A FORMAL SYSTEM FOR NETWORK DATABASES
AND ITS APPLICATIONS TO
INTEGRITY RELATED ISSUES

Dipayan Gangopadhyay
Department of Computer Sciences
University of Texas at Austin

Austin, Texas 78712

TR-84-19 May 1984

A FORMAL SYSTEM FOR NETWORK DATABASES
AND ITS APPLICATIONS TO
INTEGRITY RELATED ISSUES

APPROVED BY SUPERVISORY COMMITTEE:

RSSO SN P St GO ¥, Aol Pt s oy e e i s

i onain ot o s s e i i e i <oneou | i i v o s s

A FORMAL SYSTEM FOR NETWORK DATABASES
AND ITS APPLICATIONS TO

INTEGRITY RELATED ISSUES

BY

DIPAYAN GANGOPADHYAY, B.E.TEL.E.

DISSERTAT}ON
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requiremeunts

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December, 1983

To My Parents

ACKNOWLEDGEMENTS

This dissertation would not have materialized without the guidance,

" interest and gentle reminders from my advisor, Professor James C. Browne. He

not only helped me to organize and present the research, but provided constant

encouragement and support throughout my graduate career at UT, Austin. I
am grateful to him.

I wish to thank the members of my dissertation committee, Professors
Jay Misra, Don Good, Mohamed Gouda and Alfred Dale, for their
encouragement and many fruitful discussions. I am thankful to Dr. Umesh
Dayal for helping me to organize the ideas during the earlier stage of this
research. Professor Frank Brown also has my sincere thanks for several
discussions which clarified the decidability issue presented in this dissertation.

During the period of this research, several people provided me with
emotional support. In particular, I am thapkful to my brother, Nirmal, my
parents and my f{riends, Bob, Valerie and Sumitra, for their patience and
selfless support. I would also like to thank Nancy Eatman and Ann Arnold for
their friendship and ever ready assistance irrespective of their pressing
responsibilities.

This research was supported in part by grants from NASA (NSG
1448), NSF {(MCS-8214613) and Honeywell Inc. (50CP357-CP30).

The tasl of formatting this dissertation was greatly eased by use of
automated document processing. The Scribe document f{ormatter was
conceived of and created by Brian Reid. The current version has been
maintained and enhanced by Unilogic, Ltd. The Scribe format definitions for
proper dissertation format for The University of Texas at Austin were
developed by Richard Cohen.

Dipayvan Gangopadhyay

The University of Texas at Austin
December, 1983

iv

ABSTRACT

A formal system to reason about databases based on the Network
Data Model is presented. The formal system consists of a first order many
sorted assertion language, its proof theory, a simple data manipulation
language (DML) and the proof-rules for its comstructs. Questions about
network databases such as whether a given schema is consistent or whether a
transaction preserves integrity assertions can be formulated and answered in
our formal system by applying theorem proving and program verification
techniques.

To implement these proof-techniques effectively, we idenufy a
decidable subset of our assertion language which consists of universally
quantified Horn formulas. We present a polynomial time algorithm for
deciding whether a given formula in this subset is a theorem or not. A large
class of integrity assertions which arise paturally in Network databases is
encompassed by the decidable subset and thus the consistency of a schema
involving only these integrity assertions can be algorithmically checked.
Moreover, for a wide variety of update transactions which are annotated by
such integrity assertions, each verification condition turns out to be an
implication of two Horn formulas and can therefore be proved or disproved by
our algorithm.

From the database point of view, our work provides a formal
foundation for Network databases and results in capabilities with respect to
schema design and compile-time integrity enforcement which are at present
absent for Network databases. From the point of view of programming
methodology, our work provides an example of the state-of-the-art in program
verification, namely utilizing the specificity of the application domain in
deriving efficient theorem provers. Finally, our methodology of developing the
formal system is based upon algebraic specification technique of abstract data
types. We provide a practical solution to the problem of algebraically
specilying shared mutable objects.

TABLE OF CONTENTS

Acknowledgements
Abstract
Table of Contents

Chapter 1. Introduction

1.1. Overview of the Formal Specifications

1.2. Methods for Solving Network Database Problems
1.3. Implementing Mechanical Proof Procedures

1.4. Decidability Results and Program Verification
1.5. Outline of the Chapters

Chapter 2. Formal Specification Methodology

2.1. Algebraic Specification Technique
2.2. Specifying Shared Mutable Objects
2.2.1. An Example of Mutable Data Abstrzction
2.2.2. Discussion of the method
2.3. An Object-Oriented Language for Database
Programming
2.3.1. Creation and Deletion of Objects
2.3.2. Value-based Search

Chapter 3. A Logic for Network Databases

3.1. Network Structured Values
3.1.1. Axiomatization of Record Values
3.1.2. Axiomatization of OCS-values
1.3. Interpretive Semantics of Existing Languages
Database Assertion Language
2.1. Language L and its proof-theory
2.2. Language L as DDL
.2.3. Expressing Consistency Criteria in L
3

3.
3.2.
3.
3.

3
3.3. Data Manipulation Language and Proof-rules

3.3.1. Data Manipulation Language

vi

<

vi

€00 G e G b

i1

19
23
25

27
28
2%

34

37
38
39
42
45
48
48
50
52
53

.3.2. Proof Rules
3.3.3. Proof Technique

Chapter 4. Application of DDL and DML Logic

4.1. Database Design Scenario

4.2. Detecting Inconsistencies in Schema Definition
4.3. Enforcing the Correctness of Transactions
4.4. Discussion

Chapter 5. A Decidable DDL Logic

5.1. Decidability of Universally Quantified Formulas
5 1 1 Background from Mathematical Logic
1.2. Satisfiability of the Class BSF
5 1.3. Logical Consequence Problem for the Class UF
5.2. A Decision Procedure for Universally Quantified
Function-free Horn Formulas
.2.1. Background
.2.2. The Decision Procedure P
.2.3. Analysis of the Algorithm P
. The Decidable Subset of DDL Logic
3.
.3

o

1. Expressing Integrity Assertions in the class UHF
.2. Solutions to the Schema Design Problems
.3.3. Relating the Results to Dependency Theory
. Verification Decidability of DML Transactions
4.1. On Generating Decidable Verification Conditions
-
-4

°

o
mmm"‘“mmm“mmm

2. The IF Statements Guarding Updates
.3. Transactions with Loops

Chapter 6. Conclusion and Future Research

86.1. Contributions
6.2. Future Research Directions

bibliography

vii

54
56

58

80
82
85
87

8%

71
72
75
78

78
79
&0
81
85
g8
89
9z
83
g5
87
160

105

105
107

108

Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-5:
Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 3-6:
Figure 4-1:
Figure 5-1:
Figure 5-2:

LIST OF FIGURES

Algebraic Specification of Type LIST

An Example of Sharing

Data Type LISTVAL

Axiomatization of TYPESTATE

Semantics of Object-manipulation Statements
Specification of Data Type RECORD
Specification of Data Type OCS

Bachman Diagram of An Example Schema
Example Database Schema

Example of DML Program

Proof-rules of Pascal Statements
Diagramatic Schema for University Database
Algorithm for Deciding Logical Consequence
An Example Schema for a Company DB

i8
24
25
32
33
38
40
42
50
55
58
g3
82
87

Chapter 1

Introduction

Integrity assertions are statements about the relationships among
various entities that exist in the real world. They form a basis for organizing
the semantic knowledge about a database. It is required that the stored data in
a database always satisfly these integrity assertions. Thus, on one hand
database schemas must incorporate the integrity assertions and on the other
hand, database transactions have to preserve the assertions as invariant

properties of the stored data.

An application database design consists of defining the database
schema and the transactions against the schema occurrences. Both fhese
activities have to deal with integrity assertions. In defining the schema, the
designers have to contend with the fact that the assertions are collected from
different user groups and therefore can be contradictory or. contain redundant
information. A good schema design has, among other things, to remove
contradictions and redundancy from the given set of integrity assertions. The
programmers writing the transactions, on the other hand, have to ensure that
the updates performed by their transactions will not violate the integrity
assertions defined in the schema. Three tasks related to integrity assertions

emerge {rom the preceding discussion:

o detect contradictions in the integrity assertions of a given schema,

e optimize 2 schema with respect to the number of integrity
assertions, and

e ensure correctness of transactions with respect to the preservation
of integrity assertionms.

In the database literature, the first two tasks fall under the topic of schema

design and the last one under integrity management.

In relational databases, methods have been developed to aid the
designers with the tasks of schemsa design and integrity management. The
schema design methods are based upon the capability to express integrity

assertions as statements in a formal language and to infer assertions from other

assertions. The ability to infer assertions is crucial in answering many
important questions during relational schema design, such as whether two
schemas are equivalent [Beeri 79a, Fagin 79] or whether a schema embodies all
the intended integrity assertions [Beeri 79b]. For integrity management, the
technique of synthesizing run-time tests [Bernstein 80, Stonebraker 75] has been
devcloped. A run-time test is such that if the test succeeds, the update
guarded by the test will preserve the integrity assertions. Al these advances in
relational database technology have their origin in the elegant mathematical

foundation of relational data model.

In contrast, virtually no design aids are available to the practitioners
of network databases, despite the fact that many commercially available
databases are based on the network data model. We believe that the lack of
clean and mathematically amenable specifications for the network data model
is the main reason behind this state of affairs. In order to solve the problems
of schema design and integrity management for network databases, we

therefore lay the groundwork by providing a formal specification of the

network data model. Based upon these specifications, we then formulate

methods to solve the preceding problems by techniques from logic and program

verification. Finally, we concentrate on the problem of implementing the logic

technigues effectively and efficiently. Thus, we use a methodology which
integrates specification techniques fromn programming languages, program
verification, and logic to solve the problems of databases. Moreover, our work

gives an example of the state of the art in program verification.

In the following several sections, we present a brief overview of the

issues involved and outline our solutions.

1.1 Overview of the Formal Specifications

A data model can be characterized by its structures, its constraints on
the structures and its operations on the occurrences of the structures. A
database schema is defined by providing a description of the structures and
specifying the additional properties of these structures as constraints. A
database tranmsaction uses the schema definition and manipulates the
occurrences of these structures. Thus, one can operationally view the process of
defining schemas and transactions as one of declaring data types and writing
procedures using these data types. In this operational viewpoint, which we take
here, formal specification of a data model consists of defining a type-
declaration language and a procedural language and specifying the formal
semantics of these two languages. We therefore use a methodology consisting
of applying specification techniques from programming languages to construct

the formal specification of network data model.

Our methodology adapts two specification techniques from the

programming language area: namely, the algebraic specification of absiract

data types [Guttag 78] and the axiomatic specification of language semantics

[Hoare 69]. We choose these techniques because we will be interested in
proving properties of these languages. The earlier work Biller et. al. [Biller 76],
in contrast, have used denotational method of specifying semantics with an aim

of providing a precise guide to the implementors of the languages.

Briefly, we use the algebraic and axiomatic techniques as follows.
First, we identify a set of primitive operations on network database structures
and axiomatize them. The axiomatization is accomplished by algebraically
speciflying a few abstract data types. Second, we develop an assertion language

to describe the properties of objects in a network database which are instances

of these abstract data types. The assertion language is a first order predicate
calculus augmented by the functions and axioms of the data types. Third, we
define a data manipulation language (DML). The formal semantics of the
statements in this language are given as proof-rules in the axiomatic style of
Hoare by using sentences of the assertion language as pre- and post conditions.
Thus, the formal specifications for network databases consist of two parts: the

assertion language with its proof-theory and the DML with its proof-rules. Of

course, the definition of the abstract data types underly both components.

1.2 Methods for Solving Network Database Problems

Given the formal specifications, we can prove facts within the proof-
theory of the assertion language. In developing methods to solve the problems
of schema design and integrity maintenance, we formulate them in terms of

proving facts in the assertion language.

To begin with, integrity assertions are expressed as formulas in the
assertion language. To show a given set of integrity assertions in a schema to
be inconsistent, one then must prove that the conjunction of these assertions

implies ®false®.

‘r'o show that a given integrity assertion is redundant in a schema and
therefore can be removed, one must prove that it is logically implied by the
rest of the assertions defined in the schema. If one can determine whether or
pot an arbitrary assertion is redundant, then one can check each of the
assertions successively for redundancy and remove them from the schema. The
result of this process will be a schema which is optimal with respect to the

number of assertions deflined in it.

To determine if an update transaction will preserve an integrity
assertion, we can apply program verification techniques to prove if the

integrity assertion is an invariant across the transaction. The process of

program verification consists of the following three steps. First, one specifies
assertions about what the program is intended to do. Second, the verifier
applies the proof rules of the programming language statements to generate a
finite set of formulas in the assertion language such that the program is
consistent with its specifications if the formulas are valid in an appropriate
model. Such formulas are called verification conditions (VCs). Finally, the
validity of each VC is proved by using the proof-theory of the assertion
language. It is important to note that we can easily incorporate the DML proof
rules in an existing program verifier which can then generate the VCs. The
formal specifications then allow us to use a program verifier as a tool for

integrity maintenance.

By adapting and integrating the existing technologies, we thus obtain
a formal specification of network data model. The specification in turn leads to
the capabilities in solving the problems of schema design and integrity
management to an extent comparable to those provided by the relational
dependency theory. However, we advocate program verification as a compile

time method of integrity management. This is different than the commonly

accepted technique for relational databases, namely that of synthesizing run-
time tests. This solution is appropriate for network databases because the
transactions are commonly written by application programmers, as opposed to

by end-users.

1.3 Implementing Mechanical Proof Procedures

Our methods of solving the problems of schema design and integrity
management rely upon the ability to prove facts in the proof theory of the
assertion language. The process of proving theorems can be implemented by
the existing general purpose resolution based theorem provers, which are in
fact embedded in traditional program verifiers. However, we may not always
need the generality offered by the resolution based theorem provers. Ve

therefore explore the possibility if one can take advantage of the specificity of

our application in building specialized theorem provers. In the following, we
first explain two problems due to the generality of a traditional theorem
prover: namely semi-decidability and inefficiency. We aim at overcoming these

problems by opting for specialized theorem provers.

General purpose theorem provers, being based on first order predicate
calculus, are semi-decidable. That is, they can only prove a theorem in finite
time but are not guaranteed to terminate if the candidate theorem is not a
theorem. The significance of this is that we would not be able to determine il a
transaction is incorrect. The only solution to this problem is to restrict the

assertion language such that the validity of a formula in the restricted assertion

Janguage can be proved or disproved.

The second problem with a general purpose theorem prover is related
to its inefficiency. Traditionally, a theorem prover is built as a complete
deduction engine which, when fed with the candidate theorem along with a set
of axioms defining the intended model, tries to connect the axioms to the
candidate theorem by a chain of inferences. This approach has led to only
modest success at best. It seems that proofs of even simple formulas are too
long and the proof space to be searched is too large for reasonable computing

resources. It is thus appropriate to look for specialized proof procedures which

can either reduce the length of a proof or size of the proof space or both.

There are two approaches to achieving efficiency, both of which put
some restrictions on the applicability of the resulting theorem prover. In the
first approach, one identifies some higher level properties which occur often
among the commonly occurring theorems of interest in an application domain.
These properties are then used as lemmas in order to prove a candidate
theorem, rather than trying to derive it from the scratch. In that case, the
proof of a candidate theorem may be obtained in a few steps if the lemmas are

applicable [Good 82]. In the second approach, instead of directly considering a

~J

problem domain, one can identify some class of logical formulas which makes
the process of finding a derivation step simple. One can then examine
properties of the domain as to whether they are expressible in the identified

class. In our work here, we follow the second approach.

In our effort to take advantage of the specificity of the applications at

hand, we identify a decidable subclass of the assertion language. The subclass

consists of universally quantified Horn formulas. We also present an efficient

decision procedure which can be used to prove the validity of a formula of the

decidable subclass. By restricting ourselves to universally quantified formulas,
we achieve the first goal - namely the decidability. The choice of limiting the
formulas to Horn form is motivated by the second goal - namely the efficiency.
In fact, the decision procedure that we develop here for the Horn clauses, has
cubic time complexity in comparison to the exponential complexity of general

purpose theorem proving.

The restricted class that we identified obviously has less expressive
power than the full version of the assertion language. But a large number of
integrity assertions of our interest in network databases fall under the
restricted class. Also, in many instances of the problems of schema design and
integrity management we encounter candidate theorems which belong to this
restricted class, signifying their validity problem to be efficiently decidable. In
other words, the decision procedure that we develop here can be used to

implement the proposed methods for schema design and integrity management.

Notice that the use of the decision procedure complements the general
purpose resolution based theorem proving. In fact, we are envisaging a
theorem prover which consists of both the specialized decision procedure and
the general purpose proof procedure. A candidate theorem fed to this
composite theorem prover is directed either to the specialized decision

procedure or to the general purpose one. In case the restriction required for the

decidable class do not apply, the general purpose theorem prover would be
used. In sections 5.3 and 5.4 of chapter 5, we argue that the latter situation

occurs infrequently in the context of the network database problems at hand.

1.4 Decidability Results and Program Verification

Apart from the applicability of the decidability results in
implementing the methods of interest in network databases, these results
constitute an important example of the state of the art in program verification.
From the point of view of program verification, there are two aspects of our
work which we wish to emphasize. First, we shall show that a large class of
network database transactions, when annotated by assertions in the decidable
class, are verification decidable. These transactions produce VCs which are all
of the form A=DB, where A and B are formulas in the decidable class of the
assertion language. Therefore, such VCs can be proved or disproved by the
decision procedure. Such standard form of VCs imply that the specialized
theorem prover can use the same proof structure, thereby gaining efficiency.
Moreover, the conditions on the transactions and the assertions under which
such standard VCs are possible are readily recognized by simple inspection.
Thus, if one were building a composite theorem prover which uses different
proof procedure for different classes of theorems, such easy recognition of the
applicability conditions is an important asset. In fact, the current trends in
program verification systems advocate the use of such composite theorem

provers.

Second, we use a reduction technique to identify the decidable class of
our assertion language. The technique may be applicable to other cases. In
studying verification decidability of annotated programs, one endeavors
towards identifying a decidable subtheory of the data types used by the
programs. For example, Suzuki and Jefferson [Suzuki 80] showed the
verification decidability of sorting programs which include the array of integers

as a data type. In our case, we have complex data types and it is not obvious

that we should have a decidable theory involving these data types. Our
reduction technique transforms an assertion language involving these data
types into a function-free quarntificational language. The function-free
quantificational language has been extensively studied by the logicians and
many decidable subsets of it have been identified [Dreben 79]. The recognition
of a decidable subset of the original assertion language becomes simple after
transforming it into the function-free form. We believe this technique of
reducing assertion languages to function-free quantificational calculus is
attractive when a decidable subset of a given assertion language is to be

identified.

1.5 Outline of the Chapters

To summarize the issues to be discussed, our goal is to construct a
formal specification for network databases so that we can solve the schema
design and integrity management problems. Chapters 2 and 3 are devoted to
the development of the specifications. Chapters 4 and 5 will focus on the
application of the specifications to the database problems. In chapter 5 we shall

concentrate on developing the capability to infer formulas from other formulas

in an algorithmic way.

The organization of the rest of this dissertation is as follows. In
chapter 2, we shall present the formal specification methodology. Here we shall
review the algebraic technique for specifying abstract data types and the
axiomatic technique for specifying the semantics of programming languages.
We shall apply these techniques to formally specify an object oriented language
for database programming, which permits sharing of components among several

composite objects.

In chapter 3, we apply the specification methodology to build the
formal specifications for the Network data model. Here we extend the object

oriented programming language from the previous chapter with the data types

10

specific to the network databases. The two components of the formal
specifications, namely the data deflinition language logic and data manipulation

language logic, are precisely defined here.

In chapter 4, we shall introduce the problems of schema design and
monitoring integrity assertions for network databases and discuss how the DDL
logic and the DML logic developed in chapter 3 can be applied to the solutions

to these problems.

In chapter 5, we concentrate on achieving decidability. Here we shall
identify the decidable subset of the assertion language of DDL logic .nd show
that most of the important integrity assertions of interest are expressible in this
subset. We shall then present the algorithm which can decide in finite time
whether or not a formula in this subset is logically implied by a set of formulas
from the subset. This algorithm is then used to provide solutions to the schema
design problems. Also, we shall identify the class of transactions which can be
verified effectively, without the problems associated with general purpose

verifiers.

In chapter 6, we shall list the contributions of this dissertation and

indicate directions for future research.

Chapter 2

Formal Specification Methodology

The main theme of this dissertation is the construction of an
axiomatic basis for database programming languages based upon the Network
Data Model. The construction requires a specification of the data objects
encountered in Network Databases, a specification of the operations upon these
objects and a specification of the semantics of a programming language based
on these operations which manipulates these objects. This chapter introduces
and illustrates specification techniques for data abstraction and language
semantics and the issues in integrating these techniques into a verification
methodology for the Network data manipulation language (DML) programs.
The particular issue addressed in integrating the techniques is how to
characterize precisely the notion of an data object. We shall develop a skeleton
object-oriented language for database programming and its formal semantics,

to illustrate the use of the specification techniques.

Various methods for specifying the semantics of a programming
language have been proposed in the literature. As noted in [Hoare 74], these
proposals follow two main directions: the constructive approach and the
axiomatic approach. In the constructive approach, an abstract machine or an
interpreter is defined and how the machine responds to the programs expressed
in a core subset of the programming language is described. The semantics of
the full version of the language is given by providing a translation of the
language constructs to the those of the core subset. Examples of this approach
are the semantics of LISP and Vienna Definition Language. In the axiomatic

approach, a language is defined by making statements about the properties of

11

12

the programs, from which the user is able to deduce whether a program does
what the user expects it to do. Examples of the axiomatic approach are Floyd-
Hoare inductive assertion method [Hoare 69] and Dynamic Logic [Harrel 79].
While the constructive approach usually provides a good guide to the
implemention of the language, the axiomatic approach enjoys the advantage of
resulting in compact and representation-independent specifications. More
importantly, the axiomatic approach gives a deductive theory, tailor-made for

proving the correctness of programs written in the programming language.

As our major aim is to be able to prove the correctness of database

programs, it is only appropriate that we follow the axiomatic method for

defining the semantics of programming languages. Moreover, being concerned
only with the input/output properties of programs, as opposed to their
equivalence properties, we will adopt Hoare's deductive theory for a fragment

of Pascal [Hoare 69] as our starting point.

As Hoare has shown in that pioneering paper, the deductive theory of
Pascal programs dealing with integer data is based upon an axiomatization of
the primitive arithmetic operations on integers. The programming language
uses these primitive operations in forming the expressions of the language
either to assign new values to the variables or to control the sequence of
execution in branching or looping statements. The same primitive operations
are used to form the terms of an assertion language in which one can express
the properties of the integer variables at any state of computation. Finally, the
axiomatization of these primitive operations form a part of the proof-theory in
which the verification conditions are proved. Thus, the axiomatization of the
primitive operations on integers plays an important role in the deductive

theory of programs dealing with integers.

In a similar vein, our first step towards a deductive theory of Network'

Data Manipulation Language (DML) programs, which deal with data stored in

13

records and owner-coupled sets, will consist of identifying and axiomatizing the
primitive operations on these structured objects. We can achieve such

axiomatization via the algebraic specification of abstract data tvpes, which

characterize the behavior of the database objects under the primitive
operations. With the definitions of the appropriate abstract data types, we can
then augment our base programming language (fragment of Pascal with
assignment, sequencing, branching and looping) and its deductive theory as
follows:
e to obtain a DML by composing the primitive operations of the data
types to form the database expressions and then using these
expressions to assign mew values to database objects (database

updates) or to assign them to non-database variables representing
data retrievals.

e to obtain a database assertion language f{or expressing the
properties of database objects either in a particular state of a
database or in all admissible states of a database.

e to obtain a proof-theory for databases by using the axioms of the
data types.
The net result of these additions is then a deductive theory of programs in
which database objects are manipulated. In fact, we shall use this stratecy of

constructing deductive theories of programs several times in this dissertation:
sy H

the differences among these theories will be only in the specific abstract data

types used.

The rest of this chapter is organized as follows. In section 2.1, we
review the relevant concepts of the algebraic specification technique [Guttag
78] in the context of an example data type and illustrate how the defined
primitive operations and their axiomatization are traditionally incorporated

into the logic of our base programming language.

In section 2.2, we examine the notion of an object as used in the

rogramming languages. There we argue that the programmers’ idea of an
prog g g g

i4

object is not synonymous with the notion of an instance of a data type as used
by the algebraic specification technique. The facts that a composite database
object would merely refer to the storage of its component objects, rather than
copying their values, and that the components can be updated, lead us to the

problem of specifying shared mutable objects. In the literature of data

abstraction [Flon 79, Liskov 77|, the algebraic specification technique has been
criticized for its failure to resolve this problem. We propose a practical solution
to this problem by using a combination of axiomatic techniques and algebraic

techniques in specifying the semantics of data abstractions.

In section 2.3, we build upon the concepts developed in the section
2.2 to propose a skeleton programming language supporting object creation
{(database insertion}), update and selection of objects based on their values. The
semantics of this language is developed by first identifying and axiomatizing
some primitive operations in the form of an abstract data type and then giving

the semantics of the language statements in the axiomatic style of Hoare.

2.1 Algebraic Specification Technique

The main idea behind a data abstraction as used in the programming
methodology is that the concept of a data structure can be defined by
identifying a set of primitive operations on the data structure and then by
defining the behavior of the data structure as observable under these

operations. This behavioral abstraction then defines the commonality among a

class of entities which are indistinguishable under the primitive operations.
Consider a simple example where we want to define the concept of a LIST of
integers. First we would consider what we want to do with such lists viewed as
entities. Perhaps we want to create an empty list (NIL), to add an integer
element to the list (INSERT), to delete the {irst element of the list (DELETE},
to test whether an integer appears in the list (ISELEMENT), to extract the
first integer element from a list (HEAD) or to compute the number of elements
of a list (LENGTH). A behavioral abstraction of such list can now be given by

defining the precise meanings of these primitive operations.

id

There are two possible approaches: the abstract model approach and
the algebraic approach. In the abstract model approach, a sequence may be
taken as an abstract representation of a list and the meaning of each operation
on a list is expressed in terms of its effect on the sequence. The algebraic
approach defines, instead, the properties of the operations by stating their
relationships to one another. For example, we would state that the first
element of a list just after apn insertion is the element inserted. The advantages
of the algebraic specification are the same as those enjoyed by the axiomatic
approaches in general, namely ease of using them in proving properties of the
entities under consideration, and a compact and representation-free definition.
An algebralc specification of the abstract data type LIST is shown in figure 2-1.
In the following, we are going to show how these specifications provide a

behavioral abstraction of lists,

Before discussing the specifications, let us introduce some of the
terminology of the algebraic specification technique to be used later throughout
this section. In this technique, a data type is viewed as a heterogeneous
algebra which is a pair <V, F>, V being a set of phyla and F being 2 sct of
finitary mappings. Each phylum is a set of all possible values of a given type.
In particular, a distinguished phylum TOI stands for the set of possible values
of the type of interest. FEach function in ¥ is a finitary mapping whose
domains and range are in V. Specifically, some of the functions, called the
constructors of the type being defined, results in a2 new value in TOI by acting
on arguments from TOI and/ or from other phyla. There may be 2 zero-ary

function among the constructors which is called a primitive constructor. The

rest of the functions, called the observers of the type being defined, take at
least one argument from TOI and results in a value in some phylum other than
TOIL As only the properties of the extraneous phyla are assumed to be known,
the observer functions provide the means of expressing the properties of the

entities in TOI in terms of the known ones.

type LIST
operations

NIL: — LIST

INSERT: LIST X INTEGER — LIST
DELETE: LIST — LIST

ISELEMENT: LIST X INTEGER — BOOLEAN
HEAD: LIST — INTEGER

LENGTH: LIST — INTEGER

axioms

L1
L2

L3.
L4.

Lb.
L8.

L7.
L8.

. ISELEMENT(NIL,1) = false
. ISELEMENT (INSERT(!,1,), 1)

= if EQ(%I,IQ)
then btrue
else ISELEME%T(%sEQ)

DELETE(NIL) = NIL
DELETE(INSERT(1,1)) = |

HEAD(NIL) = undefined
HEAD (INSERT(T,1)) = I

LENGTH(NIL) = 0
LENGTH(INSERT(1,1)) = LENGTH(1) + 1

Figure 2-1: Algebraic Specification of Type LIST

We now return to the example of LIST and make several observations

in the light of the terminology defined above.

1. The specification consists of two parts: the syntax part and the
axioms part. The syntax part defines the names, the domains and
the ranges of the functions which are the primitive operations on
lists. The axioms part defines the semantics of these functions
implicitly by stating their relationships to one another.

2. Noting the syntax of the functions, the set of constructor functions

is {NIL, INSERT, DELETE}. Among these, NIL is a primitive
constructor. The reason they are called the constructors is that any

instance of a list can be inductively constructed from an empty list
(result of NIL) by an application of a sequence of INSERTSs. For
example, the list [3 5 2| can be constructed as a result of the
expression

INSERT(INSERT(INSERT({NIL,2},5},3)
As such, any list can canonically represented by such expressions.

3. The set of observer functions is {ISELEMENT, HEAD, LENGTH}.
They are called observers because the property of a list can be
observed by their applications on a list. For example, the fact that
the list canonically represented as INSERT(NIL,2) has only one

element, can be observed by applying the LENGTH function to it
as follows:

LENGTH(INSERT(NIL,2)) = LENGTH(NIL)+1 = 1

From this example, we see that we can talk about the values of a data
type without ever mentioning its structure. Any value is equivalent to an
expression involving only the constructor functions. The axioms of the
specification are written in such a way that the effect of applying an observer
function on such canonical expressions can be derived by reducing the
expression to values of known types. Thus, the algebraic specifications provide

an elegant way of abstracting the behavior of data entities.

By the way of illustration, we shall now consider how the specification
of the data type LIST helps in obtaining a deductive theory of programs
dealing with lists of integers. First of all, the data type specification introduces
a set of function symbols which can composed to form the expressions of the
language. The value of an expression can be then be assigned to variables.
For example, we can update the value of a list variable 1 by adding a2 new
element n as follows: L=INSERT{L,n).

Second, let us consider how the semantics of such an assignment
statement are given. The traditional interpretive model for Hoare's logic of

programs [HOAR] has a notion of state which consists of a valuation

18

V:{variables of language}—{values}.
The value of an expression e with free variables x1,...,xn is given as:
Wej= e[V(x1}/x1,..., ¥(xn}/xn]
The notation Ply/x]| denotes the expression obtained from P by substituting y
for all free occurrences of a variable x in P. An assignment statement is
thought of as one changing states. Specifically, the assignment statement x:=e
results in a new state with a new valuation V' which agrees with the old
valuation except at the point x and V'(x)=="V(e). By definition of We), it follows
that only values of the variables are copied around by the assignment

statement.

We can assert properties of variables in particular state by a formula
in an assertion language, which may be quantified first order calculus with the
new terms formed by composition of functions defined on the data types. For
example, in a particular state if 5 is the first element of list 1, we can express
that in this assertion language as: HEAD(l})==5. Alternatively, we can talk
about general properties of lists as well. For example, the fact that the lists
become shorter in length after deletion of elements can be stated as:

(V1) (14NIL = (LENGTH(DELETE(1)) < LENGTH(L)))
The formula from the assertion language can be used to state the partial

correctness semantics of language statements. For example, the semantics of

the assignment statement is given by the following Hoare-formula:
Ple/x] {x:=e} P,
which states that if P is to be true after the assignment, then Ple/x] must be

rue before the statement.

Finally, for proving a program A with respect to the pre- and post-
conditions P and Q respectively, one has to prove the Hoare-formula P{A}Q.
Using the partial correctness formula (called the proof-rules), the proofl is
reduced to implicational formulas of the form P=Q which are called

verification conditions(VCs). A VC is a formula in the assertion language,

19

involving the functions of the data types only. The axioms of the data types
are used to establish the truth of the VCs.

2.2 Specifying Shared Mutable Objects

As a first step towards the semantics of an object manipulation
language, we must make the notion of an object precise. We view an object as
a piece of storage which has unique identity and holds a current value at any

instant of time. It is also common to form composite objects out of simpler

objects. Each composite object refers to the storage of its components and a
component may be shared among several composite objects. In the jargon of

programming languages, such components are called shared mutable objects

[Liskov 77). A linked list referring to the atoms as found in the
implementation of the language LISP, is a an example of such composite
objects. Any update on a shared mutable object has side-effects on all the
composite objects encompassing it. The semantics of an object-manipulation
language, like the one given in the mnext section, must therefore include a
precise characterization of the update operations on shared mutable objects.

This section presents such a precise characterization.

Viewing an object as a piece of storage is very similar to the way the
variables in a programming language are treated. Thus, it is tempting to
express an update operation on an object as an assignment statement of the
programming language, where the variable denotes the object and the
expression denotes the new value of the object as a resuit of the update. But in
the usual interpretation, the assignnient statement affects only a single variable
and cannot express unbounded side-effects on other composite objects, as is
desired in case the variable happens to denote a shared component object. If
we want to stick to the side-effect-free interpretation of the assignment
statement, we need to be able to limit the effect of updating a shared object

only to itself.

20

We now propose an approach which captures the effect of updating
shared mutable objects within the side-effect-free interpretation of the
assignment statement. The overall idea is to treat the value of a composite
object being composed of the identities of its components. An update
operation on a component object which leaves the identity unaffected, need not
then change the values of the composite objects. This idea is materialized by

introducing the notion of gbject-variable in the programming language and

considering in turn the mechanisms to update an object and to form a

composite object through these object-variables.

The notion of object-variables is similar to the Pascal pointer
variables. In providing the semantics of Pascal pointers, the authors of
[Luckham 79] have used the notion of a reference class, which is considered to
be unbounded set of objects. For each base type, there is a reference class and
a pointer of a base type points to an element of the associated reference class.
The semantics of an update through a pointer variable is viewed as changing
the reference class. Thus, even if two pointers refer to the same object and the
object is updated, the effect of the update is visible to the other pointer also,
because it refers to the same reference class. Thus the notion of reference class
solves the problem of aliasing. We shall adopt similar mechanism for dealing

with object-variables.

An object-variable denotes the identity of an object. Its state S is

given by a pair <A,V>, where the variable assignment A is a one-one partial

map
A: {object-variables} — {object-identities}
and for a given type T of objects, the type state Vis a total map
V: {object-identities of type T}—{values of type T}.
The current-value of an object denoted by an object-variable x is then Y A(x}},
while its identity is A(x). The mechanism for updating the object denoted by x

with a new value e is the update statement x<e. The interpretation of this

21

update statement is that if initial state is S=< A, V>, we get a new state
S'=< 4,V > where

=4, and
V' (y) = V(y) it yFA (x)
=e 1T y=4"(x)

Thus, the update through an object-variable affects the type-state, but only for
the object denoted by the variable and the new type-state reflects the new

value e of this object.

The mechanism for forming a cemposité object denoted by variable y
out of the component objects denoted by the variables xy,..,x is again a
update statement of the form yé&=e(x,...,x). The interpretation is that in the
new state S'=< A", V' >, we have

A’ = A, and
V' (z) = e(A(xy)s..., A(x)) 1T z=4"(y)
= V(z) i1f z524" (y)

That is, only the variable assignment component is used for evaluating the
object-variables appearing in an expression. Thus, the new value of y is

composed of the identities of the component objects denoted by Xif...;xﬁ.

In the preceding interpretive model of object manipulation, we
observe that the type-state provides the essential association of object identities
to their current values. Updating an object of 2 given type changes the
respective type-state and the value of an object can be retrieved as its image
under the type-state. Thus, we can characterize the properties of type-states by
identifying the following two functions as primitive operations:
CHANGE(V,ie):

changes the type-state V by ascociating a new value e with the object
identity 1.

VAL(Vi):
retrieves the value associated with an object identity in a type-state V.

[
]

An axiomatization of type-states can be expressed by the following
relation between CHANGE and VAL:

VAL (CHANGE(V, 1y,e),1,))
=e 1f 1=,
= VAL(V,1,) otherwise.

We can now state the semantics of updating an object, expressed as

an update x&e, in the axiomatic style of Hoare as follows:
{Axiom of object update)
P[CHANGE(V,x,e)/ V] {x&=e} P

The above treatment of providing the precise semantics of updating
shared mutable object has a wider applicability in the context of data
abstraction methodology in general. There the algebraic specification
technique has been criticized [Flon 79, Liskov 77] because the constructor
functions cannot capture the effect of in-place update operations on objects;
they merely produce a new value rather than modifying an already existing
object. Philosophically, if a data type specification has to provide a behavioral
abstraction of a class of objects, and as the behavior of composite objects is
affected by the updates on the component objects, the behavioral abstraction
of composite objects has to reflect such effects. The algebraic specification
technique by itself cannot provide such behavioral abstractions. Our treatment
of the semantics of updating shared mutable objects lends itselfl as a new and
practical method for specifying the comstructor operations of a data
abstraction. In the following section 2.2.1, we first illustrate the method via an
example and then in section 2.2.2, we summarize and contrast the method with

previously known ones.

2.2.1 An Example of Mutable Data Abstraction

Suppose we want to specily a behavioral abstraction of lists of atoms
as are found in typical implementation of LISP. In particular, the situation that
we wish to capture, is shown in figure 2-2. There, we have a list object
denoted by a variable | and an atom denoted by the variable n. In the initial
state, the first element of the list is the atom denoted by n and the value of the
atom is 5. After we update the value of this component atom by incrementing
it, we want to reach a final state where the updated value of the atom as

retrieved by accessing the first element of the list is the integer 6.

To specify abstractly the values of list, we first define algebraically a
data type LISTVAL, shown in figure 2-3. The meanings of the functions are
very similar to those used in the example in section 2.1 except for use of the
atom-identities (ATOMID) in composing the list-values. This is in accordance
with our notion that the value of a composite object consists of identities of its
component, The abstraction of the atom-values, on the other hand, is simply
given by the data type INTEGER whose specification is assumed here to be
known. Specifically, the axiomatization of a constructor function SUCC to

increment an integer is assumed.

Now we turn our attention to adding the state-transition semantics of
constructor operations which are not captured in the algebraic specifications of
data types LISTVAL and INTEGER. FFor the constructor operation on atoms
corresponding to the function SUCC, we shall introduce a procedure S‘UCCp in
the programming language and specify its semantics by translating it to our
update statement through object-variables as follows:

SUCCp(ﬁ}:: n ¢= SUCC({VAL(D#ATOM,n))

The symbol D#ATOM denotes the current tvpe-state for object type ATOM
and the function VAL is as defined previously to retrieve the current value of
object denoted by a variable. The above definition of the procedure SU*GCP

captures our intention that it increments the value of an atom denoted by n

24

without affecting the object identity, under our interpretation of the update
statement. Similarly, the state-transition semantics of the constructor operation
INSERT on lists is expressed through the following definition of a procedure
INSERT,: |

ENSERTP(I ,n) :: | & INSERT(VAL(D#LIST,1),n)

The symbol D#LIST denotes the current type-state for the object type LIST.

&—.—} B c—— © ¢ ®
4
n |
—> 5 INITIAL STATE
4
—_— S Em—— —_-———. .,
s 5 FINAL STATE

Figure 2-2: An Lxample of Sharing

Coming back to the situation shown in figure 2-2, we can now write a
program A to increment the atom n as follows:
A SUCCp{ﬂ)

The initial and the desired final conditions of this one-line program, as shown

in figure 2-2, are asserted by the formulas P and Q as follows:

[
[3]

type LISTVAL

operations
NIL: — LISTVAL
INSERT: LIST X ATOMID — LISTVAL
HEAD: LIST — ATOMID

axioms

L1. HEAD(NIL) = undefined

L2. HEAD(INSERT(l,n)) = n

Figure 2-3: Data Type LISTVAL

P:: HEAD(VAL(D#LIST,1))=n A VAL(D¥ATOM,n)=5
and, Q:: VAL(D#ATOM, HEAD(VAL(D#LIST,1)))=6

We now prove that indeed the program A achieves the desired effect ie., we
prove the formula P{A}Q. By using the definition of S’UCCP and the axiom of
object update, we get:

Q’:: VAL(CHANGE (D#ATOM, n,SUCC (VAL (D#ATOM,n))),
HEAD (VAL (D¥LIST, 1)))=8

So, by the rule of consequence, we are left to prove P=Q’. By assuming the

antecedent P, we get:
Q’«< VAL({CHANGE(D#ATOM,n,SUCC(5)),n)) = 6
& SUCC(5) = 6 by the axiomatization of type-state
& true provable in the assumed theory of INTEGER

Thus, the specifications of the data types INTEGER and LISTVAL,
together with the axiomatization of type-states and the axiom of object update

are adequate for proving the effect of updating a shared mutable object.

2.2.2 Discussion of the method

We summarize here the method of specifying data abstractions
involving shared mutable objects, as illustrated in the previous section 2.2.1.
We then contrast this method to that of Berzins [Berzins 79], which is the only

other known attempt to specify such data abstractions.

26

The first step of our method is to specify an axiomatization of the
primitive operations purely in terms of the functional abstractions provided by
the algebraic specification technique. A data type thus specified, is intended to
provide a behavioral abstraction of only the values of the objects of the data
type. The next step of the method specifies the state-transition semantics
desired for the constructor operations of the mutable data abstraction. This is
achieved separately by introducing an equivalent procedure-call statement, one
for each constructor operation, in the programming language; the semantics for
the procedure-call statement is given by our axiom of object update. We are,
however, assuming the availability of an axiomatization of type-state functions
CHANGE and VAL. But such axiomatization is easily definable in the realm of
algebraic specification technique. Thus, in our method, the specification of a
mutable data abstraction is based upon a combination of algebraic specification

techniques and Hoare’s axiomatic techniques.

The advantage of our specification method is that it is a practical
approach as far as proving the correctness of usage of data abstraction is
concerned. We can recycle the verification techriques based on Hoare’s logic of
programs and the theorem provers based on the equational reasoning of
algebraic specification technique to reasoning about shared mutable objects.
We need not develop a new proof-theory. In contrast, the earlier work of
Berzins, though using the same concepts of type-states, incorporated the state-
transition semantics directly into the specification of the data tvpes. His
specification technique required an implicit parameter, representing a union of
all type states, to every operation on the data types. This requiremeut leads to
undue difficulties in the verification of the usage of the data types in programs
because one has to invent extra symbols to denote the implicit parameter, one
for each statement of the program under consideration. In fact, his work
concentrated on verifying the correctness of implementation of data types,

rather than on the verification of their usage in programs.

(]
o

Our treatment of object-variables uses the same notions as used in in
verification of Pascal programs with pointer variables in [Luckham 79]. The
concept of type-state is essentially the same as their reference-class. However,
our motivation to define shared mutable objects is different from theirs and as

such solves an important problem in data abstraction methodology.

2.3 An Object-Oriented Language for Database
Programming

We view a database as a collection of typed objects. The object types
defined in the database schema characterize the domains of values that these
objects can store. A data manipulation language operates on these objects. The
common operations in data manipulation language are creating and deleting
objects, updating and retrieving values from objects and finding objects
according to some value-based search criteria. In this section, we shall develop
a skeleton programming language (and its semantics) permitting such object-
manipulation operations. In the light of the specification method introduced in
the previous section, we shall here assume that the data types characterizing
the values of objects are defined elsewhere and hence concentrate on only the
object manipulation operations.

In the previous section, we have considered updating and retrieving
values from existing objects. We defined the notion of type-states and identified
two functions CHANGE and VAL on type-states as the basis of expressing the
semantics of update and value-retrieval operations on objects which are
denoted by object-variables. In this section, we shall identify some basic
operations for creating, deleting and performing value-based search. As we
shall see, these basic operations can be defined as functions on type-states and
these functions are then used to define the semantics of the statements in the
programming language. For the rest of this section, we shall consider in turn
the processes of creation and deletion in section 2.3.1 and of value-based search
in section 2.3.2. The complete specification will be collected in the figures
2-4 and 2-5.

28

2.3.1 Creation and Deletion of Objects

When an object of a given type is created, it is given a unique identity
which is different from the identities of all the previously created objects of the
same type. The value of a fresh object is defined to be some distinguished null
value | which is assumed to be in the domain of values of each type.

Moreover, an object-variable is bound to this fresh object.

If we introduce the procedure-call CREATE(T,t) in the programming
language, to create an object of type T and to bind it to the object-variable ¢,
the statement is interpreted precisely as follows: Let S=<A, V> and
S'=<« 4", V> be the initial and final states. Then,

A (x)=A(x) 1T x££t

=1 17 x=t, where 1 Is a ldentity not used before.
and,
V' (2)=V(z) Ui, 1>}

In other words, object-creation changes the variable assignment at the point t,
but also extends the type-state by adding a new pair associating the fresh
identity i with the special null value |. We also need to make sure the

identity i was never used before.

To extend a type-state and to test whether an identity is already in
the domain of a type-state, we define the following two functions:

EXTEND(V,i}:
adds a pair <i, | > to the type-state V.

FRESH({V,i)::
is true if the identity i is never used before and is thus not included in the
domain of type-state V.

The axiomatization of the function FRESH and EXTEND is included in figure
9-4 where a complete specification of type-states is given an algebraically

specified data type TYPESTATE which is parameterized by object types.

Now, we can state axiomatic semantics of the statement
CREATE(T,t) as follows:

(FRESH(V,1)=P[V’/V] [1/t]) {CREATE(T,t)} P
where V' <EXTEND(V,1) and i does not appear in P.

Intuitively, the axiom states that in order for P(V,t} to be true after
creation, if the object identity i was never used before, then P{V'1} must be

irue before creation.

Considering the delete operation, let DELETE(T,t) be the language
statement to delete an object denoted by variable t of type T. We assume that
this statement deletes only one object, as opposed to any propagation of
deletion. In particular, deleting a composite object still leaves its component
objects unaffected. In order to avoid reusing the identity of a deleted object,
the deletion operation does not destroy the object identity. It merely updates
the value of the object to a special error-value undefined. Like the value | |
the value undeflined is also included in the domains of all object values. As
stated in the background section 2.1, there is an implicit axiomn which states
any function operating on this error value will also result in the error-value.
This implicit axiom will therefore make any use of the deleted object illegal.
As we have already got the mechanism for updating an object, the semantics of
DELETE(T,t) is given by the following definition:

DELETE(T,t) & tundefined
This results in the proof-rule:

P[CHANGE(V,t,undefined)/V] {DELETE(T,t)} P

2.3.2 Value-based Search
The value-based search operation on database objects specifies a

property Q as a boolean expression called a gualification expression. More

precisely, a qualification expression is a formula in the assertion language with
exactly one free variable. The result of a value-based search is a set of object-
identities such that each identity when substituted for the free variable in the

qualification expression, makes the expression true. Necessarily, the terms in a

30

qualification expression involve the observer functions of the data types used to
specify the object-values. We shall therefore defer the detailed examples of
qualification expression until we arrive at a complete specification of a Network
DML in chapter 3.

Again, we observe that the values of objects of a given type are
available as images of their identities under associated type-state. Thus, we
can define a basic function FIND(V,Q(x)} on a type-state V to select a set R of
object identities where R={i|Q[i/x]| is true}.

The axiomatization of this FIND function deserves some attention.
First of all, the special value | never satisfies a qualification expression and
therefore, the freshly created object cannot be selected by FIND. This leads us
to the following relation:
FIND(EXTEWD(V,1),Q(x)) = FIND(V,Q(x))
Second, if we update an object with 2 new value and the new value satisfies the
qualification expression, then the identity of this object should be included in

the selected set of identities. This is captured by the following relation:
FIND(CHANGE(V,1,e),Q(x))
= if (1)
then {1}JFIND(V,Q(x))
else FIND(V,Q(x))

The result of FIND can be assigned to a set-valued variable s to get a
retrieval statement as s:=FIND(V,Q(x)). Set-valued variables are treated as
normal variables, as opposed to object-variables. Therefore, the usual axiom of

assignment can be used to specify the semantics of a retrieval statement.

To summarize, we have introduced the following functions on type-
states: EXTEND, CHANGE, VAL, FRESH, and FIND. They serve as a basis
for defining the semantics of creation, update, deletion and value-based search
statements in our object-oriented language. The functions on type-states are
axiomatized by a parameterized abstract data type TYPESTATE[T], where an

31

object-type can be given as parameter. For the sake of completeness, a
primitive constructor INIT is introduced, with the intention that it produces an
empty type-state in which no object-identity is ever used. The complete
specification of TYPESTATEI[T] is shown in figure 2-4. The syntax and
semnantics of the language are also collected in figure 2-5 for easy reference. In
the next chapter, we shall use this language as a starting point towards a DML

for Network Databases.

type TYPESTATE [T] (* instances written as D#T %)
requires
T:{object-types defined in database schema}
ID: indexed set of object identities,
index being object-type
0BJ: indexed set of object-value,
index being object-type
LISTID: {set of object-identities}
QUAL: {qualification expressions}
operatlions
INIT: T —TYPESTATE
EXTEND: TYPESTATE X ID —TYPESTATE
CHANGE: TYPESTATE X ID X —TYPESTATE
VAL: TYPESTATE X ID —0BJ
FIND: TYPESTATE X QUAL —LISTID
FRESH: TYPESTATE X ID —BOOLEAN
axloms
dil. VAL(INIT(T),1) = undeflined
d2. VAL(EXTEND(D#T,1,),1,)

= if 1;=1,
then |
else VAL(D#T,1,)
d3. VAL{CHANGE(D#T,1,,0},1,)
= 17 1=l
then o
else VAL(D#T,1,)

d4. FIND(INIT(T),Q) = {3
d5. FIND(EXTEND(D#T,1),Q) = FIND(D%T,Q)
d6. FIND(CHANGE(D#T,1,0),Q)
= 17 Q(1)
then {1}UFIND(D#T,Q)
else FIND(D#T,Q)

d7. FRESH(INIT(T),1) = true
d8. FRESH(EXTEND(D#T,1,),1,)

=if Hi=1,
then false
else FRESH(D#T,1,)
dg. FRESH(CHANGE(D#T,EI,O),iz}) = FRESH{D#T,?Q)

d10. (* axiom of equallity %)
D#T=D#T’ 171 ?V%)((FRESH(@#T,§)=FRESH(D#T’,éj
A (VAL(D¥#T, 1)=VAL(D#T*,1)))

Figure 2-4: Axiomatization of TYPESTATE

(axiom of object creation)
(FRESH(V,1)=P[V*/V][1/t]) {CREATE(T,t)} P
where V’&EXTEND(V,1) and i does not appear in P.

(axiom of object update)
P[CHANGE(V,x,e) /x] {xe=e} P

(axiom of object deletion)
P[CHANGE(V,t,undefined)/t] {DELETE(T,t)} P

Figure 2-5: Semantics of Object-manipulation Statements

33

Chapter 3

A Logic for Network Databases

We stated in the introductory chapter that verifving transactions
satisfy integrity constraints is an important problem. In this chapter, we
provide a logic for Network Databases which permits us to establish, among
other other properties, that a transaction does or does not preserve the
integrity constraints. There are two essential components of this logic
corresponding to the two languages used for database programming: the data
definition language (DDL) and the data manipulation language (DML). The
DDL logic provides the notations, for describing Network database structures
and for expressing integrity constraints, and a proof-theory which can be uscd
to prove properties of stored data in a Network database. The DML logic
provides a Network DML to write the transactions, a way of expressing their
correctness properties as annotations to the transactions and a proof-theory
which, in conjunction with the DDL logic, permits us to prove the correctness
of transactions. Here we shall not only define the formal systems in complete

detail, but also illustrate their use through examples.

The construction of DDL and DML logies utilizes the specification
techniques and follows the methodology, introduced in the previous chapter.
From the previous chapter, we take the object-manipulation language and its
axiomatic basis as our starting point here and propose several relinements to
them in order to get the DDL and DML logics. I'irst of all, we identify a set of
primitive functions on Network-structured values - values of records and
owner-coupled sets {(OCS), and axiomatize them as two algebraically specified

abstract data types RECORD and OCS. Second, we include these data type

34

35

specifications, together with the specification of the data type TYPESTATE,
into a many-sorted first order calculus to obtain an assertion language and its
proof-theory. The assertion language and its proof-theory serves a DDL logic.
Third, we extend the object-manipulation language of previous chapter to
obtain a Network DML. The particular extensions are for the object-creation
statements where the created objects are given initial values corresponding to
either empty-record or empty-OCS (OCS with only its owner record). Specific
statements for updating Network objects, such as CONNECT and
DISCONNECT, are introduced as variants of object-update statement, where
the updated value is an expression involving the constructor functions defined
on the data types RECORD and OCS. Finally, the proof-rules for the Network
DML statements are given using the specific forms of the axiom of object-
update and therefore, uses the functions of the new data types as well. The
pre- and post-conditions of these proof-rules are formulas in the assertion
language. Thus, the DML, its proof-rules and tie DDL logic together {form the
DML logic.

Relatively little work has been done on DML logics [{Casanova
&0, Gardarin 79]. Though these efforts were similar to ours in spirit, they
considered only relational data model. Our work deals with the Network data
model which has certain important differences {rom the relational data model.
First, in the Network model, in absence of integrity constraints to the contrary,
several records of the same type can coexist with the same data values. In
order to distinguish between records with duplicate contents, we need to use a

different concept of equality, other than the usual value-equality. In our case,

the equality is based on object-identities, rather than their values. Second,
records can participate in OCS relationships, which may be independent of
data values of these records. In other words, the membership in an OCS itself
is information bearing over and above the value-based relationships. Thus,
selection criteria for objects has to include OCS membership. We introduce a

binary-valued function OWNS for the data type OCS to test the membership.

This function can be used in the qualification expressions for finding objects.
Third, the members of an OCS are ordered. In our case, the ordering is based
ou values of the member records unlike FIRST and LAST insertion clauses of

CODASYL DDL. In any case, the ordering leads to pavigational access ie.,

record-at-a-time processing, in contrast with the set-retrieval of relational
databases. We provide primitives functions, POS and GET, on the data type
OCS for navigation within an OCS. As we shall see, our formulation of
navigational primitives avoids the notion of implicit *currency® pointers and

leads to simpler proof-rules for individual DML statements.

Apart from serving as a basis for our DDL and DML logics, the
axiomatized primitive functions on the data types RECORD and OCS, provide
a clean and simple abstraction of the Network Data Model and its navigational
operations. As such, they can be used to define interpretive semantics of
existing navigational languages based on Network model, such as UDL [Date
80] and CODASYL DML [Codasyl 71]. Though our abstraction has left out
some of the implementation-oriented features of CODASYL DML such as
AREA constructs etc., any exercise in providing the formal semantics of
existing languages may reveal inconsistencies which go undetected in their
natural-language based descriptions. Also, precise semantics of the existing
languages will make it possible to verify the correctness of the programs

written in them.

From the point of view of database language design, our DML
illustrates some of the important concepts, although it is rudimentary and lacks
in many engineering aspects. First, it illustrates direct embedding of Network
data types in the control structures of Pascal, as i1s advocated by recent
database language proposals [Date 80, Wasserman 79, Schmidt 77]. Rather
than interfacing the programming language to the database through [/O areas,
our DML includes the database as a part of the program’s memory space,

allowing the object-variables to be used directly in the control constructs of the

37

language and reducing the complexity of the definition of the language
semantics. Second, our DML makes explicit use of object-variables to
manipulate database objects, instead of relying upon implicit currency pointers
of CODASYL DML. As diiferent statements of the language do not interact
through the currency pointers (see [Biller 76] for such interaction between
FIND NEXT and DELETE operations in CODASYL DML}, we enjoy the
independence of individual DML statements and can give their proof-rule
easily. In fact, our design of the DML goes hand-in-hand with the consideration

of the proof-rules, which is always a healthy practice.

The rest of the chapter is organized as follows. In section 3.1, we
define the data types RECORD and OCS so as to provide a simple behavioral
abstraction of the Network Data Model. To explore the capabilities of the
identified primitive operations, we take some examples from other languages
based on the Network Model and give their interpretive semantics in terms of
these primitives. In section 3.2, we integrate the specifications of the data types
into a many-sorted first order language to obtain an assertion language. We
show how this language is capable of describing database structures for
Network Model and is therefore a candidate as a DDL. In section 3.3, we define
our DML and give its proof-rules by using formulas from the assertion language
as the pre- and post-conditions of the language statements. Here we indicate
how one may use these proof-rules to prove the correctness of programs written
in this DML.

3.1 Network Structured Values

A traditional network schema N describes two sets of types, namely,
the set of record types T, and the set of owner-coupled set {OCS) types L. A
network database, which is an extemsion of N, stores occurrences of these
record types and OCS types. In terms of our object-oriented model, a2 database
is a set of objects, where the set of object types S is the union of L and T. A
database state consists of a union of all the type-states, one type-state for each

object type.

38

In this section, we shall be concerned only with characterizing the
values of the records and OCS-s. The association of these values to the object
identities is accomplished by the type-state for each object-type. In following,
we define the primitive operations on records and OCS-s and axiomatize them
by two parameterized abstract data types, RECORD[T] and OCS[L]
respectively. After the introduction of these data types, we illustrate in
subsection 3.1.3 that these primitive functions provide a useful abstraction of

Network data model and its operations.

3.1.1 Axiomatization of Record Values

A record occurrence of type T € T is a record valued object {record)
whose value is a k-tuple <al,a2,..,ak>, where each ai € DOM(Fi), Fi is a field
of record type T, and DOM(Fi) is the domain of values associated with field Fi.

type RECORD[T]
requires
T: set of record types
F: set of fleld types
D: set of domains
operations
EMPTY: T — RECORD
WRITE: RECORD X F X D — RECORD
READ: RECORD X F — D
axioms
ri. READ(EMPTY(T),F,d) = | (* each domain has the special
value |)
r2. READ(WRITE(r,F1,d),F2)
= if Fl=F2
then d
else READ(r,F2)
r3. (% axiom of record value-equallity *)
ri =record r2

17t (VFEE) (READ(r1,F)=READ(r2,F))
Figure 3-1: Specification of Data Type RECORD

39

We define the following functions on record-values which are
axiomatized as a data type RECORDI|T], shown in figure 3-1.

EMPTY(T): creates an empty record-value with the value | for each of
its fields.

WRITE(r,F,v):: stores value v in field F in record-value 1.

READ(rF): extracts the value of field F {rom record-value r.

The equality of two record values is based on the fieldwise equality of the

constituent values, as shown in axiom r3.

3.1.2 Axiomatization of OCS-values

An OCS occurrence of type L € L is an OCS-valued (OCS) object
whose value is a 2-tuple <t,m>, where { is the identifier of the owner record
and m is an ordered set of identifiers of the member records. Thus, an OCS
references both its owner record as well as the constituent member records. As
a result, the effect of an in-place update of any referenced member record is

visible on subseguent navigational retrievals via the referencing OCS.
o

We define the following primitive functions on OCS values which are

axiomatized as the data type OCS[L], shown in figure 3-2.

MAKE(L,r): creates an empty OCS-value of type L, with record r as its
owner.

ADD({s,r): add record r as a member to OCS-value s.

OWNER(s):: retrieves the identifier of owner record from an OCS-value s.

OWNS(s,i):: is true if record i is a member of OCS-value s.

POS{s,r, Q) retrieves the position number of record r within the set of

members in OCS-value s; the binary predicate Qx,y)
determines the ordering of the set of members.

type OCS[L] (# written as s %)
requires

RID: set of record identifiers
T: set of record types

operations

CREATE: L X RID — 0CS

ADD: 0CS X RID — 0CS

REMOVE: 0CS X RID — 0CS

OWNER: 0CS — RID

OWNS: 0CS X RID — BOOLEAN

MEMBERS: 0CS — {RID}

POS: 0CS X RID X ORDER — INTEGER
GET: 0CS X INTEGER X ORDER — RID

axioms
ol. OWNER(MAKE(L,r)) = r
02. OWNER(ADD(s,r)) = OWNER(s)
03. OWNS(MAKE(L,r1),r2) = false
o4. OWNS(ADD(s,rl),r2)
= if rl=rZ then true
else OWNS(s,r2)
05. POS(MAKE(L,r1),r2,Q) = 0
o8. POS(ADD(s,r1},r2,Q)
1 Q(r2,r1) then P0S(s,r2,Q)
else 1 + P0S(s,r2,Q)
o7. GET(MAKE(L,r),n,Q) = nil
08. GET(ADD(s,r),n,Q)
= 1f n=POS(ADD(s,r),r,Q)
then r
else if n > POS{ADD(s,r},r,Q)
then GET(s,n-1,Q)
else GET(s,n,Q)
09. MEMBERS (MAKE(L,r)) = {3
010. MEMBERS(ADD(s,r)) = {r} U MEMBERS(s)
011. REMOVE(MAKE(L,r1),r2) = MAKE(L,r1)
012. REMOVE(ADD(s,r1),r2)
= if ri=r2
then s
else ADD{REMOVE(s,r2),r1)
013. (* axiom of OCS value-equality %)

sl = s2

177 (owner(sl)=owner(s2))
A ((vQ) (¥r) (CWNS(sl,r)=
QWNS (s2,r) A (POS(s1,r,Q)
=P0S(s2,r,q)))

Figure 3-2: Specification of Data Type OCS

40

i
e

GET(s,n,Q): retrieves the identifier of the member record which is in the
nth position within the set of members in OCS-value s. The
ordering is determined by binary predicate Q(x,v).

REMOVE(s,r):: removes a member record with identifier r from OCS-value
.

MEMBERS(s):: retrieves the set of identifiers of the member records from
OCS-value s.

The equality of two OCS values, as shown in axiom ol3, states that the owner

records must be equal and every member of one OCS must be in the same

position in the other under all ordering.

Navigational access within an OCS-valuc is supported by the two
operations POS and GET. Based on the ordering predicate Q, function POS
maps the identifiers of the member records to their ordinal numbers 1, N.
Function GET performs the inverse mapping. The ordering predicate Q is a
binary predicate defining the ordering of the member records within an OCS.
For example, if employee records (EMP) under an OCS named DE (figure 3-3)
are ordered in descending order of the salary [ield (SAL), the ordering

predicate Q that relates two employee records el and e2, is
Qel,e2) & READ(VAL(D#EMP el1),SAL) >
READ(VAL(D#EMP ,e2),5AL)

The axiomatization of the functions POS and GET deserve some attention.
The basic idea is that the ordinal number of a member record may either be
incremented by one as a result of adding another member record if it is ®after®
the newly added member according to the ordering predicate; otherwise, its
ordinal number remains the same as before the addition. The ordering
predicate Q(r2,r1} is true if r2 is ®*before® r1. This is directly expressed by
axiom 06. Notice that, the axioms for POS are well-grounded, because each
use of POS in the right-hand side of these two axioms uses a smaller instance of
OCS-value as argument; s being smaller than ADD(s,r). Thus, the recursion of

POS always terminates. On the other hand, the axiom o8 for GET is uses the

42

same size OCS value as argument to POS as the argument to GET on the
lefthand side, though each recursive use of GET uses strictly smaller argument.
Though a little complicated, the axiom is still well-grounded because recursion

on POS always terminates.

3.1.3 Interpretive Semantics of Existing Languages

We believe that the definitions of these three data types
TYPESTATE, RECORD and OCS provide a simple abstraction of the
structures and primitive operations of network databases. Here we
substantiate this elaim informally by illustrating how these functions can be
used to give the interpretive semantics of some of the common retrieval
operations found in existing Network DMLs. The examples are based on a

database schema shown diagramatically in figure 3-3.

DEPT
DNAME

BUDGET

DE

EMP
SSNO
DNAME
SAL ARY

Figure 3-3: Bachman Diagram of An Example Schema

Example 1. Setting cursor variable [Date 80]

An employee record under a given department may be retrieved in UDL
by the statement:

43

FIND FIRST EMP
UNDER UNIQUE DEPT VIA DE
WHERE DEPT.DNAME = ’research’ SET (e)

Here the UNDER clause specifies an OCS from which the first member
record is to be selected. In our formulation, we shall encode this
specification in a qualification expression as:

P:: (VAR x: D#DEPT[OWNER(D#DE[x])].DNAME
= ‘research’)

The semantics of the UDL statement is then given as:

de := FIRST{FIND(D#DE,P)):
e := GET(VAL(D#DE,de),1,Q)

where the ordering predicate Q for the OCS DE is as shown in the
previous subsection as an example. Note that the cursor variable e of the
UDL statement is represented by a corresponding object-variable of type
EMP record in the object-oriented language introduced in chapter 2.
However, a cursor variable is implemented in UDL as having pointers to
the selected record as well as to the selected ordered set. In our
formulation, the cursor variable e must thus be represented by the pair of
object-variables <e,de>. As far as the selected record is concerned, we
could have written the interpretive semantics as one long expression
involving the observer functions of the data types as follows:

e:= GET(VAL(D#DE, (FIRST(FIND(D#DE,P))),1,Q)

Example 2. Relative retrieval using cursor
Suppose the FIND statement in the example above has been used to set
the cursor variable e. One can then use the following statement in UDL
to select the next member record within the same OCS :

FIND UNIQUE (EMP AFTER e) SET (e)
This statement is interpreted in our model as:

e := (GET(VAL{D#DE,de),

(POS (VAL (D#DE,de) ,e,Q)+1},

Q)
where Q is the ordering predicate defined over the members of the OCS
DE. Note that we have used POS to get the ordinal number of the
member record pointed to by e, incremented the ordinal number and
used the incremented number as argument to GET to retrieve the
identity of the next record. This illustrates how the functions POS and
GET provide navigation within an OCS.

44

Example 3. Multivariable Qualification

It should be noted that the primitive function FIND of data type
TYPESTATE is the basis of set-oriented retrieval. However, as 2
typestate is concerned with objects of one type only, retrieval through
FIND operation, though may be quite complex involving many boolean
conjunctions, is limited to ome-variable qualification expressions. Multi-
variable retrievals can be effected by nesting of one FIND within the
qualification expression of the next and so on. For example, find the
budget of the department which employs the employee with SSNO=s,
can be expresscd as follows:

READ (VAL (D#DEPT,
OWNER (VAL (D#DE, FIRST (FIND (D#DE,P))))),
BUDGET)

where the qualification expression P is

P:: (VAR x:0WNS (VAL (D#DE,x) ,FIRST(FIND(D#EMP,P1)))

The qualification P1 on the typestate for employees is as follows:
Pl:: (VAR y: READ(VAL(D®EMP,y),SSNO)=s)

The features of the CODASYL DDL specifications [Codasyl 71] not

handled in our formulation are:
e repeating groups
e multiple member types for an OCS type

e storage structure information.

The various specifications of ordering, membership class, and primary
keys (fields for which duplicates are not allowed] will be treated in our
formulation as integrity assertions. We shall give some examples of how these

assertions can be expressed in section 3.2.

45

3.2 Database Assertion Language
In this section, we shall describe an assertion language which is used
for the following purposes:

e as DDLs, they provide the syntax and semantics of the data
structures and the consistency criteria;

e as assertion language of the DML logic, they characterize properties
of database states and its proof-theory to prove verification
conditions;

e as expression language for the assignments in the DML, ie., for
writing qualification and retrieval expressions.
We obtain this assertion language and its proof-theory by including the
specifications of the three data types, TYPESTATE, RECORD and OCS, into
a many-sorted first-order calculus. The functions of these data types can be
composed to form the terms of this language. The axioms of these data types, a
substitution rule {defined following} together with the tautologies and inference
rules of first-order calculus, form the proof-theory of the language. To see why
this language can be used to describe a database state, recall that a database
state is a union of type-states, one for each object type and any type-state can
be canonically represented by an expression involving only the constructor
functions of the data type. For example, a database state having only one
record of type EMP with some constant values s, d and r as values for the
fields SSNO, DNAME and SALARY can be described by the following formula:

D#DEPT=INIT (DEPT) A D#DE=INIT(DE) A D#MGR=INIT (MGR)
A DEFINED(DHEMP,e) A (D#EMP=CHANGE (EXTEND(INIT(EMP),e),

WRITE(

WRITE(

WRITE (EMPTY,SSND, s),
DNAME,d),
SALARY, r))

To wuse the language as a DDL, we observe that apart form

introducing the symbols for fields, record types and OCS types, a Network

46

Schema will contain a set of consistency criteria which are essentially the
properties of database states consisting of admissible values. In our assertion
language, the parameters of the language coincide with the symbols declared in

the schema and the consistency criteria are expressible as quantified formulas.

In the following, we shall define the syntax and semantics of the
assertion language L and its proof-theory. Then we shall illustrate its use as a
DDL. Finally, we shall how the terms like consistent database state can be
defined in logical terms and give a method to determine whether a given state

satisfies the consistency criteria.

3.2.1 Language L and its proof-theory
Here we introduce a many-sorted assertion language L with the
following set of sorts M= {token, type-name, field-name}. The symbols of the

language are as follows:
Logical Symbols
1. Parentheses and the usual logical connectives: (,),7,A,V.

2. Variables: lower-case letters for sort token, upper-case letters for
sorts type-name and field-name. All OCS and record-types
defined in a database schema are variables of sort type-name.

3. Equality symbols: for each sort i there may be the predicate symbol

=, said to be of sort (i,i)}. The equality symbols introduced for the
data types TYPESTATE, RECORD and OCS are included.

Parameters

1. Quantifiers: for each sort i there is a universal quantifier symbol V..

[

. Constant symbols: The constants of sort token include numbers,
strings, _|, undefined, and all instances of the data types
TYPESTATE, RECORD, OCS and LISTID. The constant symbols
for sort type-name are INTEGER, STRING, and the constants of
sort field-name are the field-names defined in the database schema.

3. Predicate symbols: Apart from the predicate symbols defined on

47

integers, all boolean-valued function symbols defined for the data
types TYPESTATE, OCS, RECORD and LISTID are included.
Also, there is a membership predicate € of sort {token, type-
name). The intended interpretation of €(t,T) is that t is an
instance of type T, 1e, it is equivalent to
ISELEMENT(FIND(D#T,all},t).

4. Function symbols: Usual functions defined on integers and strings
together with all the non-boolean valued functions defined for the
data types TYPESTATE, OCS, RECORD and LISTID.

Terms and wifs are defined as in one-sorted first-order languages,
except that sort compatibility must be respected when using quantifiers,

predicate symbols, and function symbols.

A many-sorted structure A for L is a function from the set of
parameters of L assigning

1. to the quantifier symbol V;, 2 non-empty set U, called the
domain of sort i

2. to each predicate symbol p of sort (i;,...,i }, a relation

pA(_;Ui} X °L,.><U§n;

3. to each constant symbol ¢ of sort i, an element ¢, of U;

4. to each function symbol f of sort (iy,...,1,,1, 1), a function
f,:U x..xU —=U .

AT "n ‘at1
A state I for L is a function from the set of parameters and variables
of L such that I restricted to the parameters of L is a structure A of L and I
assigns to each variable x of L of sort 1 an element of the domain U The
notion of wif P of L being valid in a state I is that when each {ree variable of
sort i in P is given a value from domain U;, P becomes true. We shall write

I |= P to mean P is valid in state L.

The logical axioms and rules for many-sorted first-order languages are

43

those of first-order languages, again taking into account sorts. The theory T of
the language L includes all logical axioms and rules plus a set D of formulas of
L, the nonlogical axioms of T. The set D consists of all the axioms defined in
the specifications of the data types TYPESTATE, OCS, RECORD and
LISTID. When a formula P of L is derivable {from a set F of formulas of L

using the axioms and rules of T, we write Fl—. P.

Notations: To make the formulas of L more readable, we introduce
the following syntactic abbreviations:

D#T[t] & VAL(D#T,t);
D#T[t<——e] & CHANGE(D#T,t,e);
r.F & READ(r,F)

In the light of these abbreviations, the axiom d3 of data type TYPESTATE is
rewritten as :

D#T[t1¢—e] [t2] = 1 tl=t2
then e
else D#T[12]

3.2.2 Language L as DDL
We now give precision to some concepts of Network Data Model

within the framework of the assertion language L.

A network schema N is a 4-tuple (L, T.F,C), where

1. L={L,,...,.L,} is a set of distinct variables of L, the OCS names
of N, where L; is of sort type-name, i in [l:m]. Each L, itself is a
pair <T;,T; >, where T; and T} arein T and are variables of L of
sort type-name.

2. _'I_‘_-—z{Tp...,Tn} is a set of distinct variables of L, the record type-
names of N, of sort type-name. Each T, is a tuple <Fi,...,F§>
where j depends on i and each F, k in [1:j], is constant of L of sort
field-name.

3. Ez{F},‘..,Fp} is a set of distinct constants of L, the ficld-names
of N, all of sort field-names.

4. C is set of wifs of L containing the following:

OCS formation:
for each L; in L, where L;=¢T; ,Ty >,
i i

the formuls
(vi) (e(! ,D#L-i)—:#
(vt) (OuWNS (D#L, [1],t)= €(%,D#T,)

A (vt) ((OWNER(D#L, [I]) = t)=
€ (6,047,)))

record formation:

For each T, in T, where T3:<?2‘7H,,F?'>,
H §

the formula

((¥%) €(s,D4T,)

=R in {tﬁi((vyg({ﬁﬁT‘{t}’Fki:X}
= €(x,D0M(F,)))))

consistency criteria: other wffs. I

The OCS formation formula states that every OCS occurrence has
existing owner and member occurrences of proper types. The record formation
rule states that every record occurrence has values in its fields picked from

proper domains.

Now we can define a database state [, to be a valuation of N such
that each variable of sort type-name Is assigﬁedmto a type-state instance and
each token-variable is assigned to either a object-identity, an instance of data
types RECORD, OCS or LISTID, or a value in the domain of a field. A

consistent database state I is one for which I |= P for each P in C.

50

3.2.3 Expressing Consistency Criteria in L

We now introduce a simple example that illustrates the ability of our
assertion language to express properties of database states. Consider the
database schema shown in figure 3-4. Order clauses and membership class
clauses are missing from the schema. We express these, instead, as integrity

assertions.

SCHEMA PERSONNEL
TYPE DEPT = RECORD (% DEPARTMENT %)
DNAME: STRING:
BUDGET: INTEGER
END:
RECORD (* EMPLOYEE)
SSHO: STRING:
DNAME: STRING:
SALARY: INTEGER
END:
oces {* DEPARTMENT’S EMPLOYEES %)
OWNER: DEPT:
MEMBER: EMP
END:
0cs (* MANAGER’S SUBORDINATES %)
OWHER: EMP;
MEMBER :EMP
END:
END PERSONKNEL

EMP

it

DE

i

MGR

H

Figure 3-4: Example Database Schema

Example 1. Automatic Membership
In OCS type DE the members are automatic. This is expressed as:

(C1):: (Ve € EMP) (3de € DE): OWNS(D#DE[de],e)

Here e and de are variables of type object identifier bound to the object
types EMP and DE. Note that D#DE[de] is our notation for
VAL{D#DE,de) and is required for the type conversion from object
identifier to its value.

