Example 2. Ordering of members
The member records in OCSs of type DE are in descending order by

SALARY. This is expressed as:

(C2):: (Vde € DE) (Vel,e2 € EWMP): Qfel,e2)
= (POS(D#DE[de],e1,8) < POS(D#DE[de],e2,Q))

where the ordering predicate Q is
Q(el,e2) & (DHEMP[el].SALARY > DHEMP[e2].SALARY).

Note that D#EMP[el]. SALARY is shorthand for
READ(D#EMP[el],SALARY).

Example 3. Structural Constraint
Subordinate employees must be in the same department as their

manager.
(C3):: (¥Ym € MGR) (Ve € EWP):
(OWNS (D#MGR[m] ,e) =
(D#EMP [OWNER (D#MGR[m] ) ] . DNAME=D#EMP [e] . DNAME) )
It may be noted that both ®recursive sets® (e.g., OCS type MGR) and
structural constraints are proposed in CODASYL 78 [Manola 78].

Example 4. Duplicates Not Allowed constraint
The SSNO field in EMP records is a primary key.

(C4):: (Ve € EMP):
(COUNT (FIND(D#EMP, (VAR x: D#EMP[x].SSNO =
D#EMP [e] .SSND)))

= 1}
Note that in Example 4 we have used the cardinality function COUNT
defined over the data type LIST.

Example 5. General Integrity Constraint
No emplovee can earn more than his manager.

(C5):: (Vm € MGR) (Ve € EMP):
(OWNS (DHMGR[m] , e} =
(DHEMP [e] . SALARY
< D#EMP [OWNER (D4MGR []) ] . SALARY))

Note that in CODASYL DDL, one has to use a trigger procedure to check
this constraint.
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From a pragmatic viewpoint, this assertion language has the
advantage that we can express a large class of integrity assertions non-
procedurally. In contrast, CODASYL DDL provides special constructs for some

of these constraints; all other constraints must be coded as trigger procedures.

A more important point is that this assertion language is backed by a
proof theory of first order calculus augmented by the axioms of the data types
TYPESTATE, RECORD and OCS. The proof theory allows us

e to prove that some properties of a database are valid over all
database states

e to detect inconsistencies in integrity specifications during the
database design phase

e to detect redundant specifications of integrity assertions, thereby
minimizing the number of integrity assertions to be maintained.

We shall take up these uses of the proof-theory in detail in chapter 4.

3.3 Data Manipulation Language and Proof-rules

In this section, we design a simple data manipulation language over
the primitive operations of the three abstract data types by integrating the
data types with the control structures of PASCAL.

The integration is achieved by including the database objects in the
execution environment of the programming language, so that a DML program
can directly access the database objects. One consequence of this integration is
that the programmer can use the control structures for manipulating the
database in the same way as he uses them to manipulate the usual program
variables. This advantage has been recognized in 2 number of recent database
language proposals [Date 80}, [Wasserman 79|, [Schmidt 77]. The other
consequence is that the user work area and currency pointers are eliminated
from the description of the semantics of the DML statements. This makes the

semantics of the DML statements ®cleaner®, thereby improving the
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understanding of programs, and more importantly, simplifying the proof-rules
necessary for program verification. (The reader may contrast our formulation
with that in [Biller 76}, which included the specification of the database 1/O

area in the language semantics).

3.3.1 Data Manipulation Language

We extend the type declaration facilities of PASCAL by including the
schema definitions of RECORD and OCS. The variables introduced are object
variables and list variables. A list variable can have as its value a list of
object identifiers. An object variable (analogous to a tuple variable in relational

languages) can have as its value an object identifier.

The DML statements are shown below. Out of them, statements M1
and M2 create new objects but assign some pre-defined values to the objects as
well. Thus their semantics are given by interpretation in terms of object-
creation and object-update statements of our object-manipulation language
introduced in chapter 2. The statements M3-M6 update the database and their
interpretation can be done in terms of the object-update statement only. The
DML statements with their interpretive semantics are as follows:

M1. CREATE R(r) & [CREATE(R,r); r<EMPTY(R)]
This statement creates a record object of type R. The
variable r denotes this stored record. The empty
record-value is assigned to this record.

M2. CREATE L(I) WITH R{(r) < [CREATE(L,1); |<=MAKE(L,r)]
This creates an 0CS object of type L, with the record
denoted by r (of type R) as its owner. The variable |
denotes this 0CS. The empty O0CS-value MAKE(L,r) is
assigned to this 0CS.

M3. CONNECT R{r) TO L{1) < [i<ADD(D®L[I],r)]. This
connects the record denoted by r to the 0CS denoted by
S.

M4. STORE v 1IN R(r).F & [reWRITE(D#R[r],F,v)]. This
stores the value v In the Tield F of the record denoted
by r.

M5. DISCONNECT R(r) FROM L{1) e [I<REMOVE(D#L[I],r)
This disconnects the record dencted by r from the O
denoted by I.

1.
CS



MB8. DELETE S{s) < [s«undefined]. This deletes the object
denoted by s. The object type is denoted by S.

The retrieval statement in our DML has the form:

M7. ASSIGN x WITH e < [x:=e]. The target variable x is
either an object variable, a list variable or a usual
PASCAL variable. The source expression e¢ is a retrieval
expression as defined below.

A retrieval expression is a term formed by function composition of
only the observer functions defined on the data types TYPESTATE, RECORD
and OCS. A retrieval expression can be used to form boolean expressions used
for controlling WHILE statements or IF-THEN-ELSE statements.

The DML statements M1-M7 can be used in conjunction with all
PASCAL statements. However, we introduce a specific form of FOR-statement
[Hoare 72], which is useful for sequential processing of database objects. This
statement is shown below:

Mg. FOREACH x IN X DO M
Here X 1s a list variable (or 2 type name) and x is an
element of the list (or object variable of given type).
The statement M 1s repeatedly executed for each element
In the list X. The statement M is not allowed to change
either x or X,

An example program, based on the schema in figure 3-4, is shown in
{igure 3-5. This program is intended to give a 109 raise to all employees of the

department that is the owner of an OCS objcct with identifier de.

3.3.2 Proof Rules

The interpretive semantics of the statements MI-M7 are given in
terms of the statements from the object-manipulation language. Thus, we can
use the axioms of object-creation and object-update, given in chapter 2, to
derive the weakest preconditions for the DML statements. These are shown

below:
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VAR e: RECORD EMP;
M: LIST OF MGR; de: 0CS DE:
s: REAL:

BEGIN

(* assume the object variablie de has the identifier of
the selected OCS object of type DE #)

ASSIGN E WITH (MEMBERS (D#DE[de])):

FOREACH e IN E DO

BEGIN (% process this employee e %)
ASSIGN s WITH (D#EMP[e].SALARY);

IF s <= 80K
THEN
STORE (s ¢ 1.1) IN EMP(e).SALARY
END
END.

Figure 3-5: Example of DML Program

AL, wp(M1,Q) e
(FRESH(D#R,r’) = Q[D#R’/D#R] [r*/r])
where D#R’ & extend(D#R,r) [r <—— EMPTY(R)], and r° does
not appear in § or M.

A2. wp(M2,Q) &
(FRESH(D#L, 1°) = Q[D#L’/D#L][1°/1]
where D#L’ < extend(D#L, 1) [1<——MAK
not appear in § or M.
A3. wp(M3,Q) & Q[D#L’/D#L]
where D#L® & D#L[ 1<——add(D#L{1],r)]
A4. wp(M4,Q) = Q[D#R’/D#R]
where D#R’ & D#R[r<{—write (D#R[r],F,v)].
A5. wp(M5,Q) < Q[D#L’/D#L]
where D#L’ « D#L[ s < remove(D#L[s],r,R}]
AG. wp(MB,Q) < Q[D#S’/D#S] -
where D#S® < D#S[s<-— undefined]
A7. wp(M7,8) = Qle/x]

)
E{(L,r)]1, and |’ does



The proof-rule for the statement M8 is taken from [Hoare 72] and is
given below:

A8. (X = X111[x]11%2),I(X1) M} I(X111[x])
= I([]) {mM8} I(X)
where [] denotes the empty list, and || denotes the list
concatenation operator.

The proof-rules for the usual PASCAL statements are those given by

Hoare and are shown in figure 3-6.

A9. Qle/x]{x:=eXq
A10. P{S}R, (R=Q) = P{SHQ
All. (P=R), R{S}Q = P{S}Q
A12. P{S1}R, R{S2}Q = P{S1;S2}3Q
A13. (PAB{M}Q), (PA —-B {M°}Q)
= P{JF B THEN M ELSE W'}Q
Al4. (PAB{M}P) = P{WHILE B DO M}(PA -B)

Figure 3-8: Proof-rules of Pascal Statements

3.3.3 Proof Technique

We now discuss the use of these axioms in proving the correciness of
DML programs. A program S is proved correct by showing that il an initial
assertion P holds before the program, then a final assertion Q holds on
completion of the program. That is, we have to prove a formula P{5}Q,
written in Hoare's pseudological notation. Each of the axioms Al-Al4 is of the
form H1 and H2 and ... and Hn = P{S}Q. Hence, to show P{S}Q one has to
establish the truth of each antecedent Hi. For example, consider axiomn Al3: in
order to show P{if B then M else M'}Q, we have to show the antecedents
(P and B}{M}Q and (P and not B}{M'}Q. Also, note that axioms AI0 and

All require us to prove sufficiency conditions, e.g., P=R in axiom All.
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Since these sufficiency conditions are formulas in our assertion language L, they
can be proved using the proof theory of our assertion language (i.e., the axioms

of the data types together with the proof rules of first order calculus).

To summarize, we obtained the DML by adding the statements Mi-
MR to the programming language Pascal. The DML logic is obtained simply by
adding the proof-rules A1-A8 to the original set of proof-rules of Hoare’s logic
and providing the proof-theory of the assertion language L. In the next
chapter, we shall examine the application of both the DML logic and DDL logic

in the context of Integrity Management.



Chapter 4

Application of DDL and DML Logic

In the previous chapter, we have set the stage for defining the
problem of correctness of transactions, which we undertake here. Though the
correctness of a transaction system in a multi-user environment is defined in
terms of the serializability criterion [Eswaran 76, Bernstein 79|, the notion of
serializability assumes the correctness of individual transactions acting alone on
the database. Here we shall discuss the application of our formalism in

ensuring the correctness of individual transactions.

The correctness criteria of our interest, is that each individual

transaction preserves the integrity assertions as invariants. Preservation of

integrity assertions is important because the integrity assertions supply logical
interconnections among the real-world entities and the database objects
represent the real-world accurately only if they satisfy the integrity assertions
at all times. We formulate this correctness criterion precisely in our formalism
as follows. Viewing the integrity assertions as wifs in our assertion language L,
a database state [ is consistent with respect to a set W of wifs iff each wif in
W is satisfied in I. A transaction preserves consistency iff its execution results
in a consistent database state, if it is started in a consistent database state. A
transaction M is correct iff for w,cW, W being the set of integrity assertions
defined in a database schema, the following formula in our DML logic is valid:
(Awy) {M} (Awy).

We can apply the proof-techniques of the DML logic to prove such a formula.
Thus, the problem of enforcing the correctness criterion on a transaction

reduces to verification of DML programs.

58
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Our viewpoint of verifying transaction as a means of integrity
management is different from that taken previously in the literature. We are
envisaging that the transactions are known apriori and are written by
application programmers who have knowledge of the integrity assertions
specified in the database schema. Most of the work {(except that in [Gardarin
79]), on the other hand, assumes that naive end-users formulate the
transactions without any knowledge of the integrity assertions and thus, the
problem of ensuring the correctness of such transactions is dealt with by
augmenting the user-transactions by run-time checks. There two methods of
implementing the run-time checks have been used: the trigger

[ttt
procedures [Eswaran 75] and query modification [Stonebraker 75, Bernstein

82, Bernstein 80]. A trigger procedure is invoked in the event of updating a
database object and the procedure checks the truth of the relevant integrity
assertions in the updated database state. In the query-modification method, a
pre-test is synthesized such that if the test succeeds, the following update
operation is guaranteed to result in a consistent database state. Notice that
irrespective of whether the tests are coded by the application programmer as in
our case or augmented by system-supplied trigger-procedures or by query-
modification, the ability to verify the correctness of the transactions with tests
underlies the success of all the methods. Cur DML logic provides us with
precisely this ability. Moreover, if the wverification process fails for a
transaction, we may be able to synthesize a test to be added to the transaction

which will rectify the failure.

There is another issue related to integrity management, but which has
not been dealt with explicitly in previous work; namely, the issue of consistency
of the integrity assertions among themselves. Before we verily transactions, we
have to make sure at the very start that the given set of integrity assertions
itself does not have any contradiction. If the set itself has contradictions, then
there cannot be any database state which is consistent with respect to this set.

As the integrity assertions are wifs in our case, we can apply logic techniques
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to detect inconsistency of a given set W of integrity assertions by simply

showing Wl—false in our DDL logic.

For the rest of this chapter, we shall first describe a scenario of
designing an application database to provide the context for discussing the
issues of checking inconsistencies in a set of integrity assertions and of verifying
the correctness of transactions. In section 4.2, we shall illustrate the use of DDL
logic in checking inconsistency of schema definitions. In section 4.3, we shall
illustrate the use of DML logic for enforcing the correctness of tramsactions.
Finally, in section 4.4, we shall discuss the effectiveness of the program

verification as a practical means for integrity management.

4.1 Database Design Scenario
The problems of correctness of transactions as well that of the
consistency of schema definitions arise during the development of any database
application. In the literature of database design methodology, the following
stages of design activity are identified:
1. Requirement Analysis: the designer group gathers the expectations

of the various user-groups in terms of their perception of real-world
entities, their relationships and the expected usage.

2. View Representation: some means of representing the entities and
relationships are used to capture the view of each user-group.

3. View Integration: individual user-view is merged to form the
community view or the conceptual schema.

4. Schema Mapping: The conceptual schema is translated to the
particular data model used specifically by the DBMS.

5. Transaction Design: Each usage of the data as expected by the
users are coded in the DML of the specific DBMS.

6. Physical Database Design: Storage structure and access paths are
defined to facilitate the execution of the transactions.
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It is the view integration stage when the consistency of integrity
assertions needs to be checked. As the integrity assertions {rom each user view
are collated, there is a possibility that different user groups perceive the real-
world differently and perhaps in a contradviciory fashion. Detection of
inconsistency of the integrity assertions is necessary to guard against such

possibility.

Consider the following example of a university database. A user
group representing the department adminstrations, may require that each
teaching assistant, hired by a department, is registered for no more than 9
hours, because the departments expect the teaching assistants to perform their
duties whole-heartedly. The user-group representing the Graduate School may,
on the other hand, be interested in devotion of the graduate students to studies
and therefore, require that each graduate student is registered for at least 12
hours. Finally, the user-group representing the Personnel Division of the
university stipulates that each department must have some graduate student
employed as teaching assistants. It is obvious that when these three
requirements are put together, one finds that there can be no graduate student
who meets both the departmental and the graduate school requirements. In
fact, the practical database application will have a large number of such
integrity constraints and some automated aid in detecting inconsistency is a

must.

Once the conceptual schema is coded in the DDL, the application
programmers can start designing the transactions, respecting the relevant
integrity assertions for each transaction. In order to ensure the correctness of a
transaction, the programmer has to insert appropriate tests in the code of the
transaction. For example, before establishing the relationship of a graduate
student as a teaching assistant in a department, there should be a test whether
the student is registered for at most 9 hours (assuming the graduate school has

relaxed its requirement). As such the task facing the programmer is not very
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different than designing robust programs where the programs contain many
data validation tests over and above the main computational task. For a
database programmer, some automated aid to ascertain the correctness of his
code with respect to the preservation of integrity assertion become very
necessary, because of again the number of assertions involved. Better still, if a
transaction i1s found incorrect, some aid to point out the causes of the failure

(as given by the intelligent theorem-provers) are welcome.

In contrast with the work on relational databases, where some basis
for design aids have developed, there is little available to the practitioners in
deuling with such problems for Network databases. The main reason is the Jack
of adequate formal foundations for Network data model. Our work here is

aimed to alleviate precisely this problem.

4.2 Detecting Inconsistencies in Schema Definition

Here we illustrate the use of DDL logic to detect inconsistency among
a set of integrity assertions. As stated before, we can express the integrity
assertions as wifs in the assertion language L and then use the axioms and the
inference rules of its proof-theory to show that false can be derived from the

set of wifs.

Returning to the example of the university database, we first assume
the entities for departments (DEPT), graduate students (GRAD) and their
relationship ®employs as a teaching assistant® (TA) have been defined as
shown in the figure 4-1. We can now express the three integrity assertions as
follows:

Department:

If ¢ is employed as teaching assistant in an instance t of the OCS type
TA, then the hours for g is no more than 9.

wl:: (VGEGRAD) (VEETA) : OWNS (D#TA[t],g)
= D#GRAD[g].HOURS < 9
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Graduate School:
For each graduate student g, the hours of g is at least 12.

w2:: (VgEGRAD) : D#GRAD [g] .HOURS > 12

Personnel:
Every department hires some graduate student as teaching assistant.

w3:: (VEETA) (3g€CRAD) :OWNS (D#TA[t] . g)

DEPT
DNAME

TA

GRAD

SNAME
MAJOR
HOURS

Figure 4-1: Diagramatic Schema for University Database

The set of these wifs W is wlAw2Aw3 and we want to show
Wi—false. The deduction can be accomplished in the DDL logic T=(L,D}, by

applying the inference rules of T (namely modus ponens and generalization) to
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the conjunction of W and D, the non-logical axioms of T. Instead of blindly
applying inference rules to WAD so as to derive all possible theorems, it is
possible to wuse a refutation proof-procedure based on the resolution
principle [Robinson 65]. Briefly, instead of deducing the theorem to be proved
from the axioms, a refutation procedure tries to show that the negation of the
theorem in conjunction with the axioms is unsatisfiable. Resolution based
procedures starts with the negation of the theorem and the axioms, all after
being converted to prenex normal form. In this form, the set of wils are
converted to clauses in which all variables are implicitly universally quantified
and each clause i1s a disjunction of literals. Then pairs of clauses (or even a
single clause) is checked for resolution i.e., if there are complementary literals
which are unifiable under some substitution of terms for variables. The result
of the resolution is the obtained by cancelling the literals resolved upon and
forming a new clause which is the disjunction of the rest of the literals from the
clauses involved, but after applying the unifying substitution to them. The
process of resolution stops if ever a empty-clause (which is unsatisfiable) is
obtained by resolution. The detail of the resolution based theorem-proving can
be found in [Chang 73].

In order to derive false from WAD, we apply the resolution based
refutation procedure as described above. First of all we convert all the wifs
into prenex normal form [Chang 73] as follows:

wi:: —OWNS(D#TA[t],g) V (D#GRAD[g].HOURS<S)

w2:: DHCRAD[g] .HOURS>12

w3:: OWNS(D#TA[t],?(t)), where ¥ is the skolem function for
the existential quantifier.

Consider also the following axioms of INTEGERs in D, which are written in
the clausal form:

di:: =(x<y) V =(y<z) v (x<z)
d2:: = {(x>y) Vv —(x<y)
dd:: 9<12

Now, our starting set of Clauses is {w1,w2,w3,d1,d2,d3,true} where true is the

negation of the theorem to be proved. Resolving wl and w3, we obtain
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wh:: D#GRAD[T(t)].HOURLS

Then, resolving w4 and d1 we obtain:

wh:: —(9<z) Vv D#GRAD[?(t)].HOUR<Z

From wb and d3, we obtain:

wB:: D#GRAD[T(t)].HOUR < 12

Now, from w2 and d2, we get:

W7:: —(D#GRAD[g] .HOUR < 12)

Finally, resolving w6 and w7, we get the empty-clause, signifying that the sct

of clauses {wl,w2,w3,d1,d2,d3} is unsatisfiable.

4.3 Enforcing the Correctness of Transactions

Here we illustrate the use of DML logic in proving that a transaction
is correct with respect to a given set of integrity assertions. Briefly, given a set
W={w,,...,w,} of integrity assertions and a transaction LI, we have to prove
the following formula in our DML logic:

(WA Aw) (M} (WAL AW,

The transaction verification is a two-stage process: (1) gencration of the
verification conditions by applying the proof-rules of the language statements
and (2) proving the verification conditions as theorems in the DDL logic. The
verification conditions can be automatically generated in case of transactions
which are free from loop constructs (FOREACH and WHILE statements). In
case of loops, however, the proof-rules require introduction of extra assertions,
called the loop invariants. Though loop invariants can be gencrated
automatically for certain special cases of loops [Misra 77], the problem is
unsolvable in general. Thus, we would assume that the transactions are
annotated with the loop-invariants by the programmers. Proving the
verification conditions can be done through the resolution-based procedure as

discussed in the previous section.

To illustrate the process of transaction verification, we consider the

dml program shown in figure 3-5 and integrity assertion C8 shown below:
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(C6):: (Ve€EMP): (eE€MEMBERS (D#DE[de])
= D#EMP[e].SALARY < 88K)

This assertion states that the employees within the selected
department can earn at most 88K as their salaries. In order to show that the
program preserves integrity assertion C6, we have to prove the formula
C6{Program}CBs.

We postulate an invariant I(S)
1(S):: (E C MEMBERS(D#DE[de]))
and ((Vi) (1 € S = D#EMP[1].SALARY<88K))
and ((v]) (J € (E~-S)
= D#EMP[1].SALARY<88K))
Let M denote the body of the FOREACH statement.
Define
P & 1f D#EMP[e] .SALARY < 80K

then (Vi) ((1 € (E1 |1 [e]))
= D#EMP[1].SALARY <88K)
and (v]) (J € (E- (EL il [e]))
=D#EMP [j] .SALARY <88K)
eise I(E1 |1 [e])
It can be mechanically verified that
P{MII(E1 |1 [el).

This can be done by using axioms Al3 and A4 to produce a suffliciency
condition. By using axiom r2 of data type RECORD this sufficiency condition
can be reduced to

(y < 8Kj)=((y *1.1) < 88K}

which 1s true.

We must next prove the tedious but trivial lemma:
(E=E1 || [e] Il E2Z) and I(El) = P
and this gives us by axiom All :
((E=EL || [e] Il E2) and I(E1))MII(EL || [e])
The proof rule A8 for the FOREACH statement enables us to conclude
I([]){FOREACH e IN E DO M}I(E)
Thus we have shown that
I([]) :: (E C MEMBERS(D#DE[de]})
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and ((V ]) (J €E
— DH#EMP[j].SALARY < 88K))

Now by axioms A7 and All, we generate another sufficiency condition

8 = (Vj) (j e MEMBERS(D#EE[de}}
= D#EMP{}},SALQRY < 88K),
which is also true. '

This concludes the proof of the formula Cé{program}C6.

4.4 Discussion

In the last two sections, we saw the examples of using the DDL logic
and the DML logic to resolve the two issues related with integrity management,
namely detecting inconsistency of schema definitions and enforcing the
integrity assertions on the transactions. Questions remain as to how good are

these methods. Here we try to answer some of these questions.

First question is if the schema is detected to be inconsistent, what
action can the designer take. Can he detect which assertions are conflicting ?
The answer is positive in the sense that the identification of the original wifs
which caused the inconsistency can be obtained from the refutation tree if each
resolution step is tagged with the identifications of the wifs to which the
resolvent clauses belong. From this information, the designer can consult the

respective user-groups to settle their differences of requirements.

As far as the transaction verification is concerned, it is admittedly
expensive to execute. The main cost is incurred in proving the verification
conditions. As a first cut to limit the number of integrity assertions taken into
consideration, one can eliminate the integrity assertions to which no
substitution has been made due to the application of DML proof-rules, because

those assertions are unaffected by the transaction.

A better scheme would be to minimize the number of assertions in the
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schema itself by removing the redundant ones. Again, we can use the DDL
logic to formulate the redundancy criterion for a wif w in a given set W of
wifs; w is redundant iff (W-{w})—w. If we could scan the wifs in a given set
and remove the redundant ones successively, we would get eventuallyv a
minimal set of wffs which are free from redundancy. Unfortunately, this
process cannot be implemented effectively, because if a wif w is not redundant,
then the theorem-proving procedure may not terminate at all due to the
unsoiva’bility of the decision problem for an assertion language as general as
first order predicate calculus. The same problem occurs when a transaction is
incorrect because the proving the verification condition may not terminate; and
in the case when a given set of wifs is indeed consistent. In order to remove
these objections and lend practicality to the methods suggested here, we shall
identify a rich subset of our assertion language for which theorem-proving is
solvable. The next chapter is devoted to this issue of solvable subclass of our

assertion language.



Chapter 5

A Decidable DDL Logic

"~ In the previous chapter, we saw that solutions to the problems of
schema design related to integrity assertions and of integrity management, all
involve proving theorems in the DDL logic. As we want to build automated

tools for solving these problems, we require a decision procedure for proving

theorems in the DDL logic. Unfortunately, given that the language of our DDL
logic as general as first-order predicate calculus, there is no algorithm which
can decide whether or not an arbitrary formula is a8 theorem. In this chapter,

we identify a decidable subset of the DDL logic and present a polynomial time

decision procedure which can be used to decide whether a formula in this

subset is a theorem or not. Here we [irst establish the necessary methods of
proof and then discuss their applications to the problems of schema design and

integrity management.

The decidable subset of the DDL logiec consists of universally

quantilied Horn formulas (class UHF). By restricting ourselves to universally

quantified formulas, we guarantee its decidability because such formulas can be
transformed into equivalent function-free formulas in the Bernays-Schoenfinkel
class, which is known to be decidable [Dreben 78]. Freedom from function
symbols is the key to obtaining decidability. The choice to limit the formulas to
Horn form is motivated by the fact that such formulas are amenable to

efficient algorithms.

Though from the point of view of mathematical logic, the class UHF

is one of simplest decidable classes, it turns out to be quite attractive for our

69
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purposes. First, it is rich enough to include most of the integrity assertions that
occur commonly in Network databases. Second, all the axioms of the DDL
logic, which are used to prove theorems, are included in this class. These two
facts together imply that the validity of a UHF formula can be proved or
disproved algorithmically in the DDL logic. The schema design problems with
UHF formulas used as integrity assertions are therefore solvable. In fact, we
shall be able to use the decision procedure as basis for the solutions. Finally,
under certain reasonable restrictions, if the transactions are annotated by the
UHF formulas the wverification conditions generated during transaction
verification are of the form A=B, where both A and B are UHF formulas. The
validity of such implication of UHF formulas in the DDL logic can also be
proved by the decision procedure. Therefore, we are able to efficiently solve all
of the three problems related to integrity assertions for a large number of cases,

thereby meeting our goal.

Apart from the application of the decidability results to the database
problems, our work here has two important aspects which we wish to
emphasize. First, we show here that a class of network database transactions
when annotated by the UHF formulas always produce verification conditions of
the same form. This means that the theorem proving process follows the same
pattern for every annotated program in the same class. Classilying annotated
programs by the pattern of the VCs is important because specialized theorem
provers can be designed for each class, thereby reducing the cost of theorem
proving. Second, we present here a reduction technique which can be useful in
identifying decidable subsets of theories involving data types such as our DDL
logic. Our reduction technique transforms a formula in the theory of interest to
an  equivalent function-free  quantificational formula. Functlion-free
quantificational formulas serve as uniform basis for identifying decidable
subcases of the theory of interest. For, they have been widely studied by the

logicians and many solvable cases of them have already been identified.
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The rest of the chapter is organized as follows. In section 5.1, we
prove the basic decidability result, namely that the problem of logical
consequence of universally quantified formulas is decidable. In section 5.2, we
restrict the universally quantified formulas to Horn form and present a decision
procedure for the logical consequence problem for such formulas. In section
5.3, we combine the results of the previous two sections to establish that the
class of universally quantified Horn formulas are efficiently decidable and
consider the problem of implementing algorithmic solutions to the schema
design problem. Here we demonstrate that the decidable class includes most of
the important integrity assertions and the axioms of the DDL logic. Finally, in
section 5.4, we consider the problem of verilying transactions with respect to
integrity assertions from the decidable class. We first identify some conditions
under which transactions annotated by UHF formulas are verification
decidable. Then we present some common transaction schemes which satis{y
these conditions and are therefore verification decidable. We argue that these
schemes encompass a large number of update transactions in network

databases.

5.1 Decidability of Universally Quantified Formulas
In this section, we consider the class UF, consisting of universally
quantified formulas with function symbols and show that the problem of logical

consequence for this class is decidable.

In order to prove this decidability, we start with the knowledge that
the satisfiability problem for the Bernays-Schoenfinkel class (the class BS) of
function-free formulas is decidable. We then show that every formula with
function symbols can be effectively reduced to an equivalent function-free
formula, by systematically replacing the function symbols in the given formula
by new predicate symbols. This reduction signifies that the satisfiability
problem for the Bernays-Schoenfinkel class of formulas with function symbols

(the class BSF) is also decidable. Finally, we show that the problem of logical
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consequence for the class UF can be recast in terms of the satisfiability problem
for the class BSF and hence is decidable.

The rest of this section is organized as follows. In subsection 5.1.1, we
review some standard terminologies from mathematical logic. In particular, we
take this opportunity to explain why the function-free formulas in the
Bernays- Schoenfinkel class have a solvable satisfiability problem. In section
5.1.2, we present a reduction algorithm to remove the function symbols from
any formula in the class BSF, thereby reducing it to a formula in the class BS.
In subsection 5.1.3, we prove the decidability of the logical consequence

problem for the class UF.

5.1.1 Background from Mathematical Logic
In most of our discussion about the classification of formulas, we shall
be considering formulas in the prenex normal form. A formula in the prenex
normal form {in short prenex formula) is of the form
(Qxy)--Qyx,) M

where 1<i<n and each Q; is either a universal or an existential quantifier. The

part M is called the matrix and the sequence of quantifiers preceding it is called

the prefix.

Most of the solvable cases of quantificational formulas are classified by
either the pattern of the prefix or some restriction on the matrix or both. For

example, the Bernavs-Schoenfinkel class (the class BS) of formulas consists of

. - E .
those prenex formulas whose prefix is 3V (i.e., zero or more occurrences of
existential quantifiers followed by zero or more occurrences of universal
quantifiers) and the matrix has no function symbols. As we shall see, the

absence of function symbols is the key to the solvability of this class.

Even if a prenex formula is free from [unction symbols, the Skolem
functions may be introduced during the skolemization of a prenex formula.

The process of skolemization removes the existential quantifiers from a prenex
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formula as follows. If the existential quantifier Q_ in question has no universal
quantifier appearing before it in the prefix, then we introduce a new constant

symbol (Skolem constant), replace all x_ (the existentially quantified variable}

from the matrix M by this constant and delete (Qx.) from the prefix.
Otherwise, let Qil,.,.,Qik be the universal quantifiers preceding Q. In this case,

we introduce a new k-ary function f (Skolem function), replace all x_ in M by

f(xifm’xik) and delete (Q x,) from the prefix. Thus, every existential quantifier
which is preceded by some universal quantifier, does in effect introduce a
function symbol. It is easy to see that for a formula in the Bernays-
Schoenfinkel class, this is not the case. Also, if we skolemize a given formula
until all the existential variables are eliminated, we can delete the universal
quantifiers as well resulting in a formula in Skolem form (in short a Skolem
formula). In a Skolem formula, all the variables are regarded as universally

quantified.

We now turn our attention to the satisfiability of formulas and
explain why the testing of satisfiability of a formula in the Bernays-
Schoenfinkel class is solvable. A formula is satisfiable if there is an
interpretation in which the formula evaluates to true. A formula is unsatisfiable
if in every interpretation the formula is false. By these definitions, in testing
whether a formula is satisfiable or not, one has to try all possible
interpretations over all possible domains and see if the formula is true is any of

these interpretations - Obviously this is an infeasible task.

Fortunately, given a formula F, there exists a domain, called the
Herbrand wuniverse of F, such that it suffices to consider only the

interpretations over this {ixed domain. A Herbrand universe H for s formula

is the set of all constants including the Skolem constants and all variable-free
terms which are obtained by instantiating the terms of I' by these constants

and other terms already in H . A Herbrand base Hy for a formula I is the set

of all variable-free atomic formulas which are obtained by instantiating the
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atomic formulas in F by the terms of the Herbrand universe of F. A Herbrand

expansion of F is the set of all variable-free instances of I’ obtained by

replacing the variables in F by the terms of the Herbrand universe of F.
Example 5-1: Let F be the formula (vVx)(P(x)=P({(x})))AP(a). The
Herbrand universe H, for I and the Herbrand base H, are H ={a, f(a},
{(f(a)),...} and Hy={P(a), P(f{a)), P(f({(2}}),-..}- The Herbrand expansion
of F is {{P(a)=P({(a))AP(a)), (P(f(a))=P{(f(2))))AP({(2)}),...}. Notice
that the infiniteness of H is caused by the presence of the function
symbol I.

Returning to the question of testing satisfiability of a formula F, we
now have to consider all possible truth assignments to the atoms in the
Herbrand base of F and check for each truth assignment if all the members of
the Herbrand expansion evaluate to true or not. This is stil] a formidable task.
Because the possibility of the Herbrand expansion being infinite (as shown in
the preceding example}, we potentially have an infinite amount of checking to
do. Thus, the simplest possible case where the satisfiability can be checked in
a finite amount of time is when the Herbrand universe, and thereby the

Herbrand expansion, is {inite.

For a formula in the Bernays-Schoenfinkel class, the Herbrand
universe is finite because there are no Skolem functions due to existential
quantifiers nor are there any function symbols in the matrix. Thus, to test the
satisfiability of a formula in this class, we have only a finite set of iruth
assignments over the atoms of the Herbrand base and a finite number of
formulas in the Herbrand expansion to consider. Therefore, an algorithm can

be constructed to test the satisfiability of these formulas.
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5.1.2 Satisfiability of the Class BSF

In the previous subsection, we saw that the satisfiability problem for
the class BS is solvable, because a formula in this class has no function symbol
in its Skolem form. Here we show that the same is possible for the formulas in
the class BSF because we can eliminate the function symbols from a BSF
formula. In the next paragraph, we present an algorithm which eliminates the
function symbols from a BSF formula by replacing them with equivalent

predicate symbols.

The algorithm R is as follows: let w be a formula in which all

variables are implicitly universally quantified.

step 1. If w has no function symbol then stop. Otherwise, if w has a term {(x),
x denoting a sequence of arguments to {, we create a new variable z
and replace the formula w by the formula

f(x)=2 = w(z).
Note that w{z) denotes the formula obtained by replacing all
occurrences of f(x}) in w by z.

step 2. We introduce a new predicate symbol P; and replace the formula
obtained in the previous step by
Pdxz) = w(z).
Note that the iniended interpretation of P{x,z) is the statement that
the result of applying f to the arguments x is z.

step 3. Go to step 1.

We claim that the algorithm R is correet. The algorithm terminates
because the input formula w has only finitely many terms involving a function
symbol and each iteration over the steps 1 and 2 removes at least one such
term. The transformations to the formula accomplished by the steps 1 and 2

preserves the satisfiability because of the following proposition:

Proposition 5-1: w(f{x}} is satisfiable iff ({(x}=2z=w(z)) is satisfiable.
Proof: (=) Let I be an interpretation in which w(f(x)} is true. If
(f{x)=12) is true in I, then w(z)=w({(x)) is also true in L If (f(x)=z) is



false in I, then (f(x)=z)=w(z} is true in I. Hence, ({(x)=z=w(z)) is
true whenever w(f(x}) is true.

(=) Let (f(x)=z=w(z)) be true in an interpretation L If f(x)=z is

true in I then, w{f(x))=w(z) is also true in 1. Otherwise, let {(x)=z".

Then, w(f(x))=w(z’) is also true in I. Hence, w(f{x}) is true whenever
f(x)=z=rw(z) is true. ///

The formula obtained in step 2 is equivalent to ({(x}==z=w(z)) by definition of

P, and hence, by the proposition above, is satisfiable iff w(f(x)) is satisfiable.

The result of this algorithm R is a function-free formula:
an(gi_nyzn}:(...:ﬁ(Pflégi,zl)::»w(z1,...,zn))
which is equivalent to
an(_gn,zn)/\w./\?fiizl;zi) = w(z;,.,2,)

Notice that the new variables z;,..,z  are all universally quantified. The

it
algorithm R therefore transforms a formula w in the class BSF to a formula in
the class BS. Now, we can state our intented result in the form of the following

lemma:

Lemma 5-1: The satisfiability problem for the class BSF is
decidable.

Proof: The satisfliability problem for the class BS is solvable ‘
and the algorithm R reduces a BSF formula to an equivalent
formula in the class BS. ///

In the next subsection, we shall use this lemma in proving the decidability of

the logical consequence problem for the class UF.

5.1.3 Logical Consequence Problem for the Class UF
We are now ready to prove that the problem of logical consequence
for the class UF is decidable.

A formula w is a locical consequence of a set W of formulas iff for

every interpretation in which each of the formulas in W is true, w is also true
in the interpretation. We shall use the notation W |= w in that case. The

logical consequence problem is to test whether given W and w, W |= w .



b
~J

Here we are interested in the logical consequence problem where w and all

formulas in W are in the class UF.

In order to prove that testing W |= w is decidable, we recast the
problem in terms of the unsatisfiability of the formula WA=w as stated in the

following lemma:

Lemma 5-2: Given a set W of formulas and a formula w, W |= w
iff the formula WA-w is unsatisfiable.

Proof: (=) Let I be an arbitrary interpretation. If all formulas
in W are true in I, then by the delinition of logical consequence,
w is true in I, i.e., —=w is false in I. In that case, the formula
WA-w is false in I. On the other hand, if there is some formula
in W which is false in I, then WA-w is false in I. Thus, we have
shown WA-w is false under all interpretations, i.e., the formula
is unsatisfiable.

(=) Suppose WA—-w is unsatisfiable, i.e., the negation of this
formula is true under all interpretations. The negation of the
formula is W=w. For any interpretation I, if W 1s true in [
then w is also true in I. Therefore, w is the logical consequence

of W. ///

This lemma implies that in order to check whether w is a logical
consequence of a set W of formulas, we have to check whether WA-w is
unsatisfiable or not. If both w and the formulas in W are in UF, then WA-w is
a formula with a prefix R (i.e., in BSF) because w and W have no bound
variable in common. By lemma 5-1, we can check algorithmically whether the
resulting BSF formula is satisfiable or not. In other words, we have the

following theorem:

Theorem 5-2: Given a set W of formulas in the class UF and a
formula w in UF, the problem of logical consequence is decidable.

Proof: Follows from lemmas 5-1 and 5-2. ///

Now that we know that there are algorithms for checking W |= w for
the class UF, we would like to find an efficient algorithm. In the next section,

we present one such efficient algorithm.



5.2 A Decision Procedure for Universally Quantified
Function-free Horn Formulas
In the previous section, we saw that testing the logical consequence
for the class UF of universally quantified formulas with function symbols, is
decidable. Moreover, we saw that any formula in the class UF can be
transformed by the algorithm R into an equivalent universally quantified

function-free formula. Here we shall focus on this function-free form and try to

find an efficient decision procedure for the logical consequence problem for

function-free formulas.

We can achieve the goal of efficiency if we further restrict the
matrices of the function-free formulas to the Horn-form. Thus, we shall

consider only the class of function-free Horn-formulas in this section, and shall

present an efficient decision procedure to test the logical consequence problem

for this class of formulas.

The choice of dealing with only Horn formulas is not unnatural. The
algorithm R produces a function-free Horn formula if the input to R is an
implicational formula in the class UF. As we shall see in the section 5.3 on
proving facts in our DDL logic, such implicational formulas include the axioms
of the data types (the non-logical axioms of DDL logic) as well as many
integrity constraints which arise naturally in the context of network databases.
The decision procedure that we present in this section will therefore serve as a

basis for many applications of our DDL logic.

The rest of this section is devoted primarily to the decision procedure
for the logical consequence problem for the class of function-free Horn-
formulas. After a briel subsection where e review the definition of Horn-
formulas and see that the algorithm R actually produces such formulas, we
shall present the decision procedure in subsection 5.2.2. In subsection 5.2.2, we

prove the correctness of the the procedure and analyze its complexity.



5.2.1 Background
Any Skolem formula can be converted to a clausal form, called the
conjunctive normal form (CNF). A CNF formula has as its matrix a
conjunction of clauses, where each clause is a disjunction of signed atomic
formulas. A Horn clause is a disjunction of signed atoms in which there is at
most one positive atom. The following clause is an example of a2 Horn clause:
=P, V.V =P, V Q
in which Q is the only positive atom. Notice that this formula is equivalent to
the following implication:
P, A . AP = Q.
We shall call those CNF formulas with each conjunct being a Horn clause, a

Horn formula.

To obtain some familiarity with Horn-formulas, let s consider the
form of the formulas produced by the algorithm R. If the input formula w is
an atomic formula w{f;{x,),...,f (x,)), then the result is a function-free Horn
formula:

P%{_)gn,zn} A A Pfi{_}g},zi} = W(zy,...2,)
Second, if the original formula w was of the form A=B, the result of R is
an(gn,zn)A...APfi(zl,21):ﬁ(A(Zi,...,za}:ﬁB(zp,.,,zn})
which is equivalent to

?fﬁ(ﬂx‘_ﬁ,zﬁ}f\hﬂ?%{g_};z}}f\fiﬁziimiz} = Blz,...,z)

H
In other words, if the original UF formula was a Horn-formula, the result of R
is a function-free Horn-formula.
Example 5-2: Consider the axiom 08 of the data type OCS, as shown in
figure 3-2, which can be rewritten as a conjunction of the following three
Horn-clauses:
(1) n=POS(ADD(s,r),r,Q) = GET(ADD(s,r),n,Q)=r
(2) n>POS(ADD(s,r),r,Q) = GET(ADD(s,r),n,Q)
=GET(s,n~1,Q)
(3) n<POS(ADD(s,r),r,Q) = GET(ADD(s,r),n,Q)
=GET(s,n,Q)
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Let POSP, ADDP and GETP be the three predicates corresponding to
the function symbols POS, ADD and GET respectively. The result of the

algorithm R are the three clauses:

(1°) ADDP(s,r,zl) A POSP(zl,r,Q,z2) A GETP(zl,n,Q,z3)
A n=z2 = z3=r

(2°) ADDP(s,r,zl) A POSP(zl,r,Q,2z2) A GETP(z1,n,Q,z3)
A GETP(s,n-1,Q,2z4) A n>z2 = z3=z4

(3") ADDP(s,r,z1) A POSP(zl,r,Q,z2) A GETP(zl,n,Q,z3)
A GETP(s,n,Q,z4) A n<z2 = z3=z4

The clauses (1')-(3’) are Horn-clauses.

5.2.2 The Decision Procedure P

Here we present an algorithm which can decide whether a function-
free Horn-clause is a logical consequence of a set of function-free Horn clauses
or not. We choose to deal with Horn clauses rather than Horn formulas without
any loss of generality, because a Horn formula is simply a conjunction of Horn

clauses.

The idea behind the algorithm is as follows. Suppose we have a Horn
clause ¢ of the form P;A..AP;=Q, and we want to test whether ¢ is a logical
consequence of a set W of Horn clauses. Assuming the hypothesis part of ¢ to
be true, i.e., each of the P;-s is true, we compute the set of all atoms which are
implied by the clauses in W and then we check to see if the consequent Q of ¢

is in the set of implied atoms.

We compute the set of implied atoms one by one by applying the
clauses in W as production rules until no more new atoms can be generated.
Whenever each of the atoms in the left hand side of a clause w in W
*matches® under some substitution o with some atom that has been implied so
far, we can conclude that the atom on the right hand side w under the

substitution ¢ is also implied and therefore add it as a new implied atom.

The process of matching an atom with another is similar to the noticn
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of unification as is used in resolution based theorem proving, but is relatively
much simpler because the atoms in our case are function-free. For example,
given two atoms P(x1,...xn) and Q(y1,...,yn}, they match if P and Q are same
predicate symbol. The substitution in that case is o={yl/x1,..,yn/xn},
meaning that if we substitute yi for xi, 1<i<n, in P and Q, then the resultant
atoms are identical. Actually, in the course of applying a clause w in W as a
production rule, a sequence of substitutions is computed, one substitution for
each atom in the left hand side of w matching with some already implied atom,
and the overall substitution ¢ is the composition of the individual substitution
in the sequence. Let us take an example to clarify the process of applying a
production rule.

Example 5-3: Let the production rule to be applied be

w=P1(x1,x2,x3)AP2(x4,x5)=0Q(x3,x5)

and let the atoms P1{x1,x4,x5} and P2(x2,x3) be already in the set of

implied atoms. Then, we get two substitutions corresponding to the two

pairs of matching predicates, as {ollows:

ol={x4/x2,x5/x3} and 02={x2/x4,x3/x5}.

The overall substitution is

o=01.02={x4/x4,x3/x3,x2/x4,x3/x5}={x2/x4,x3/x5}. In this case, the

new implied atom is

Q(x2,x3,%5).0=0Q(x3,x3). The reader may refer to Chang and Lee [Chang

73, p.76] for further details on the composition of substitutions.

The algorithm P is formally presented in figure 5-1. We shall prove

the correctness of the algorithm P and analyze its complexity in the next

subsection.

5.2.3 Analysis of the Algorithm P

The correctness of the algorithm P is established by showing its
termination and its soundness and completeness with respect to the derivation
of ¢ from the set W of clauses. We take up each of these in turn in the

following paragraphs.
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INPUT:: ¥ is a2 set of n function-free Horn clauses
c is a function-free Horn clause
QUTPUT:: "YES® iT ¥ |= ¢
*NO® otherwise
DATA STRUCTURES:
(1) The Horn clauses are represented by integers 0 to n.
¢ is represented by 0 and the clauses in ¥ by 1 to n.
(2) LS[0:n] is an array of sets, containing the atoms
in the left side of each clause.
(3) RS[0:n] is an array of atoms, each representing the
the right side a clause.
(4) IMPLIED is a set of atoms found to be implied so
far.
(5) DONE is 2 boolean variable.

begin
IMPLIED := LS[0]; DONE := false;
repeat (¥ find new implied atoms %)
DONE := true;
for i:= 1 to n do (% check all of ¥ x)
if each atom in LS[i] matches with some
ztom in IMPLIED with the substitution o

and Rs[i].oc & IMPLIED

then begin
IMPLIED := IMPLIED U {RS[i].o};
DONE := falise
end

end; (% end checking ¥ #)
until DONE; (* end generating new atoms *)
if RS[0] € IWPLIED
then print ®YES®
else print ®NO®
end (% end aligorithm %)

Figure 5-1: Algorithm for Deciding Logical Consequence

Termination. We observe that the if-statement in the algorithm
prevents introducing an atom if it is already in the set IMPLIED. Therefore all

the atoms in IMPLIED are distinct. Given a predicate P with arity k and a set
k

H

of v distinet variables, the maximum number of atoms possible is a = v
because the total number of ways of arranging k items out of v items with
repetition of items being allowed, is vE. Thus, if p is the total number of
distinct predicate symbols in the input of the algorithm P, k is the maximum

arity of a predicate symbol and v is the total number of distinct variable in the
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input to the algorithm R, the size of the set IMPLIED is bounded above by
N:pvk.

Now, we observe that in each iteration of the repeat-loop, at least one
new atom is added. Therefore, it takes only a finite number of iterations to

generate all the possible distincet atoms in IMPLIED.

Complexity. The time complexity of algorithm P can be determined
as follows. We observe that in each iteration of the repeat-loop, all the atoms
in W are checked for matching against the current atoms in IMPLIED. Let
|W| denote the total number of atoms in W, i.e., the length of the input. For
each iteration, the number of atoms in IMPLIED grows at worst by one.
Therefore, the total time spent in completing the repeat-loop is O(N2[W[), N
being the maximum number of possible implied atoms. Finally, at the end of
the repeat-loop, we have to scan the set IMPLIED to see if RS[0] is in it or not.
Therefore, the total time spent by algorithm P is O((N2|W[)+N) = O(N3),
because |W|<N. We state this result as a theorem:

Theorem 5-3: Given a set W of function-free Horn clauses and
another function-free Horn clause ¢ as input, the algorithm P decides
whether W|=c in time O(N3) = G{(pv%ﬁ}, where p is the total
number of distinct predicates in the input, v is number of variables
and k is the maximum arity of a predicate symbol.
Notice that the maximum arity k is a constant <4 when we deal with DDL
formulas. This decision procedure P is more efficient than the general purpose

resolution based theorem provers which deal with general clauses {Horn and

non-Horn) with function symbols and are of exponential complexity.

Soundness: If RS[c| has been added to the set IMPLIED, then RS[c] 1s
logically implied by W and LS[c].
Proof: (basis)
Suppose RS[c] have been added to the set IMPLIED in the first iteration.
Then, there is a formula w € W such that for some substitution o,
LS[w].c = LS[c¢| and RS[w].c = RS[c]. By modus ponens, LS[c] and w
then imply RS|c].
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(induction)

Suppose RS|c|] have been added to the set IMPLIED in n iterations. Let
w € W be the formula that has been used in the nth iteration. Then, w
must be such that under some substitution o, RS[c] = RS[w].c and for
each atom a€LS[w|, a.o€IMPLIED. By induction hypothesis, each such
a.o is implied by LS|[c] and W. ///

Completencss: If LS[c] and W logically imply RS[c], then RS|c] is

added to the set IMPLIED.

Proof: (basis)
Suppose ¢ is implied by W in one derivation step. That is, there is a
formula w € W such that LS[c] and w imply RS[c]. Then, under some
substitution ¢, LS[w].o=LS|c] and RS[w].e==RS|c]. As LS[c] is in the set
IMPLIED at initialization, RS[c] will be added to the set IMPLIED by the
if- statement.

(induction)

Suppose ¢ is implied by W in n derivation steps. Let w be the last formula
used to derive c. Then, under some substitution o, RS[w].oc=RS|c] and
LS[w].o is implied by W. By induction hypothesis, atoms in LS[w].c are all
in the set IMPLIED. Therefore, RS[w].o i.e., RS{c] will be added to the set
IMPLIED by the if-statement. ///

To summarize, we have obtained an efficient decision procedure P by
restricting our attention to function-free Horn clauses. The algorithm is similar
to resolution-based theorem proving procedure with unit-support strategy

[Loveland 78], but is more efficient. First, the absence of function symbols
makes the unification algorithm to match atoms extremely simple. Second, the
restriction of using only Horn clauses makes it possible to match clauses from
the given set W against only the atoms in the set IMPLIED, instead of having
to match clauses within the set W itsell; the latter would have been the case if
general clauses were used. In the next two sections, we shall see that the class
of function-free Horn formulas include many naturally arising integrity
assertions and the algorithm P provides a basis for solving several problems

with integrity assertions efficiently.
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5.3 The Decidable Subset of DDL Logic

Having developed the necessary decidability results in the previous
two sections, we now turn our attention to the realm of databases and apply
these results to the problems related to integrity assertions. We are interested
in two problems here: that of checking consistency of a set of integrity
assertions and of minimizing a set of integrity assertions in a given schema. In
this section, we demonstrate that both the problems are efficiently decidable
for a large class of integrity assertions that are important for Network

datapases.

In order to achieve efficient decidability, we shall focus on a subset of

DDL logic which consists of universally quantified Horn formulas with function

svinbols (in short the class UHF). The problem of logical consequence for this
class is efficiently decidable because one can transform formulas of this class
into equivalent function-free Horn formulas by the algorithm R and then apply
the decision procedure P on the function-free formulas. In subsection 5.3.1, we
shall define this class UHF and show that it includes most of the integrity

assertions of interest.

In subsection 5.3.2, we show that the two schema design problems can
be algorithmically solved by the decision procedure P, provided we consider the
integrity assertions only from the class UHF. In general, we explain here how a
theorem in the {ragment UHF of our DDL logic can be proved by the decision

procedure P.

The capabilities that we develop here for the Network databases are
similar to those developed by dependency theory for relational databases. In
subsection 5.3.3, we discuss the similarities and differences of our formulation

with those in the dependency theory.
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5.3.1 Expressing Integrity Assertions in the class UHF

Before we consider the formulas in the class UHF, let us recall the
syntax of the assertion language L of the DDL logic which we defined in
Chapter 3. The set of predicate symbols in language L include the membership
predicate €, the equality =, the inequality NE, the predicates of the data types
TYPESTATE, OCS, RECORD, LISTID and the comparison predicates LT,
GT, LE, and GE from the implicit data type INTEGER. Au atomic formula in
L is obtained by applying a predicate symbol on the terms of L, the terms

being in turn compositions of function symbols.

A formula in the class UHF is a closed formula in L with the

individual variables being universally quantified and the matrix having either

of the following forms:

1. an implicational formula in L of the form:
PALAP, = Q
where 1<i<n, P; and Q are atomic formulas and n>0;

2. conjunction of implicational formulas.

Notice that disjunction of formulas such as ®x is either a or b” are not allowed
in the class UHF. The syntax for the formulas in the class UHF is chosen so
that algorithm R transforms them into universally quantified function-free

Horn formulas.

The integrity assertions that occur commonly in Network databases
can be classified as constraints over record types, constraints over OCS types
and constraints over multiple object types. In the following, we illustrate via
examples that important assertions in each class can be expressed as formulas
in the class UHF. The examples are based on the database schema shown
diagramatically in figure 5-2.

Record Constraints
Example 5-4: ENO is a primary kev for the record type EMP.
(Vel) (ve2):( €(el,EMP) A €(e2,EMP)
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DNO ENO
DNAME
SAL
MANAGES
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EMP

Figure 5-2: An Example Schema for a Company DB

A D#EMP[el] .ENO = D#EMP[e2].END)
= el=e2
Note that this is an implicational formula.
Example 5-5: The values of the SAL field in record type EMP are in
the subrange of integers 10 and 20.
(Ve): (€(e,EMP) = GE(D#EMP[e].SAL,10))
A (€(e,EMP) = LE(D#EMP[e].SAL,20))
This is a conjunction of two implicational formulas.
OCS constraints
Example 5-6: For the OCS type MANAGES, there is a structural
constraint over the field DNAME.
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(Vme) (Ve) (Vm) : (€ (me,MANAGES)
A (OWNER (D#MANAGES [me] ) =m)
AOWNS (DHMANAGES [me], &)
— D#MGR[m] . DNAME=D#ENP [e] . DNAME

Example 5-7: For the OCS type EMPLOYS, there is an ordering
constraint that the members are positioned in the descending order of the
field SAL.

(Vde) (Vel) (Ve2): (€(de,EMPLOYS)
A OWNS (D#EMPLOYS[de],el)
A OWNS (DHEMPLOYS [de],e2) A Q(el,e2))
= LT(POS(D#EMPLOYS [de],el,Q),P0S(D#EMPLOYS [de],22,Q))
where the ordering predicate Q is

Q(el,e2)= LT(D#EMP[e1].SAL,D#EMP [e2].SAL).

Example 5-8: Every employee has exactly one manager. This means an
EMP record cannot be a member of more than one OCS. This is called
the functionality of link constraint embedded in CODASYL data
structures.

(Ve) (Vmel) (Vme2): (OWNS(D#MANAGES[mel],e)
A OWNS (D#MANAGES [me2] ,e)) = mel=me2

Constraint over multiple object type
Example 5-9: The field DNAME in the record types MGR and EMP
are synonyms, i.e., if there are two instances of these record types which
agree in the key field ENO, then they must agree in the field DNAME.
This is called an extended functional dependency (XFD) in [Casanova 83].
(Vm) (Ve) : D#MGR[m].ENO=D#EMP [e] .END
= D#MGR[m] .DNAME=D#EMP [e] . DNAME

Example 5-10: The instances of the type MGR form a subset of the
instances of type EMP. In other words, the OCS MANAGLS could have
been implemented as a recursive set.

(vm): €(m,MGR) = €&(m,EMP)

Notice that each of the above constraints are formulas in the class UHF. As
shown in the examples, the class UHF includes, apart from general value-based

constraints, several important constraints of CODASYL DDL [Codasyl 71].

One class of integrity assertions which cannot be expressed in the class

UHFT is that of existential assertions such as the Automatic Membership clause
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of Codasyl (c.f. section 3.2) or the inclusion dependency constraint [Casanova
82] (a generalization of the subset constraint]. An example of automatic
membership constraint is that every instance of the record type EMP must be
a member of some instance of OCS type EMPLOYS. In the general case, when
the number of fields of the record types MGR and EMP are different, then the
subset constraint signifying that every manager is an employee (ISA
relationship), is an example of the inclusion dependency. For both these cases

we need existential quantifiers, which are beyond the class UHF.

5.3.2 Solutions to the Schema Design Problems
This subsection discusses how the decision procedure P can be used to

efficiently decide the schema design problem for integrity assertions of the class

UHF.

Recall from Chapter 4 that both checking the consistency of a schema
and minimizing the integrity assertions therein require deriving facts in the
DDL logic. A schema with a set W of UHF formulas as integrity assertions is
inconsistent if we can derive *false® from W. Similarly, in order to minimize
the number of integrity assertions, we have to repeatedly detect and remove
the redundant integrity assertions from the set W; an integrity assertion w is

redundant in W if w is derivable from the set W-{w}.

We can recast the problem of deriving a formula w from a set W of
formulas in DDL logic as a problem of logical consequence. A formula w is
derivable in the DDL logic if it is true in every interpretation in which all the
axioms of the DDL logic are true. That is, w is derivable in the DDL logic if
D |= w where D is the set of axioms of the DDL logic. Similarly, w is derivable
from a set W of formulas in the DDL logic if DAW |= w. Thus, the problem of
detecting inconsistency reduces to testing DAW |= false; and the problem of
detecting redundancy of w in a set W becomes testing DA(W-{w}) |= w. We

know that both these logical consequence problems are cfficiently decidable
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provided that the integrity assertions in the set W and w as well as the set D of
axioms of the DDL are UHF formulas. As we have already decided to restrict
ourselves to the class UHF for integrity assertions, the remaining question 1s
whether the axioms of the DDL logic are also in the class UHF.

The set D of axioms of the DDL logic consist of the axioms defined
with the specification of the data types TYPESTATE, OCS, RECORD,
LISTID and the assumed data type INTEGER. The axioms of the data types
are universally quantified equations or conditional equations. The equations
are clearly in UHF because they are atomic formulas. In the following, we
illustrate via examples that the conditional equations with some meaningful
restrictions are also expressible as UHF formulas.

Example 5-11: Consider the axiom r2 of the READ function of the data
type RECORD, as shown in figure 3-1. It can be rewritten as a
conjunction of the following two formulas:
(1) READ(WRITE(s,F,d),F) = d
(2) NE(F,Fo)= READ(WRITE(s,F,,d),Fy)
= READ(s,F2)
Formula (1) is clearly a UHF formula. Formula (2) is a UHF formula
provided the inequality predicate NE is available in the language, which
is the case.
Example 5-12: Consider the axiom d6 for the FIND function of the
data type TYPESTATE, shown in figure 2-4. The axiom can be
rewritten as the following set of formulas:
(1) Q(i) = (FIND(CHANGE(D#T,1,0},Q)
= INSERT(FIND(D#T,Q),1))

(2) -Q(1) = (FIND(CHANGE(D#T,1,0)},Q)

= FIND(D#T,Q))
The qualification expression Q is an open formula with one free variable.
We claim that if Q(i) is a conjunction of atomic formulas, then both (1)
and (2) are Horn formulas. Let Q(i)= Q;A..AQ,. Then (1) is clearly a
Horn formula. To see why (2) would also be 2 Horn formula, we do the

following transformations:
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(2)= -(QA...AQ,) = R
(QA---AQ) VR
(3, VR)A...A(Q,VR)
A (‘@’;VR),
where Q°; is a negation of Q..

I

i

Because each Q is of the form P(t.t,), P being taken {rom the set {=,
NE, LT, GT, LE, GE}, both Q; and its negation Q’; are expressible as
positive atoms. Thus, the formula {2} is a conjunction of implications
Q';=R, 1<i<n and is therefore a Horn formula. Similar restriction of
being positive atomic formula applies to the ordering predicate as used
with the navigational functions POS and GET.
From these examples, we see that all the axioms of DDL logic are
UHF formulas, provided the ordering predicates and qualification expressions
are conjunctions of atoms. We now return to the question of implementing
algorithmic solutions to the schema design problems, ie., implementing the
tests DA(W-{w}) |= w and DAW |= false. For the integrity assertions in the
class UHF, the solution to the first problem is a straight forward application of
the decision procedure P. Implementing the sclution to the second problemn
needs some explanation. We observe that DAW |= false is equivalent to
D |=(W={alse). Thus, the element LS[0] in the algorithm P will contain all the
atoms in the set W as the left side of the formula to be proved. The element
RS[0] will contain ®false® as the atom of the right side of the formula to be
proved. The algorithm will proceed as usual generating all the implied atoms
by applying the axioms in D as production rules. The atom ®*[alse® will be
generated as a new implied atom if ever some atom and its negation are both
in the set of already implied atoms, because the tautology PA-DP=s{alse is in
the set D of axioms. Thus, if the set of integrit; assertions is inconsistent the
atom *false® will be found in the set IMPLIED.
F

To summarize, we saw that the class UHF includes the axioms of the

DDL logic. Deciding whether a UHT formula in the DDL lozic is a theorem can



be accomplished by the decision procedure P. As most of the integrity
assertions of interest in Network databases are expressible in the class UHF, we
can again apply the algorithm P to solve the problems of schema consistency

and minimization of integrity constraints for Network database schemas.

5.3.3 Relating the Results to Dependency Theory

The formulation of integrity assertions as logical formulas, allows us
to compare the theoretical results of relational dependency theory to our work
for Network databases. We observe that the class UHF is similar to the classes
of dependencies considered in the relational dependency theory, namely the
class of implicational dependencies [Fagin 82] and the class of generalized
dependencies [Grant 82]. Both these classes consist of universally quantified
function-free Horn formulas, identical to those obtained by transforming the
UHF formulas by the algorithm R. In view of our solvability results, we know
that the classes of implicational dependencies and generalized dependencies
have solvable logical consequence problem. But the logical conséquence
problem for generalized dependencies is noted to have an exponential time
complexity [Grant 82, Maier 79|, while we have polynomial time complexity for
the class UHF. The reason for this apparent discrepancy is due to the fact that
the class of generalized dependencies are formulated as domain-relational
calculus as opposed to the tuple-relational (using object-variables as individual
variables) formulation of the class UIF. For domain-relational formulation, the
relation symbols are treated as predicate symbols and hence, their maximum
arity is dependent on the input to the decision procedure. For a tuple
relational formulation, on the other hand, the predicates have constant arity,
independent of the input. From theorem 5-3, we see that the complexity for
domain relational formulas would be exponential on input while it is

polynomial for a tuple relational formulation.

As stated in subsection 5.3.1, inclusion dependencies cannol be

expressed in UHF. But the logical consequence problem for inclusion
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dependencies is known to have a PSPACE-complete decision procedure
[Casanova 82| in the general case and a polynomial decision procedure in a
restricted case. The solvability results that we established here for the
universally quantified Horn formulas can be used to explain why the restricted
case (such as ENOs of MGR records is a subset of the ENOs of the EMP
records) would have a decision procedure, because the domain relational
formulation of this restricted inclusion dependency consists of universally

quantified Horn formulas.

5.4 Verification Decidability of DML Transactions

We now turn our attention to the third problem of integrity
maintenance, namely the problem of verifying DML transactions against
integrity assertions. We are interested in those cases where the verification
conditions (VCs) fall within a decidable class, because then we can declare a
transaction to be correct or incorrect by proving or disproving the VCs.

Following [Suzuki 80], we shall call a transaction verification decidable if all

the VCs are within a decidable subset of the DDL logic. Of course, we require

the VCs to be efficiently decidable by the algorithm P.

As the VCs depend upon both the transaction and the inductive
assertions against which the transaction is to be verified, we shall actually

consider annotated transactions, i.e., the transaction codes are interspersed

with inductive assertions. Our main result in this section is that if a DAL
transaction 1s annotated with assertions in the class UHF and the conditional
expressions within the transaction are conjunctions of atomic formulas, then
the transaction is verification decidable. This is so because under these
restrictions on annotated transactions, the VCs are all of the form A=1B, where
A and B are UHF formulas. Such formulas are decidable by the algorithin P,
because D |= (A=B)} & DAA |= B, and the latter is a case of the logical

consequence problem for UHF formulas.
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This result by itsell would not be so interesting if the annotated
transactions encountered in practice during integrity enforcement did not obey
these restrictions. In the case of enforcing integrity assertions, we know that
the input/output assertions are the in the class UHF. If a transaction is a
simple sequence of the DML statements MI1-M7, ie., without an alternative
statement or a loop statement, there is no need for intermediate assertions and
hence such straight line programs, being annotated by only the integrity
assertions at their input and output, will always satisfy the restrictions of the
theorem. For transactions with alternative statements, one may certainly
choose to write a conditional expression which 1s not a conjunction of atomic
formula. But such an alternative statement can always be rewritten as an
equivalent one with only atomic formulas as conditions. Similar arguments
apply to the conditional expressions controlling WHILE loops. That is, the
limitation imposed on the conditional expressions is in principle not restrictive.
The question as to whether annotated transactions with loop statements also
satisfy the restriction is, however, open at this point. For, the loop invariants
may not be UHF formulas even if the transaction has UHF formulas as input
and output assertions. But, in many common cases the alternative and loop
statements meet the restrictions of the theorem directly and thus lead to
verification decidable transactions. In fact, we have identified three transaction
schemes involving alternative and loop statements which are naturally
verification decidable. These schemes include cases when a [I'-statement is used
to guard the update of several objects or a loop-statement Is used to update a
set of objects or loop-statements are used to select a set of objects and then

update them.

The rest of the section is organized as follows. In subsection 5.4.1, we
prove our main result by considering the proof-rules of the DML logic. In
subsection 5.4.2, we consider a2 transaction scheme in which an II'-statement
guards a sequence of updates and show that transactions instantiating this

scheme are verification decidable. In subsection 5.4.3, we present a transaction
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scheme in which a set of objects are updated inside a FOREACH statement.
We show that the loop invariant for this scheme is a UHF formula leading to
the verification decidability. We provide also an instance of this scheme as an

example of a verification decidable transaction.

5.4.1 On Generating Decidable Verification Conditions
In this section, we prove the following theorem which states the
necessary restrictions on the annotated transactions under which the VCs are

formulas decidable by the algorithm P:

Theorem 5-4: Let M be an annotated DML transaction. If (i) the
inductive assertions used to annotate M are UHF formulas and (ii)
the conditional expressions are conjunctions of atomic formulas, then
the verification conditions are of the form of an implication A=B, A
and B being UHF formulas.

Proof: We prove the theorem constructively by case analysis. Let us
consider that we are interested in proving the Hoare formula a{M}8, and
o and J are formulas in UHF. As none of the proof-rules of the DML logic
introduce an existentially quantified variable, we shall show in case of M
that the VCs are of the form of an implication of Horn formulas A=B.

Case (i): Let M be either of the two CREATE-statements M1 or M2.
From section 3.3, we see that the weakest pre-condition wp(M1,3) is
FRESH(D#R,1) = S[D#R’/D#R][i/r].

Now, the consequent of this formula is a UHF formula 8’ because the
substitutions do not alter the sequence of logical connectives in f. Thus,
wp(M1,3) = FRESH(D#R.i}=#", which is a Horn formula. Hence, the VO
a=wp(M1,7) is an implication of two Horn formulas. Similarly for the case
when M=M2.

Case (ii): Let M be either of the DML statements M3-M7. We observe
that the weakest preconditions for these statements are all obtained by
substitution to the post-condition . Therefore, they are all Horn formulas.
Hence the VC has the desired form of implication of two Horn formulas.

Case (iii): Let M be IF B THEN M, ELSE M,, where M; and M; are in

§?
the set {M1,... M7}. The VCs in this case, as seen from the proof-rule Al13,
are the formulas:
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(1) (anB) = wp(M;.0)
= a= (B= wp(M,,5))

(2) (an -B) = wp(M;,5)
= a= (-B= wp(M;,5))

If B is a conjunction of atomic formulas B;A...AB_, then the consequent

part of formula (1} is clearly a Horn formula. To see why the consequent
part of the formula (2) is also a Horn formula, we do the following
transformations:

—B=wp (M;, 8)

i

Il

= (BjA...AB,) = wp(M,,f)
(ByA- .- AB.)Vwp (M, )
Aoy (B V wp(Me,8))

/\?:1 (—'B'g vV WP(Mf.ﬁ))
where each B’; 1s a negation of B,.

Because each B; is of the form P(t;,t,), P being one of {=, NE, LT, GT,
LE, GE}, both B; and its negation B', are expressible as positive atomic
formulas. Thus, the preceding formula is a conjunction of implications
B’;=wp(M;,B), and is therefore a Horn formula. Thus, each of the VCs is
an implication of two Horn formulas.

Case (iv): Let M be the loop-statement WHILE B DO M,. Let the loop-
invariant I be a UHF formula. From the proof-rule Al4, we get the
following VCs:

(1) a = I
(2) INB = wp(M_, )
(3) (I/\ "18) = f

VC (1) is clearly in the desired form. By the arguments similar to those
given in case (i), if the conditional expression B is a conjunction of atomic
formulas, then both (B = wp(M_,f3)) and (=B = ) are Horn formulas.
Thus, VC (2} being equivalent to I= (B=wp(M_,f)) is an implication of
two Horn formulas. Similarly for VC (3).

~ Case (v): Let M be the loop statement FOREACH x IN X DO M,. Let

the loop invariant I be a UHF formula. From the proof-rule of the
FOREACH statement, the following VCs are generated:



(1) « = I([])
(2) I(X1) = wp(M., I(X1]|[x]))
(3) I(X) = 8.

As I'is a Horn formula, I({}), [[X1) and I{(X1||[x]) are all Horn formulas.
Hence the Vs (1), (2) and (3) are all in the desired forms. ///

This concludes the proof of the theorem. Given a VC of the form
A=B, we can decide whether it is a theorem in the DDL logic or not by posing
the question DAA |= B to the algorithm P, and all the formulas being Horn
formulas, the algorithm P produces the correct answer. Theorem 5-4 provides
an easy way of determining whether a given annotated transaction is
verification decidable or not, because the necessary conditions stated in the

theorem can be readily checked by simple inspection.

As to the application of this theorem in practice, recall that the
program verification is applied to only the update transactions to ensure the
preservation of integrity assertions. Thus, the update transactions annotated at
their input and output by the integrity assertions (ie., by UHF formulas)
constitute our domain of interest. The question is whether these transactions
are always verification decidable. By theorem 5-4, the question boils down to
whether the conditional expression in these transactions are always conjunction
of atomic formula and the loop invariants are universally quantified Horn
formulas. In the next two subsections, we take up answering these questions

respectively.

5.4.2 The IF Statements Guarding Updates

We consider here a transaction scheme which updates a sequence of
objects and may involve a conditional statement to preserve the integrity
asscrtions. We argue that conditional expression for this scheme is always a
conjunction of atomic formulas and hence the transactions following this

scheme are verification decidable.
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The transaction scheme M is as follows:

T B
then begin
X &=V
X =V,
end

Let X represent the sequence of objects <xy,...,x > being updated in M and V
represent the sequence of values being assigned to them. Now consider that we
want to verify that the transaction M preserves the following integrity assertion
w:
(vx) (P(x) = Q(x)

We are interested in finding what the conditional expression B should be such
that w{M}w is true. We claim that either B is empty (no test required) or B is
an atomic formula Q(V). To prove this fact, we resort to the proof-rule for II'-
statement and see that w{M}w is true if the following VC is true:

wAB = (P(V)=Q(V))
= w = (BAP(V) = Q(V))

Assuming the hypothesis w to be true, we need to show BAP(V)=Q(V). There
are two cases regarding the truth of this implication. If P(V) is false, then the
implication is vacuously true and hence, no test B is needed at all. On the
other hand, if P(V) is true, then the implication is true if B=Q(V} is true,
which can be easily established if B=Q(V). Thus, the conditional expression B
is an atomic formula Q(V). Notice that the condition B in this case may be

synthesized in a manner of Query-modification [Stonebraker 75].

Actually, the situation can be generalized if w is a conjunction of
several implicational formulas Al ;P;=Q, In this case, the conditionsl
expression B will be either empty or a conjunction of atomic formulas
/\?:]Qi(V). The following example illustrate: the construction of the
conditional expression.

Example 5-13: Consider the Company DB as shown in figure 5-2.



Suppose we want to write two transactions, HIRE(e,me} to add an
employee e under a specific manager who owns the OCS me of type
MANAGES, and RAISE(e,n) to give a raise of n thousand dollars to an
employee e. The affected integrity assertions are the asscrtions shown in
the examples 5-6 and 5-5 respectively and repeated here:

(1) &€(me,MANAGES) AOWNS (D#MANAGES [me]=m)

= (D#EMP[e] .DNAME
= D#MGR [OWNER (D#MANAGES [me]) ] . DNAME)

(2) €(e,EMP) = LE(D#EMP[e].SAL,20)

The transactions are shown below:

HIRE(e,me):: IF D#EMP[e].DNAME
= D#MGR [OWNER (DEMANAGES [me]) ] . DNAME
THEN CONNECT EMP(e) TO MANAGES(me);

RAISE(e,n):: IF LE(D#EMP[e].SAL+n, 20)
THEN STORE (DHEMP[E].SAL+n) IN D#EMP[E].SAL;

In the case of the RAISE transaction, the conditional expression is

obtained by substituting the updated value for the SAL field in the

consequent part of the integrity assertion (2). The conditional expression

in the HIRE transaction is also similarly obtained from the consequent of

assertion (1) but is further simplified to the form shown above by taking

into consideration the fact that the OWNER of the OCS named me and

the record e are unaltered by the update. In both cases, we have the
conditional expressions as atomic formulas.

The transaction scheme M is quite commonly used, because the I

statements are embedded in the transactions to guard against the integrity

violation by the updates. Such transactions being verification decidable, we can

detect algorithmically if any required test is not coded into the transaction.

In the general case when an alternative statement is used for purposes
other than guarding updates, one may want to use conditional expressions

which are not conjunctions of atomic formulas. But with any such II statement
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can be rewritten as another IF statement (possibly nested for disjunctive
cxpressions) which uses only atomic formulas as conditional expressions.
Similarly, one can rewrite any WHILE loop as one using only conjunction of
atomic formulas as loop condition. Thus, the restriction on conditional
expression is not one of principle but one of convenience. The purpose of the
preceding discussion in this subsection was to show that in the case of
alternative statements guarding update, conjunction of atomic formulas is the
natural conditional expression if the integrity assertion being affected by the

update is a UHF formula.

5.4.3 Transactions with Loops

In this subsection, we consider the question whether the loop
invariants for update transactions which are annotated at their input and
output by UHF formulas, are themselves UHF formulas. The question for an
arbitrary transaction with loops, remains open at this point. Instead, we shall
consider here two common cases of using a loop in an update transaction: when
the loop scans a set of objects either to update the objects or to select a subset
of them and then update the objects in the subset. In both cases, we show that
a loop invariant which is adequate to prove integrily preservation by the loop,

is a universally quantified Horn formula.

Consider the following update transaction scheme M, where a set X of

objects are scanned:

M, (X,S):: foreach x IN X do S(x,y)
The loop body S is a group of statements and may either update a variable y
bv some function of the object x in X or update each object x in X by some
function of the variable y. As we are interested only in proving that M, will
preserve some integrity assertions, we can formulate an adequate loop-invariant

independent of the loop body S.

Let a UHF formula w= V*?:—?Q_, be an integrity assertion to be
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preserved by the transaction scheme M, i.e., w{M,}w should be true. Actually,
the integrity assertion w should be true for all values of the variables in the

transaction scheme and as such the integrity assertion defines a closed domain.

Misra [Misra 77] argued that a closed domain is a loop invariant. We utilize
this idea to postulate the following loop invariant I:

I(Z)= (Vi) (ieZ=w(i,y))
A (YD) (Te(X-2)=w(l,y))
A ZCX

he intuition behind this loop-invariant I(Z) is that Z being the already
scanned portion of the input set X, the integrity assertion must hold for the
objects in Z (because on exit w holds for all the scanned objects though
possibly modified) as well as for the unscanned objects in (X-Z) (because
initially all the unscanned objects do satisfy the integrity assertion). Clearly,

I{Z) is a universally quantified Horn formula if w is one.

Now we claim that I(Z) is an adequate loop-invariant. To prove that

we must show the following:

(1) (V1) (Jexnw(j,y)=1(2))

¢ being the empty list,
(2) I(X)=(v]) (Jex=w(l,y
(3) (X=X1]|[x]IIX2) AL(X1) {S} I(X1[x]).

The conditions (1), (2} and {3) are entry, exit and iteration conditions. The
condition (1) and (2} are obvious because I{Z) includes by design both the input
and output conditions. To show the condition {3}, we must prove that the loop
body S updates x {(or y) in such a way that w(x,y) is true after the update. But
in the previous subsection, we have already discussed the case of updating 2
single object and chowed that guaranteeing satisfaction of the integrity
assertion by the updated object can be accomplished by a test involving a
suitable conditional expression. Assuming that w(x,y) is true after the single

object update, the condition (3) easily follows.

Thus, an adequate loop invariant required to prove w{M,}wis a UHF

formula. In many cases, however, the transaction scheme M, will be preceded
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by an initialization to the variable X. In general, X will contain a set of objects
which are selected according to some qualification expression. Achieving this
selection in a navigational fashion, involves loops which are schematized in the
following search scheme M,:
Mo (T,P,X)2:
X := &;

foresch t in T do
1 P(t) then X := X||[t];

end

Again, the adequate loop invariant 12 can be obtained by generalizing
the input and output conditions i.e., the property P holds for every x€X and
X=¢ initially,

12(Z)= ICT A (I=0=X=9)
A (Vi) (I€ZAP(1)=1€X))

Notice that 12(Z) is also a UHF formula, as long as P is a conjunction of atomic
formulas. We have already discussed this issue about the form of qualification
expressions and decided to use conjunction of atomic formulas for them (c.f.
Example 5-12).

The two common cases of using loops in update transactions are
prototyped by the transaction schemes M, and M, and the loop invariants for
them are UHF formulas. By theorem 5-4, these transaction schemes when
annotated at their input and output by UHF formulas, are verification
decidable. We now take an example which instantiates the transaction scheme
M, and observe that the loop invariant is indeed a UHF formula.

Example 5-14: Consider again the company DB shown in figure 5-2.
Suppose we want to write a transaction TRANSFER(mI1,m2) to effect
transferring all employees managed by a manager ml to another manager
m2. Let the parameters actually denote the respective OCS of type
MANAGES whose owners are the managers in question.

TRANSFER (m1,m2) : ¢
E := MEMBERS (D#MANAGES[m1]) ;
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D#MGR [OWNER (D#MANAGES [m2] ) ] . DNAME;
is the DNAME of the second manager, and
Is the set of employees under the first manager

(%
*)

foreach e IN E do

begin
disconnect EMP(e)} from MANAGES(ml);
store d into EMP(e).DNAME;

connect EMP(e) to MANAGES(m2)

end;

Iy il

The transaction TRANSFER as coded above, scans each member of m1
{(kept in E}, removes it {from ml, updates it so that the updated DNAME
field of the employee reccrd equals that of the owner of m2, and finally
connects it to m2. The objects updated by this transaction are ml, m2

and the objects in E.

The following UHF formula w represents the structural constraint on the
OCS type MANAGES:

w(e,m)= OWNS(D#MANAGES[m],e)=
(D#EMP [e] . DNANE
= D#MGR [OWNER (D#MANAGES [m]) ] . DNAME)

We postulate the loop invariant I{Z}):
I1(S)= SCE

A (Vi) (ieS=w(i,m2))

A (V1) (1e(E-S)=w(i,ml))

To show that 1{S) is a loop invariant, we have to show

E=S||[e]]IS” A I(S){loop body}I(S||[e])

The loop body makes sure that after e is connected to m2, the DNAME
field of e equals the DNAME field of m2's owner, thereby making
w(e,m2} true. With this fact, the preceding iteration condition easily
~ follows. The exit condition I{E) clearly implies the integrity assertion

w. The integrity assertion also implies the entry condition (@) after E
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has been substituted by the initialization
MEMBERS(D#MANAGES[m1]). Thus, I(S) is an adequate loop
invariant. Moreover, all the assertions involved in proving
w{TRANSFER(m1,m2)}w are all UHF formulas, thereby making the
annotated transaction verification decidable.

In the preceding paragraphs, we saw that to verify transactions
instantiating the scheme M, preserves UHF formulas as integrity assertions, the
loop invariants are also UHF formulas. In fact, the loop invariant states that
the integrity assertion is true for the elements scanned (i.e., possibly modified)
as well as for the unscanned elements. Therefore, values input to the loop at
beginning of each iteration come from a class of values where every member
satisfies the integrity assertion. Thus, a generalization of the integrity assertion

is adequate as a loop invariant for the transaction schemes considered.

To summarize this chapter, we have identified a decidable subset of
the DDL logic as the class of universally quantified Horn formulas. By
restricting the matrices of the formulas to Ilorn form, we obtained on one
hand, a relatively more efficient decision procedure for this class of formulas, as
compared to the general purpose resolution-based theorem provers. For our
specific domain of application, namely that of verifying DML transactions
against integrity assertions, we can abandon the general purpose theorem
proving in favor of the decision procedure P.In fact, development of such
domain-specific theories are being advocated by the researchers in the program
verification area [Good 82| and our work here may serve as a step in this
general direction. On the other hand, from the point of view of Netwerk
databases, we obtained in the decision procedure PP a basis for algorithmic
solutions to three problems: detecting consistency of a database schema,
minimizing the integrity assertions therein and verifying preservation of
integrity assertions by a DML transaction. The scope of applicability of the
solutions is fairly large because many naturally arising integrity assertions and

update transactions obey the conditions applicability.



Chapter 6

Conclusion and Future Research

We have presented a logic for Network databases and its application
to the problem of formulating and maintaining integrity assertions. We
developed the logic by integrating techniques from program specification
methcdology, and showed how existing program verification methods can
implement the applications of this logic to the problems of Network databases.
Finally, we presented a decidable subset of this logic and a decision procedure
for the logical consequence problem for this subset. We showed that application
of logic techniques to the problems of Network databases can be implemented
in many naturally arising cases by this decision procedure, thereby avoiding the

use of general purpose program veriflers.

The work presented here has made contributions not only to Network
database technology but also gives an important example of the state of the art
in the specification and verification of programs. In the following, we list the
contributions from the points of view of both database as well as programming

methodology. Then, we give some future research directions.

8.1 Contributions

The contributions to the database technology are as follows:

(1) We provide 2 set of axiomatized primitive opecrations on Network
database structures. Formal semantics of other DMLs can be given
by interpreting them in terms of these primitive operaticns.

(2) We provide a logic for Network databases. This logic permits us to
verify correctness of the two components of a database definition:
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the schema and the transactions. Developing formal specification
with an eye towards verification separates our work from the earlier
work on formal specification of Network databases [Biller 76].

(3) We proposed transaction verification as a method of integrity
management at compile time for Network databases. Network
DBMSs at present use for integrity monitoring ad-hoc trigger
procedures, which are executed at run-time and may even require
transaction rollback. Compared to the earlier work in using
compile time techniques for integrity management in relational
databases [Hammer 78, Gardarin 79|, we use neither gcneral
purpose program verifiers nor heuristics, but an efficient decision
procedure to implement our method for a rich class of integrity
assertions. Moreover, the formal specifications developed here for
the network databases can easily be incorporated into an existing
program verifier, which may use a general purpose theorem prover.

(4) We showed that the class of universally quantified Horn formulas
are adequate also for a large class of integrity assertions for
Network databases. For this class, we presented a decision
procedure to solve the logical consequence problem. This procedure
equips us with some capabilities towards automated schema design
tools which are comparable with the capabilities provided by the
relational dependency theory. In particular, we can algorithmically
solve the problems of detecting inconsistency of a given schema and
minimize the number of integrity assertions therein.

(5) We presented a methodology based on abstract data types to
specify the database structures formally. The methodology should
be useful for specifying other conceptual data models such as the
entity-relationship model. Compared to the earlier attempts of
applying abstract data type techniques to databases, our work is
thorough and can handle the sharing of objects.

From the point of view of programming methodology, our work

" contributes the following:

(1) a practical solution to the problem of algebraically specifying the
behavior of shared mutable objects. The solution, compared to the
earlier work [Berzins 79|, permits recycling of existing verifiers and
specification checkers to verify programs using such objects.
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{2) a class of verification decidable programs for a specific application
domain. Programs in this class produces verification conditions
which are all of the same form, namely an implication of two Horn
formulas. The advantage of classifying annotated programs by the
type of the verification conditions is that proving any member of
this class requires the same structure for the proofs and the verifier
can be tailor made for this class. Moreover, the applicability of the
specialized proof procedure is readily determined in our case by
simple inspection of the given transaction and its annotations.

6.2 Future Research Directions

As to the directions for future research, there are topics which
emerged from the discussions in the various chapters. We list some of them in
the following:

(1) We do not know whether the class of UHF formulas is a maximal
subset of the DDL logic which is decidable. We have reasons to
believe that larger classes which include some existential
dependencies may still be decidable. For example, we know that the
class of inclusion dependencies which is beyond the class UHF, has a
decidable logical consequence problem. We need further
investigations to find larger decidable subsets of our DDL logic.

(2) In case we detect a transaction being incorrect, it is desirable to
synthesize code which will make it correct. The ability to infer the
reasons for failure in proving a verification condition seems to be
crucial as a first step towards synthesizing code. The work in the
area of program synthesis may be applicable to this problem.

(3) There is definitely a need for gaining experience in the verification
of DML transactions. The experience can be helpful in further
identifying higher order properties which are often used in proving
the transactions. These properties should be used as lemmas for
proving transactions, rather than proving them from the scratch
every time.

{4) Our goal is to build design aids for Network database designer. The
ideas and algorithms presented here need to be implemented and
tried out in practice.
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