set of Sm(k) allows the construction of an "effective modified
oscillator strength distribution” in the same way that S(k) allows the
construction of an effective oscillator strength distribution. How-
ever, upon evaluating the perturbation expressions for which bounds
are desired, one must include not only the "effective modified oscil-
lator strength distribution', but also explicitly include the oscil-
lator strength distribution for states lay with EK E . In other
words, a set of physical oscillator strengths and energy differences
must be explicitly included and then the technique described in this
work is used to provide bounds on the 'remainder term'. In fact
even if negative oscillator strengths are not a problem (e.g. the
ground state) and oscillator strengths and energy differences for
some low lying states are known, the above procedure should be fol-
lowed to improve accuracy. The more physical states which are in-
cluded, the less significant will be the "remainder term' one must
bound. For simplicity the following discussion shall assume in) is
the ground state and physical oscillator strengths are not known. If
this is not the case, the above technique may be used to modify the
treatment. In the following féb andcuéb shall be denoted by fg and
“% respectively.

The two methods of comstructing effective oscillator strength
distributions using a set of S(ki) are the following:
1. Construction from a set of S(ki), i=1, 2, ..., 2N. The effec~-
tive distribution fg,u)', b=1, 2, ..., N, is determined by the sys-

tem of equations

N ’ K .
Stk,) = b‘_z; Fo(wy) (=12 2N . (24)

) E >
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2. Construction from a set of S(ki), i=1, 2, ., 2N-1 and also
knowledge of El’ the energy of the lowest excited state with which
the ground state has a nonvanishing oscillator strength. The
effective distribution fé,u)é, b=1, 2, ..., N is determined by
the system of equations

N ¢ / k .
Sk;) = bZ Po lw) ™ =12, 2N-1 (s
=i

> o 7

and UJi = E; - Eg-
The bounding behavior is a consequence of the fact that the effective
distribution has been given the minimum number of degrees of freedom
needed to satisfy the equations. 1In case 1) the effective distribu-
tion has 2N parameters (f',OOé) which are specified by the 2N S(ki).
In case 2) the effective distribution has 2N-1 free parameters (f),
b=1,2, ..., N and(ué, b =2, 3, ..., N) which are specified once
2N-1 S(ki) are known. The bounding behavior of these distributiouns
will be described later, but the immediate interest is the solution of
these equations.

For the general case of S(ki) known for an arbitrary set of
ki’ iterative numerical procedures must be applied in order to solve
the system of equations (24) or (25). However, a more systematic
solution is possible for the frequently occurring case of regularly
spaced ki, e.g. integrally spaced ki (ki = kO + i) or double inte-
grally spaced ki (ki = ko + 21i). Gordon” ~ managed to turn the problem
of solving case 1) into one of diagonalizing a tridiagonal matrix with
entries constructed from the S(ki) by using recursion relations from
the theory of continued fractions. Another description of this tech-
nique is found in Wheeler and Gordonza. Luyckx, et.al.25 formulate
case 1) in terms of an eigenvalue problem without the need for con-
tinued fraction recursion relations. Shimamura and Inokutil5 solve
case 1) essentially the same as Luyckx, et.al., but also are able to
solve case 2) in a similar fashion as an eigenvalue problem. Here a
further simplification over these previous solutions is presented.

The following solution is based on Prony's method of exponen-
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tial interpolationz. This approach allows the immediate construction
of an Nth degree polynomial with coefficients in the form of determi-
nants with the S(k) as entries. The zeros of the polvnomial will be
the effective energy differences,u)é. Once thecoé are known, the
problem is easily reduced to a linear system of equations which can be
solved to obtain the effective oscillator strengths fé. This tech-
nique is directly applicable to case 1) and with minor modification
can be used for case 2). k

Following Whittaker and Robinson26, Prony's method of exponen-
tial interpolation shall be explained in terms of case 1). Recall the

system of equations which must be solved is

S(k) =5 £ (w)

b=1

S(ke) = 2 R (wi)”

b

i

(247)

S(an) = 2 £ (o)™

b=| ’

An effective dipole oscillator strength sum S'(k), a continuous func-

tion of k, may clearly be defined by

s%m=§guwy o
which satisfies the equations

S'(k)=S(k)  i=1,2,,2N . 27)

For convenience the following derivation shall assume that the ki for
which S(ki) is known are integrally spaced, i.e. ki = k., + 1, where

i=1, 2,

0
., 2N. S'(k+i) can be written as
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S (k+i) = Z[F( ANICN)

hence
N
F.(k) = Lle Cib Gb(\‘) (26"
where
F.(k) = S'(k+i)
N 3
Gb(k) = (wb)
‘ L
fo(wy)
Note that the Gb(k) for b =1, 2, ..., N are linearly independent

functions of k if thelﬂé are nondegenerate. Also note that the effec—

tive energy differences(dé

least one effective oscillator strength is zero) only if the original

are nondegenerate (or equivalently, at

oscillator strength distribution consists of less than N discrete
states. Since this never happens physically, the N Gb(k) for the
problem under consideration will be linearly independent as functions
of k (one must also assume thattﬂé # 0, but this is never a problem).
Given the above restrictions fé # O,Cﬂé # 0 andtdé nondegenerate for
b=1, 2, ..., N, it shall be shown that the Fi(k) fori=1, 2, ...,
N, comprise N linearly independent functions of k. This is easily

proven by checking that the square matrix c defined in equation

ib
(26") is indeed nonsingular, i.e. the determinant is nonzero.
P! (4),2 ‘pz Ld,_ £ @ ‘QN LLJN
2 2
flw, fwl - - fywd

det (cip) = ' .

& °

» » i

N N
‘F,w; glwl A FN UJN
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! l !
W, W, T Wy
"P,‘ICJ_""FNQJ‘Q))....MN : :
N-{ N-i N-1
W, 2 T Wy

i

P‘{:l...puwth...wN %
x(wN’UN-‘)x (wn“‘wn—z)*"'x(wkl"w‘)x

X (Wpey = Wpog) $ (WOt = Wyaz) X X (wN‘l‘wJ :
X <« X
X (UOL"UJ:)

where the last step has been performed by the difference-product expan-
sion of the alternant determinant27. Written in this form, the deter-
minant is obwviously nonzero for fé and(ﬂé satisfying the previous
restrictions, hence the Fi(k) for i =1, 2, ..., N, are linearly inde~-
pendent functions of k. Now consider the function FO(k) = S'(k) =

= {- fé(w{))k. As functions of k, the set Fo(k), Fl(k), ey FN(k)
must clearly be linearly dependent. Therefore there exist unique (up

to an overall scale) c&j such that
o(oFo(k) +o<1F‘(k)+-- . +°&NF~(R) =0

or equivalently

o, S'(k}-kog S'(k+!)+”~+o<N5£(k+N>=O. 28)

The Q‘j can be determined using the known S(ki), i=1,2, ..., 2N, as

will be described. Once the c%j are known, the above equation can be
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rewritten
N k N ke Noat, | (k+N
GOZ pb (WL) + «,Zﬂ(ub) "'""“""sz:‘gb(wb) =0 (29)
b=l b=l =
or
o ;N AN=1 1 RN 3
2 Lotn(wl) + o)+ eto] fi(wl) =0 . (29"
b=1

Since the (u)é)k are linearly independent functions of k, the above
equation can be satisfied only if each coefficient is identically

zero, which means all of the N u)é must satisfy the polynomial equa-

tion

N  N-1 -
xylw) +xy () + - Tong =0 . (30)

Therefore once the c<j have been found all that remains is to deter-

mine the roots of equation (30) in order to obtain the N effective

b
in conjunction with the known S(ki) where ki = kO + i, i =1, 2,

energy differences w .. The O‘j may be determined using equation (28)

° s

2N (recall it was assumed that the S(ki) were known for integrally
spaced ki). Utilizing equation (28) N simultaneous equations are con=-

structed by replacing k with k. +1, k. +2, ..., k,+N. Doing this yields

0 0 0

the system

X S'(ko-H) + X%, S’(k'+2)+... + mNS'(ko.;.Nq.‘) =0

. §' (kr2) + o, S (kg=3) oo 4 ooy S+ N2) =0 (31)

- »

»
!

I o

o S‘(l;,;*-N) +o<‘S’(’k,,+N+i)+'---+ocN S(ker 2N)=0

From equation (27) it follows that for the arguments of S(k) in the

above equations S'(k) = S(k) so equation (31) may be rewritten as



oo SUkerl) + ot S(kar2) * o+ + oty S{ker N+ 1) = 0
o<, Sll,+2) + o, S (ke +3)+ ¢ - +ety S(k,+N+2)=0
: : L

oo Skt N) + o6, S (N v - -+ Sk 2N) = O

which is the familiar case of N homogeneous equations in N+1 unknowns
and the C<j are determined up to an overall scale factor. S(k) is
known for all values of k appearing in the above equations so-a solu-
tion can be easily obtained for the system which is unique up to an
overall scale. Using Cramer's rule27, one way of writing the solu-

tion is the following:

s(k0+1) S(k0+2) - S(kO+N)
s(k0+2) S(ko+3) e S(kO+N+l)
oAy = . . . (33)
S(kO+N) S(kO+N+l) . S(kO+2N—l)
S(k0+l) s(ko+2) . S(kO+N)
S(kO+2) S(k0+3) cen S(kO+N+l)
°<N‘l - - - B B (34)
S(kO+N—2) s(kO+N—1) - S(k0+2N—3)
S(kO+N—l) S(kO+N) ... S(kO+2N—2)
S(kO+N+1) S(kO+N+2) e S(k0+2N)

etc. The array inside the determinant for °<j is obtained by deleting
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the jth row from the following array (here the rows are numbered from

zero to N):

Oth row: S(RO+1) S(ko+2) .. S(kO+N)

lst row: S(k0+2) S(kO+3) o S(kO+N+l)

2nd row: S(ko+3) S(k0+4) .o S(kO+N+2) (35)
Nth row: S(kO+N+1) S(kO+N+2) - S(kO+ZN)

Also note that the sign preceding the determinant for e, is given by
(—l)N_j. Following this procedure- has reduced the origiial problem
of solving a system of nonlinear equations into finding the roots of
an Nth degree polynomial with coefficients cﬂj, j=1, 2, ..., N.

The roots can be found numerically to give the W), b =1, 2, ..., N.
Once the u)é are known, the problem is that of solving a system of
linear equations to obtain the f'. ©Note that the equation for Lﬂ,can

b
be written more compactly as a determinant:

1 S(k0+l) s(k0+2) e S(kO+N)
&
w 5 (k +2) 5 (ki +3) ... S (k1)
§
w'? 5 (ki +3) 5 (1 ) . 5 (I 7hV#2)
=0 (36)
Rh S(kHMHL)  S(k#N+2) ... S (k +2N)

As an example, assume that S(-3), S(-2), S(-1), S(0), S(1) and

S(2) are known. One constructs an array according to equation (35):
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The matrix that must be inverted is known as an alternant matrix and
closed form inversion is especially simple2

Case 2) shall be treated by an example. The general treatment
follows by analogy. Assume S(-1), S(0), S(1) and &Jl are known, where
W, = El - EO is the actual physical energy difference associated with
the lowest physical state having nonvanishing oscillator strength with
the ground state. The objective is to construct two effective states

such that one of them has W ., as its effective energy difference, and

1
in addition the fi, fé, uJi (=W l), and “)é must satisfy S(-1), S(0),
and S{1). The procedure here is similar to that of case 1), but one

must first determine the "effective'" S'(~2) which allows UJl to satis-

fy the polynomial equation comstructed from S§'(-2), S(-1), S(0) and
S(1) in the usual way for case 1). In order for this to happen S$'(-2)

must satisfy the equation

$'(-2)  S(-1) $'(-2)  8(-1) s(-1)  $(0)
W - Wy + = 0

s(-1) s(0) S(0) s(1) S(0) s(1L)

Solving for S'(-2) one finds

S(-1) (WIS(-1) = $(1)) = $(0) (w,S(-1) ~ 5(0))
S'(=2) = (37)
W (w;5(0) - $(1)) .

Once S'(-2) is known in terms of S(~1), S(0), S(1) and w, the calcu-

1
lation is performed identically as in case 1), which for this example

means one solves for the roots of

s'(=2)  s(-D) S'(-2)  S(-1) s(-1) s(®)
w.ﬁ - w' e == 0

S(-1) $(0) S(0) s(1) $(0) s(1)
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to obtain UJi and UJé. From the comnstruction of S'(-2) it is known

that UJl must be one of the two roots. Then the oscillator strengths

fi and fé can be obtained as usual.

E. UPPER BOUND ON STATIC POLARIZABILITY IN TERMS OF S(-1), S(0), s(I)
AND UJl

Before treating the bounding properties of effective distri-
butions, the importance of equation (37) shall be discussed. This
equation for S$'(-2) is more important than merely an intermediate
result in the construction of the effective oscillator strength distri-
bution. Equation (37) is in fact an upper bound on S(-2), the static
polarizability, given a knowledge of S(-1), S(0), S(1) and UJl.

As mentioned before, an actual sum rule does not exist for
S(-2). However sum rules do exist for S(-1), S(0) and S(1) and note
that El - EO can be accurately obtained from ab initio calculations or
experiment. Consequently equation (37) provides a useful bound on the
static polarizability.

The reason for the bounding behavior of equation (37) will be
deferred until the next section, but first what has been previously
known of bounds on the static polarizability, given S(-1), S(0), s(1),
S(2) and UJl, will be described. The fact that the S(-1), S(0), S(1)
and aJl "constraints" égpose the bound has been shown numerically by
Futrelle and McQuarrie , however this closed form expression appears
to be a new result. Futrelle and McQuarrie's linear programming tech-
nique is more general in the sense that it can be used to incorporate
error estimates of the initial data into the final result. The equa-
tion presented here, though, is more convenient.

The following list contains four useful bounds S'(-2) on the
static polarizability S(-2) in terms of S(~1), S(0), S(1), S(2) and

0)1.
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1. Lower bounds
2
a. sy (- = LR
$(0)
$3(0) + $(2)5%(-1) - 25(~1)5(0)5(1)
b. SI(-2) = '

$(0)5(2) - 82(1)

2. Upper bounds

. S(-1)
a. Sza(—Z) =

W,

S(-1) (w2S(-1) = $(1)) = $(0) (w,5(-1) - $(0))
b. Séb(—Z) = .
W (W 5(0) = S(1))

|

la and 1b yield the same bounds as the case 1) effective distributions
with known S(-1), S(0) and S(-1), S(0), S(1), S{(2) respecetively. 2a
and 2b yield the same bounds as the case 2) effective distributions
with known S(-1), UJl and S(-1), S(0), s(1), u)l respectively. Bound
la was first noticed by Kirkwood29 and Vinti30 in 1932. Bound 1b was
shown by WeinholdBl in 1968. Bound 2a is rather trivial and bound 2b
is the result presented here.

As an application, bounds on the helium atom polarizability

shall be obtained. Peker1832 has calculated

S(2) = 30.334
S(1) = 4.084
S(0) = 2.000

S(-1) = 1.505
and 001 is known33 to be .7797 a.u. Performing the calculations using

the previous equations one finds

Sla(—z) = 1.133

! — =
Slb( 2) 1.185
= 1.930

5a(-2)
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Sl (-2) = 1.583
2b 34
as compared with the actual value of $(-2) = 1.383. The Sib(—Z)
’ _ . . 1 - ¥ -2 5
and SZb( 2) yield tighter bounds than Sla( 2) and Sza( 2), as will
always be the case.
The calculation may also be performed by including known

oscillator strengths explicitly and using modified oscillator strength

sums. Schiff and Pekeris have calculated35
fls-Zp = ,2762
fls—Bp = 0734
and from Moore's tables33 one finds
qus—Zp = ,7797 a.u.
Q)ls—3p .8484 a.u.
= 7
QJls—Ap .8725 a.u.

Subtracting the contributions of the first two oscillator strengths,

one obtains the modified oscillator strength sums:

Sm(Z) = 30,113
Sm(l) = 3,806
S (0) = 1.650
m
Sm(—l) = 1,064 ,
Computing the four bounds on S(-2) one finds (replacing S(k) by Sm(k)
3 w . w L
and using 1s—4p for l).

Smla(“z) = .686

' w
mlb(—z) .716
¥ - =

sza( 2) 1.219
' - =

SmZb( 2) .967

Adding the contribution of the first two oscillator strengths to S(-2)

yields
Sia(-Z) = 1.242
Sib(—Z) = 1.272
Séa(—Z) = 1.775
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SZb(—Z) = 1.523

again, compared with the actual value of S(-2) = 1.383.
F. BOUNDING BEHAVIOR OF EFFECTIVE OSCILLATOR STRENGTH DISTRIBUTIONS

In this section, the bounding properties of effective oscil-
lator strength distributions shall be reviewed. Given an effective
distribution it is possible to construct bounds on unknown oscillator
strength sums, logarithmic sums, the coefficient of the l/R6 term in
the Van der Waals interaction energy, the dynamic polarizability and
the Verdet constant. All the above bounding properties, with the
exception of that of the Van der Waals coefficient, are a consequence
of the fact that the S'(k) constructed from the effective distribu-
tion bounds the actual S(k) in a well specified manner. The discus-—
sion shall begin with a description of this bounding behavior, sav-
ing the treatment of the subtler case of the Van der Waals coefficient
for last. As described previously, the following statements are valid
when the original oscillator strength distribution contains only
states for which the energy differences O)nb = Eb - En are greater
than zero.

The general bounding behavior is indicated in Figures 1 and 2.
In Figure 1 is shown a typical example of an effective S'(k) con-
structed from a case-l) distribution. The effective S'(k) crosses
the actual S(k) curve at only those ki for which S(ki) was used in
the construction of the effective distribution. In Figure 1 the S'(k)
is that which has been obtained from an effective distribution con-
structed from S(2), S(1), S(0) and S(-1). Another important aspect
to note is that to the right of the largest ki (in this case 2.0) and
to the left of the smallest ki (here -1.0) the effective S'(k) bounds
the actual S(k) from below. This behavior has been proved using
moment theory by Langhoff and Yates36 for the case of regularly spaced
ki. For up to four ki’ Barnsley37 has shown that this behavior holds

even if the ki are arbitrarily (i.e., not regularly) spaced. The
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-2.0 -1.0 1.0 2.0 2.5

Figure 1

generalization of this behavior for an arbitrarily large number of
non-regularly spaced ki seems likely, although it apparently has not
been proven mathematically. In Figure 2 is shown a typical example of
an effective S§''(k) constructed from a case 2) distribution (here con-
structed from S{(2), S(1), S(0), S(-1), S(-2) and qu). Again, the

effective S'"(k) crosses the actual S(k) curve only at those ki for

Vs
I
V4 Sl!(k)
+ b 3 + : >
-2.0 -1.0 1.0 2.0 2.5 k

Figure 2



which S(ki) was used in the construction of the effective distribu-
tion. In this case however, the S''(k) bounds S(k) from above to

the left of the smallest ki (because case 2) distributions are con-
structed with an odd number of S(ki)). This has also been shown by
Langhoff and Yate336 for the case of regularly spaced ki' Again the
generalization for an arbitrarily large number of non-regularly spaced
ki seems likely, but apparently has not been proven.

As an additional example consider a case 1) distribution con-
structed from S(1), S(0), S(-1) and S(-2). The behavior of the
effective sum S'''(k) constructed from this distribution is illus-
trated in Figure 3. Once both S''(k) (in Figure 2) and S'''(k) (in
Figure 3) are known, both upper and lower bounds have been estab-
lished on the entire S(k) curve to the left of k = 2.0. To the left
of k = 2.0, S'""(k) and S'''(k) complement one another, S''(k) yielding
upper bounds where S'''(k) yields lower bounds and vice versa. To the
right of k = 2.0 both S$''(k) and S'''(k) yield only lower bounds on
S(k). The usefulness of effective sums from case 1) distributions and
case 2) distributions has already been illustrated by the bounds

derived on the static polarizability in section E.

7

7
’

-
// va!(k)

~-2.0 -1.0 1.0 2.0 2.5

Figure 3
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Knowledge of the bounding behavior of effective sums derived
from case 1) and case 2) distributions on S(k) allows one to easily
determine bounds on the logarithmic sums L(ki) at those ki for which
S(ki) was used to construct the effective distribution. First recall

that L(ki) is merely the slope of S(k) at k = ki’ i.e.
d
Lik) = < S(K]
' Ak k=k; °

Similarly it 1is easily seen that the effective logarithmic sum L'(k),
where L'(k) = éé fé (o)é)k ln(uag) , is the slope of the effective sum
S'(k). Clearly at those ki for which $'(k) changes from a lower
bound on S{(k) on the left of ki to an upper bound on the right will
mean that L'(ki) is an upper bound to L(ki). At those ki for which
S'(k) changes from an upper bound on S(k) on the left of ki to a
lower bound on the right will imply that L'(ki) is a lower bound to
L(ki>' From Figure 2 one sees that L''(k) constructed from this
effective distribution will provide an upper bound to L{(~1) and L(1)
and a lower bound to L(-2), L(0) and L(2). From Figure 3 one finds
that the L'''(k) constructed from this effective distribution will
provide an upper bound to L(-2) and L(0) and a lower bound to L(-1)
and L(1). Again the distributions complement each other and both
upper and lower bounds can be found for all L(ki) of interest except
L.(2). For L(2) only lower bounds can be found if no finite S(ki)
are known for ki> 2.0 (which will usually be the case).

Bounds on the dynamic polarizability may also be constructed
using effective oscillator strength distributions. The bounding

property of the effective polarizability = '(w), where

N ‘Cb'
OQI((L))::Z 02.__(‘02

b=\

is valid from W = 0 to the first resonance frequency, the frequency

range for which the Cauchy expansion is valid. To understand why
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bounds hold here, compare the Cauchy expansion of e '(w),
(W) = S (-2) +S (- w*+ S (-6) w* + -

with that of o (W),
(W)= S2) +5 (-4) wr+ S(-p)w*+

Note that a case 1) effective distribution which satisfies
S'(ki) S;S(ki) for k, = -2, -4, -6, ... will generate an effective
dynamic polarizability which bounds the actual dynamic polarizability
from below. TIf the case 1) effective distribution has been con-
structed from a set which includes certain of the S(-2), S(-4), S(~6),
then those corresponding terms of the Cauchy expansion for e'(w)
and = (w) will be identical. The reason that case 1) effective dis-
tributions must be used for lower bounds is of course that they gen-
erate effective S'(k) which bound S(k) from below to the left of the
smallest ki for which S(ki) has been used in the construction of the
distribution. 1In other words case 1) distributions tend to bound the
terms which have not been put in explicitly from below, if a reason-
able choice of ki for the construction of the distribution has been
made. As an example note that the effective distribution of Figure 3
satisfies S(-2) "explicitly" and bounds S{(-4), S(-6), ... from below
and therefore generates an effective dynamic polarizability which
bounds the actual dynamic polarizability from below. A similar argu-
ment justifies the statement that, with a reasonable choice of S(ki)
for the construction of a case 2) distribution the corresponding
effective dynamic polarizability will provide an upper bound to the
actual dyanamic polarizability. The distribution of Figure 2 satis-
fies S(-2) "explicitly" and bounds S(-4), S(-6), ... from above, so
the effective dynamic polarizability corresponding to this distribu-
tion is seen to bound the actual dynamic polarizability from above.
Identical arguments can be made to determine effective Verdet con-
stants which bound the actual Verdet constants from above and below.

An important point is that these effective polarizabilities
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and Verdet constants provide a finite representation which bounds an
expression which contains an infinite number of terms plus an integra-
tion over the continuum. Even though not exact, this representation
seems to be an extremely useful way of writing these expressions.
Including enough of the S(-2), S(-4), S(-6), ... allows one to arbi-
trarily closely approach the exact function, not only by equalling the
Cauchy series term by term for those S(-2), S(-4), S(-6), ... included
explicitly, but by bounding those which are not included. ©Note that
although this representation is valid only up to the first resonance,
the frequency range may be extended by putting in actual physical
states explicitly and using the method of effective modified oscil-
lator strength distributions. This functional form for the dynamic
polarizability may prove to be a better finite representation to use
for extracting S(k) from experiment but this remains to be seen.

This discussion of bounds shall conclude with the subject of
the C6 coefficient in the Van der Waals interaction. The reason for
these bounds is subtler than the bounds described previously in this
paper. For proofs the reader is referred to Langhoff and Karplu838,
Gordon23 and Luyckx, et.al.39 These bounds all require that the
distributions be constructed from S(ki) with regularly spaced ki.
Here the sets of sums from which both upper and lower bounds on C6
may be obtained will merely be listed. ZLower bounds on C6 may be
obtained from:

(s(2), s(1), s, S(-1), ...),

(s(0), s(-1), s(-2), S(~3), ...)

(8(~2), 8(-3), s(-4), S(-5),

(8(-3), s(-4), s(-5), s(-6),

(8(-4), 8(-5), s(-6), s(-7),

etc. and

(8(2), S(0), S(-2), S(-4), ...),

(8(-2), S(~4), S(-6), S(-8), ...).
Upper bounds on C

. s

» o .

R W ™
-

-

6 may be obtained from:

(S(l>, S(O), S(-l), S(—Z), '-')9
(S("l>’ S("'Z)a S(_B)’ S(—"/"')’ "-)3



(5(0), S(-2), S(=4), S(=6), ...).
As usual, the Cé is constructed by replacing the actual distributions

in equation (13) by the effective distribution.
G. CALCULATIONS FOR THE HYDROGEN ATOM

Fairly extensive calculations have been performed on the
hydrogen atom because of the ready availability of exact values of
S<ki) for ki =2,1, 0, -1, -2, -3, ... . These S(k) have been shown
to be calculable in rational fraction form by Dalgarno and Kingstonao
who list S(2), S(1), ..., S(-6). GavrilaAl has computed S(-7), ...,
S(-10). Gavrila's wvalue of S(-10) contains a typographical error in
the numerator which is listed correctly here. 1In addition S(-11),

.., S(~15) has been calculated in the present work in rational frac~-
tion form. All of these moments may be obtained by using recursion

relations. The following list contains the previously calculated

values of S(k) along with the values of S(-11), ..., S(-15) calculated
here:

s(2) = 4/3

S(1y = 2/3

S0y = 1

S(-1) = 2

S(-2) = 9/2

S(-3) = 43/4

S(-4) = 319/12

S(=5) = 9673/144

S(-6) = 297541/1728

S(=7) = 9243157/20736

S(~8) = 289165453/248832

S(-9) = 45,464,213,273/14,929,920

S(-10) = 7,175,468,425,141/895,795,200

1,135,753,416,866,657
53,747,712,000

S(-11)
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180,168,229,948,381,789

8(=12) = =3 717867, 720,000
G(-13) = 200,407,807,104,309,615,071
1,354,442,342,400,000
§(14 - 223,220,093,886,359,508,924,469
568,865,783,808,000,000
6 (-15) - 248,892,118,198,506,334,751,975,591

238,923,629,199, 360,000,000 .

In addition, values of the following sums have been computed, valid

to 25 digits:

S(-16) = 2.767867752796214680257191 x 106
S(~17) = 7.359191237809297517598849 x 106
S(-18) = 1.957712849836060068184363 x 107 .

For the construction of the case 2) distributions it is also necessary
to known that w, = 3/8 a.u.

Using this collection of sums Prony's method has been imple-
mented to set up the polynomial equation (for the effective energy
differences) with rational coefficients for both case 1) distributions
and case 2) distributions. Calculations have been performed includ-
ing sums from S(2) and S(1) ranging over values down to $(-17) and
S(-18). Table 1 includes the polynomial equations for case 1) distri-
butions using the set of sums S(2), S(1), ... . Table 2 includes the
polynomial equations for case 1) distributions satisfying the set of
sums S(1), S(0), ... . Table 3 includes the polynomial equations for
case 2) distributions using the set of sums S(2), S(1), ... . Table
4 includes the polynomial equations for case 2) distributions satisfy-
ing the set of sums S(1), S(0),

The roots of these polynomials were evaluated using the
Newton-Raphson method. After the effective energy differences were
obtained, the effective oscillator strengths were calculated using
the previously described technique which utilized the alternant form
of the matrix for inversion. Once the effective oscillator strengths

and energy differences were known, the distribution was inserted



S(2)
S(2)
S(2)
S(2)
S(2)

S(2)

S(2)

S(2)

S(2)

S(2)

S(1):

S(-1):
S(-3):
S(=5):
S(=7):

S(-9):

S(-11):

S(-13):

S(-15):

S(~17):

Table 1

(2/3) (w-2)
(1/9) (3w2-180+8)
(1/(22%9)) (3w3-36w2+44,-12)
(1/(25%27)) (150*-30003+700w2-476w+96)
(5/(213%x81)) (45w5-1,350w"+5,10003-6,228w2+2 ,968w-480)
(5/(222x81)) (315w®-13,23005+73,5000"-139,3564°3
+114,808w2-42,432w+5,760)
(35/(231%243)) (315w7-17,6400w5+135,24005-365, 7360
+454 ,67203-283,23202+85,8961w-10,080)
(35/(2%2x729))(2,835w5-204,12007+2,063,8800 5
-7,525,2240°+13,051,152w%-12,025,4400°
+6,037,448w2~1,557,216w+161,280)
(35/(257x243>>(14,175m9~1;275,750m8+16,443,ooow7
-77,633,6400w%178,338,2400°-225,561,6000"
+165,067,14403-69,547 ,2480w2+15,637,8241-1,451,520)
(175/(27%%729)) (155,925w%-17,151,750w%+274,428 ,000w8
-1,627,358,040w’+4,770,865,44005-7,886,102,40005
+7,825,636,184w" 4,752,597 ,808w3+1,727,754 ,62402

-344,851,200w+29,030,400)



S(L)
S(1)
S(1)
S(1)
S(1)

S(1)

S(1)

S(L)

S(1)

S(1)

§(0):

S(-2):
S(~4):
§(-6):

S(-8):

S(-10):

S(-12):

S(-14):

S(-16):

S(~18):

35

Table 2

(1/3) (Buw=-2)
(1/(2%3)) (3w?-6w+2)
(1/(2%%9)) (1503 -60w2+52w-12)
(5/(210%27)) (450" -3000w3+48002-268w+48)
(5/(218x27)) (315w°-3,1500"+7,980w3-7,836w2+3,2560w-480)
(35/(226x81)) (315w®-4,410w5+16,170w"-24,27613
+17,200w2-5,7240+720)
(35/(236%243))(2,835w7-52,920w0%+264 ,60003-559, 944"
+592,272w3-329,02402+91,656w-10,080)
(35/(259%81)) (14,175w5-340,20007+2,222 64005
-6,282,36005+9,190,8000"%-7,493,328u3
+3,431,176w%-823,968w+80,640)
(175/(2%5x243)) (155,925w%-4,677,75008+38,669,4000
-140,457,24005+270,246,2400°-300,494 , 880"
+199,378,90403-77,786,928w2+16 ,444,2241w-1,451,520)
(1,925/(283x729)) (467,775w9~17,151,7500%+174,947,8500°
-793,096,920w’+1,935,893,52005-2,797,886,520u6°
+2,504,701,0320"-1,402,063,50403+477,160,272w?

-90,204 ,480w+7,257,600)



S(2):

S(2)

S(2)

S(2)

S(2)

S(2)

S(2)

S(2)

S(2)

S(2)

S(0):
S(-2):
S{(-4):

S(~6):

S(-8):

S(-10):

S(-12):

S(~14):

S(~16):

1

Table 3

(4/9) (8w=-3)
(4/(27%13)) (8w=3) (7w-26)
(1/(2x9%107)) (8w=3) (33w?-306uw+214)
(1/(23%243%23)) (8w-3) (75w3-1,260w2+2,1800~828)
(25/(212x243%113)) (8w=3) (285w"*~7,50003+23,2000”
-20,684w+5,424)
(5/(229x81%503)) (8w=3) (7,245w>~274,0500"*+1,312,50003
-2,015,748w%+1,200,008w~241,440)
(245/(239%243%233)) (8w-3) (945wP~48,5100w7+330,750w"
-764 ,988w3+764,59202-341,524w+55,920)
(35/(238%x37x103)) (8w=3) (9, 76507 -652 ,680w°+5,991,720w°
-19,311,096w"+28,481,008w3-20,976,3200%+7,505,208w
-1,038,240)
(35/(25°x3%x1,187)) (8w-3) (496,12508-41,844,60007
+496,918,80006-2,119,922,2800°+4,285,416,2400"
-4,588,475,7600w3+2,671,342,61602-798,061,536w
+95,719,680)
(875/(272x37x17%29) (8w-3) (2,027,0250?-210,498,750w°
+3,137,211,00007-17,074,161,720wb+45,066,589,920w°
-65,317,111,2000"+54 ,664,675,832w3-26,306,177 ,904w2

+6,752,250,4320-715,599,360)



S(1):

S(L)

S(1)

S(1)

S(1)

S(1)

S(1)

S(1)

S(1)

S(1)

S(-1):
S(-3):
S(-5):

S(=7):

S(-9):

S(-11):

S(-13):

S(-15):

S(-17):

57

Table 4

(2/9) (8w=3)
(1/(9x7)) (8w=3) (bw=7)
(1/(23%9%11)) (8w=3) (1502 ~45w+22)
(1/(28%81)) (8w-3) (30w3~165w2+194w-60)
(25/(217%x81x19)) (8w-3) (315w"*~2,730w3+5,628w?
-4,012w+912)
(35/(225x81x23)) (8w-3) (630w°~7,875w"+24,780uw3
-30,012w2+15,302w-2,760)
(245/(235%39)) (8w-3) (2,835w°-48,195w°+213,5700"
-385,3441w3+326,682w2-129, 708w+19,440)
(35/(2%7x35x31)) (8w-3) (28,3507 -628 ,4250°5+3,717,6300°
-9,266,0400"+11,500,110w3
-7,475,8760w%+2,433,096w~312,480)
(5/(265%81)) (8w-3) (155,925w8~4,365,900w’+33,180,8400°
~108,690,120w5+183,676,6800%-172,555,968w3
+90,894,008w2-25,089,1200+2,822,400)
(9,625/(282x37x13)) (80w-3) (311,85002-10,758,8250°
+102,037,320w7-423,866,520w5+930,055,5000°
-1,176,714,8645"+886,939,84003-392,713,992w?

+94,186,656w~9,434,880)



into the various second order perturbation expressions. All calcu-
lations have been performed to double precision (28 digits). In all
cases the effective distributions were found to satisfy the '"con-
straint" (i.e. initial) S(ki) to at least 20 digits.

The case 1) distributions which satisfy the criteria set
forth by Luyckx, et.al.39 can be used to obtain both upper and lower
bounds on the C6 coefficient. Table 5 lists the values of C6 ob-
tained from the effective distributions. All values obtained from
the $(2) - S(3-2N) distributions, with the exception of the S(2) -
S(1) distribution, are guaranteed to provide a lower bound to C6.
All values obtained from the S(1) - S$(2-2N) distributions, with the
exception of the S(1) - S$(0) distribution, are guaranteed to pro=-
vide an upper bound to C6' Deal42 has calculated C6 to 11 digits as
6.4990267054. The values obtained here bound this result from above
and below as claimed.

The case 1) and case 2) distributions can be used to compute
upper and lower bounds on the logarithmic sums L(ki) as described
earlier. Results from the effective distributions are presented in
Table 6 and Table 7. The actual values have been taken from Shima-
muraAB. The bounding behavior is seen to be in accordance with that
described previously. As far as the accuracy of this technique is
concerned, the results are good for L(-1) and L(0), fair for L(1),
and not encouraging for L(2).

It should be noted that the variational perturbation basis
of Johnson, Epstein and Meath44 yields an effective oscillator
strength distribution which satisfies S{(0), S(-1), S(-2), S(-3),

(this will be discussed in Chapter III). But the variational
perturbation technique does not have the flexibility of the method

described here and it cannot be used to obtain all the bounds on

C6 and the logarithmic sums.



Sums

S(2)
S(2)
S(2)
S(2)
S(2)
S(2)
S(2)
S5(2)
S(2)

S(2)

S(1)
S(1)
S(1)
S(1)
S(1)
s(1)
S(1)
S(1)
S(1)

S(1L)

Included

- S(1)
- s(-1)
- 8(=3)
- S(-5)
- S(-7)
- (-9
- S(-11)
- S(-13)
- S(-15)

- 8(-17)

- S(0)

- S(~2)
- S(-4)
- 5(-6)
- S(-8)
- $(-10)
- 8(-12)
- S(-14)
- $5(-16)

-~ 5(~18)

Table 5

.0104166667
.1718750000
.4869186047
.4985858385
.4990079440
.4990256449
.4990266196
.4990266957
.4990267040

.4990267051

.5312500000
.5625000000
.5012755102
.4991142052
.4990309493
.4990269921
.4990267331
.4990267091
;4990267060

.4990267055
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Table 6
Sums Included L(-1) L(0) L(1) L(2)
S(2) - S(1) .1155245 46210 1.848 7.39
S(2) - s(0) -.3264946 -.08740 1.104 9.52
S(2) - s(-D) -.0257520 .05486 .933 10.61
S(2) - S(-2) -.0681191 .08574 .846 11.59
S(2) - S(=3) -.0715828 .09134 .820 12.03
S(2) - S(=4) -.0728482 .09478 .796 12.60
S(2) - S(-5) -.0730491 .09557 .788 12.85
S(2) - S(-6) -.0731848 .09631 .779 13.23
S(2) - S(=7) -.0732116 .09650 .776 13.38
S(2) - S(-8) -.0732365 .09672 .771 13.65
S(2) - S(-9) -.0732420 .09678 .770 13.75
S(2) - $(~10) -.0732482 .09686 .768 13.95
S(2) - s(-11) -.0732497 .09689 .767 14.03
$(2) - s(-12) -.0732517 .09692 .766 14.18
S(2) - S(-13) -.0732522 .09693 .765 14.24
S(2) - S(-14) -.0732529 .09695 .764 14.37
S(2) - s(-15) -.0732531 .09695 764 14.41
$(2) - $(-16) -.0732533 .09696 .763 14.51

S(2) - S(-17) -.0732534 .09696 .763 14.55

Actual -.0732538 .09698 .761 15.92



Table 7
Sums Included L(-1) L(0) L(D) 1.(2)
S(1) - 3(0) 2157671 28768 .384 .51
S(1) - S(-1) . 1084747 13047 .592 160
S(1) - $(=2) ~.0798449 11026 .654 2.32
S(1) - $(=3) 0744666 .10150  .701 3.35
S(1) - S(=4) ~.0737740 09962 .716 3.87
S(1) - 8(=5) ~.0734070 .09815  .732 4.73
S(1) - S(=6) ~.0733404 09778 .738 5.12
S(1) - 8(=7) ~.0732864 09739 .745 - 5.82
S(1) - $(-8) -.0732750 09729 .747 6.12
S(1) - $(=9) ~.0732631 09716 .751 6.71
S(1) - $(-10) -.0732604 09712 .752 6.95
S(1) - S(-11) ~.0732570 09707 .755 7.44
S(1) - $(-12) -.0732562 .09705  .755 7.64
S(1) - S(~13) ~.0732551 09703 .757 8.06
S(1) - S(-14) ~.0732548 09702 .757 8.22
S(1) - S(-15) 0732544 .09701  .758 8.58
S(1) - S(-16) 0732542 09700 .758 8.72
S(1) - S(=17) -.0732540 .09700 759 9.03
S(1) - $(-18) ~.0732540 09700 .759 9.15

Actual ~-.0732538 .09698 .761 15.92
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CHAPTER TII
VARTATTONAL CALCULATIONS OF MULTIPOLE OSCILLATOR STRENGTH SUMS,
LOGARITHMIC MEAN EXCITATION ENERGIES, AND OTHER SECOND ORDER
PERTURBATION QUANTITIES

A. INTRODUCTION

In Chapter IT a method has been given for constructing an
effective spectrum from a set of dipole oscillator strength sums,
which allows the determination of bounds on certain properties of
atoms and molecules arising from second order perturbation theory.
Given an ab initio wavefunction for the ground state, only four
oscillator strength sums, S$(2), S(1), S(0) and S(-1), may be written
as expectation values of the wavefunction. To obtain additional sums
one must either rely upon experiment or calculate the sums varia-
tionally. A procedure for performing variatiomal calculations of
the dipole oscillator strength sums is presented in the present
chapter.

Matrix elements of higher order multipole operators are
required for the calculation of corrections beyond the dipole approx-
imation in both static electric field problems (such as multipole
polarizabilities, Van der Waals coefficients, etc.) and problems
involving the interaction of radiation with atoms and molecules.

In static electric field problems involving S-state atoms, selection
rules can be used to show that all second order perturbation quanti-
ties are expressible in terms of the modulus squared of matrix ele-
ments of electric multipole operators. For these cases the multipole
generalization of the dipole oscillator strength, i.e. the multipole
oscillator strength, proves to be a convenient quantity with which to
evaluate perturbation expressions. A definition of multipole oscil-
lator strengths is developed, along with application to the compu-

C, and C coef~

6’ 78 10
ficients required for the long range expansion of the Van der Waals
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tation of multipole polarizabilities and the C
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B. VARIATIONAL CALCULATIONS OF DIPOLE OSCILLATOR STRENGTH SUMS

In the length form of the dipole matrix element, S(k) may be

written as

S(k) = Z 10,,; w‘; (1)

k+i

Z Ky, 'z‘.n,,w (Ei-E.) (2)

Following Dalgarnos, note that for negative arguments only, S(-k-1)

(for k = 0, 1, 2, ...) may be written

1) =AUV =AY = =N )

I'X°>=( )ié (,o > (4)

and |X,> is defined to be the solution of

(H-EJXy~1%nyy =0 (5)

where H is the Hamiltonian and EO is the energy of state (%Q>. Note
that the 17{;} are three component kets. The Dirac bracket is com-
puted by taking the dot product between the ket vector and the bra
vector, i.e. by taking the sum of the three Dirac brackets formed from
corresponding components of the bra and ket vectors. The operator

(H - EO) is positive on the space of functions orthogonal to the
ground state wavefunction, therefore if a solution exists in this
space, it is unique6.

It proves useful to consider the functional

v, () =<E|(E,- H[E) + 2{E[X ) | (6)

If equation (5) has a solution, then this functional is stationary
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(i.e. the first variation Svn of vn vanishes) for ‘§>= \’X—r\> .

Conversely, a function for which this functional is stationary sat-
isfies equation (5). These claims are proved as follows. To obtain
the variations of the functional7,vn(’xn +€fl ) must be expanded in

a Taylor series in € :
Vn (Xn+€ﬂ) = V“<’X.,\) + EVN(’Xn,Q +“é'€zvnz('x.\,ﬂ>+“‘ . (7)

Note that the expansion defines the functionals Vo1 and Vooe The

first wvariation Svn of v is defined by Sv =& v ('x ﬂ_) The
second variation Szvn of v is defined by 82 = (1/2)& v (Xn 0.

Performing the expansion in order to make the 1dent1f1cat10ns leads to

Vo (Xre ) = (KX + e AU (ES HY(IX oy el D) + 2(C) Oy

= CUMEAHILY + 24U nl Kn?
ee (2¢AIE I + 2¢ L)
s 4 e (2<IE,-HIQY) . -
Therefore
Sv, = 2¢<al(E-HILY +1X0) 10y

and

Sy, = €4 AV (B H)OD .

and all higher variations vanish. Inserting equation (5) into equa-

tion (10) yields
Sv, = 260l ((E- ML +1%y) =0 az

therefore the functional is stationary for {§>= \'X_“> . The converse
is similarly shown by performing the expansion about an undetermined
function for which the functional is required to be stationary. The

fact that E‘,Q:) is arbitrary requires that for the first wvariation to
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vanish, the undetermined function must be a solution to equation (5).
Note that the exact wvalue of vn( X.) 1is just ('ﬂ“&'x.\_b = $(-2n). Fur-
thermore, once h('n> is obtained, $(-2n-1) may also be calculated
from the relation S(-2n-1) = <¥.,‘\'X,“7 .

If f’l.n-b is exact then a variational calculation of l'x‘.‘>
will lead to a value of v such that vné S(~2n). This follows from
equation (11) which indicates that the second variation is always
negative. Therefore any deviation from the stationary position of v
(where Vo= S{~2n))will tend to decrease v, SO the stationary posi-
tion is indeed a maximum. Since all variations beyond the second
vanish, the maximum is not only local but in fact global. Therefore
if a finite set of trial functions is capable of representing \’X,,)
exactly then v, o= S(-2n) and if it is not then Vn< S{~-2n) (in which
case the v, obtained is the maximum possible value with respect to
the subspace of trial functions). Apparently no such bound exists
for S(-2n-1) calculated in terms of a variational approximation to
I Xwy .

In order to explicitly perform a variational calculation, a
choice for the functional form of the trial functions must first be

made. Here a linear form for the trial functions is assumed, i.e.

(’)(,,:7 is approximated by \'X,l“> where

L= 2 e -

A=\
and 1\4‘,}% i=1,2, ..., r, are a set of basis functions of the
n . . .
correct symmetry. Then the a(i)’s for which v, is stationary are

determined by solving the system

O Va

)
o a

=0 e=1,2 " r (14)

Note that if the i{(ﬁ,}} satisfy((ﬁi\q) P = gij and
<¢ llH\ 95 j> = § ij € (which can be accomplished by a Gramm-Schmidt

orthogonalization followed by a unitary transformation on a basis set
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which doesn't satisfy these requirements) then

0 = oV,
~ 2ay
4

= =24 p:\ (e- EQ &) oD + 243l Xns Y

(15)

0"(:\ = (e;’Eo>“<¢ilx“~\>. (16)

However in practice, only a variational approximation l')’_,.\..,> to the
l')(...-,> appearing in equations (15) and (16) will be known, hence a

more appropriate functiomal to consider is vI'l(E ), where

v (€)= Cel(e~H)]E) + 2<E( L. a7

(n)

Similarly, the a i 's for which vr'l is stationary are given by

nY - /
ol = (e-EN) KLl (18)
Therefore,

I'X«,n} = Li (5; - E-oyl<¢£} 7(-:\~;>l ¢<> (19)

=

and by recurring upward from l'x‘;>= Y%O> it is straightforward to
find that in terms of r)[_°> s

PSRN RN CAP AN o0

Utilizing this result to evaluate equation (3) it is found that the

k + 1 possible forms for calculating the approximation S'(-k-1) to

S{-k-1) using I’X,°> and the functions i'ﬂf,?, {')L;> s e f'L;(> 11

yield the same result,

Stk-D =% (e -ET K%l (21)

L=

w
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r

= 20 (e Ke Z R0

h (22)
A=\
for i[#;)}g such that(cﬁi{ ¢J> = § 13 and <4>I]H\¢J> =gijei'
Finally, note that Dalgarno and Epstein have proven:
1. 1If the basis spans
il
rs
p=l (€ ILPO>
then S(-1) and S(0) must be satisfied.
2. 1If the basis spans
N
i —
r(';) ! Lyca>
p=!
and
N
N
p=l
then S(-1), S(0), S(1) and S(2) must be satisfied.
C. MULTIPOLE OSCILLATOR STRENGTHS AND OSCILLATOR STRENGTH SUMS
Let Q<3) be a ZJ—pole operator of the form
) N & _
t = r¢ :

=} T=-;
&

where r(pL) is the radial coordinate associated with the M th electron
and Yj’t’ () is the spherical harmonic associated with the pAth elec-
tron. Then the oscillator strength of Q(J) associated with the tran-

sition from anm} to lr\'f'm’> is given by
: R . 2
Pt (@) = 21l QPIND] 0O, pon it (24)

It is desirable to expand f v(Q<J)) in terms of the matrix

nlm,n'1l'm



elements of the basis
N

PERY,

Y' Tl = e oy
M= | o 3’ 'Q ’ T j’) 2 }
so equation (24) may be rewritten as

Fnim,n'l'». (Q(P)
= 2<nlml zi a% i, ;m\ Ly %

"<n’1 \Z i QT (3 }?(,4\’“£M>wu2mn (25)

= i ‘ hgw\l Z ?‘} Y 6’(~x>‘)l"'e""l>x

:- ==,

X <r\ Ja ! 2 Y},’t(fa ‘QW\> W, v, nL'w', (26)

The Wigner-Eckart Theorem allows one to write

< n'{ IM‘ l T(:) }V\QW\> = <£MJR‘£IM'><\\|£, ! Tu)l“ﬂ> Q27N

where (AwmIk|A'w? 1is a Clebsch-Gordan coefficient and (v\'ﬂ'lTU)lh2>

is the reduced matrix element. However the Clebsch-Gordan coeffi-

cient is non-zero only if m + k = m'. Hence the summation in equation

(26) may be rewritten as
ﬁhﬂm,n'l'w\' (Q(3\>
N .
— 1 * 4 ! 4
= 2l Kl Z R Y Il

N .
X < L | §| r(tﬂ Y} - () ‘ “’Q""‘>wn1m,vx'1'w\'

(28)
= 2la [* 1<l | Z q‘5\(‘.} SN v\ﬁ»«x}iw,\gw\gm (29)
where YJ Tom (@) =0 if \m - m!}j here by definition. Therefore

the oscillator strength for any 2J—pole operator of the form (23) may

be evaluated if the oscillator strengths of the basis elements



S

N .
r .

‘phﬂwx r\'ﬂwx (E: ,,5 J,'(’(,u))

:Zl(h'ﬂ@\'{,‘z__} 4 J"t(/*) hgw\>, '\EW\,'\.I:"\l (30)

are known for all —j$T$ j.

The dipole oscillator strength is frequently written in the

form
~£Y\XW\,V\'X'W\
N
% % K’ (ng xfk\'\fﬂ\>(1* 1<n }‘Z \/,k M>[

N
Kt | Z z,‘\nwz Wp ok’ (1)

which can be rewritten in terms of spherical tensors as

Fhim)ﬁ'L'ml
1
- %ﬁ‘ Z < L’ ]7; QM\(W(,«)‘“!W\N Wi, lm',  (32)
==

Apparently a consistent generalization of this definition of the di-
pole oscillator strength to ZJ—pole operators which maintains the
rotational invariance of the matrix elements is given by

e

hzm,n'.('vn'

g 2
(ym’* Z‘*} A IZ Y}T oI W o wtimr 33)

The utility of this expression, however, can only be determined by

examining the specific problem requiring the evliuation of the oscil-

lator strengths. The definition in equation (24) contains more in-
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formation but the definition in equation (33) may be sufficient.
Another modification of the original definition (24) of the oscil-
lator strength is to average over the orientations of’fﬂ£h¢> and
IVVﬁ’WV>. For details see references (9) and (10).

At this point the situations in which the concept of multi-
pole oscillator strengths is useful for the evaluation of second
order perturbation expressions shall be examined. Assume a pertur-
0 In

order to implement second order perturbation theory one must eval-

bation V is given to be added to an unperturbed Hamiltonian H

uate expressions of the form
2 ' 2
Vi, it | = [<nlm | VIndmplS (34)

In many cases the perturbation V can be written in the form of a

multipole expansion
© .
D
V=2 a;Q (35)
A=

where the a, are "constants' (i.e. they do not include any of the
variables integrated over for the calculation of the matrix element)
which parameterize the strength of the perturbation. Therefore equa-

tion (34) may be rewritten as

RY

Z
hﬁm}u'ﬁlw\’l

= 3 T al a; ndoml QOF [l >
k=1 4=l
X <nlw [ QP[0 dm> (36)

For the multipole expansion to be useful the ai's must decrease in

magnitude rapidly enough with increasing i such that a small number
of terms is sufficient to furnish an accurate approximation to the
actual V. This decrease in magnitude of the ai's usually comes

about through the appearance of a parameter of "smallness" € (< 1)
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raised to a power. The power is a strictly increasing function of
the index i1 of a,- The truncation of the series (35) may be per-
formed consistently by choosing a value p for the maximum power of
€ desired, then including all terms alf"éai containing € to a power
less than or equal to p. Corrections from third and higher orders
of perturbation theory which contribute terms containing € to a
power less than or equal to p must also be included for a consis-
tent expansion. This complication of contributions from higher
orders of perturbation theory, however, shall be ignored in the fol-
lowing discussion.

The oscillator strengths as defined previously are propor-
tional to the modulus squared of the matrix element of an operator.
Evaluation of the above expression apparently requires terms which
are not of the modulus squared form (i.e. are proportional to the
product of matrix elements associated with two different operators).
These ''cross terms" can be calculated in addition to the oscillator
strengths if required and in fact sum ruies can also be derived for
these termss. However for simplicity this discussion shall be lim-
ited to cases where only terms of the multipole oscillator strength
form appear in the summation. 1In the following shall be described
two situations where cross terms are not required in the evaluation
of the above expansion.

First, the most obvious case for which the cross terms need
not be considered is when only the dominant operator (i.e. the first
operator in the multipole expansion which is allowed by the selec-
tion rules) associated with the transition is included in the expan-
sion. Since other nonvanishing operators will be multiplied by
coefficients containing the smallness parameter to higher powers,
truncating the series at the first term is consistent.

If higher order contributions to the expansion are desired,
rotational symmetry can be utilized to show that the cross terms
vanish in the event that one of the states involved in the tran-

sition is an S-state. This claim shall be proven below using the
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Wigner-Eckart Theorem. Note that if neither of the states involved
in the transition is an S-state then in general the cross terms will
not vanish. Fortunately the ground states of more than half of the
first twenty neutral atoms and their positive ions have S symmetryll
so this discussion is of practical interest.

From the Wigner-Eckart Theorem one again has equation (27),
L I TP Ay = o Tk LW T T L)

The nonvanishing Clebsch-Gordan coefficients satisfy the triangle
condition ll - 1'}( J< 1 +1'. 1In the event that(h2#> ig an S~
state then 1 = 0 which implies J = 1'. 1In this case the product of
matrix elements <v\00\GL“Q*\n'l'sv\’><'\'l'm'l0fuln00> is nonvanishing only
for i = k = 1" hence cross terms cannot appear in the expansion (36).
If one of the states is not an S-state then in general cross terms
will occur. The Wigner—Eckart Theorem is nevertheless useful for
reducing the number of terms which must be considered. Also, since
the eigenstates must be of a definite parity, Laporte's rule can be
used to eliminate still more terms. For example, Laporte's rule
implies that cross terms involving a dipole and a quadrupole oper-
ator must vanish (for the dipole and quadrupole operators of the
form defined in equation (23)).

Having defined the multipole oscillator strength in equation
(30) the multipole analogue of the dipole oscillator strength sum is
simple to %o?struct. The multipole oscillator strength sum of the
J

operator Q may be defined as

Sth (k 3 Q({r\) = Z {\ ", 'm'(Q(’:)) ("*):Qm w o (37)
N L w ’ )
Sum rules for multipole oscillator strength sums are constructed in
the same way as for the dipole sums. 1In section H the sum rules for
quadrupole oscillator strength sums shall be computed explicitly.
Finally, it should be noted that the variational approach described

in section B for the calculation of dipole sums can be trivially al-



tered for the calculation of multipole sums. All that must be done is

to replace the operator
i+ N
AL
=l
by

25 Q¥

D. VARIATIONAL CALCULATIONS OF MULTIPOLE OSCILLATOR STRENGTH SUMS
FOR ATOMIC HYDROGEN

It has long been knownlz—13 that if the operational procedure
described in section B is applied to the ground state of atomic hydro-
gen then a properly chosen variational basis satisfies certain
dipole S$(k) exactly. The "proof" of this rule has apparentlv only
been ''derived" from empirical observations of numerical calculations.
In this section shall be presented a simple mathematical explanation
of why the exact satisfaction of certain dipole sums must indeed fol-
low for the hydrogen ground state if the basis is constructed proper-
ly. The argument is easily extended to deal with variational calcu-
lations of multipole sums for the ground state of hydrogen. TFor
simplicity, the derivation will first be performed for only the case
of the dipole operator r cos® and the extension to the arbitrary
multipole case will follow by analogy.

The values of the dipole oscillator strength sum
2 - N\I=T
S(-1) = 2 2KY¥. lreosBlY N (E..-E.) (38)
™

are desired for t = 1, 2, 3, ... . The ket l‘K;? denotes the ground
state of hydrogen. Dalgarno and Kingstonl4 show that this problem
can be converted into one of solving an inhomogeneous differential

equation. Define uk(?') to be the solution of the equation



T, vru, + 2(VY)-(Tu) ==Y u, (39)

and
L
e = 2% rcosh. (40)

The solution may be shown to be of the form

2) = (k) (k K
u, (¥) = (ctkM Pyl 4 ak) P4+ a™r)cosB (41)
where the a(i)‘s may be determined recursively. The solution of equa-

tion (39) is a function which satisfies the equation
~1
<\Vm\ uk\h}le> = (Em—E‘a> <\';)"\[ uk-g } ‘{’°> (42)

for all eigenstates IQﬁ“> (proved by Dalgarno and Lewisls). Equa-

tions (40) and (42) allow equation (38) to be writen as
SN = Aol ualp Yo =(Hlu Upa )y = -=C Y| u’;}_{_s,l‘{’,) (43)
for t odd and

SEN =Kl uots ) =l ubral ey ==t Uy UL W) (44)

for t even.

As described in Section B the oscillator strength sums may
also be calculated variationally. The results presented above con-
cerning the exact solution of the S(-t) may be used to determine a
variational basis which is also capable of obtaining the S(-t) exact-

ly. As before, the variational basis is required to satisfy

AL =8y (45)

and

SABIEdS Sij €: . (46)
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Then the variational solution S'(-t) to the dipole oscillator strength

sum S(-t) is given by

S,("T) = g l<¢m‘r‘COSGIWQ>12—(€M*EO)‘-?' (47)

Now note that equation (42) implies that

S ANTEREAERCRILRNIL VS (48)

Since this relation holds for all eigenstates lq¢;>it must hold for
any arbitrary function l¢;> which can be written as a linear combin-

ation of the 'q¢&> , 1l.e.

Conl w1y = CoLIH, w WYY (49)

for the states ]*;> of the wvariational basis. It is useful to intro-
duce the projection operator associated with the space spanned by the

variational basis,

P =T 1454l

and also define HPP = PHP. Then

len-E<lu 1) = {Pul Hppup-u HIYD (50

follows from equations (45), (46) and the fact that H l%f)= EO]4Q>.
Note that if the set i\¢;’§ contains uk‘4£7 then Puk(q{) = uk[4g> ,

and therefore

<¢h(HPP Ukl\‘)°> =<¢thuk\kPo>. ‘ (5D

Substituting equation (51) into equation (50), one finds

(eh- Eo)<¢“l uk!\'l/o\) = <¢thUk" UkH!q}o>
:(Cﬁ,\l [ H; uk}!wo>

=<l u_ %) (52)



where the last step was performed using equation (49).

Hence

COlu Iy = (ep- B Conluy, 14D (53)

holds if the basis set il¢h>z satisfies

<¢1f9‘>;> = g;é',

and
<¢;IH{¢;>=S;J'6;

and the function ukl‘Po> is contained within the space spanned by
the basis. Equation (53) may now be used to rewrite equations (43)
and (44) in the form of the variational solution to the problem.
The evaluation of S(-t) for t even and t odd shall be dealt with

separately. First examine S(-t) for t even. TFrom equation (44) it

is known that
S("'ﬂ = <\K,! u%_l U%‘(\Po>

Clearly if the variatiomal basis contains ug LY, ul!4Q> , e
ut/2\¢§> then it follows that

SE1) = T uy_ [8bnlug 1)

z-

° s

= Z. 2 l<¢m[ r COS@H’OWZ(E,,‘“ Eo)‘-? (54)

where the second line was obtained using equation (53) recursively.

Similarly for t odd it is known from equation (43) that

S(-1) =<¥% | uiz;_‘_(%’.) :

In this case if the variational basis contains u0\4§>, u1k4£>

U(t«l)/ZX‘P;> it follows that

5 CECEE Y
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S(-1)

H

Z<\P‘U?\!¢ ><¢ml -1 °>

2

'g 2 Kl rcosOl B3 (en-E ) (55)

]

where again the second line was obtained using equation (53) recur-
sively. Note that equations (54) and (55) are equal to the exact
value of S(~t), yet they are also equal to the variational solution
S'(-t) as given in equation (47). Therefore if the variational basis
spans the space containing the functions listed above, the varia-
tional calculation will yield exact results.

Recalling that the form of Uy is given by equation (41) (for
the ground state of atomic hydrogen) it is clear that if the varia-
tional basis spans a space containing the set of functions r cos8 hhb,
r2 cos® N{}, ceay " coselqg> then the sums S(-1), S(-2), ...,
S(-2n+1) will be satisfied exactly. S(0) will also be satisfied ex-
actly due to the result of Dalgarno and Epstein8 since the basis con-
tains the zl4§> term. Finally, if in addition the cosQ’4{> term
is included then S(1) and S(2) will also be satisfied, again due to
the result of Dalgarno and Epstein (note that %N{,> = — cosB H)°>
for atomic hydrogen).

Belll6 has examined, for the ground state of atomic hydrogen,
the problem of sum rules for multipole operators of the form

r? Pj(cose). Define g(3>(r ) to be the solution of the equation

., V’“g(t\ + 2(TY) (T (’)) + (56)

k-1
and
L.
3‘*‘*3 =2%rt P (cos@). (57)
° ¢
The solution may be shown to be of the form

3(3)(?) = Pi P;‘(COS@) L\(“i)(ﬂ (58)
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where
) . N .
hE(r) = (al%d pe g gfld ety alkd?) (59)

and h(%)(r) = 1. As before with the dipole case, once the differen-
tial equation has been solved, the multipole oscillator strength sums

may be obtained by evaluating

S(-t5rtRleose)) =<l g3 g 10y = = (H () I (60)
for t odd, and

S("‘U rj'P}.(COSQ))=<\Po‘ P (})H'\?"'””(\P 3’-\31 N> (61)

for t even.
The above results may now be used to determine the basis which
allows multipole oscillator strength sums to be satisfied exactly. As

usual, the wvariational basis is required to satisfy
¢ 0 = 644

and

{eilH ¢2> S, 64 .

Then the variational solution S‘(—t;rJPj(cosé})) to the multipole

oscillator strength sum is given by
: . . -t
S ("T N ri P;(COS@») = Z 2l<¢w\f T‘"Pj ((_059\‘4}.,>\1(€,;E,D . (62)

Using arguments similar to those used for the dipole case it follows
that if the variational basis spans a space containing the functions
T P (Cose)N’o> , T P (cose){\Pb - m‘P (cos ©)|W,Y then the
sum S(k T P (cos8)) w111 be satlsfled exactly for k= -1, -2, -
-2m-1. Certaln of the sums S(k;r PJ(COSG))) can be evaluated for
k=20,1, 2, ... with techniques similar to those used for k = -1,

-2, =3, ... . The work of Lamm and Szabo17 allows one to calculate

gfi)(?') for t = 1, 2, 3, ... using a recurrence procedure. Then the
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multipole sums may be obtained by evaluating

S (408 P (cos)) =< [ (g W)) 1%y (63)

for t odd, and
S(v;riPilease)) =< Y| g% 9% 1wy (64)

In section E it shall be shown that the 2j—pole oscillator strength
for the ground state of hydrogen behaves asymptotically as e-—j—2.5
which implies S(t;rij(ccse)) diverges at t = j + 1.5. Therefore
evaluating equations (63) and (64) will lead to convergent results
for t = 0, 1, 2, ..., j*+1. For j odd the additional sums
S(t'rjP.(cose)) for t = 0, 1, 2, ..., j+1 will be satisfied varia-
tlonally if the basis spans a space which contains P, (COSEQ)‘4L> s
rP (cos ) hP§ R o P (cosb )[4g> However for j even a sub-
tlety involving the dlvergence of a matrix element occurs which pre-
vents the S(j+l;r P (cosB8)) sum from being exactly obtainable from

a variational ba51s The remaining sums S(t:r P (cosB)) for t = 0,
1, 2, ..., j may be obtained variationally if the basis spans a space
containing er (cose)\‘{’o> , rsz (cos 9)N/°> s e, rij (cos 8){4’°> .

Verification of these statements is quite straightforward.

E. MULTIPOLE OSCILLATOR STRENGTH DENSITY OF GROUND STATE - CONTINUUM
TRANSITIONS FOR ONE ELECTRON ATOMS

The multipole oscillator strength density associated with a
transition from the ground state to the continuum is sometimes use-
ful for the evaluation of the summations over all states which arise
in second order perturbation theory. The dipole oscillator strength
is also required for the calculation of the photoionization cross
section (in the dipole approximation) however the corrections from
the higher order multipoles are usually not considered because in

the high energy region where these corrections become important,
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relativistic effects are also usually significant. The following
discussion is concerned with the evaluation of the multipole oscil-
lator strength density of the ground state - continuum transitions
for one electron atoms. The derivation presented below is a gen-
eralization of the derivation for the dipole case contained in ref-
erence (9).

In order to compute the multipole oscillator strength density

it is necessary to compute all matrix elements of the form
= ) | >
My=<uwmIrt Yoo I Y, (65)
where 4g is the ground state wavefunction given by
3 L]
- 2 .. -F —Zr
\‘Vo 22T 7Te (66)
and Uij is a continuum wavefunction (to be defined below). The Wig~
ner~Eckart Theorem can be used to find that the above matrix element

is nonzero only for j = f# and m = 0. Therefore it is necessary to

consider only the continuum wavefunction9 uwR 0= RWI Y!.O where

5 g

f+ 2 ~(2+0)

RW,( :(-—) I/Vl -Z.—z‘rhn Tr/\’62_+hal .(zkr) X
—-C s =|

{ in-2-1

P (gt R dE e

. 2
with n' = Z/k and k = (2601/ , and € is the energy of Ueo

Let f(g) denote the integrand of the contour integral

{:(g) - e-—Zikr‘g (E +_é>-in'-£-\(g~%Ah'-2-z‘ )

The integrand f('g) clearly contains branch points at & = -1/2 and
E = 1/2. The branch cut is taken to lie between the two branch

points, after defining a single valued branch by

. i ) —-ain'=d=1 o nEn'=f-
FE) = ezikrpae'™s ( P3 6‘%) (F.e‘qb') -



—Z;krp;ei’bl ‘)‘f"e-i(i*ﬂ(%*‘?’s)x

(. ps
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vhere p =¥ -1/2[, p,=18], p,=1%€ +1/2],0¢ ¢ <27,

0s qizs. 27, 0% ¢3$ 2w with the angles measured as indicated in Fig-

ure 4.
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Figure 4

According to equation (69) the function f(€) is analvtic everywhere
except on the real axis betwen E& = -1/2 and € = 1/2. Finally,
with this choice of the Riemann sheet the contour integral is eval-

uated along a path enclosing the branch cut as indicated in Figure 5.

Figure 5

With the above definition for the continuum wave function it

is now possible to evaluate the matrix element Mg. The angular fac-



tors may be trivially integrated out using the orthonormality of the

spherical harmonics, leaving only the radial integral remaining:

= [Trt2R LW dr

3

(o EmE S

m‘,-\ 1 l 'VSZ'-t-n X(Zk)
X S:Dr e—ngée-zzkr‘g(§*%-iu%bl(g—‘i)in'-l—;(g}a!r

2 __-2 £
(__)14»( 25 W (2k> (,!-M)X

il

O

% §:§§ r e—-(2+2;k €lr (§+_.2_)‘ih'-x-x(gw‘i) c('ggo(r

: 2+1)
(~)M,Viz.lz—f—-1 TY \’s“»«n T J (70)
|- e ™

where

an'=g-1

J = 5 { -(z+z‘k§)r(E-y—-)ﬂ““b'(%“lz‘) o&?;dr_ (71)

At this point it is necessary to interchange the radial integral with
the contour integral, however this interchange can only be effected
if the imaginary part of E is less than Z/(2k), otherwise the radial
integration will yield a meaningless (i.e. divergent) result. Prior
to this step the contour could trace anywhere around the branch cut,
but to interchange the order of integration it is necessary to first
deform the contour such that it does not lie above ‘E = 7i/(2k). Of
course deforming the contour (without crossing singularities) cannot
affect the value of the original contour integral (as a comsequence
of Cauchy's Theorem). After making this restriction on the path of

integration one obtains

—
59
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J = 5;%5:’," e—-(za-zik’é)rdr}(g+_,£)-£n'-2—\(_g_%)£n‘-l—ldE

§ G E)TT
(Z2+2ikE)*

G R S Ly re
LH& (g _Z ‘)z (72)

zr”

Notice the radial integration has introduced a second order pole lo-
cated at € = Zi/(2k). The above discussion concerning the integra-
tion path implies that the pole is located outside the contour as

indicated in Figure 6.

2

Z
2k

Figure 6

As shown in Figure 6 the contour integral does not lend it-
self to simple computation but this situation may be remedied by de-
forming the contour as in Figure 7. ©Note that the integrand behaves
asymptotically as‘g.z,b'4 for large EE and the Q_ of interest range
over only the positive integers. The large circle is taken at infin-

E -28-4

ity so it yields no contribution (because of the behavior)
and the paths connecting the circle around the pole to the circle at
infinity give equal and opposite contributions. Therefore the

integral over the path in Figure 7 yields the same value as the in-



Figure 7

tegral over the path shown in Figure 8.

Figure 8§

The integration path in Figure 8 is such that the integral

may be readily evaluated using the residue theorem as follows.
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J = ".’Zmzdg[ LH('& +_L)‘in'—1l u\-l- :”

E=%in
s 22*%m . fin-1 )“‘
k*(w sz in'+l
( ) 211*377'}" e_zn GJ‘C.&O"’ n
- k(w2 )2 7

where the last step was performed by using the identity

= Tan [-5'2-_— zr\ {'4—2')] (74)

which can readily be verified by expanding the tangent in terms of
exponentials. Replacing J in equation (70) by the result obtained in

equation (75) yields the value of the matrix element

2+2 -2n' eot n!
2 1 e n arc »n

Ml = - Z3TT~%

W §
k‘!**(h"‘-*'l)n*l | — e-27n

/ ] vgl+nll ' (75)
s=1

Finally the value of the multipole oscillator strength density is

given by

Olpxoo,eﬁo(rl Yzo)
de

and here EO = -22/2, therefore

= Z}MLP(E-—EQ (76)



d p:oo,eﬁo ( r? Y,(03
de

Z A 22£+5 1 2 e—t{-n' arccet n’
o | 22+8 (n.z+|)11“‘4 [ — g 27

(T (stemt) x(e+ B)

L+l -2y !
_ Ze 2 12. e 4y arceot n
T I (w2 )2 erH | - 2™
I 2
Z
"(Tf (s‘+n“)>7‘ (f'-*'i") (77
9=

where n' = Z/(2€ )1/2. The above equation for the operator r"Yl

0
may be rewritten as an equation for the operator r’Pz(cosé ) by using

the identity

Y,qo (Q‘/’\) = ( :ﬁ : )éZ R(QQSQ) (78)

therefore

A F\ac;eﬂo (rlpz ((_Ose>>
de

3 - ‘ ot »'
ZQ 2£+ [;_ e Y4 p'arceol n

o —————a s ——

T G e

x(.ﬁ—(31+h'2’>)(6+%—1) . (79)

s=1

The asymptotic behavior of equation (79) is of interest for various
reasons, including the determination of the argument k at which the

multipole oscillator strength sum S(k;rgPL(cxmse)) diverges. The
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first two asymptotic terms may be obtained by a straightforward ex-

pansion of equation (79):

Clp(oo,eao (""R PQ(C—°59>)
de
’_‘_‘;: Zé .—2;2‘*311 I__.".hl 4 >2
(24+1) e**3 27w ( J:ln >
1+2 -3
7 °® 2V 1 2 | —-mZA(2e) 2
(24+1) IT (TT S) c 1+25 ) (80)

R

—

=4

Therefore the asymptotic behavior of the Zl—pole oscillator strength

density 1s seen to behave as

dF 1o g0 (12 Plcosd)) g-2:5
y - < € (81)

F. APPLICATIONS OF MULTIPOLE OSCILLATOR STRENGTHS TO STATIC ELECTRIC
INTERACTION PROBLEMS

For practical purposes the multipole expansions discussed in
Section C are of interest only up to quadrupole order (or at most,
up to octupole order). Beyond this order the higher terms usually
yield corrections which are physically insignificant and if this is
not the case the applicability of the expansion is questionable. In
this section the evaluation of perturbation expressions shall be dis-

cussed for when multipole expansions are taken to this order.

The simplest interaction where the multipole expansion is of
interest is that of an atom or molecule in a static electric field.

The perturbation to the unperturbed Hamiltonian is equal to

N
; e: ¢ (F)



where ¢x(?') is the scalar potenetial due to fixed external charges.
N 4

Assuming ¢>(r~) is being considered over a localized region which

does not contain the fixed external charges, it satisfies Laplace's

equation

v ¢(F) =0

which for this situation has the general solution given by

o 4k
.k——
Pr)=3 2
O m=

{=

. Ay rt YIM(Q,‘P) ) (82)

The 2 = 0 contribution may be ignored since only the gradient of the
potential is of physical significance. Truncating the series after

the quadrupole term leads to

2 J4
) = 2
b ()= 2 Apar Ym(@‘ﬁ) , (83)
::l‘ m=~,Q
The coefficients Alm may be related to the cartesian components F, of
the electric field vector by solving the system of equations
2¢ =
oo = *= 3 (84)
axd (-3 ) .

Similarly the coefficients AZm may be related to the cartesian compo-
nents Fuﬂ of the electric field gradient tensor by solving the sys-

tem of equations

Slqb -
O %Xy d%g <

P <, B=13, (85)

0f the above nine equations, only five are independent since Fo(ﬁ is
a traceless (as a consequence of Laplace's equation), symmetric ten-
sor hence the determination of the five Azm's is a well posed prob-

lem. Note that since ¢> in equation (83) may be written as a second
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order polynomial in the x.,'s, Taylor's Theorem allows the potential

to be written in the cartesian form

PF) = ~Faxa =3 Fpxax,

— i
- Fo& X = 3 (x«xﬁ - %rzguﬁ>ag (86)

where the summation convention has been taken. The second line fol-
lows from the fact that TFug S«g = 0 is the definition that Fop is
a traceless tensor and the (l/3)r2 factor has been chosen such that
2
(x“xﬁ— (1/3)r 5“5) is itself a traceless tensor.
Classically, the Hamiltonian for the interaction of localized

charges with a potential ¢v(due to external fixed charges) is given

by
H =H, *;8495(7‘1') (87)

= H, + H’

(88)

where
H = ~ K Fi< - (:Z*g Fi(ﬁ (89)

with dipole moment tensor
o = Z € Rix (90)
A

and quadrupole moment tensor

- Jo .2
®«5 -2 Z e;(X;u Xip“ 3N g«ﬁ) . (91)
A
Quantum Mechanically, the expectation values of the dipole and

quadrupole moment tensors for an eigenstate PP> of the full Hamilton-

ian H = HO + H' are given by
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{pad = YT eixi vy (92)

and
NIRRT IS AACHETES 1:x WAILYS (93)

The standard approach to calculating these expectation values is to
use a perturbative expansion. The nth order perturbation wavefunc-
tion lqﬂﬁ> is valid to the nth power of the perturbation parameter.
Since the perturbation wavefunctions need not be normalized the nth
order approximations to the expectation values must be calculated

according to

(= Y Z e lve o0,
Ly )
and
o (Y| £ T e (Xin Xia-—‘_.;nzs,c,g)!%“,> .
< @‘p = < W(,,) l \_y(n)> '
A somewhat more convenient method for calculating {p'y and

o has been given by Buckinghaml8. Classically, the dipole and
had =
quadrupole moment tensors are equal to minus the partial derivative of

the Hamiltonian with respect to the appropriate field parameter, i.e.

_-2H

and

Q. =2
B a}:dﬁ. 97)

£y

Quantum Mechanically the relations analogous to equations (96) and

(97) are



o]
i,

< //{o(> = = "?"'E-‘ (98)

U
b

and

< @a5> = ;E_—;p (99)

where E is the energy for the eigenstate \\P> of the full Hamiltonian
(i.e. (HO + H") l\P> =E lq’) )} which has been reached adiabatically
from the unperturbed eigenstate. Note that the nth order perturba-

tion wavefunction \\Vm'> may be used to calculate the n+l order energy

through the relation
< \P(“\l Ho + Hl ILPCVO>
Yyl

The extra order of accuracy achieved is a consequence of the orthog-

(100)

E(\-\H) -

onality of the unperturbed wavefunction with the perturbative correc-

t
tions. Hence,(}ff) and <@_‘2> may also be computed from

n+t)
(n) — QE(
< f'{ -3 > - g Fo( (101)

and

= s (102)

o _ aE(h-&-n
< B S Fup

@

The following treatment examines the case where the unperturbed state
under consideration is nondegenerate. The degenerate case may be
treated similarly by using the more general perturbative expansions
for the energy and the wavefunctions listed by Condon and Shortleylg.
The perturbative expansions of (M and <®°‘P> shall be computed up
to third order, which requires the fourth order expansion of the en-

(4)

20 . .
ergy, E Morse and Feshbach have given a simple formula for
obtaining approximate expressions for energies and wavefunctions

valid to the nth power of the perturbation parameter. Using this



technique to obtain E(a) it is found that

E("H
Eo +<O‘H'!°>
+ Z [<mlH 10>
L Bt olwlor TR - E

4 Z <O|H'1n><h\H'|m><M\H"0>
L= (E +¢olH 16y - E.) (Eo+<olHIop-EL)
n#0

COIH Iy <plH IRy {nIH Tmmi H ' [0y
+ (103)
T‘:g (EO‘EM) (Ec"' E,,) (Eo— Ef>>

p#*0

The perturbation matrix elements in the denominators are small com-

pared with the energy differences, hence may be eliminated from the
denominators by a simple expansion, which leads to

E("i')

‘ kS
= E, +(olH'loy + 3 Kpiel

MmO
OIH > CnlH ImdSmIR 0> z 1K’ lOY ’~<o;H oy
,z;o (Eo= Em) (Eom En) (Eog=Em)

n 0 , .
LolH 1Py <PLH IRy CniH Im) {mIH'I02 Z KmlH’lO)(z'K;DlH lo]
+Z (Bo-E)(E.-E wHE o™ Ep) o (Eo- Ewm)

m+o
n+0
p#o

1<t 1032 Knlnlo)* ot T <nlR Imy{mlnloy<olr’lo) fo) (104)
-2 2Z. (E~EV(EcED ,
h#:

(EgE, F(E~EN
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