/5)

for k = 3, 2, 1, ..., =2M+2.

C. THE DETERMINATION OF THE SOLUTION OF THE SYSTEM OF EQUATIONS

The system of nonlinear algebraic equations described in the
preceding section is considerably more difficult to solve than that
encountered in Chapter II. The questions concerning the existence
and uniqueness of the solution are not easily answered and the appli-
cation of algebra is not capable of significantly reducing the system
(for the case of M an arbitrary integer) into a tractable form. An
operational procedure, proven successful for solving the system for
various test cases, shall be described, which is based on the fixed
point iteration technique. Fixed point methods typically require a
reasonably accurate initial guess to the solution, in order to
achieve convergence. The approach taken here to obtain the initial
guess relies on the solution to the equations described in Chapter II
and also requires the solution to the system described in the pre-
ceding section for the special case of M = 1.

For the case of M = 1, the system for which a solution is

desired is given by
SGb) = £/ + 20 (b-eyE
S(2,p) = £lw® +2§6(b—e.§%
S(Lb) = w +2%¥(b-e
Slob) =F"  +Ey(p-ey

(11)

mjn

NN

In order to simplify the notation the following identifications shall

F=f
w, =W,

B = (b-e)

be made:



A= S(3b)
R =5(2,b)
C =5(1,b)
D=500b) .

Rewriting the system of equations (11) then gives

A=f s 2YE2

-3

B=fw*+3¥5 = .
-5

(; =:.p|u). *-%% ¥ E; EY

D=f +3%¥E3

°

Straightforward algebra leads to a solution of E in terms of A, B, C
and D as the roots of a sixth degree polynomial with coefficients

expressed in terms of A, B, C and D. This sixth degree polynomial

can be factored into the product of a fifth degree polynomial and a

first degree polynomial, resulting in the equations
15 [ BD*- ¢*D]8%+[ 125>~ RBCD-5AD*]E"
2
+[18E*D- 2 B+ 2 ACD]E + [ L BCH- % ABD- RACTE
9 2 1
+[1ABC-22B>+ L A*D]E + [ £ AB*- L A*C]
= O (13)

and

(14)

Once the desired solution to E is obtained, the solution to the re-

maining three unknowns, fl’ qu and ¥, may be obtained using the

relations



S
W

a\e% 35 /.2 /2
y = ‘AC-BNET+5 (C-BD)E 1)

FAE - 4B+ e -2pE"

(-

f = B aiga (16)
3
and
2% g3
W, = & 2 g (17)
' C- 2% E‘S/z
5 o
Clearly the only nontrivial part of this problem is deter-
mining the solution to ¥ . Note that A, B, C and D are implicitly
functions of € . The implicit dependence upon E in equations (13)

and (14) may be eliminated by expanding A, B, C and D in terms of
S(0), s(1), s(2), Sf(B),C* ,ﬁ and § . This expansion results in

higher degree polynomials (in the variable §:l/2

) which are straight-
forward to compute if so desired. The problem at this point is that
any root to either equation (13) or (14) satisfies the original sys-
tem and it is not obvious which solution is wanted. In order to
proceed further, some criterion must be set to choose which root is
needed. Physical considerations clearly require that € be real so
all conjugate complex roots of the polynomials may be ruled out.
Since only the real roots are of interest, the roots of equations
(13) and (14) may be located using standard numerical techniques such
as bisection or the Newton-Raphson method. After the set of real
roots has been obtained, the most reasonable choice for the desired
solution appears to be the largest root in the set. This seems to
be the best choice because € determines the cut off energy for an
approximation to the oscillator strength density which will probably
be accurate only at high energies. Choosing the largest root then
helps confine the approximate density to a high enough energy region
where it is expected to be walid. This argument is rather rough,

however choosing ¥ to be the largest real root has achieved good
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results for the calculations performed on atomic hydrogen.

The recommended numerical approach to obtaining the correct
solution for € wuses equations (13) and (14) directly, without elim=-
inating the implicit dependence upon‘g . This is accomplished by
assuming some value E' for the'g which is contained implicitly in
A, B, C and D. Then A(®'), B(E€'), C(E') and D(E’') are constants
and equations (13) and (14) may be solved by bisection or the Newton-
Raphson method. The largest real root of the polynomials involving
ACE’), B(R'), C(§') and D(E’ ) can then be easily obtained. This
procedure is repeated over a range of values for E', and the de-
sired solution is the value of E' for which the largest root of the
associated polynomials coincides with fl. This method is essential-
ly a "graphical” approach which searches for the intersection of two
curves and is easily computed using the bisection method. A com-
pletely pedestrian viewpoint will be taken concerning the existence
of solutions, where the existence for a specific problem is proven
by explicitly obtaining a numerical solution.

Having described the procedure for solving the M = 1 case of
the system of equations developed in the last section, it is now
possible to obtain a fairly accurate estimate of the solution for
the general case of M equal to some arbitrary integer. The first
step is to set up the system of equations given by

~ , Mai , k

Slk,bv) =2 8 W (18)

n=| ,

for k= 3, 2, 1, ..., -2M+2, where some reasonable value b' has been
assumed for b. The system given by equation (18) can be solved by the
techniques of Chapter II, leading to a collection of effective states
consisting of f% and Q)& form=1, 2, 3, ..., Mtl. For the following
it is assumed that the states have been labeled such that the effec~-
tive energy difference uJ% montonically increases as a function of the
index m. Then the two highest energy effective states (f"UJﬁ and
fﬁ+l’uJﬁ+l) are to be replaced by an effective state and an effective

density using the procedure described previously to solve the system
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given by equation (12). This replacement is accomplished by using
the two highest effective states to determine values for the moments
A, B, C and D appearing in the system described by equation (12),

according to

!

A F ! ¢ 3 + ! )3
= Ty Wy Ms1 Pmey
- 12 4
- p Cl) + M+l wM-H
(19)

B
C= Fl:'\ W ""'FMH e
D="Ffu ~+fu,

These constant values for A, B, C and D are then substitued into equa-
tions (13) and (14) and the largest real root is obtained using the
usual methods. The largest root obtained for ¥ is then compared

with the value of b'—-éo for the choice of b' assumed in equation
(18). The entire above procedure is repeated over a range of values
for b', and the desired solution is the value of b' for which the
largest root of the associated polynomial coincides with b'- GO.
This is again essentially equivalent to determining the intersection
of two curves and can be computed using the bisection method.

The claim that the above procedure provides a good estimate
for the actual desired solution is easily justified. The effective
distribution which has been constructed is of the form specified in
the last section, i.e. with M discrete states plus the continuous
density. This distribution satisfies equation (10) exactly for
k =0, 1, 2 and 3. The remaining equations for k = -1, -2, .
~-2M+2 are more sensitive to the behavior of the low lying discrete
states, so the conversion of the two highest discrete states into a
discrete state plus a continuous density should not cause these equa-
tions to be violated too badly. Hence the above procedure should

provide an adequate initial guess for the fixed point iteration tech-

nique described below. In practice this method has proved successful
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for calculations performed on various test cases.

After dealing with the subtle problem of obtaining the initial

guess, the task of implementing a fixed point iteration procedure on

the system given in equation (10) is quite straightforward. The spe~

cific technique to be used is the well known multi-dimensional gen-
eralization of the Newton-Raphson methoda. This method finds the

values of Xy Egs o eees Xy which satisfy the system of equations

¢L(x|,Xz,...)XN‘)=O (20)
for i =1, 2, ..., N. The solution is obtained by iterating the
transformation

— A -1 - _,,>
x' =X - J () ¢ (X (21)

until convergence is achieved, where J(¥) is the Jacobian matrix,

a._.f.'.{ %. ...a‘l)\

o X, 9%y I XN
J( ?) = o¢., °O¢a . . (22)

oX, Xz

2¢n ddw

X, S XN

-
and'?, X' and ¢ are column vectors. This procedure may be applied

to the problem of interest by setting

~ M s - -15: -
9{&‘ = 5(4-;,&—24’“ w'f —-:.%(b-e(b (23)
e

for i =1, 2, 3, ..., 2M+2, and
%X, =0
Xz“b‘ o)
Xi:p(“i‘*) if 5 odd, (2M42)Z 3> 2

)(;"-* w'@&._o if j even, (2M+2)2i> 2.
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The stability and the efficiency of the procedure can, how-
ever, be improved by reducing the dimensionality by the application
of straightforward algebra. Using the first four equations, the

T

variables § s fI:’{’ and W, may be eliminated through the relations

M
, ¢t Wa
(A -RNER R (¢'*-B'D)S (25)
T2 4 g 4 ip3_ 20 N/
EAE-SBE*FE-2DEY
¢ -5, 2
£o= (-3 &%) (26)
M ¢ 28 »=~3/2
R'-5- %
and
1 "3/
Wi, = ikl S (27)
M~ ' 2% -5
C - _g_‘g /2.
where
! -~ M-l ' 3
A =S(3L) - 2 f.wl
n=1
~ Mo X
B' = 5(2,5) -2 flwl
, N Mot ' (28)
C' =500 = 2 flu,
-1
D = S(o,b) - i k.
Then the Newton-Raphson procedure may be implemented by setting
M . -5 _)
o™ i s i=a X -'2—"'1.
qﬁg’; S(}—i,b} "h;ﬂw,\ T i+% (lovaeﬂ (29)
for 1 =1, 2, 3, ..., 2M-1, and
X, =b
Xa‘_ 2{\(‘%*‘\ if § even, (2M-1)Zi>1 (30)
x} =w£_,-_¥_) if j odd, (2M-1)Z 321,
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In equation (29) the variables ¥ , fﬁ and uJﬁ are of course defined

in terms of the independent variables Xqs Ky eees XZM-l

equations (25), (26) and (27).

through

D. RESULTS FROM THE EFFECTIVE DISTRIBUTIONS FOR ATOMIC HYDROGEN

Effective oscillator strength distributions have been con-
structed for atomic hydrogen using the procedure described in the
previous section for the M= 1, 2, 3 and 4 cases. 1In addition,
effective oscillator strength distributions have been constructed
which include contributions from the first four physical excited
states explicitly, with the remaining portion of the distribution
constructed according to the usual procedure. This remaining por-
tion of the distribution has also been calculated for the M = 1, 2,
3 and 4 cases and of course the moments which are used are those of
the actual distribution minus the contributions of the first four
physical excited states.

The moments and asymptotic coefficients are easily obtained
for atomic hydrogen but will be listed here for completeness. The

moments used, in atomic units, are

5.(3) = 84m2 - 5
s(2) =%
s) =2
S(0) =1
S(-1) = 2
5(-2) = 2
S(-3) = 3137
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§(-4) = 53
9673
$(=5) = =77
297541
5(-6) = 1;;8

The coefficients of the first two asymptotic terms of the oscillator

strength density are

= BNz
37

and
-8
= 3

The oscillator strengths and transition energies between the

1s state and the 2p, 3p, 4p, and 5p states were also used. These are

given by
_ ,13,.9
fl =277/3
_ 4,,10
f2 = 3/2
£ = 218X33/512
3
£ = 2%s5°/31°
4
UJl = 3/8
w, = 4/9
W, = 15/32
W, = 12/25
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The effective distributions have been used to obtain estimates
of the logarithmic mean excitation energies by evaluating the L(k)

associated with the effective distributions, i.e.
L (k)
M , K
= ! !
Z ph wy, /6"/ wh

n=|

+ x k-5/4 o . k- 9/2
Eay (b-e,) I (b-e)) ~ 5oyl ¢)

A k-3 B R
'# .3 K (Er-é;) 4£h.(b"€;> + (3._k)z (b ew)

+ = (b-e) 2L (b-e) + 5 — (b~e,)k-7/2 (31)

(-K) '

7
Z”R

Values fo L(2), L(1), L(0) and L(-1) are listed below and compared
with exact results. Table 13 lists the results for the effective
distribution without actual oscillator strengths explicitly included
and Table 14 lists the results with the first four oscillator
strengths included. The logarithmic sum L(0) is needed to compute
the stopping power of fast charged particles scattering off atoms
and molecules. A more common form for expressing the information

contained in L(0) is the quantity I, where
I= exXp ( L(o>/5(03> (32)

with L(0) calculated in units of electron volts. Tables 15 and 16
list results for I and & , the coefficient of the third asymptotic

term of the oscillator strength density in the expansion

d4f -3.5 ~ 4 ~4.5
-&—z =o<<e~e°) —t—ﬁ(é-e.s +X(€-—€°\) +oert (33)
where é(D is the ground state energy. The exact value of § listed
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has been obtained by performing an expansion of the result obtained

in Section E of Chapter IIT. The results obtained for the L(k) are
significantly better than those obtained using the technique described
in Chapter II which did not utilize the information concerning Sf(3)
and the coefficients of the first two asymptotic terms of the oscil-
lator strength distribution. The results obtained for I and L(2) are
also significantly better than those obtained using Garcia's inter-
polation scheme (note Garcia considered only T and L(2)).

The effective distributions obtained may also be of some in-
terest. Table 17 includes the effective discrete oscillator strengths
and transition energies and ¥ and (b-é(ﬂ to 5 digits for the distri-
butions without physical states. Table 18 includes the same informa-

tion for the distributions which included four states explicitly.
E. THE HIGH ENERGY PHOTOIONIZATION CROSS SECTION

The expansion given in equation (1) may be useful for estimat-
ing the photoionization cross section at high energies. The total
photoionization cross section O , in the dipole approximation, is
related to the oscillator strength density (df/de ) (when € 1is given

. . . 5
in atomic units) by

dF
¢ =2mrx a7 e (34)
where © = ez/Cﬁc) ~ 137 is the fine structure constant and

ay = ﬁz/(mez) is the Bohr radius.

Using the best value of ¥ obtained from Table 16 leads to the

approximate expansion

O(P'_ -L'PY _ '-3.5___8; _ - i - -4.S (35)
L= 52 (e-€.) S (e-€) +3.50(c-e.) 7,

Comparing this with the exact expression for (df/de€ ), one finds that

equation (35) leads to a result approximately 10% too high at
(e - e_o) = 10 a.u. and to a result approximately 1% too high at 20
a.u. The approximate © corresponding to equation (35) is given by
ez -3.5_ 8 - - 4.5
o = 2T 62 [-ﬁ(e-e,) ~ S (e-e.) "+ 3.510(e-¢) (36)

and the associated dipole approximation to the differential photoion-
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ization cross section is given by

._4.9:_ - iﬂo‘a:sih"Q b3

afn 4
- ~4 5

x[g—g—(e-e°§'3‘s— %—(e—eg Y4 3.5!((——6.3*] (37)

where the differential cross section has been averaged over both
helicity states of the incoming photons and 6 is measured from the
direction of propagation of the light6

The dipole approximation is certain to hold5 only for energies
such that ( € - ¢ O)<<(€ 0/04)2568.5 a.u. Beyond 20 a.u. it might be
argued that the dipole approximation is being violated. However for
the case of atomic hydrogen it can be shown6 that asymptotically, the

differential cross section (including all multipoles) is given by

3%1 - qui_,o( a-:i (€~€°§~3.5$|~“;,9[}+ Y '\-é: Cos@j (38)

= 24T xa2 (e-ey>*simo [+ 4« (2) o] o)

where v is the velocity of the ejected electron. This form for writ-
ing the asymptotic expansion is reasonable if (v/c)<K 1, which is
simply the assumption that only the nonrelativistic case is being
considered (already required by the fact that the Schrodinger equa-
tion rather than the Dirac equation is being used). The expansion

in equation (38) contains only two leading terms of an expansion
which should be in powers of both (&€ - € O)_l/2 and (v/c), i.e. terms
of the type appearing in equation (37) should also be in the expan-
sion. Equation (38), however, indicates the importance of the higher
order multipoles to the actual expansion. TFor (v/c) sufficiently
small, equation (37) should be a better expansion than equation (39).
Note that the second term in equation (39) is small when

(€ - ¢ O)<< E;O/(l6c&2) =2 586.5 a.u. Therefore although the dipole

approximation requirement that ( € - € )<< 68.5 a.u. is sufficient
0
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for equation (37) to be useful, it is more stringent than necessary.
Also note that when equation (39) is integrated over all solid angle
to obtain the total cross section the second term in the expansion
vanishes by virtue of the angular dependence. The next term in (v/c)
will be of order (v/c)2 and presumably will be less important than
the first order term which appeared in the differential cross sec-
tion. Therefore equation (36) should serve as a better approxima-
tion to the total cross section than equation (37) serves for the
differential cross section. Finally note that the (v/c)2 term can
be shown5 to be of the same order as relativistic effects, so to
proceed beyond this point the Dirac equation must be used. In con-
clusion, equations (36) and (37) should serve fairly well in the
high energy region and it appears that this behavior should also

hold true for other atoms.



Table 13

Without Physical States

M L(-1) L(0) L(1)
1 .15383 .15191 .7128
2 ~.07493 .09907 .7545
3 -.07334 .09724 .7595
4 -.07326 .09704 .7606
Exact®  -.07325 .09698 .7612
Table 14
With 4 Physical States
M L(-1) L(0) L(1)
1 -.02252 .11701 .7372
2 ~.07374 .09779 .7578
3 -.07328 .09709 .7603
4 -.07326 .09701 .7609
Exact®  -.07325 .09698 .7612

.

Reference (7).

L(2)
16.109
15.978
15.942
15.929
15.915

L(2)
16.042
15.957
15.934
15.925
15.915

[od
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Table 15

Without Physical States

M I (in eV) g
1 15.838 3.07
2 15.023 3.25
3 14.995 3.37
4 14.992 3.46
Exact 14.9922 3.73
Table 16

With 4 Physical States

M I (in eV) ¥
1 15.295 3.15
2 15.004 3.32
3 14.993 3.43
4 14.992 3.51
Exact 14.992% 3.73

a. Reference (7).
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Table 17

.95657
3.0717

.71186
.27125
3.2515

.53047
.36228
.099038
3.3748

.45542
. 30593
.19051
.043580
3.4647

b-¢€

i

i

i

Li}

i

]

]

i

.53956
2.1186

.40878
1.0653
3.0560

. 38345
.64955
1.7247
4.0812

.37711
.53129
.96002
2.4963
5.1958



Table 18

With 4 Physical States

£1 = .43277 Wi = .77731
¥ = 3.1468 b- eo = 2.4715
£1 = .30406 Wi = .58996
£y = .14621 W) = 1.4117
§ = 3.3169 b-€, = 3.5617
£1 = .19121 W/ = .53821
fé = .20725 wé = .86775
£} = .057586 wé = 2.1879
¥ = 3.4297 b-€ = 4.7284
£1 = .12703 W7 = .51690
£5, = .18926 wé = .69371
£l = .11547 w_;, = 1.2335
£, = .026751 W, = 3.0744
¥ = 3.5109 b-€ = 5.9772
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CHAPTER VI
THE LOGARITHMIC MEAN EXCITATION ENERGIES AND THE HIGH ENERGY
PHOTOIONIZATION CROSS SECTION FOR ATOMIC HELIUM AND THE
NEGATIVE HYDROGEN ION

A. INTRODUCTION

In Chapter V, a technique has been suggested for calculating
the logarithmic mean excitation energies and the high energy photo-
ionization cross section for atoms and molecules. The present work
describes the application of the technique to evaluate these proper-
ties for atomic helium and the negative hydrogen ion. The moments
S(k) of the oscillator strength distribution, needed for implementing
the method, have been taken from the literature. However, accurate
values of Sf(B) (the "finite" part of the third moment of the oscil-
lator strength distribution), also needed, have not previously been
available. 1In order to obtain Sf(3) to the required accufacy calcu-
lations have been performed using a 162 term He ground state and a
162 term H ground state, both containing Fock terms in the wavefunc-
tion. The resulting calculations of the logarithmic mean excitation
energies appear to be the only existing values for the negative hydro-
gen ion and the most accurate to date on L(-1), L(0) and L(1) for

atomic helium.
B. THE CALCULATION OF Sf(3)

The "finite" part of the third moment of the oscillator
strength distribution, as shown in Chapter V, is expressed in terms

of expectation values of the wavefunction according to

Sp(3) = L 2°Npla[ 32 -5 = Cem]
ATLE RS N fed o
é

4*7

1 9



where fD(r) is the radial one-electron density and CEM = .5772..

the Euler-Mascheroni constant. Note that Sf(3) may be written in

terms of what Schwartzl calls "C" through the relation
— 2 2
3) =5 Z" Np@) C. (2)

1 . . .
Schwartz™ has performed a calculation using an 18 term Kinoshita wave-

il

function and obtained C 5.18 for atomic helium. Using Pekeris'
resultz, NfD(O) = 45.501, leads to Sf(3) = 629 for He, in substantial
disagreement with the value obtained in the present work.

The wavefunction used for the present calculation is a modi-
fied version of a Fock type wavefunction due to C. W. Scherr and E.

J. Shipsey (unpublished). The wavefunction is of the form

L’} = e'"-)‘i—(r‘-rr,) P(r\)rx,r\:'u) (3)
where
P =P:/:£ Al P‘i , )j«) rPr q’ " . (n +r,.)‘/2[1m(v‘f+ r’;)]* (4)
o

as specified by Fock3, where I, T, and Ty, are the Hylleraas varia-
bles. The symmetry of the ground state has been insured by requiring
A(p,q,1,1,j) = A(q,p,1,i,j). The standard Rayleigh-Ritz procedure4
has been employed to determine the values of A(p,q,1,i,j) and N for
which the expectation value of the energy is minimized. The inclu-
sion of the nonconventional half-power and logarithmic terms is
necessary in order for the wavefunction to assume the correct analy-
tic form when both electrons are near the nucleus. This type of
wavefunction appears to be especially well suited for the present
calculation since the expectation values necessary for the evalua-
of Sf(3) are clearly very sensitive to the behavior of the wavefunc-—
tion near the nucleus. Tables 19 and 20 list ground state energies
as a function of basis size. Energies are given in terms of atomic

units.



Table 19
-
Number of
Terms Included Energy
89 -.527750699
101 ~.527750929
117 ~.527750967
137 -.527750989
162 ~.527751000
Actual -.527751016%
Table 20
He
Number of
Terms Included Energy
89 -2.903724376161
101 -2.903724376985
117 -2.903724377018
137 ~2.903724377023
162 ~2.903724377025
Actual - -2.903724377034P

a. Reference (5).

b. Reference (6).

prs—.



Number of
Terms Included

89
101
117
137
162

Best Estimate

Number of
Terms Included

89
101
117
137
162

Best Estimate

Table 21

H
2 R
T
-5.355 ~.05584
~5.363 ~.05606
-5.354 ~.05610
~5.347 -.05610
-5.350 -.05609
-5.349 ~.05609
Table 22
He
ey
j J LnrAr E; x v} >
#}-t* )
-180.941 -1.36700
~180.935 -1.36695
~180.940 -1.36694
-180.936 ~1.36693
~180.937 ~-1.36693
~180.937 -1.36693



Tables 21 and 22 contain results for the expectation values
needed for the evaluation of Sf(B) for H and He. The results have
apparently converged to almost 4 digits for the negative hydrogen ion
and to 6 digits for atomic helium. The accuracy achieved appears to
be adequate for the present needs.

Using the "best estimate" results of the expectation values
listed in Tables 21 and 22, Sf(3) may readily be calculated for H
and He once NP (0) has been supplied. From the work of Pekeris the
value of Nf>(0) is known to be 4.136 for the negative hydrogen ion7
and 45.501 for atomic heliumz. Hence the value of Sf(3) is found to

be 3.066 for H and 606.76 for He.
C. THE CONSTRUCTION OF THE EFFECTIVE DISTRIBUTIONS

Effective distributions shall be constructed according to
the prescription given in Chapter V. The effective distributions
consist of a set of discrete effective oscillator strengths and a
continuous oscillator strength density extending from infinity down
to some cut off value of the energy. The effective oscillator
strengths, energies and coefficients (in the expansion of the den-
sity) are determined such that the effective density has the cor-
rect asymptotic behavior for high energies and the moments of the
effective distribution equal the moments of the actual distribution.

The coefficients & and ﬁ of the first two terms in the

asymptotic expansion of the oscillator strength density,

dr = <& 1 Be et )
de

and the moments of the oscillator strength distribution which can be

obtained from sum rules are listed in Table 23 for H and Table 24

for He. The values of Sf(3) listed are those which have been calcu-

lated in the present work. The values of S(2), S(1) and S(-1) are

expressible as expectation values of the wavefunction and have been

P



5:(3)
S(2)
s(1)
S(0)
S(-1)

5£(3)
S(2)
s(1)
S(0)
S(-1)

i

[]

]

i

L}

Table 23

H
232y 7 5(2) = 1.24112
-2 7% $(2) = -2.75708
3.066
1.37854
.747508
2.00000
14.9685

Table 24

He
(23/2/1T) Z S(2) = 54.6204
2 7% 5(2) = -242.672
606.76
30.3340
4.08373
2.00000
1.50500



S(-2)
S(-3)
S(-4)
S(-5)
S(-6)

S(-2)
S(-3)
S(-4)
S(-5)
S(-6)

Thakkarb

1.38312
1.41496
1.54210
1.74987
2.04044

a. Reference (8).

b. Reference (9).

Table

Langhoff
206.0959
3771.499
80102.66
1867814
46472740

Table

He

25

Halla

26

Langhoff "a"

1.383019
1.414911
1.542067
1.749849
2.040661

Langhoff nprd
206.0744
3767.879
79941.35
1861477
46237640

@ Langhoff "b"?

1.381584
1.413573
1.541327
1.749589
2.040570



taken from the work of Pekeris on the negative hydrogen ion7 and
atomic heliumz. S(0) is of course equal to the number of electroms
in the system which is two for H and He.

Ab initio wvalues of S(-2), S(-3), S(-4), S(-5) and S(-6) have
also been taken from the literature, however these quantities cannot
be expressed as expectation values of the wavefunction. These mo-
ments must be calculated variationally hence the precision attained
for S$(-2) - S(-6) is mot likely to be as accurate as that of the
Sf(3), $(2), S(1) and S(~1) calculations. In order to test the sen-
sitivity of the effective distribution (and the properties derived
from it) to errors in the S(-2) - S(-6) moments, calculations were
performed with two different sets of S(-2) - S(-6) values for the
negative hydrogen ion and with three different sets of S(-2) - S(~6)
values for atomic helium. Table 25 contains the "Spectrum a" and
"Spectrum b" variational approximations to S(-2) - S(-6) for H ob-
tained by Langhoff et.al.8 Table 26 contains Thakkar's variational
approximation59 to S(-2) - S(-6) for He and the "Spectrum a'" and
"Spectrum b" variational approximations to S(-2) - S(-6) for He ob-
tained by Langhoff et.al.8

Tables 27 through 31 list the effective distributions ob-
tained in the present work which satisfy the moments Sf(3), S(2),
S(1), ..., S(2-2M) where M ranges over 1, 2, 3 and 4. The fé are
the effective oscillator strengths and the UJé are the associated
energy differences between the "effective states” and the ground

state. The effective oscillator strength density is of the form

df’

—————

de

and extends over the energy range from b to @ . The o and ﬂ are ob-

tained from Table 23 for H and Table 24 for He. The f;, u)é, ¥ and

= O((e~e°>—7/l+ﬁ(e—ejt}-rz{(e-eﬁ)—q/l (6)

b are of course determined by solving the system of simultaneous equa-

tions described in Chapter V. Tables 27 and 28 contain the results
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Table 27

H (S(-2) - S(-6) from Langhoff "a")

M
1 fi = 1.906 "*’i = .2640
¥ = 3.097 b-€ = 1.629
2 fi = .7410 wi = .06092
£5, = 1.200 W) = .4309
¥ = 3.200 b-€, = 1.933
3 £1 = .2139 W = 04138
LI |-
5 = 8626 W) = .1049
fé = ,8818 wé = .5646
¥ = 3.277 b-éO = 2.208
4 fi = .07482 ‘*’i = .03543
£5 = .4227 wé = .06050
fé = .8195 wé = .1662
f) = .6528 wi = .7027
¥ = 3.346 b- €, = 2.498



Table 28
H (S(-2) - $(-6) from Langhoff "b")

M

£1 = 1.906 W1 = .2640
¥ = 3.097 b-€, = 1.629
£1 = .7411 W] = .06093
£, =1.199 Wy = .4310
¥ = 3.200 b- €, = 1.933
f1 = .2134 W1 = 04139
5 = .8601 W) = .1045
£ = .8847 Wl = .5630
§ = 3.276 b-€, = 2.205
£l = .07392 W, = .03543
£y = L4145 wj = .06006
£, = .8086 L1 = 1619
£, = .6717 W, = .6880
¥ = 3.339 b-€, = 2.464



Table 29

He (S(~2) - $(-6) from Thakkar)

Fho b
N = = -

o

Fh +h kh
W= R = =
fl

=

i

Fh Fh o Fh Hh
PN e (0= DO e e e

(-4

i}

i

i

1.917
564.2

1.197
L7651
594.6

.6853
.9540
.3401
617.0

L4874
.7506
.6132
.1386
640.9

O M-

mn € E L
O W

£ £ € E
L I N S

o*
I
m

it

fl

i

it

1.592
7.690

.9606
2.983
10.34

.8399
1.553
4.623
13.17

.8060
1.194
2.434
7.213
17.45



Table 30

He (S(-2) - S(-6) from Langhoff "a")

Fno Fh +h rhoFh
W~ PO = i = o= = QR
]

o¢

]

1

ho
IS o N =

o

]

(]

i

it

it

1]

I

1.917
564.2

1.197
. 7646
594.6

.6908
.9561
.3330
617.8

.4803
L7563
.6282
.1268
675.1

i

fi

]

L]

[

it

]

]

i

ft

1.592
7.690

.9608
2.984
10.35

.8409
1.564
4.681
13.29

.8047
1.188
2.469
7.735
19.36



Table 31

He (S(-2) - 8(-6) from Langhoff "b")

Fh Fh Fh b
e T I N R g

ol

It

il

fl

il

i}

i

1.917
564.2

1.204
. 7583
595.0

.7220
.9858
L2765
627.9

.4876
.7652
.6613
-.007327
789.6

Wi

b—GO

T
~ £ E E m & E
O W R = O N

€ € E ¢
O =0 - -

o
|
m

i

[}

i}

L]

i

it

it

]

1.592
7.690

.9634
3.001
10.38

. 8464
1.646
5.286
14.69

.8059
1.199
2.607
27.11
8.638



for H obtained by using the Langhoff "a" and the Langhoff "b" values
for S(-2) - S(-6) respectively. Tables 29, 30, and 31 contain the
results for He obtained by using the Thakkar, the Langhoff "a" and
the Langhoff "b" values for S$(-2) - S(-6) respectively.

The effective distributions for the negative hydrogen ion
obtained using the Langhoff "a" and the Langhoff "b" values for
S(-2) - S(-6) are fairly consistent. Although noticeable differences
can be detected between the M = 4 distributions, the results appear
to be reasonable. The atomic helium results are more sensitive to
errors in the input, perhaps due to the different shape of the dis-
tribution. The distributions constructed using the Langhoff "b"
values for S§(-2) - S(-6) appear to be unreliable (with an unreason-
ably large jump in the K value for M = 4) and noticeable differ-

ences can be detected between all three of the M = 4 distributions.

D. RESULTS FROM THE EFFECTIVE DISTRIBUTIONS FOR THE NEGATIVE
HYDROGEN ION AND ATOMIC HELIUM

The effective distributions constructed in the previous sec-
tion have been used to compute the logarithmic mean excitation ener-

gies L(k) associated with the effective distributions according to

L(k) = Z»C Wi Lon Wl

" 5/2,&'.(&; e.)+ (i e (b- 5k~5/1
+~é——(b e L (b-e 3+<-géqu D

b-e )7~ 7

k7/;\
+_:,;E—;(b-e) o (b - e\"‘ T

Note that while the moments and effective distributions have been

given in terms of atomic units, the logarithmic mean excitation ener-



gies shall be expressed in terms of Rydbergs.

Tables 32 through 36 contain the results for L(-1), L(0),
L(1), L(2) and § of the negative hydrogen ion. The Bethe theory
for collisions of fast particles holds only for neutral atoms so
apparently the values of L(-1), L(0) and L(1) are of no practical
importance for the negative hydrogen ion. The L(2) value however
can be used to estimate the Lamb shift of H . Tables 37 through
41 contain the results for L(-1), L(0), L(1), L(2) and ¥ of atomic
helium. I is another quantity containing the information provided

by L(0) and is related to L(0) (given in electron volts) by

—

I=expl L(OB/S(O§> , (8)

Results for I are presented in Table 42. The "best estimates" and
associated error estimates are clearly subjective and are meant only
to serve as a guide. The "best estimates" are an extrapolation of
the M = 1, 2, 3, 4 results and have been influenced by the conver-
gence behavior of results for atomic hydrogen presented in Chapter V.
Also, for atomic helium the Langhoff "b" results (which gave an ef-
fective spectrum with anomalous behavior) were basically ignored.
Despite the fact that the effective distributions constructed from
the higher order M systems appear to be fairly sensitive to errors
in the inputs the L(k) are nevertheless fairly stable. Also note
that X seems to be more sensitive to errors in the inputs than the
L(k). For the case of atomic helium, the most reasonable distribu-
tions appear to be those given by Thakkar's values of S(-2) - S(-6)
and the M = 4 Thakkar distribution yields a value of L(2) in best
accordance with Schwartz'sl accurate value of L(2).

Finally, Table 43 compares the present work with results ob-
tained earlier for atomic helium. It appears that the results ob-
tained here for L(-1), I, L(0) and L(1) are the most accurate to
date. Apparently there is no earlier work for comparison with the

results obtained here for the negative hydrogen ion.



w N =

Best Estimate

w N ==

Best Estimate

Table 32

L(-1) of H

Langhoff "a"
-4.097
-1.299
-1.275
~1.272

~1.270
+3

Table 33

L(0) of H

Langhoff "a"
-1.072
-1.636
~1.695
-1.711

-1.718
+8

Langhoff "b"
-4.097
-1.299
~1.276
-1.273

-1.270
+3

Langhoff "b"
-1.072
~-1.636
-1.695
-1.710

-1.718
+8



W N 2

Best Estimate

w N = "

Best Estimate

Table 34

L(1) of H™

Langhoff "a"
.2386
.3964
L4390
L4575

L4725
+75

Table 35

L(2) of H

Langhoff "a"
16.98
16.78
16.68
16.62

16.58
+4

Langhoff "b"
.2386
L3964
.4386
L4557
L4725

+75

Langhoff

16.
16.

16

16

98
78

.68
16.

63

.58

+4

”b"

85



w N

Best Estimate

W M =

Best Estimate

Thakkar
.8107
.6402
L6435
.6438

L6440
+4

Table 36
6 of H
Langhoff "a"
3.10
3.20
3.28
3.35
3.50
+15
Table 37
L(-1) of He
Langhoff
.8107
.6402
.6436
.6438
L6440
+4

Langhoff "p"
3.10
3.20
3.28
3.34

3.50
+15

"a" Langhoff "b"
.8107
.6402
L6444
L6448

L6440
+4



M

Best Estimate

it

Best Estimate

Table 38

L{0) of He
Thakkar Langhoff
2.478 2.478
2.278 2,278
2.268 2.268
2.267 2.267
2.265 2.265
+3 ’ 13

Table 39

L(1) of He
Thakkar Langhoff
14.04 14.04
14.48 14.48
14.55 14.55
14.57 14.58
14.58 14.58
+3 +3

", n
a

.

Langhoff "p"
2.478
2.278
2.266
2.262
2.265

+3

Langhoff

14.
.48
.57
14.
14.

14
14

04

64

58
+3

H‘b"



Table 40

L(2) of He
M Thakkar Langhoff "a" Langhoff "b"
1 537.0 537.0 537.0
2 532.9 532.9 532.9
3 531.5 531.5 531.0
4 530.8 531.4 528.1
Accurate® 530.2 530.2 530.2
'1-5 -_I:S 'i*5
Table 41
¥ of He
M Thakkar Langhoff "a" Langhoff "b"
1 564 564 564
2 595 595 595
3 617 618 628
4 641 675 790
Best Estimate 680 680 680
+40 +40 +40

a. Reference (1).



w N =2

Best Estimate

Thakkar
46.
42.
42,
42.
42.

97
50
29
27

23
+6

Table 42

I of He

Langhoff "a"
46.
42.
42,
42,

42

97
50
29
27

.23

+6

Langhoff "b"
46.

42

97

.50
42.
42.
42.

25
16

23
+6



Table 43

Comparison of Values of L(k) and I for Atomic Helium

&) >

[N

42
42

42.
41.
39.

42

44,
41.
42,

.03+.32
.00
12
70

.19
30
35
23+.06

Reference
Reference
Reference

Reference

L(-1)
.6456+.0015
.6440+.0004

L(0)
2.256+.015
2.254
2.260
2.240

2.11

2.263
2.361
2.223
2.265+.003

L(1)
14.72+.50
13.76
14.6
14.58+.03

(10).
(11).
(12).
(13).

09 o 0

Source
Moment Theorya

Present Work

Source

Moment Theorva
Variational Calculationb
Variational Calculation®
s(k) Fitd

S(k) Fit®

S(k) Fit®

Experimentalg
Experimentalh

Present Work

Source

Moment Theorya
Variational Calculation®
S(k) Fit©

Present Work

Reference (14).
Reference (15).
Reference (16).
Reference (17).
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