valid to the fourth power of the perturbation parameter. This ex-
pansion is in agreement with the fourth order energy given by
. 21
Niessen
Having obtained the necessary expansion for E(4>, the expec-
tation values of the dipole and quadrupole tensors may be readily
obtained. Upon expressing H' in terms of the dipole and quadrupole

moment operators and the field parameters it is found that
%) _ (o) (o) _
E = Eo <F:>E( ~<@.‘; F,‘# -z.o(e&pE‘Fﬂ

- - L
A LT Fx F;ﬁ 2 C“M’é F«P Fxs

-"5 ﬁupx F. F,;Fx "Z;??Su,ex; F.,‘F,,F,Fs . (105)

where all the terms in the third and fourth order summations invol-

ving the quadrupole operator have been neglected and the following

definitions have been made:
E, =<olH,|op (106)
(pdy = <Olp.¢{0> (107)
<@$;> = <ol @&5‘0> (108)

Ha
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The expectation values listed in equations (107) and (112) wvanish for
atoms since all states are of a definite parity and f.Lq is of odd
parity. The expectation values listed in equations (108) and (110)
will vanish for S-states which follows by invoking the Wigner-Eckart
Theorem. With the above definitions the electric dipole and quadru-

pole moment tensors are given by

3\ _ -EUP
<f‘o< = SE
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+f3°‘ﬁ¥FﬁFa"’”xuﬁxsF,;Fsz (114)
and
(&)
(o) - 358
=< @:‘Q;> * Ay Py + Cupss Feg (113)

where terms in the field gradient F,.p have been kept up to only first

order. This is the conventional expansion up to some slight nota-



tional differences in the normalization of the /Bﬁpx "AE“P’ etc.
Note that 0‘.‘# is the familiar static polarizability and B«ﬁb’ and

quars are tensors characterizing the quadratic and cubic behavior
respectively of the dipole polarizability. Axyup determines both
the dipole induced by a field gradient and the quadrupole induced by
a uniform field. Of the above tensors, only two may be evaluated
using oscillator strengths, however for S-state atoms these are the
dominant contributions. C*“p may be evaluated using dipole oscil-
lator strengths and Cqﬁ)rs may be evaluated using quadrupole oscil-
lator strengths.

Another important interaction where multipole oscillator
strengths may be used is the Van der Waals interaction between dis-
tant atoms. For the following treatment to be applicable, the atoms
must be distant enough such that the overlap of atomic wavefunctions
is small and may be neglected. However the atoms must be close
enough such that retardation effects due to the finite speed of the
propagation of electromagnetic interactions (discussed in great de-
tail by Powerzz) are not significant. The discussion below briefly
describes the computation of the coefficients of the l/R6, l/R8 and
1/R10 terms in the asymptotic expansion of the Van der Waals inter-
action energy. For more details the reader is referred to the re-
view articles by Dalgarno and Davison23 and Hirschfelder and Meathza.
The perturbation Hamiltonian H' may be developed in a multi-

pole expansion of the form

QO oo

H = > -\-/-‘-;rﬁ_-;; (116)
2=0 L=o R

where VRL is given by Dalgarno and Davison23 and it is associated with

the interaction of the 2!—pole moment of the first atom with the 2L~

pole moment of the second atom. The usual assumption shall be made

that the two atoms are neutral and S-states which results in con-

siderable simplification. For a discussion for Van der Waals coef-

ficients for nonspherical atoms see Alldison, Burke and Robbzs. For
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neutral atoms V =V =V = 0. Since the expectation value of
1 00 01 10

any 27 -pole operator (£2 1) vanishes for an S-state the first order
perturbation energy is identically zero. The second order pertur-
bation energy yields the dominant contribution to the interaction
energy and may be expanded in an asymptotic series in the perturba-
tion parameter 1/R.

The second order interaction energy may be expanded in the

series

C 10 -
=T R R R ok

where the Ci's arise from multipole-multipole interactions and shall

(117)

be written in terms of multipole oscillator strengths below. The
coefficient C6 of the leading term in the series is due to the dipole~-

dipole interaction and may be written as

— 3 'Fou(zpc((bsen)) 'Fm(zvrv P.(c,osgy)) (118)
C6 "ZZ zﬂ; #(wbm"’u)on) Weom Wo

where M ranges over the electrons of the first atom, m ranges over
all states except m = 0 of the first atom, V ranges over the elec-~
trons of the second atom, and n ranges over all states except n = 0
of the second atom. The above form for writing C6 is wiél known but
C8 and ClO are usually expressed in a more awkward form™ . However,
having defined multipole oscillator strengths, the above expression
may be easily extended to C8 and ClO' C8 is a result of the dipole-
quadrupole and quadrupole-dipole interactions. Using Dalgarno and
Davison'823 expression for VQL it can be shown from application of

the Wigner-Eckart Theorem that C8 may be written as

(Wom =+ Won) Weom Wown

= Is S £ (3 ruR(ces0) fun( G B Rleess))
Ce = 4 Z.
n n

{S .Fom(gh: P:.(cosg,.)) £h(§'§)ﬂ(€b$9»}>
‘(‘:&—_};Z: (Wem* Weay ) Wom Won

(119)
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ClO is the result of the dipole-octupole, the quadrupole-quadrupole
and the octupole~dipole interactions. A similar expansion shows

that C is given by

pom (E ra B (cos@,ﬂ) *F,,\( Z,.' 2R (cesg,b)
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(120)

Further coefficients of terms in the second order energy mav
be obtained in a similar fashion, however third order perturbation
theory begins to contribute terms at the 1/R11 order of the expansion.
Note that the dipole-dipole-dipole term which is order l/R9 might be
expected to be the leading contribution to the third order energy
however the parity selection rule forbids this contribution. The
product <0l My lnd<{nl Mp"”b("‘if"f‘(\» must clearly vanish since
the matrix elements on the ends are allowed only if |my and va)
have odd parity which will cause the middle matrix element to van-
ish. Similarly the l/RlO contribution vanishes by parity and the
leading term in the expansion of the third order energy will be due
to the dipole-quadrupole~dipole term which varies as l/Rll.

Static electric interactions shall not be further consid-
ered, although there are various other properties which have not been
discussed here. These include the interaction of a point charge with
an atom as considered by Dalgarno and Stewart27. Also of interest is
the three-~body interaction as discussed by Dalgarno énd Davison23 and
Dalgarnozg. Again, for these interactions, the concept of multipole
oscillator strengths is useful for the evaluation of the coefficients

of the terms parameterizing the perturbation.



G. APPLICATIONS OF MULTIPOLE OSCILLATOR STRENGTHS TO THE CALCULATION
OF EMISSION AND ABSORPTION PROBABILITIES

The interaction of radiation with atoms and molecules may also
be treated by a type of multipole expansion, although the approach is
somewhat different from that of static electric interactions. For
problems involving radiation with a wavelength much longer than the
dimensions of the atom or molecule, as is frequently the case, then
for electric dipole allowed transitions, the electric dipole term in
the multipole expansion provides a good approximation to the inter-
action. Corrections from additional terms in the multipole expansion
may be considered, however these typically prove to be of the same
order of significance as the relativistic effects which have been
neglected throughout this discussion. Similarly, under long wave-
length conditions transitions which are electric dipole forbidden
but electric quadrupole or magnetic dipole allowed may be closely
approximated by the electric quadrupole or magnetic dipole term in
the multipole expansion. Again, multipole corrections to the leading
term are of the same order of significance as relativistic effects.
If the radiation involved in the interaction has a wavelength compar-
able to or less than the dimensions of the atom or molecule then the
dipole approximation is being violated and it is not clear that the
multipole expansion is useful (however, as discussed in Chapter V,
the multipole expansion seems to work in this region better than one
would expect).

The following discussion shall be limited to only one photon
processes (i.e. one photon emission and absorption), although the
treatment could be extended to consideration of the multipole expan-
sion of two photon processes (i.e. two photon emission and absorp-
tion, and Rayleigh and Raman scattering). Nonrelativistically, the
matrix element needed for the computation of one photon transition

probabilities is

s N TS .
Mm(k g) = <n§ze‘k"‘ e-vﬂm> (121)

gl
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where 1 ranges over the N electrons of the atom, i? is the wave vector

of the radiation such that Y?i =k =|Q%h\and € is the unit polariza-
tion vector. Note € is perpendicular to ? as a consequence of choos-
ing the Lorentz gauge properlyzg. The "oscillator strength'" asso~

ciated with this matrix element may be written
- 2 2
70,\,,\ (k) = o i M,\M(KE‘)‘ (122)

and to the accuracy of nonrelativistic quantum mechanics and first
order perturbation theory this expression allows the determination

of transition probabilities between h§> and lK) . Practical con-
siderations usually demand that the wave vector k and polarization
vector e be averaged over all possible orientations as described by
Bethe and Salpeterg, but this procedure is straightforward and shall
be ignored here. The computations required can be simplified by
expanding the exponential into an infinite series. There are two
choices which can be made. The exponential may be expanded in spher-

ical harmonics according to

KR S e (20+1) 4 Ckr) B (ces8;) (123)
=0

where ©, is the angle between k and ?&. In contrast to the case of
static electric interactions, this spherical harmonic expansion is not
particularly useful for obtaining selection rules due to the presence
of the factor ( ¥ - ﬁa ) which multiplies the exponential. The above
expansion shall not be considered here, although it has been used by
Mizushima 0 to obtain the lowest order approximation to the first non-
vanishing electric and magnetic multipole contribuﬁion for transitions
when lower multipole contributions are forbidden. The second choice

for the expansion of the exponential is the simple Tavlor series

- o0 _“‘._;‘
etk ® = 5 (kR (124)
£=0 L1

which proves to be as useful as the spherical harmonic expansion when
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corrections beyond the lowest nonvanishing multipole are desired. To

consistently obtain the first correction to fnm(?,g) beyond the di-

pole approximation, the matrix element Mnm may be approximated by

? N i - a2 —
Mom = <M§(l+ik"ﬁ- (k:‘) R AL (125)

-

and the oscillator strength fnm(t,e) is then approximated by

£ (Ra)=& 1M
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where powers of (k‘ri) greater than (k-

cross terms of the form
N - N R -
<nl;é‘-v;lm><mlEf_‘(é-v}-)(ik‘r})fﬁ (127)
A= =

vanish by virtue of parity for atoms. For electric dipole allowed
transitions the first term in the sum in equation (126) is usually all
that is considered. The second two terms form the retardation cor-
rections as considered by Levinger, et.al.31 The fourth term in the
sum may be shown to be composed of electric quadrupole and magnetic

dipole contributions as follows. ©Note that
(k-P)E-F) = F{(k-FIET) +(KTNE-F)}
(R TNET) - (e 0@
=% Ck-mle@nl + [(k®) R
+5 URAE-T) — (k- NE-TIY
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where the second step was performed using the relation [Xi,H-J =3/3X;.
Equation (128) may be further simplified by noting that (k-%) and

E.--. . -
(&+V ) commute since k-e = 0, hence

(k-#)(2-9) =% UKREFIH - HIR-A(P)R
+L (K213 oo
where
£,=-i(y3:- 2%
b= u(zsi—x sy (130)
2 2

N N
Therefore the matrix element <¥\[ z ( k?:)(e?)\!-rb may be rewrit-

>

ten as A=
CnlZ (R-BXE- T my
N ranlih S QY i - N
=""%wh'ﬂ(h\?_:_‘(k~r-3(e'!:)lm>+*§:<nikxe E NN (131)

The first term in equation (131) is the electric quadrupole matrix
o
element. Note that the condition k-2 = 0 implies that the associated

operator is "traceless', so it may be written as a sum of spherical

quadrupole tensors, i.e.

N N 2
2 ( kro(ew) = Z; g; Az T c*) Yz‘rm (132)
A=] a=t T=2

The second term in equation (131) is the magnetic dipole matrix
element. The use of nonrelativistic quantum mechanics is already
causing errors at this order and the magnetic dipole matrix element is

9
not correct. The problem may be corrected” by the replacement
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]?i—“):i; + 2§k where ?& is the Pauli spin operator vector. Equation
(131) can then be substituted back into equation (126) to give the
contribution of this matrix element to the oscillator strength. If
both the electric quadrupole and magnetic dipole transitions are
simultaneously allowed then there will be interference effects (i.e.
cross terms) in the oscillator strengtth, however if one of the
states involved in the transition is an S-state then the Wigner-
Eckart Theorem can be used to show that the cross terms will vanish.
In the Russell-Saunders approximation (L-S8 coupling) which works fair-
ly well for light atoms, the only magnetic dipole allowed transitions
are those between states within the same configuration having the same
value of L and S, i.e. within a fine structure level. The only way
that magnetic dipole radiation can occur is if the energies of the
Zeeman components of a fine structure level are split by a magnetic
field. The magnetic field may either be applied externally or it may
be supplied internally by a nucleus with a magnetic moment. In the
complete relativistic treatment the magnetic oscillator strength
between different fine structure levels is nonzero, but is neverthe-
less very small for light atoms.

The above derivation is valid to only the lowest order in the
first nonvanishing multipole, i.e. for electric dipole allowed tran-
sitions the electric dipole retardation, electric quadrupole and
magnetic dipole contributions are not the only corrections which must
be considered. Relativistic effects are again the cause of this
discrepancy but this time the wavefunctions instead of the operators
are responsible for the problem. The work of Levinger, et.al.31 in-
dicates that the relativistic effects can be treated perturbatively
by using the Pauli approximation which provides relativistic correc-~
tions to the nonrelativistic Hamiltonian. The wavefunctions and
energies obtained with the modified Hamiltonian are then used to
evaluate the "nonretarded" electric dipole contribution to the oscil-
lator strength. For the desired order of accuracy it is sufficient

to evaluate the remaining matrix elements using wavefunctions and
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energies obtained with the nonrelativistic Hamiltonian.

A rigorous and systematic investigation of higher order cor-
rections to the interaction of radiation with atoms clearly demands
that the Dirac equation (or its many electron generalization, the
Breit equation, as discussed by Bethe and Salpeterg) and the asso-
ciated relativistic operators, wavefunctions and energies must be
used in the derivation. A review of progress on the relativistic
calculation of transitions between bound states has been given by
Garstang3 . Relativistic and retardation effects are even more im-
portant for the discrete-continuum transitions (i.e. photoioniza-~

34

tion), which has been examined by Goldman and Drake

Drake and Goldman35’36

have recently discussed variational
calculations and oscillator strength sum rules for the Dirac equa-
tion. The relativistic sum rules obtained (for SR(—l), SR(O), SR(l),
SR(Z), SR(B), and SR(A)) are for transitions between a state and all
other (both positive and negative energy) states. The contributions
of the transitions to the negative energy states are of little inter-
est to atomic physics and these sum rules do not appear to be as use-
ful as nonrelativistic sum rules. Relativistic oscillator strength
sums SR+<k> for transitions from the ground state to only positive
energy states would also appear to be less useful because the "in-

9,37-38 of the relativistic oscil-

verse energy' asymptotic behavior
lator strength density causes SR+(k) to diverge for k20 ( as opposed
to the divergence of the nonrelativistic sum S(k) for k22.5). Note
that Drake and Goldman obtain convergent values of their SR(~1),
SR(O), SR(l), SR(Z), and SR(B) for the hydrogen ground state:; this

is apparently due to a cancellation of infinities between the posi-
tive and negative energy asymptotic oscillator strength contribu-
tions to the sums. Apparently the asymptotic form for the oscil-
lator strength density manifests itself at energies much higher than
those typically considered in atomic processes:; indeed Drake and

Goldman's variational calculations were unable to detect any hint of

the divergence of SR+(O) using their variational basis. One possible
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approach to obtaining useful relativistic corrections to sum rules
might be to use Levinger, et.al.'s31 method of replacing the nonrel-
ativistic Hamiltonian in the sum rule derivations with the Pauli
approximation corrected Hamiltonian and then to proceed as usual.
The effects of the quantization of the radiation field can
be important in atoms and molecules as exhibited by the Lamb shift,
however this problem is beyond the scope of the present discussion.
Although field quantization should be performed consistent with rel-
ativity, there is no covariant theoty for the many-particle inter-
actions present in atoms and molecules. Non-covariant quantum
mechanics as discussed by Power39 must be used and a review article
by WOOlIEYAO has examined recent progress on the subject (including

the multipole expansion of the interaction Hamiltonian).
H. QUADRUPOLE OSCILLATOR STRENGTH SUM RULES

In the previous two sections it has been shown that the
quadrupole oscillator strengths are of some interest in connection
with static electric field problems and radiation problems. 1In this
section the "velocity" and "acceleration" forms of the "length"
quadrupole operator rZYZO shall be presentedzfor atoms. In general

2 2
99 r YZl’ T YZ_1 and r YZ—Z

can also appear in matrix elements however the Wigner-Eckart Theorem

the other four quadrupole operators rzY

relates these to matrix elements of the operator rZYZO' The sum rules
associated with rZYZO for a given state shall then be discussed. If
the state is not an S-state then unfortunately the sum rules can pick
up contributions from intermediate states with more than one possible
value of the angular momentum quantum number L. This apparently pre-
vents usage of the Wigner-Eckart Theorem and the oscillator strength
sums for rZYZO to obtain oscillator strength sums os the other four
quadrupole operators except when the state under consideration is an
S—state. Finally, some values of quadrupole oscillator strength sums

for the ground state of atomic hydrogen are presented.



The quadrupole operator rZYzo for the present purposes may be

most conveniently expressed as the "harmonic polynomlal"41 42 in car-

tesian coordinates given by
2 =
il m V (22 ~x -y% (133)

The operator of interest for many-electron atoms shall be denoted by

A and is the above operator summed over all electrons, i.e.

N
A= 2 FF (ze-x-y), a0

1=

The N-electron Hamiltonian shall be taken to be

R AP R 1

A

The "velocity form of A shall be denoted by B where

B=T[AH]
.Lv_?__ 2 - ax 2 -.2 ) (136)
Similarly the "acceleration" form of A shall be denoted by C where

C-JL;‘\["Z§22 (222-x2-yH) +2(2 2 255 :'fi)%

! A2
'q'\f—ier?‘ L4 (=, z) - 2(x;- XJB -2(y ‘l;\]. (137)
L<;
Note that A and C are Hermitian while B is anti-Hermitian. A, B, and

C may be used to construct oscillator strength sum rules as discussed

by Jackiw'> and one obtains
S(-1;A) = <olAaloy (138)
S(o:A) = -<olAB|e> (139a)
=-3<olLA,R]lo> (139b)



S(i;R)= -<o|BB[6> (140)

S(2;M) = <olRcloy (141a)
= %<0, cTloy (141b)
S(3;A) = <olccloy (142)

where the commutator forms of S(0;A) and S(2:A) have been obtained by
noting that the matrix elements are self conjugate since the oscil-
lator strength sums to which they are equal must be real. The prac-
tical advantage in using the commutator forms of the matrix elements
is that the integrals which must be computed are simpler. If $(0:4)
is evaluated using equation (139a) then the worst integrals encoun-
tered are two-electron integrals while if equation (139b) is used
only one-electron integrals appear. Similarly in evaluating S(2:A)
the worst integrals encountered in equations (14la) and (141b) are
three-electron and two-~electron integrals respectively.

The sum rules listed for the quadrupole operator may readily
be applied to obtain the quadrupole oscillator strength sums for the

ground state of atomic hydrogen. The operator rZPZ(cose ) is simply

2
related to r YZO by

t2F (cosE) = YT r2 Y, (143)

and the sum rules for this more common choice of the quadrupole oper-
ator differ from those already derived by the obvious constant factor

(41r/5). Application of the sum rules vield

S(3;r2P2(COSS)) = —l—g—i
2 _ 28
S(23r Pz(cose)) ==
24

S(l;r2P2(cose )) ==
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(=2}

S(O;TZPZ(COSG))

S(—l;rsz(cosS)) 9.

These results can also be obtained by the technique of Lamm and

Szabo17 and all sums except S(3:r2P2(cose )) can also be obtained
using a variational basis as described earlier in Section D. 1In
addition, the following five sums have been calculated using Bell'sl6

technique.

5(-2317P,(c050)) = 15
s(~3;r2p2(cosg)) - ;_%Jl
S(~4;r2P2(COSe)) _ 2,229
S(‘5;r2P2(cose)) = ééé%%£

These sums may also be obtained by the variational method or the tech-

nique of Lamm and Szabo.

I. THE VARIATIONAL CALCULATION OF LOGARITHMIC MEAN EXCITATION
ENERGIES

The logarithmic mean excitation energies, L(k), defined by

L = 2 F, wk b w.. (144)

are of physical interest for k = -1, 0, 1 and 2. As before, with the
dipole oscillator strength sums S(k), a variational approach to evalu-
ating the L(k) is desirable because all states are not usually known.

It is convenient to introduce the expression
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J(k) = EX Wont Kk (143)

n

to simplify the derivation. J(k) is useful because it is straight~
forward to show the L(2), L(1), L(0) and L(~1) can be written in terms
of J(k) as

L ()= 5 A ({070 (K kdk) - Sk g S(2) Ik, ] @46)
LG) =-§-xf;;[- (17709 dk) + S0 dn ko] )
L= fim L] 20 dk) + S bk, ] 168)
LED= %& ["(j:o Ji‘;? clk)-t- i%-* 5(-\\)&\&]. (149)

If it is possible to provide a technique to approximately solve for
J(k) then equations (146) - (149) may be used to evaluate the loga-
rithmic sums; indeed Chan and Dalgarno44 used this technique to cal-
culate L(1) for the ground state of atomic helium. Note that S(-1),
S(0), S(1) and S(2) are known in terms of ground state expectation
values so they do not present any problem in the evaluation of equa-
tions (146) - (149).

As written in equation (145), J(k) requires a knowledge of

all states for its evaluation. However J(k) may be expressed as

Jk) = :<@] AL (150)
T =5
where C>==(:>(r,k) is the solution to the inhomogeneous differential

equation
(H-E +) @)« VI, =0. (151)

Clearly lGD> may be formally solved in terms of the complete set of

of eigenfunctions of H by
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)@> = —Zn: <::l~:°lj);> o . (152)

Hence,
KtulDW21*

Tl = En-E.tk

=3 > fon Wen
2 won*‘k

n

M

which verifies the claim.

Since all the states are not usually known, an alternative
method is needed to obtain J(k). 1®> may be obtained variationally,
after observing that solving equation (151) is equivalent to finding

the {§> for which the functional

W(E K) =<B|E-H-k|¥) - 2{E|TI¥ (153)

is stationary, i.e. the functional is stationary for E = @ . Proofs
of all these statements are analogous to those given in Section B.
Following the development given in Section B leads to the first varia-

tion bw and the second variation Szw of the functional w about @ as
5w=2€:<§l((E;H*k)l®>‘?WJ) (154)

and

S'w=€e*{ B|E~-H-k| &) (155)

and all higher variations vanish. Note that the exact value of w(k)
(i.e. when E = @ Yy is J(k).

In practice | ®) may be approximated by a trial function \@'>
which has linear variational parameters {(which are functions of k),

i.e.

, M
© (‘F, k) =§ a,; (1) ¢ (%) (156)
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Finding the 1®’) for which w(@®' ,k) is stationary is accomplished by

solving the set of simultaneous linear equations

2w (@)k) .
o0a; =0 L= 1,2, M (157)

The k dependence can be handled in either of two ways:

1. Compute ai(k) for specific numerical values of k.

2. The k dependence can be treated analytically by converting the
system of equations (157) into a set of eigenvalue problems. This
can be done for an arbitrary basis45 but here Kolker and Michels'46
technique shall be followed which requires that the trial function

basis satisfies

(il g>= 5@0{'

and

ChilH 1¢01'> = 6.€;.
T hen

o= avé(i"k) = 2<¢>1lE;H'kMﬁ%“Q(‘ﬁW(@ (158)
for 1 = 1, 2, ..., M, which implies

O=(E,—€&-k)a; ~<PADIE>  1=1,2-,M (159)

and the ai's are determined by

="<¢;l§lqj¢>>
€i-E.+k -

a; (160)

Therefore the |®') for which w(®' ,k) is stationary is given by
7 — <¢J§(\H>> ! )
l@> - E*: 61"'E°+k ¢&> (161)

and the associated value of w (=w(k)) is
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w (k) =< @'|E.~H-k|O) - K@ ?|¥)
=5 Ké:| T 1¥adl*
, €,-E,tk

__Z&% (162)
A

Wy +k

where qui = &i.— EO and

0 =2 K&ISIwP

04 3 Wo; .

Using the same kind of arguments presented in Section B, it
follows from equation (155) that w(k)= J(k) for kZ0. Clearly when
k20 the second variation %2w of w is negative for arbitrary (non-
zero) el §> , hence any deviation from the exact stationary position
(where w(k) = J(k)) to the trial function stationary position will
tend to decrease w(k). J(k) is a global maximum to w(k) (i.e. J(k)
is an upper bound to w(k) constructed from anv trial function basis)
because all variations beyond the second vanish. Therefore the claim
that w(k)= J(k) for k20 follows.

Upon obtaining w(k), S(2), S(1), S(0) and S(-1), all informa-
tion needed to calculate the logarithmic sums from equations (146) -
(149) is at hand. Assuming that the S(2), S(1), S(0) and S(-1) val-
ues are exact implies that replacing J(k) in these expressions by
w(k) (which bounds J(k) from below) will lead to bounds on the L(k).
It is easily seen that the variational calculation must
1) bound L(2) from below,

2) bound L(1) from above,
3) bound L(0) from below, and
4) bound L(-1) from above.

The unpleasant task of taking limits in order to obtain the

L(k) can be avoided entirelv if the trial function basis is chosen

properly. First one must define the effective logarithmic sum L' (k)
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by
7 4 i K 7
L (k) = Z poi. W,; f’kwo; (163)
A
and the effective oscillator strength sum S'(k) by

S'(k) = Z_ LWy (164)

Then it is easily seen that

u(z>=-§—kum 185 () kdk) - Sk + S k) (165

L () !»-»[(S“” (9dk) + S0 dnk . ] 66
L'(0) mei(S“" 2 41 + S'(0) dnk, ] (167)

ka0

UE0=5 b ([ di)+ S+ SEhk] . 0w

From equations (165) - (168) it follows that if the basis {¢;% can
be chosen such that S'(k) = S(k) for k = -1, 0, 1, 2 then evaluating
equations (146) - (149) with J(k) replaced by w(k) is equivalent to
the expression (163). For simplicity equation (163) is preferred
over equations (165) - (168) for purposes of evaluation. TFortunately
Dalgarno and Epstein have determined8 that if the functions ?l%ﬁ} and
E?hk) are contained in the trial function space then the requirement
that S'(k) = S(k) for k = =1, 0, 1, 2 is satisfied.

Collecting results, it has been determined that if a basis is

constructed which spans ?\qk> and‘$‘4€> and satisfies the conditions
{ ¢l ¢&'> :g(}

and
(‘leH(‘PQ’- S;} S

then the approximations L'(k) to the logarithmic sums L(k) may be
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(k)= 2’ZK¢{V >§ (e, E§kl/(m.(6 -E.). (169)

As described earlier, L'(2) bounds L(2) from below, L'(1l) bounds L(1)
from above, L'(0) bounds L(0) from below and L'(-1) bounds L(-1) from
above.

In the previous discussion the variational principle for the
functional J(k) led to expressions involving the velocity form of the
dipole matrix element. Tt should be noted that another useful func-
tional, J'(k), may be expressed in terms of the length form of the

dipole matrix element where

/ — _3_ 'Foh
(k> - 2 Z- won(wcv\*k} * (170)

Then

M = <Al l%> (171)
r Z Ly
where‘fk(rks 1s the solution to

(H“E°+k>2A> +?H’,,>='”O (172)

This is the form in which the variational principle for the dynamic
polarizability is usually posed. A similar treatment to that previ-
ously performed yields approximations L''(k) to the logarithmic sums

of the form

M
L“(k)?—-%Z K& 7l (e, E)k*‘,ﬂw(e -E.)

4=

(173)

with the same bounding behavior on L(k) as that which L'(k) had. But
the results of Dalgarno and Epstein8 show that if'?)%b‘is spanned by
the basis then

<¢«‘H7AH’°> =<¢;l?l%>(€;~E°\_ (174)
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Furthermore if N’e> and ”'73 H{,> are both contained in the space of

trial functions then

2o LY =X IR (e;-ED) ars)
=7V (es-EDN (176)

Since the basis has been chosen to span both T:N"J and ?7&(‘k,> it
immediately follows that L''(k) = L'(k). Therefore both variational
calculations lead to identical results.

In fact if the effective oscillator strength is computed in
any of the possible forms the same result will be obtained, i.e.
length-length, length-velocity, length-acceleration, velocity-veloci-
ty, velocity-acceleration, and acceleration-acceleration will all
yield the same result for a properly chosen basis. Unfortunately,
the identity between the length, velocity and acceleration formula-
tions of the dipole matrix element requires that the ground state be
exact, which 1s of course impossible to achieve except in the case
of atomic hydrogen. Little can be said about the case where the
ground state is not exact but this question has been examined by

Redmon and Browne47 and Klein and DeVries48

J. VARIATIONAL CALCULATIONS OF LOGARITHMIC MEAN EXCITATION ENERGIES
AND C6 FOR ATOMIC HYDROGEN

Using the variational technique described in Section I, cal-
culations have been performed on the logarithmic mean excitation
energies for the ground state of atomic hydrogen. Effective states
generated in the course of the calculations were also used to deter-
mine C6’ the coefficient of the 1/R6 term in the Van der Waals inter-
action energy.

The trial function basis sets were chosen such that they are
characterized by the integers j and n, and consist of basis functions

labeled by 1 and j according to
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where tko is the ground state of atomic hydrogen. Calculations were
performed for j = 1, 2, and 4 (i.e. integer, half-integer, and quar-
ter integer powers of the variable r) with n ranging up to 30 for
j =1, up to 27 for j = 2, and up to 18 for j = 4. Note that n is
equal to the dimensionality of the basis set. The upper limit on n
in each case was chosen to avoid the numerical ill-conditioning prob-
lems which could be detected for higher values of n. The generation
of an orthonormal basis in which the representation of the Hamilton-
ian is diagonal, as required by the variational principle, was per-
formed numerically using a secular equation solver. The calculations
were performed to double precision (28 digits). All integrals may be
evaluated analytically in terms of gamma functions and the necessary
high precision values for the rational fraction arguments encountered
have been tabulated by Abramowitz and Stegun49 and Galant and Byrdso.
The results for the logarithmic sums are presented in Table 8
for the largest j = 1, 2, and 4 bases used. Results are presented in
Rydbergs rather than atomic units to facilitate easy comparison with

Shimamura's™ "’

results. Note that the bounding behavior is consis-
tent with that proved in the previous section. The variational solu-
tions bound L(2) from below, L(1) from above, L(0) from below and
L(-1) from above. The quarter-integer power basis vields the best
value of L(2) while the half-integer power basis yields the best
values of L(1), L(0) and L(~1). 1In spite of the fact that the inte-
ger power basis contains the most terms it nevertheless yields the
poorest results in all cases. Apparently what is happening is that
in order to represent J(k) for higher values of the parameter k it
becomes more important for the basis to adequately span the space of
functions in the region close to the nucleus. In this region the
integer power basis looks more linearly dependent than does the half-
integer or quarter-integer power bases. This would seem to explain

why L(2) (which is most sensitive to the high k behavior of J(k)) is



Basis (j,n)
(1,30)
(2,27)
(4,18)

Actual Value51

Basis (j,n)
(1,30)
(2,27)
(4,18)

Actual ValueSl

Basis (j,n)
(1,30)
(2,27)
(4,18)

Actual Value5l

Basis (j,n)
(1,30)
(2,27)
(4,18)

Actual Value51

Table 8

L(2)
15.435
15.890
15.911
15.915

L(1)
.76124947
. 76116420
.76116421
.76116413

L(0)

.09698173225
.09698180914
.09698180898
.09698180915

L(-1)

.07325375520645
.07325375537291
.07325375537059
.07325375537292

wady
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most accurately calculated using the quarter-integer power basis.

Logarithmic sums can also be calculated using various ap-
proaches different from that previously described. The most accurate
calculations performed on atomic hydrogen are due to Shimamura51, who
has calculated L(2) to 15 digits, L{1) to 14 digits, and L(0) and
L(~1) to 13 digits using Coulomb Green's functions. Lieber53 and
Huffsa have calculated L(2) for atomic hydrogen using Lie algebraic
techniques. In contrast to the previously described variational
method, these approaches cannot be extended to more complicated atoms
or molecules. Other methods which do generalize include the tech-
niques to obtain L(k) from known S(k): 1) bounds presented here in
Chapter 1T, 2) Pekeris'SS and Garcia'856 interpolation schemes for
obtaining L(2), and 3) a spline method to obtain L(0) and L(1) pro-
posed by Peek57. Also, Chan and Dalgarnoéh calculated L(0) and L(1)
for helium using a variational technique similar to that presented
here. Finallv, Schwartz's calculation of L(2) for heliumSS involved
calculating J(k) separately within three regions of the range of k,
then numerically integrating over k the values obtained to achieve
the final result. TFor the low k region Schwartz's variational cal-
culation of J(k) is related to the method described in this work.

For the intermediate k region he built explicit k dependence into the
basis functions and for the high k region he used an asymptotic solu-
tion to J(k) which will be described in detail in Chapter IV.

The integer power basis (i.e. j = 1) of dimension n has the
special property that the resulting effective oscillator strength
distribution is exactly the same as that obtained from S(2), S(1),

., S(-2n+3) using the technique described in Chapter II. This
clearly follows from the proof presented which shows that such a basis
satisfies precisely these sums. Effective distributions constructed
from such a set of sums were shown to allow the determination of a
lower bound on C6' For the present case of atomic hvdrogen, the in-
teger power method provides an extremely convergent and numerically

stable method for generating the effective oscillator strength dis-
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tributions to be used for evaluating C6'» The values listed in Table
9 were obtained by substituting the effective oscillator strengths
féi and energy differences u;éi obtained from the variational basis

into the expression .
: noon £, L.

Co= 25 3 s
6 2 (wop w;i)w;‘- Woy -

i= J‘zl

(178)

Values are expressed in atomic units. Convergence has been reached to

6 = 6.49902670540583931. Various

checks have been performed to insure that roundoff has not introduced

18 digits and the value obtained is C

errors to the number of digits claimed, including a check that the
effective distributions satisfied certain of the oscillator strength
sums to more than 18 digits. The value for C6 listed above agrees
with the first 18 digits of a 28 digit value given by Margoliash and
Meathsg, however they do not state the number of significant digits

in their answer.

Table 9

Basis (j,n)

(1,5) 6.499007944003187367
(1,10) 6.499026705137112160
(1,15) 6.499026705405408842
(1,20) 6.499026705405834730
(1,25) 6.499026705405839178
(1,26) 6.499026705405839240
(1,27) 6.499026705405839273
(1,28) 6.499026705405839290
(1,29) 6.499026705405839300
(1,30) 6.499026705405839305
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K. CALCULATIONS OF PHOTOIONIZATION CROSS SECTIONS USING SOQUARE
INTEGRABLE BASIS FUNCTIONS

The total photoionization cross section for the absorption
of a photon and subsequent excitation of one or more electrons into
the continuum is, in the dipole approximation, directly proportional
to the dipole oscillator strength density in the continuum. The to-
tal cross section, & , is related to the oscillator strength density
df/de through the equation

X
0" —1 -_r.r_.e__}—\— é_g- (179)
mc de

as shown by Fano and Cooperlo. To evaluate the oscillator strength
density using a direct approach would require computing dipole ma-
trix elements between the initial bound state and continuum wave-
functions. The bound state can be computed using the variational
principle on the energy which of course cannot be used for the con-
tinuum state. However the continuum wavefunctions can be calculated
using the Hulthen-Kohn variational principle60—61 on the phase shift
(e.g. the H calculation by Geltman62) or the close coupling meth-
od63.

The need to calculate continuum wavefunctions can be avoided
entirely by an indirect approach to computing oscillator strength
densities using effective discrete states. The previously described
effective oscillator strength distributions, constructed either from
a set of S(k) or using a square integrable (as opposed to non-square
integrable continuum wavefunctions) variational basis, include ef-
fective discrete states above the ionization threshold, i.e. in a
region where the oscillator strength is actually a continuous den-
gity. Langhoff has proposedB_5 that obtaining a density by applving
Stieltjes and Tchebycheff smoothing procedures to effective discrete
states constructed from a set of S(k) should furnish a good approx-
imation to the actual density. Here an alternative smoothing pro-

cedure is applied to the discrete states obtained from the integer,
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half-integer, and quarter-integer power bases used in the previous
section. The approximate oscillator strength densities so obtained
are then compared with the exact result calculated in Section E.
Langhoff's Stieltjes and Tchebycheff procedures are imple~-

mented as follows. Given a set of n oscillator strengths fi and
n associated energies € i the Stieltjes smoothing procedure defines
the density df/de€ as

é£ - i_(ﬁﬂ+€) €.<¢€< €

de Y €iei - € i £+1 (180)
and

dF

“&2(63 =0 for €<€, and €>€, . (181)

This method results in a discontinuous histogram function for the
density. The Tchebycheff procedure first requires determining the
function fo(e ) which is constructed by solving for the fo(e ),
fl(e), fz(e), e, fn(e) and associated GO(=€), él(e),cz(e),
cey €~n(€> which satisfies a set of 2n+l S(k). This may be done
by choosing a value for € , solving for the resulting set of equa-
tions, and repeating the process for a sequence of closely spaced
values of € over the desired range. Then the approximate oscillator

strength density is defined according to

df _ 1L dEE© df (&)
()= 4 + 1 (182)
de < de X €
(€;<€)
where the derivatives with respect to fo(e ), fl(e ), ... must be ob-
tained numerically. This procedure can result in an extremely smooth

distribution if the grid size (i.e. the separation between the values
of € for which fi(e ) has been computed) is taken to be sufficiently
small. Since the grid size is a matter of choice, limited only by
how many calculations one is willing to perform, this does not pre-
sent a problem. Note that smooth densities do not necessarily imply

accurate results and in fact Tchebycheff distributions obtained from
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a large number of moments have been found to yield unreliable re-

64
sults
Here an alternative smoothing method is proposed. The pro-

cedure converts an effective discrete distribution into a continuous
density, hence it is smoother than the Stieltjes histogram method.
The approximate density is given in terms of the discrete oscillator

strengths fi and associated energies € 5 by

€;<€<é‘~ﬂ (183)

j__‘E (6)": lﬁ'(e,;ﬂ"é.) + Z‘P;,,..(E*EL)
€ (Gu-x“ﬁi-‘)(e;ﬂ'ei) (Ei.,.;_" ei)(eh-l-ei)

The function is essentially the result of smoothing each oscillator

T

strength "spike" into a triangular shaped density with a base extend-
ing from the energies of the adjacent lower to adjacent higher oscil-
lator strengths, then simply summing contributions of overlapping
triangles. The altitude of the individual triangles is determined by
requiring the integrated oscillator strength of a triangle to equal
that of the associated "spike".

Tables 10, 11, and 12 contain values of the oscillator
strength density calculated from discrete distributions obtained from
the integer, half-integer, and quarter-integer power bases respec-
tively. Densities have been listed only at those energies where the
original discrete oscillator strengths were located. The vertices at
which the linear segments (of the function defined in equation (183))
are connected are located at these energies, so to obtain the value
between two adjacent listed values linear interpolation is all that
is needed. As can be seen from the listed energies, the spectra
associated with the three bases are significantly different. The
energies of the integer power basis spectrum are relatively closely
spaced and the energy of the highest state is 759 a.u. The energies
of the half-integer power basis are more widely separated and the

5

energy of the highest state is 2.95 x 107 a.u. The energies of the

quarter-integer power basis are spaced the farthest apart and the
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energy of the highest state is 7.36 x 107 a.u. The highest states
do not appear in the tables since the smoothing procedure requires
states both below and above a state to obtain the approximate densi-
ty. Note also that the discrete states generated by the variational
procedure which lie below the ionization threshold have not been
listed since in this region the states should, in fact, be discrete.
The three spectra seem consistent with the calculations of the L(k)
which indicate that the distribution associated with the half-inte~-
ger power basis provides a set of states which represents the 'med-
ium energy region'" more adequately than the other two bases. Also,
the quarter-integer power basis furnishes the representation of the
"high energy region'.

The smoothing technique described here tends to work well
near threshold but begins to fail at higher energies where the
pseudostates become spaced farther apart. Apparently this is due to
the fact that a piecewise linear approximation is inadequate to rep-
resent a nonlinear function over a long range. An alternative ap-
proach to obtaining the high energy behavior of the dipole oscilla~
tor density using a combination of asymptotic and moment methods will

be described in Chapter V.



Pseudostate
Energv€ (a.u.)

.0019
.0185
.0395
.0653
.0966
L1343
L1797
L2344
.3007
.3815
. 4807
.6042
. 7597
.9589
.219
.568
.049
.739
777
.439
. 347
14.14
28.35
80.74

W Ut W NN

Table 10

30 Term, Integer Power Basis

df
Te (Exact)

1.547
1.418
1.275
1.124
.972
.823
.681
.550
432
.330
244
174
.119
.0776
.0478
.0276
.0147
.08
.00

.01
.91

Oy U W e W~

.07 x

.33 x
.96 x

10
10
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10

107
10

10°

df (From Pseudostates
de after smoothing)
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1.414
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1.119
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.818
.676
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.429
.327
.242
.172
<117
.0763
. 0469
.0270
.0143
.82
.86
.00
.72
.97
!
.91
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X
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10
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10
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Pseudostate
Energyv & (a.u.)

.0234
.0681
.1286
.2093
.3169
L4615
.6586
.9324
1.322
1.891
2.752
4.108
6.350
10.28
17.67
32.89
68.16
163.6
485.1

1.983 x 10°

1.404 x 10

4

Table 11

27 Term, Half-Integer Power Basis

df
Je (Exact)

1.383

1

.109

.843
.605
.409
.258
.151
.0818
.0403
.0178

w w &~ W W N Y N Oy

.99
.38
.82
.60
.92
.90
47
.79
.31
.29
.59

X

X

X

X

10
107
10
107
10”7
107
10”7
107

10
10
10

0w~ Oy B W W

~-12
=15

df (From Pseudostates

d
1
1

{07

€ after smoothing) % Error
371 e
.097 1y
.832 L
.596 1
402 e
-253 -1.8%
.148 o1y
.0798 ) sy
.0391 ) oy
L0172 s iy
71 x 1072 4.1
.26 x 1O~3 —4.9
.40 x 107% .03
48 x 107% ~7.6%
.63 x lO"5 ~9.79
.40 x 1070 -12.8%
.87 x 1077 -17.2%
36 x 1070 -24.0%
81 x 107 -34.87
.56 x 10712 59 43
20 x 10710 _77.1%

O =N RN W N Y N



Pseudostate
Energy € (a.u.)

.0183
L1429
.3595
L7421
1.452
2.864
5.933
13.36
33.81
99.75

3.58 x 10

1.64
1.03
9.74
1.66

X

p: 8

X

X

10
10
10
10

[0 A S L VS I

1.420

.793
. 354
.124

.0328
.30
.32
.07
.56
.62
.23
.38
.07
13
.03

NS Oy WO W 0 O

Table 12

df
EZ‘(Exact)

df (From Pseudostates
after smoothing)

1.353

de

.7
.3
.1

.0300
.62
.19
.86
.78
.94
.96
.51
.65
.23
.96

N = w0y Ny

55
34
15

18 Term, Quarter-Integer Power Basis

% Error

-4 . 7%
-4.8%
-5.8%
~-7.0%
-8.7%
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CHAPTER IV
THE HIGH ENERGY ASYMPTOTIC BEHAVIOR OF THE DIPOLE OSCILLATOR STRENGTH
DENSITY AND A NEW "MODIFIED" DIPOLE OSCILLATOR STRENGTH SUM RULE FOR
NONRELATIVISTIC N-ELECTRON ATOMS AND MOLECULES

A. INTRODUCTION

The high energy asymptotic behavior of the dipole oscillator
strength density has been examined for two-electron atoms by Salpeter
and Zaidil for use in a Lamb shift calculation of helium and by
Dalgarno and Ewart2 for the photodetachment cross section of the neg-
ative hydrogen ion. A Lamb shift calculation by Schwartz3 was per-
formed using a different approach from that of Salpeter and Zaidi,
and the attention was directed toward obtaining J(k), a sum over
states expression parameterized by k, the virtual photon energy. The
present work shows that the high k asymptotic expansion of J(k) given
by Schwartz leads to the coefficients of the first two asymptotic
terms of the dipole oscillator strength density for any nonrelati-
vistic N-electron atom in terms of expectation values of the wave-
function. Moreover, an additional term appears in the expansion of
J(k) which is related to the third moment (with respect to the ener-
gy) of the oscillator strength distribution with the contributions
of the first two asymptotic terms of the oscillator strength density
subtracted out beyond some "cut off" value of the energy. This
leads to a "sum rule" which gives the third moment of this modified
distribution in terms of an expectation value of the wavefunction
and the cut off parameter. Note that the third moment of the (un-
modified) dipole oscillator strength distribution diverges due to
the contributions from the first two asymptotic terms, so the sub-
traction scheme involving these terms is required in order to ob-
tain finite results. Finally, it is shown that the above results
obtained for atoms can be generalized to apply to molecules in the

fixed nucleus approximation.

13



B. THE DIVERGENCE OF S(3) FOR ATOMIC STATES WITH NON-ZERO ONE~-
ELECTRON DENSITY AT THE NUCLEUS

The familiar oscillator strength sum rules for S(-1), $(0),
S(1), and S(2) express moments of the oscillator strength distribu-
tion in terms of expectation values of operators for the wavefunc-
tion under comsideration. It is also straightforward to calculate
the operators required to obtain sum rules for S(3), S(4), ... (see
e.g. Jackiwa) but these are of little interest for atomic ground
states since they diverge. The divergence of S{(3) for atomic states
with non-zero one-electron density at the nucleus is shown in the
following. The divergent terms may easily be isolated and the re-
maining convergent terms will be seen to appear in the sum rule de-
rived in Section D for the modified distribution.

The sum rule for the third moment of the oscillator strength
distribution, S(3), may easily be obtained by writing the oscillator

strength in the acceleration-acceleration form and one finds

5(3) Z\:Fo“( j (1)
2 22y | = &5

r; Lradr

Sl 2)
Li=l b

where fOn is the oscillator strength between the ground state 14;> and

the state (‘P“> » By and E_ are the energies of ¥,y and [YaY re-

spectively, and Z is the charge of the nucleus. It is convenient to

I

H

separate the one-electron terms from the two-electron terms which

yields

S(3)

N

L2 BR gy +% z‘mz v
X ASAP AL AL o4 MZ ,.3,3{4)> *

""-

H

Z

H

The first of the two matrix elements is responsible for the divergence

and the second matrix element is well behaved. The first matrix ele-



{{5

ment may be expressed in a form where the divergence becomes even

more transparent by carrying out two successive integrations by parts.

The radial one-electron density shall be defined according to
2
PL('"):gdﬂ,;gG{’U‘*il%() (&)

where the integral is performed over the configuration space of all
the electrons except that indexed by i, then an integration is per-

formed over the solid angle associated with electron i. Then the first
matrix element may be written

N ]
AP A,
N
—_ A
~ L};‘ § l dr

r

=1

j+1m ‘iﬁ:@t - fﬂm ‘Aza‘ .;x@' "f‘] .

(5)
Using the cusp condition,
. dps .
Lom 3{.(0 = =22 dm () 6)
r-s0 r->o
(due to KatoS), allows equation (5) to be rewritten as
N
<w°l,Zl-,-i;er.,>
L=
N N . wo 2
=L;N[Z(%+2ZA»)P£(>)]*ZSO Lr v 4—5;-(51 (7)
r>o 4=l L=

therefore S{3) is given by

S(3) =32 [ L0 T (£+220r)pi0) ]

rso 1=l

N [~ ] z.r
"2'3~ zz_:foﬁnr J_ﬁ_’_:g) dr

= d
T RCARAE L

(8)



The term in the square brackets clearly yields a divergent result
upon evaluation at the limit r = 0 (i.e. at the nucleus). Hence S(3)
diverges for wavefunctions with non-zero one-electron density at the
nucleus. The two remaining terms are finite and will appear in the
sum rule for the modified distribution to be derived in Section D.
The convergence of S(2) and the divergence of S(3) leads to
a rather weak result concerning the asymptotic behavior of the oscil-
lator strength distribution, apparently first observed by Dirac and
Harding6. The fact that the second moment converges and that the
third moment does not evidently implies that the oscillator strength
density must behave asymptotically as df/de = € " where 3 ns4.
For atomic states with zero one-electron density at the nucleus (e.g.
n-p, n~-d, n-f, etc. states of atomic hydrogen) S(3) is finite, hence
df /de o< €™ uhere 4<n. The disappearance of the asymptotic terms
which behave as € " with 3<n<4 for atomic states with zero nuclear
one electron density tends to indicate that the coefficients of these
terms involve the one-electron density at the nucleus. This suspi-
cion will be confirmed in Section D, which is mot surprising since
high energy scattering phenomena is frequently highly sensitive to

the behavior of the wavefunction at the nucleus.
C. DERIVATION OF THE HIGH k ASYMPTOTIC EXPANSION OF J(k)

In this section the asymptotic expansion of J(k) for high
values of k is derived. The derivation essentially follows the
presentation by ScwartzB, although many additional details are in-
cluded in this treatment. The first five terms of the asymptotic
expansion of J(k) are obtained with the coefficients determined in
terms of expectation values of operators for the wavefunction of in-
terest. Of the five coefficients, the first two reflect well known
properties of the oscillator strength distribution, while the last
three vield information not previously known (as will be shown in

Section D).
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The sum over states expression J(k) is defined by

K9 s ley*
T(k) = 5 Khlglv ©

~ En-E,+k
— 3 £, Wen
2 2':' Won + k (10)

where

fOn is the oscillator strength between state 14:> and \4{> , and

Wy, = En - EO. As described in Chapter III, J(k) may be expressed

as
-
Jk) = ~< @ITI% (11)
where () = (:)(r,k) is the solution to the inhomogeneous differential
equation

(H-E.+k) &> +7I¥)» =0. (12)

The function [GD> may be formally solved in terms of the complete set

of eigenfunctions of H by

<"Pv.t Vt \ya> ‘\Vv\> '

&> = - 2 BB,k (13)

It will prove not only useful, but in fact crucial, to intro-

duce the functional
w(E, k) =< BlE.~H-klIE) - 2CEITIT.) (1)

which is stationary about § (r,k) = @) (r,k), as shown in Chapter ITI.
Note that w(®,k) = J(k), so if {&®) is known exactly then either

equation (11) or equation (14) may be used to evaluate J(k). However
if only a close approximation [|&') to \Cj} is known, it is better to
use equation (14) and evaluate w(&' ,k) rather than —-<@'!$l \Po>
since the functional associated with equation (11), -<{€|%| ‘-}/°> ,

k4



will not be stationary about g =® . Inserting a close approxima-
tion to l()> into the stationary functional should lead to a more
accurate approximation to J(k) than using the other expression due to
the fact that the first variation of a stationary functional vanishes.
Indeed, inserting the approximation to [GD> (which will be obtained
below) into the stationary functional gives correct coefficients for
the first five terms of the asymptotic expansion, while using the
alternate expression yields correct values of only the coefficients
of the first three terms. In addition, in this case, use of the
stationary functional helps lead to an approximation to ]C)> which
would appear to be difficult to achieve using other techniques.

The leading term of the asymptotic expansion of | ®) for
large k is clearly seen from equation (12) to be —(l/k)ﬁ?l‘+g> ,
so |® may be written as

[@>=-—-—L—'§;{%>+lu> (15)

To proceed further, the Hamiltonian must be specified. Attention
shall be restricted to nonrelativistic N-electron atoms so the Hamil-

tonian is given by

N } 2 Z N !
H=2(-z%-%)+5> + (16)
i=1 . iyst 53

Substituting equation (15) into equation (14) then leads to

w(.k) =~ %IT(E~H-K)FILY -2 (I o2 B
" EUEAH-R T
+HUl(EAH-KIY) - 2<UlF YD

=kl vy - =<HIS R HIYD

% CUITE T e + Cul e w0l )



119

Loy - BB R

‘&<U‘Z [, + +{U[(E~H- KUY, (17)

\r3

. AN

Note that ¥ is anti-Hermitian and Z3f% is Hermitian and the real-
R

ity of the matrix element implies

19X B0 =5 <hlle, 3T

2 =‘

N
=2w<\klzs< My (18)
Therefore w(@,k) reduces to

W@ k) =~ (Ul VA Y- ZRE ([ 251

- %(u]}i{él%) +{Ul(EH=tIUY (19)

ARG LTS CAD AL

+w (U k) (20)

where a new functional EYOQ k) has been deflned by
W(n, k) =< | (E-H-K|D)- 2B (7] >: Hf> (21)

Since w(% ,k) was stationary with respect to variations about§¥»=4cjk
. ~ ) . o
the functional w(,k) must be stationary with respect to variations

abouth[>={U? This property implies that\U}satisfies the differential

equation

(H-E.+)[uy =-23 &

A (22)

An approximate solution to {U> must be constructed such that
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the function behaves properly for high k and small T.. The impor~
tance of the wavefunction near the nucleus for high energy phenom-
ena has already been established and this is essentially why it is
necessary for special care to be taken that U has the correct be-
havior for small ?j. Before proceeding with the derivation it is
necessary to introduce the version of the cusp condition due to

Bingel7, which states that for small ?J and ‘?i))‘?jl for all i#j

- o ~ bt -
\.}}(ru"'z '}‘:a:r}'*‘).")r"‘)
= L}/(‘A‘);ﬁ;) .’}3"'\)0)}}*!: )-r-\\N) x[(l—zrj)+aj'§+@('f)] (23)
where
— - - — -
QJ’ - aé’(r"r’u )?;“. Tiv )rN>

The small ?j behavior of {@> may now be deduced by examining

equation (13),

(@) = -3 bl

E.+k

Evidently the wavefunctions may be expanded according to (if ‘?ibt'r“jl )
— -t ot =N -
LR R Y R ST COR N (I B

where the elements of igbyo(rj)g (associated with one-electron "S-~
states') behave as 1 - Zr, near the nucleus and the elements of

5(¢m (rj)z (associated with one-electron "P-states') behave as rj
near the origin. Using equation (23) it is clear that near the ori-

-
gin, V¥ “[{) behaves as

)-\-\)'. 3

]
= e - — -y —n
’v}\[i‘)( ')rl)'.‘) r}'__()r}:)r}'.(.,)"‘)rN)
. %( ';raf";.r:;'—l,O,"' ’ ?N> x[-z-;;— + ao‘;’ﬁ‘ﬁ(gﬂ (25)
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Note that the correct small ?} behavior of i?jqé cannot be obtained
from an expansion in the basis which describes the "Pn wavefunc-

tions. Each of the three components of

—ZE (R

— — —
; ).--)r\&._‘)o)r\f*_t).-o Y\ )

> N

has P symmetry in the jth electron coordinate, yet is nonzero at the
nucleus. All the terms in the S\¢m(rj)} set behave as rj3 s0 use
of a finite number s of these functions to expand a P state which is
finite at the nucleus must lead to a function which behaves as r.
near the nucleus. Taking the limit s-»>eo0 would most likely lead to
Gibbs phenomena but it is unnecessary to pursue this any further.

-
Note that the second term in the expansion of V"%g ,

¢

—
..
)r—'l,' )

O\-—Q} \{Jo("‘

~— - —
5y 0, r}'”’ B rN)

is also nonzero at the nucleus, but has components with S symmetry,

therefore can be obtained from an expansion in terms of the set

‘t?ﬁ»o(rj)E .
The above observations may now be applied to the expansion

of |®). Assuming k is very large, then away from the nucleus it

is reasonable to expect

| @) = - Ll |y

- =
k Zv\:l\{j'\><‘1bv\\V{kko>
Hence, away from the nucleus, completeness may be used and

&Y 2 -% 7%

iR

which is the first term in the expansion for | @), obtained before.

However, near the nucleus
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PN %+E°;+§(Q))l%>
@) ‘“%— E.-E,+k 2

= -4 Zm><mza:;m>

<A { Z(' +O(r)) H’>
B

N N
= (-——\': Z_\ ’&o;{\{{)) + ;Z=« G (r,) (26)

=

is the expected behavior from the arguments presented previously.

Note that in the summation over n involving 2. ( ’f'i/ri) , the E -E
A n

0
term in the denominator must be retained, since it provides a built
in cut off for the high En state contributions. This prevents the
occurrence of Gibbs phenomena with associated undefined behavior of

| ©®) near ?j = 0.

An approximate solution lU> , to equation (22),
w—
(E.-H-K)IU> =& 57 I fy)

can now be determined and a homogeneous solution can be chosen which
gives l®> the appropriate behavior near ?J = 0. Writing 1U> as
the sum of the particular solution lU> and the homogenecus solution
U2\> , it is obvious that ‘Ul> = —(Z/kz)iZ(?i/ri)N’o> is a valid par-
ticular solution for large k if 7:‘3 is not close to the nucleus. How-
ever the validity of the solution near the nucleus is necessary and
must be checked. The radial component of the Laplacian of a vector
expressed in spherical coordinates is required and is given by
-
(v*h), =v2A -3 - L 2l
— 2Agcotr6 2 2Ag (27)
rz r2sim@ 9¢ -
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All vector valued functions the Laplacian acts upon in what follows
are radial vectors and angle independent (to the order of accuaracy

desired) so equation (27) becomes

(viR), =3 (m30) - 25 )

For ]Ul> to be a valid particular solution to equation (22) near the

nucleus, it is necessary that

(E~H)Iuy>=0 (29)

near ?} = 0. Recall that [Ui) has been assumed to be

’U\>= V.WQ (30)

N .
V, = 2.V, (31)

and

(32)

"y

Substituting the above form for ]U‘> into equatlon (29) and then

dividing by q/ leads to the condition on Vl to be verified,

Z[ /3 —-q;—“— V]V"O (33)

—

Vl is a sum of one-electron, angle-independent, radial vector valued

functions, hence

2
[Lh2 (g ) sm(h) 27y
Z 2 r2 o\ i or A or.d "ir
i

1 2
- Ay = 0 (34)
2 N r*_l lav

l
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where
- 2 !
Vlr - k2 Z rk (35)
A
and
Vi, = &
lir k* r® - (36)
A
Near YE = 0, retaining only the most important terms in the equation
yields

ST LB (Y, ~ T =0 @

It is easily confirmed that equation (37) is satisfied.
An asymptotic solution !Ué} (to the homogeneous differential
equation) which gives \GD> the correct behavior at the nucleus must

now be found. The homogeneous equation is given by

(Eo-H-K) U =0 (38)

.
Assume a product solution for (U2>' of the form ‘Ué) = V2\4g>u
Substituting this expression into equation (38), then dividing by %i

results in the equation

(Z (59 + TR 50)-k37, =0.

A

[~
Changing variables from r to s l/zr leads to the equation
k o2 I “f’
8 O
%(Z)—_ 7 Ve + k ( ) VS“D V O, (40)
A
Assuming
. i

©

V,= Vo kT2V, k'

and inserting this form for ﬁé into the differential equation vields



[R5

= 0. (41)

Equating the coefficients of the powers of k to zero leads to the sys-
tem of differential equations
—

(Z?V§7:)~V°=O (42)
A .

2

4

(Z'%: ‘753'7;)—'\7;-*(%*)-?:"\7" =0 (43)

K

All that is needed for the present work is the solution to Vg. Assum~
=0,

ing V2 is a sum of one-electron, angle independent, radial vector

valued functions, equation (42) may be written as
[+] o
% Z[S"Qs (s*as )] - ‘gvlv Zs’L air = O (44)

where VO =2 V.. . Since each VO. has been assumed to be dependent
2r i 21ir 2ir
upon only Sj’ the above equation may be separated into solving the
equation
2 ,
) ! o _..,.,_.
§+ ~ REAEN0 (45)
r5e) + 5 (55) § Vi
i AR ¢

for each j = 1. 2, ..., N. This equation has a regular singularity at

Sj = 0 and an irregular singularity at Sj =00 . The solution (from

the indicial equation) near sj = 0 is easily checked to behave as Sj
-2

or sj . For large Sj the solution clearly behaves as
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e~ V2's;

The

Q-'W

K;

choice for large sj is required since the homogeneous piece is needed
only to correct the solution for small rj; away from the nucleus the
solution previously obtained is valid and must not be affected by the
homogeneous solution. For small s, the 552 behavior must be chosen
in order to cancel the 2:(?;/ri) singularity of the particular solu-

&

tion )U17. Writing

VZ}'r = S;Z e:.lrf S 1C (46)

leads to the differential equation for f given by
l " ! ] /\[1' _
z 0+ (5 -1)f+ 2 =0. (47)
d ]
Attempting a power series expansion leads to the solution

f-= c. (1+V27s;) (48)

The other solution to f (associated with the indicial equation), as

expected, goes as s? for small Sj and as

622ﬁﬁ5‘$}

for large Sj and is clearly not wanted. Fortunately for this problem
it is not necessary to obtain the second linearly independent solu-
tion to f, which of course will involve logarithmic contributions to
the behavior for small Sj' Therefore the desired solution is given

by
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N
— —
S, —V2's; :
V, = ¢ 2 2% s (1442 s) (49)
=1 7
or, in terms of rJ,
Vo= 1 2 5 e ([+pn) (50)
=l 2
where M = (2k) /2. Hence the homogeneous solution is
N
= C T
}U1>-— -If- Z—A{Q (+,u\(‘\) \-}/> (51)
x=l 4

In order to cancel the singularity associated with the particular sol-
ution, the undetermined constant q must be chosen to be (Z/k). Thus

the desired solution to [IJ> is given by

N

Y
Iu>== .z'__. :ﬁ.[]_é‘f‘rﬁ<l+lAT‘\)})%> ' (52)
k& : r‘3 °
=1 ¢
Consequently, for small rj, the approximation to [C>> behaves as

N ..
| @) =~ Tl - 22 Bli-e*r(lepnl]I%)

N = P
"R S[EL Lem]ie)

which is precisely what was needed.

It is appropriate at this point to note that a "cancellation



/%

of errors" has occurred between the approximate particular solution
and the approximate homogeneous solution which makes the total solu-
tion even better than expected. Recall that in the particular solu-

tion the term

N i 2 (y,
T&D 25 L)-nyEN,

2 Py
R Y k* 4

in equation (34) was ignored for small rj. Hence the homogeneous
equation which was solved afterwards really should have been the

inhomogeneous equation

((ElEwe B 9], - 22r AR E o

(-}

Now replacing V2 by the solution which was obtained gives, in the
radial component version of equation (53), the "error equality"

(%) a1z 2 ()
9& €. ar\NTe/ U
Z Ir; K> r* (l+,ur> kll Y r3 (54)

A

where the terms on both sides were previously ignored when the homo-
geneous equation was solved. As can be seen the r;s singularity is
canceled, resulting in an even better solution for small rj than was
reallized, because equation (54) is in error for small rj to the or-
der of rgz, while the error in the original homogeneous equation was
of order r53.

Having obtained an approximate solution to (U> with the de-
sired behavior, all that remains is to insert the approximation to

1U> into the functional W and to evaluate the resulting expression

in the limit of large k, i.e. evaluate

w(Uk>~~’~Z<\PlZ ¥ +ulE,-H -kl

where
-ty

) = {:;—[f« LIRS

k:\' a=1
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The functional W(U,k) may be written

~ rad ~

wuk) = w (Wk) =¥, (u,k) (55)
with gl(U,k) containing contributions from one-electron operators

% (WK -—-é“_ T (k)

where

v"\i‘}( u, k)

=[] - et (eppIE)
£ | L 1- 51 I(EsH- k)*[ et (apr)ll¥e) o)

¢

and with %E(U,k) containing contributions from two-electron operators

Wz(u k)
}f_l<w 3(_;-@-/":«“”9»]/4»
4#3—
=D URCALA SR
k R 4

(E,-H- k>-f~[i—- P01y 6
J

The expression ﬁl(U,k) shall now be evaluated by determining
the contribution from the ﬁlj(U,k) term. In the following, the in-
dices on the rj's shall be dropped for notational convenience. A

straightforward evaluation yields



Wi (W)
= 22 (g5 em (]l
e 2 B[ o] (£ -5 L= a7 (1] )

= 22y [S [1-em (o]

-Z:<\};\‘;T+[ —e (1171
CE (| B L1 el (BB L-e (rol I
kq o

- 2y ali-er il
-.Zi@h::,[:— et (epn) [ IED
2L B - e ()] Fe L e lnod Iy
<Lr e b (-:ztlﬂe""('**f*"ﬂ)?\‘*ﬁ
<q; | S 1-err Uepn] {9 (=l - e (1+pr)] )} 7
—-22 TR T [
_F%‘ﬁ[,_gwmm] A
- B B Lo lepn)] E L= el
+-—-E—Z<\t’c\%[l—e"""(!wrﬂ'%[1"5”(1*1“"3]W/o>

4+ (continued on next page)
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where the angle dependent terms of the Laplacian have been dropped
because they lead to terms in k less significant than the order which
will be of interest. Collecting terms results in considerable sim-

plification, vielding

Wx}'(U,k) = (A+B) (59)
where
A=Y= li-er (1+pn][%) (60)
and

= Lyl l-er o er- 2l i) - oo

The matrix element A can easily be written as the integral

A= S 2 [ t-ePr( l+}1rﬂfj(r)o(r (62)

where as before,
= . 2
Note that

A€ -L] =k [1-erla]

hence integration by parts may be applied and, dropping the subscript

3 from ij(r) for notational convenience, it follows that



/34

A

e P Ny

= /u/o(o)‘*.y;/“(':?" %1‘”)5{-3\* +j;("r"§;w)§'f—°(r
{ { -t

= pplo) + [ (F -5 )5 dt

i

}Lp(o) +

r r~=o~ f*)

<+ (terms in k less significant than ko (= 1))

il

/110(0) + 3 g-f

g 52 S e S dr

= clrz
<+ (less significant terms)
= (2K)%plo) + ¥ f—."-) FSACOE S
_.j L\.*‘ a{r\ - (less significant terms) . (63)
Note that above, the Euler-Mascheroni constant, ¥ = .57721... is ob-

tained by applying equation 8.367.12 from the integral tables by

Gradshteyn and RyzhikS. Next, the matrix element B may be written as

the integral

B“"’j =1 - R (epn)]ir prer-2 D*e“"'(‘*'l*‘“)]}géa‘" (64)

::o(+ﬁ (65)

where
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o = [T [ emn(ivpr] 42 dr

(66)
and
R AN AR C) LI IR I -F I
First o will be expanded:
= = j —'w -—g”"((*-pﬂ]%‘%dr
= L L &i}:ﬂ]% dr _FL“’e-zp ﬁl{‘ dr (65)

significant than k

terms in k less
= '6’\2 ge{r:o-.é: grf:[lf’zo + ( - O> %)

Note that the first of the two integrals appearing in equation (68)

was evaluated using equation 3.434.2 from Gradshteyn and Ryzhik
Next examine ﬁ . Let

B=8 B

(70)
-
PR I | Sy N P
-
b= £ 7t [ P repe)] 22 o

The integral B may be expanded as follows:

=t [k [ emliop] 5 - £ 142
[ b e S

r r drl,
—pAr 2 12
_ig 4 °°[_L_e“ cle
dr }r-:.o 2k go r r ] dr2 Jr

I

ZJIL AY..

i




= T;lzl + (terms in k less significant than ko) (73)
Plr=o

Next, B o, may be expanded:

Agz =

T et 4

LIS herrde e e day,

terms in k less
F=0 (significant than ko) . (74)
Finally, the

asymptotic expansion of W(U,k) is obtained by summing the
integrals

i

Wi (UK) = B [A v +f 48, ]

= —f—- [ (200%5,(0) +4 Ink 4

do.
-5 A2

r=0 r=0

dpg dp; -V
i MRS S NSRS 5

( terms in k less )

significant than k (75)

The cusp condition allows one to eliminate 2

dr
dpy
dr

because
=0

r=0 = “'22‘02'(0> 5

hence,
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C&l}(u,k) = %lp,-(o)[(zkyiz,ak + 2 (n2~1-2%)]
- zl ® Jz . terms in k less
Elhr g e+ (52 o), oo

significant than k

Therefore, to order k-3, ﬁl(U,k) is given by

2 N .
WK =5 3 {p(0) [(20F-Zhuk +2 (bu2-1-20)]

© d’ .
NP -
50 In ey dy . )
Equation (77) may be further simplified by noting that for an anti-

symmetric wavefunction #ﬁ in the defining equation (4) for the one-
electron density it follows that

P:(l‘> =P*(") = =/0N(?‘> =—/3(r>)

hence

uk)——- {p(@[(zkﬁ-zznk+zmz—r—zm
-_f Inr o( g (78)

Fortunately the task of computing ﬁ%(U,k) is much simpler

The terms which contrlbute to the order in k of interest are simply

Wuk) =225y By

A#jcl ;
z‘<“{’!~ (- k)+lx{/>
L¥4=
= jéj : zi_. Sy
g % SR —,s;;}t}g) (79)

Therefore, adding ﬁi(U,k) and ﬁé(U,k) gives W(U,k) with
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W (U,k)
= ..i;a {p(o}[(Zk)é*mek‘*‘Z(&"Z‘X~ZX)]
= 1% honr ——-ﬁdr\ ¢
2 N =Y
- PARCAE R AT

Substituting this expansion for % into the expansion previously ob-

tained for w leads to the final result for J(k),

J(K)

lor vy - FE(Y, !ZS(r)H’>

=%
2- 2 —
+ 5 (2k)F Nplo) - 55 fnk Np&ﬂ
%— %Z(ﬂnl—}—ZX)Np (0) = Nf L‘" dr2 T dr
‘+Z <\P —r;. r3 % (31

1*1-4

valid to order k—3 in k.

D. THE EXPANSION OF J(k) IN TERMS OF THE MOMENTS AND ASYMPTOTIC ~
BEHAVIOR OF THE OSCILLATOR STRENGTH DISTRIBUTION

In this section it is shown that the form of the sum over
states expression J(k) allows an expansion in k with coefficients
given in terms of global (i.e. moment) and asymptotic properties of
the oscillator strength distribution. The expansion is similar in

spilrit to the Cauchy expansion of the dynamic polarizability which
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yvields a power series in the frequency, with coefficients given in
terms of the negative even moments of the oscillator strength distri-
bution. The coefficients in the expansion of J(k) obtained in this
section (in terms of properties of the oscillator strength distribu-
tion) may then be identified with those obtained in the previous
section (which were obtained as expectation values of the wavefunc-
tion). The identification immediately leads to "sum rules' for the
coefficients of the first and second asymptotic terms of the oscil~
lator strength density, along with the third moment of a "modified"
oscillator strength distribution.

The sum over states expression J(k) has been defined in

equation (10) to be

L. (en-eo)
J(k) =2 2 ImoSante)

— - €.tk

where the sum ranges over the bound discrete states and implies in-
tegration over the continuum of scattering states. The above sum-
mation may be split into 1) E:' , a summation over all the bound

states with an implicit integration up to some energy b in the con-
tinuum, and 2) S:nde , an integration over the continuum from €& = b

to o . Then the above equation may be written as

J(K) Z Faleced 2> 3 df _(e-€o) clc (82)

n—€o €o-C.*k 2J,de (e- eo+\<)

An asymptotic expansion in k is now desired for large k. This can
be achieved if b is chosen such that b< k over the range of interest
of k. Assuming b< k, it is found (following the same method used

for the Cauchy expansion of the dynamic polarizability) that
Z fw(en e)  _ Sk Sl LSBY

- (83)
w- €.+ k k kz kg

where S'(i,b) denotes the i-th moment of the portion of the oscil-



lator strength distribution below energy b.

An expansion for the integral is also required. This mayv be
accomplished by repeated partial integrations. In the following, as
before, b is taken such that b<k. Also, it shall be assumed that

asymptotically the oscillator strength behaves as

-7 .
_d.f. = < € 72 'B e~ & ( terms which fall ) (84)

c(@. off faster than €%

This choice for the asymptotic behavior is consistent with Dirac and
Harding's observation and it is of the same form as obtained for
atomic hydrogen (as shown in Section E of Chapter III) and atomic
heliuml. After completing the following derivation it will become
obvious that this is the only choice for the first two asymptotic
terms which will yield terms in the expansion of J(k) of the same
form as that obtained in the previous section. Note that in the
following, S''(i,b) will denote the i-th moment of the portion of
the oscillator strength distribution above energy b. Carrving out
the partial integrations,

o _éf‘_ (E"ea)
5;, de Tocaim €

il
Ly
8
5=
R
L
™
m
e
Do
m

= (Sbn‘(e‘oi) - Sb S df (e~ eo)Je)

= M — QJF . . E-€, w%
(b—eo-\-k) (L ‘a—;.(e—eo)rle)m(e_ee+k)z .

[T dF Lemed 4t N
jbgde (e-e+k) +2(£ e- e)“le)(e e+k)3%(e c)de




_STe) L S
(b-e¢ k) ( -+ k)*

“df Le- E")z (e-€)
J ; de (e-er)® ~ (L 1o (£-e)de ) (e- e,+k)3§de

_ S"(Lb) . S™(1,b) (b-c) - S"(2,b)

(b-¢.)

(k+b-¢.) (k+b-e¢, (kvb-ey

-2 (S:.(fi)ec)s (b-e) +2 (ill-flki)eo)B (b-e)*

o[ 4 leed g o] [ s s
S etk

At this stage, the above expression may be reduced by noting that to

order k -3 the sum of the first five terms in equation (85) is equal to

S"(LBY  S"(2p)
k k>

So, to order k—3

S A@ (e-€.) d
b de (e- -€.+k)

= S0B) | S"(am | g“’éﬁ SLe-ed® g
k kl Cle (e eo+k)

+6jw(§ df (ce)rde ) ered e

b (e-€.+k)*
ST eneade) s e
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The three integrals appearing on the right hand side of equation (86)
must now be dealt with. The standard procedure cannot be used be-

cause asymptotically
?-t-‘E = e R fety
de )

so the usual technique would lead to a divergence on the boundary at

o . However, define
(é_?_)* = df <2 -Bet (87)
de de

and one finds

3 «© -
Xm[ﬁ (&_eb) + é(j g—-&(e'—&o)zd{)i‘&_
b € €

de (e-eq.+k)® (e-e k)

(e -e,+K)*

-3 (S: %—E— (e'- e°)de,)_(_€_-_§_&_’;__]0[e

—

1 0 3
S*'(3b) -2 PO ol T M Y

s s erac] sty

b
e e enede ] e

4-<‘terms of higher order than k—3> (88)
where
* © *
S™"(3,b) ""‘fb(f‘éi) (e-e’de (89)

Now, only the remaining three integrals on the right hand side of

equation (88) need be evaluated. These integrals may be performed



¢/

analytically and upon expansion to order k—3 it is found that

© 3
S (xe™2 +fe) _le-€o)” de
b

(e'— ee+ k‘)a

8
3Bt Blnk-Plnb-3peb v dhelb- £ e2p]

5 [F25b" + 3ok - e, b7 4 2R b el

-+ (higher order terms) (90)
)

o [[iemepemneserud e

e-e.+k)*t
= LT 3% [z 3 .
k3 T & k*+ 2/3:] -+ < higher order terms > 91)

_35 “ CrR ISR CME]% de

- _____ [ 8 ‘/1 - _g_] -+ ( higher order terms>. (92)

Combining all the above results it is found that, to order k-3

£, (en-eD
n (en—e +k)
- S'(L,b) +9MLE)  S'ak) _ s"(2,b) L S'3b LS (3 b)
k k k;. kz kB k3
+o T K7 4 ,B.L’»k
k3 :

3

+ (continued on next page)
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+ ’;“3 [-Z“EVZ~éo&ebb"/"-u-lﬁe?b's"z——g—dez b %=
~Bhb -3Be b +3Be2b -5 el =] (93)

Noting that S'(i,b) + S''(i,b) = S(i) 1leads to the further simpli-

fication that

z For (en-€2)

~ (€En=€o+k)
5(‘) (2) ‘h igher
k Skl ﬁ k (gr?;r terms) (94)
where
"(3,b) + S™"(3,)
- 2xb% - e b Qb VA B elb Y
~Bnb =3B b+ 2B - L Belb (95)

It is easily verified that ¢ is a constant independent of b, as it
must be, since b was only artificially introduced to perform the
evaluation. Note that S'(3,b) 4+ S*''(3,b) is the third moment of

a modified oscillator strength distribution where the

O( E-Vz +ﬂ€"‘+

contribution to (df/d€ ) has been subtracted above the energy b, i.e.

S'(3,) +S*“(3) = 2_fo w2,
+§e 5‘-[—{(&—63346
+§ {d‘e Ble-b)[=€ ™ ﬂe‘ﬂ}(e eNde (o6

where & I is the first ionization threshold and € 1is the unit step
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function. Also note J(k) is given to order k-3 by
S0 _3s@ 3 k%2 +3 €
J(k) = Z Tt XTS5 & 5 t5 5 (97)

with ¢ given as above.

Equating the coefficients of the above J(k) with that obtained

in Section C automatically gives the final results,

S =-5<%lvelwy (98)
S =42y | T s = Z Nptod (59)
x = —%— z;ﬁ Nploy = 3—_—?-}- 5(2) (100)
B =‘%—23Np(07 = -2 E*S(2) (101)

and

S'(3,b) +S*"(3,b)
Z £,wl + f: g—g (e-eNde
]2 14 ety [we P rp e Te- e d e

= i;_zsNP(o)[-;'zAZ - —,‘-L- -.5772]

Tadr]

L#}‘:l
v =Y Y2 L2 € b 5/2
+ 2 b’ + bxe b — 2°<€:°b T EXEs
- -2 31-3
+BAnb + 3Be b7 -2 BelbTP 4L Be b (102)
where all quantities are expressed in atomic units. Of the above

five results, the first two are well known from the usual sum rules.

The third and fourth identities give the coefficients of the first two
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;

terms in the asymptotic expansion of the oscillator strength density
and are in agreement with results obtained by Salpeter and Zaidi1 for
atomic helium. Finally, the fifth result is a sum rule for the third

moment of the modified distribution.
E. RESULTS FOR MOLECULES

The previous results obtained for atoms are easily extended
to apply to nonrelativistic N-electron molecules in the fixed nucleus

approximation. In this case the Hamiltonian is given by

H=3 (-Z .oz '
= a7 SR Lp —_— 103
i= 2 Z Lo ) * Z L ( )
&= r=t T i<y )
where M Tranges over the M nuclei of the molecule and r . denotes

M
the distance between the M th nucleus (with charge ZH) and the i-th

electron. For this Hamiltonian the length, velocity and acceleration

forms of the dipole operator are given by f: v‘and K'respectively,

where
—n, N —
L =;=\ v (104)
— — N -
V=LLHI =2 % 103)
4=
re — M N —?L
A=[VH]=2> 2, % 5~ (106)
p=l 1= L &
with 'r:‘i = (%, - 7).

The acceleration form of the dipole operator A given above for
molecules, of course, differs from that used in the derivation of the
expansion of J(k) for atoms. Making the necessary replacements for
A and H is quite straightforward and the net effect is the appearance
of the index M (which labels the nuclei) and the associated summa-

tion. Note that the cusp condition applies to both atoms and mole-
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cules so the arguments previously made for atoms may be easily ex-
tended to deal with molecules.

The final results obtained are given
by

‘*’!

SM ="y vy d

(107)
M
S(2) = Z Z, (LHZ S(v )14 (108)
\ M
=< > Z, E Pui (0) (109)
M N
Lt ao o
Q M N
B =-5 > Z P Pri (o) (111)
p=t 4=

Z, ZPw Oy[ b2 =% -.5772]

(M,N)

F:

5>

() #,H=0,D
™M Zz iﬁwﬂn _‘.I:E’&LA )]
—.(:[_-_——_‘ I o7 ve r dr2 d
5/:
+ 2 b+ boce b - Quelb Y+ Exel

+ BUnb + 3Beb - 2Bl + 1B e2b® (112)

where fO pi (r)

2,2, (k| B )
pe Ty

in the above is defined by

Ppile) = fdﬂp; §dv

(113)
with the "M 1" angular integration carried out about the point T

and r denotes the separation from the point T,

e
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CHAPTER V
THE APPLICATION OF WAVEFUNCTION EXPECTATION VALUES TOWARD THE
CALCULATION OF LOGARITHMIC MEAN EXCITATION ENERGIES AND THE HIGH
ENERGY PHOTOIONIZATION CROSS SECTION FOR ATOMS AND MOLECULES

A. INTRODUCTION

Various attempts have been made in the past to utilize infor-
mation from sum rules and knowledge of the asymptotic form of the
oscillator strength density for calculations of atomic properties.
Dalgarno and Lynn1 modified available theoretical values of oscil-
lator strengths of atomic helium to satisfy sum rules, while assum~
ing a functional form for the oscillator strength density with a
reasonable asymptotic behavior. They then employed the new values
to evaluate various properties of helium arising from second order
perturbation theory. Dalgarno and Stewart2 followed a similar pro-
cedure to calculate the Lamb shift of helium, with improved values
of oscillator strengths and the correct coefficient of the first
asymptotic term of the oscillator strength density. Garcia3 has
suggested an approximate analytic representation of the oscillator
strength sum, S(k), which can be fit to a set of values (at k = 2,
1, 0, -1, -2, ~4, ~6) known from sum rules and experiment. Garcia's
representation of S(k) is consistent with the asymptotic form of the
oscillator strength density and can be used to obtain estimates of
the Bethe logarithm required for the evaluation of the Lamb shift.

The present work describes the construction of an effective
oscillator strength distribution, which satisfies not only the usual
sum rules, but also has the correct asymptotic behavior and satis-
fies the '"modified" oscillator strength sum rule described in Chap-
ter IV of this work. The functional form assumed for the effective
distribution consists of discrete states plus a continuous density

extending from infinity down to some cut off value of the energy.
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The constants required to specify the effective distribution are
obtained by solving a system of nonlinear algebraic equations. In
Chapter II, which described the solution of a similar system of equa-
tions, a rather remarkable simplification reduced the problem to one
of finding the roots of a polynomial. No such dramatic simplifica-
tions occur here, and the approach used to solve the equations is the
multi-dimensional generalization of the Newton-Raphson method. Once
the effective distribution has been obtained, it is a simple matter
to obtain estimates for the logarithmic mean excitation energies and
the photoionization cross section. Finally, calculations have been
performed for atomic hydrogen using the effective distribution and

are compared with exact results.
B. THE EFFECTIVE DISTRIBUTION AND ITS MOMENTS

The effective oscillator strength distribution is assumed to
consist of a set of M discrete states and a continuous density. The
m~-th discrete state is completely determined by specifying the oscil-
lator strength f% and the associated energy difference (with the
ground state) Q)%. The effective oscillator strength density is of

the form
df" _
de

(where GO is the ground state energy), and extends from infinity down

x (e-ecY’/%/S(e-e.,s‘ﬁx(e-eg’“/l (1)

to some cut off energy € = b. Clearly the k-th moment with respect

to the ground state energy E()of this distribution is given by

Mo, -
n=| _2-'-

B __\k-3 ¥
i (b-e.) T o; (b-

(2)

L

Yo

For atoms, the e and ﬁ are chosen to be
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and

/6 = ‘—%— 23NP(03 (&)

where Z is the nuclear charge, N is the number of electrons and fboﬁ)

is the one-electron density at the nucleus. For molecules, the cor-

responding expressions obtained in Section E of Chapter IV must be

used. With this choice of X and ﬁ , the effective oscillator

strength density correctly assumes the first two asymptotic terms

of the actual oscillator strength density, as shown in Chapter IV.
For the continuum oscillator étrength density, which lies

above the first ionization threshold energy € it shall prove

I’
necessary to introduce a modified oscillator strength density of the

form

Bt gley[meer™sees]

where © is the unit step function and b is some cut off energy lying
between E.I and oo . Then §%k,b), the k-~th moment of the modified
oscillator strength distribution consisting of the (unmodified) dis-

crete states plus the modified density above €

S (kb
=2 £, wk

+§: 3%—5 - 9<E-b5[°<(é—eb'%+B<€~6°3‘w]}(e-evo)ko(e, (6)

1° is given by

Tt is easily verified that S(k,b) is related to S(k). the k-th moment

of the oscillator strength distribution, through the equation

S(kp) =Sk~ (b—e,)k's/z—gf‘—k‘(b—eo)k'3 7)

5
5 -k

B
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The basic approach to be followed here is to fit the S'(k) (defined
in equation (2)) to a set of known S(k). However, it is known from
the derivation given in Chapter IV that the third moment of the
"modified" distribution is also known. The procedure described here
allows the effective distribution to satisfy the usual moments known
from sum rules and, in addition, allows the "modified" effective dis~
tribution to satisfy the value of the third moment of the actual
"modified" oscillator strength distribution. Note that S(k) is in-
finite for k = 3, however ng,b) is well defined, and from the re-

sults presented in Chapter IV it is possible to show that

S(3,by = Sp(3) + 20t (b-e )% + Bhn (b-e) (8)
where Sf(3), the "finite" part of S(3), is given for atoms by

Sp(3) = 423 Np(e) [4h2-%- Ceu]

e -
| Tl Q.A]
Z [;§~\<\.’/ 2 r‘ l%j> Nj Inr S (9
with CEM= .5772..., the Euler-Mascheroni constant. For molecules

Sf(3) is given by the generalization easily obtained from the results
presented in Section E of Chapter 1IV.

The effective oscillator strength distribution described
above contains the unknown parameters ¥ ,

n=1, 2,

b, and f; and uJé for

., M. These 2M + 2 unknown constants shall be deter-
mined by requiring that 2M + 2 of the moments of the effective dis-
tribution are equal to those of the actual oscillator strength dis-
tribution (known from sum rules, experiment, variational calculations,
etc.). Of the resulting 2M + 2 equations, one of these equates

the third moment of the modified oscillator strength distribution to
the third moment of the corresponding modified effective distribu-
tion. More precisely, it shall be required that the effective dis-
tribution satisfy

M 4 ¢k -4
(kb) =2 f. wi, l (b e (10)
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