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Abstract

In this paper, we consider whether a given finite state concurrent system meets a
specification (pg, #,), where py, is a functional assertion expressed in a branching time
iovic and ¢, is the the underlylng falrness assumption expressed in terms of infinitary
linear temporal operators Fp and Gp We will give an efficient algorithm for this
problem when the fairness constraint & is an appropriate ®*normal form®*. We will also
show that the problem is, in general, NP-complete.

1. Introduction

In [CES83] an efficient algorithm is given for verifying that the global transition
graph of a finite state concurrent system is a model of a specification expressed in a
proposmonal branching time temporal logic. For finite state systems, the model check-

ing algorithm provides a mechanizable alternative to the traditional approach to concur-
rent program verification where a proof of correctness is constructed by hand using
various axioms and inference rules. An extension to handle certain restricted types of

fairness is also considered.

In this paper, we present a model checking method to handle generalized fairness.
In particular, we consider the Model Checking Problem (FMCP) for Fair Computation
Tree Logic (FCTL). FCTL is a branching time system which generalizes the (ordinary)
CTL of [EC82], [EH82] and [CES83] by having all path quantifiers relativized to a fair-
ness assumption &, composed of arbitrary boolean combinations of the infinitary linear
time operators I'p (*infinitely often p *) and Gp (*almost everywhere p*). Its basic
modalities are thus of the form Ag (*for all fair paths®) or Eg ("for some fair path®) fol-
lowed by a single linear time operator: Fp (*sometimes p"), Gp (*always p*), Xp
(*nexitime p*}, or [p U q] {"p holds until q becomes true*). The infinitary operators of
¢, make it possible to express and reason under a wide variety of "practical® fairness as-
mmpuuﬁs from 1he literature including weak fairness ([LA80], [PA80], [QS82]) (#y=
/\?__1§Gt>ﬂabled =F executedl;) strong fairness ([EC80], [LAS80], {PA?OO], [QS82]) (#y=
A (F enabled, = executed, ), and impartiality [LPS81] (85= AJ_,(F executed;)). Only
fairn-ss of the last type is considered in [CES83].

We will first argue that FMCP can be efficiently reduced to the Fair State
Problem (FSP): Starting from which states is there some path along which &, holds?
We then show that if &, is of the form /\ (F p; V qu) FSP and FMCP for FCTL can be
solved in time linear on the size of the' mput specification and input structure. Since it

turns out that many practical types of fairness used in the literature can be succinctly
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expressed using such a &, a verification method based on our model checking algorithm
is potentially of wide apphcablhty Finally we will show that FSP and FMCP for ar-
bitrary ¢, composed of F p and Gp are NP-complete.

The remainder of the paper is organized as follows: Section 2 describes the syntax
and semantics of our specification language -- FCTL. In section 3, the model checking
problem and fair path problem are defined, and their complexity is analyzed. Applica-
tions and examples are give in section 4.

2. The Specification Language

A Fair Computation Tree Logic (FCTL) specification (pg, &) consists of a func-
tional assertion p, and an underlying fairness assumption #;. The functional assertion p,
is expressed in essentially CTL syntax with basic modalities of the form either Ay (*for
all fair paths*), or Eg (*for some fair path®) followed by one of the linear time operators
Fp (*sometimes p*), Gp (*always p*), Xp (*nexttime p*), or [p U q] ("p holds until q
becomes true). We subscript the path quantifiers with the symbol ¢ to emphasize that
they range over paths meeting the fairness constraint &;, and to syntactically distinguish
FCTL from CTL. A fairness constramt &, is build up from atomic propositions, the in-
finitary linear time operators F p (*infinitely often p*) and Gp (*almost always p*), and
boolean connectives. Note that p, is a state formula (true or false of states) whereas &,
is a path formula (true or false of paths).

2.1. Syntax

Formally, the class of functional assertions in FCTL specifications is defined induc-
tively as follows:

1. Any atomic proposition P is a functional assertion.
2. If p, q are functional assertions then so are —p, and (p A q).
3. If p, q are functional assertions then so are AzXp, EgXp, Ag(pUg), and E4(pUq).

A propositional formula is one formed by rules 1, 2 above. A fairness constraint is
then formed by the following rules:

[e.9] 0
4. If p, q are propositional formulae then F p, Gp are fairness constraints.
5. If p, q are fairness constraints then so are —p, and (p A q).

The other connectives can then be defined as abbreviations in the usual way: p V
q abbreviates =(—=p A —q), p = q abbreviates =p V q, AgFp abbreviates A g(true U p),



EFp abbreviates Egltrue U p), AzGp abbreviates —EgF-p, ete.

Remark: Recall that CTL* is the full branching time logic in which the basic
modalities have the form: A or E followed by an arbitrary combination (involving
boolean connectives and nesting) of linear time operators F, G, X, and U. We could thus
view the assertions of FCTL as a sublanguage of CTL* where, eg., the AgFp is an ab-
breviation for the CTL* formula A[é, = Fp]. However, the corresponding CTL* formula
might be rather unwieldy due to the need to repeatedly write down multiple copies of
the actual fairness formula &

2.2. Semantics

Let AP be the underlying set of atomic propositions. A structure M=(S,R,L}is a
labeled transition graph, where

e S is a nonempty set of states.

s R is a binary relation on S which gives the possible transitions between
states. :

o L: S — 247 is a labeling which assigns to each state a set of atomic proposi-
tions (intuitively, the propositions true at that state}.

The size of a structure M=(S, R, L), written [M], is defined to be the sum of the

< i 8 and the number of transitions in H.

A fullpath x is an infinite sequence of states (Sg» Sp» gy - ) such that vi>0{(s;,
i)l € Rl We use x' to denofe the suffix of x beginning at state x;, L.e. X'==(x;, Xj4y, -
 Qometimes we use ®computation sequence® instead of "fullpath®. We write M, x|=4,

3
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to mean that fullpath x in structure M meets fairness constraint &,. We define the |=

relation inductively in the usual way: -
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iff M, x|==p and M, x|=¢q

M, x|=F p iff there exists infinitely many i>>0 such that M, x! |=p
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We write M, s|=E, if there is a fullpath x starting at s such that M, x|=0, We

sav that x is a fair path in structure M under fairness assumption &, if M, x|=¢, holds.

~n some {air path. A substructure C of M is called a fair com-

'is strongly connected and contains some fair path.
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An FCTL specification {pg, &) is interpreted with respect to a structure M. We
M, s|=¢4 P to mean that functional assertion p is true at state s of structure M

under fairness assumption ¢, We define l=¢0 inductively on the structure of the func-

tional assertion py:

1.

2.

[wa)

M, slz%P iff P € L(s), for any atomic proposition P.

M, siz%—sp iff not(M, si:%p)

.M, s{:——%p A q iff M, slz%p and M, s]x%q

.M, sﬁgz%E@Xp iff there exists a path x=(sy, s, Sy, -.- } such that M, x|=2,, and

M7 Sll:@Op

.M, sglz%Ad,Xp iff for all paths x=(sg, s, 85, -- )} [M, x|=8; = M, sliz%p]

.M, SO"‘"_’@OE&(p U q) iff there exists a path x=(sg, sy, 8y, ... ) such that M, x|=¢,

and 3j>0[M, s‘iz%q A Vi<j(M, Sgizngp)]

.M, sﬁlz¢0A¢(p U q) iff for all paths x=(s, sy, S, -- ), M, x|=4, implies 3j>0[M,

Sj‘zgpoq A Yi<j(M, Siizqsop)]

We say that an FCTL specification (pg, ;) is valid provided that for each structure
M=(S, R, L), and each state s € S, M, s|=4 p,, holds. An FCTL specification (pg, 8;) is
satisfiable provided that for some structure M=(S, R, L) and some state s€S, M,

si:-—*%po. In the later case, we say that M is a model for (pg, &g)-

If (pg, @g) 1s an FCTL specification then the set of subformulae of functional asser-

tion py, written SF(pg), is the minimal set satisfying the following conditions:

Note

IR S o e

Py € SF(P{})

—-p € SF(pg) = p € SF(pg)

p A q € SF(py) = p, a € SF(py)

EgXp € SF(pg) = p € SF(py)

AgXp € SF(pg) = p € SF(p)

E4p U q) € SF(pg) = p, 4 EgXE4(p U q) € SF(py)
Ag(p U q) € SF(pg) = p, 9, AgXA4(p U q) € SF(py)

that |SF(py|=0(|pgl), where |SF(p,)| denotes the number of elements in SF(pg), and

Ipg| denotes the length of the formula py.



3. Model Checking Problem and Fair State Problem

The Model Checking Problem for FCTL (FMCP) is: Given a structure M=(S, R,
L), and an FCTL specification (py, ), determine for each state s€S whether M,
s{:%%‘ The Fair State Problem (FSP) is: Given a structure M=(8, R, L), and a fair-
ness constraint ¢, determine for each state s€S whether there is a fullpath x in M start-
ing at s such that M, x|=¢,.

3.1. Reduction of FMCP to FSP

Since the FSP condition is equivalent to M, s|=4 EzXtrue, FSP may be viewed as
a special case of FMCP. However, we can generalize a method in [CES83] to reduce
FMCP to FSP. The reduction yields an algorithm for for FMCP that runs in time linear
in the size of the input (specification and structure} and the time to solve FSP. The
reduction exploits the observation that, for any fairness constraint &, and for any
fullpaths x and y such that x Is a suffix of y, M, x |= & iff M, y |= &,. We thus get the
following equivalences:

(1) M, sl= BXp iff 365, YERIM, t/=E2g) A (M, ti=4, )
(2) M, sl=g ApXp it ¥(s, )ERIM, ti=Ee) = (M, t}=¢p)
(3) M, slz%E(p[p U q] iff there is a finite path of nodes satisfying p leading

to a fair node which satisfies q.
(4) M, sl=g Aglp Ul if M, sl=g,(Eg(~q U (=P A =) V EgG(~q))

The equivalences (1} and (2) are immediate; (3) is just a restatement of the definition.
To check Aglp U ql, equivalence (4) shows that we can first check whether Eg(—q U (-p
A —q)) using equivalence (3). To next check EzG(—q), we let M’ be the substructure of M
obtained by deleting all nodes where g holds (inductively, we assume nodes of M are
labeled with the true subformulae). Then E5G(—q) holds at a node s iff there is a finite
path from s to a fair node t in M’. Detection of fair nodes is done by the algorithm for
FSP. The reduction algorithm (we call it AFMCP) is described in greater detail below
(Figure 1).

We claim that when AFMCP terminates, the following assertion holds:

VIESF(py)[f€label(s) iff M, si:——%f ]. The proof is by induction on the structure of {. The
details are left to the reader.



Let T (M, &,) denote the time complexity of algorithm AFSP(M, #y). Then we cal-
culate that AFMCP requires time O(|py|-max([M|, T (M, #3))}). To see this note that
steps 1, 2 are executed only once and require time O(T 4(M, ¢,)+O|M]|). Moreover, step
3 is a for loop which is executed |SF(py)| times and each case in the loop requires time
Of|M|) except the case where f=Egp U ¢ which requires time O(|M|)+T (M, &y).
Hence, step 3 requires time less than [SF(pg)|-max{O(|M]),T s(M, &,))=0(|pg|-max(|M],
T 4 (M, 8))), so does the whole algorithm.

3.2. Efficient Algorithm for Fair State Problem

In many interesting cases, FSP (and hence FMCP) can be solved in time linear in
the size of the input structure and specification. We now consider a normal form for
these cases: 450:‘1/1\ (%Opi V %}oqi). Since it turns out that almost all practical fairness no-
tions can be succig;g%ly expressed by a &, of the form, we believe that FCTL restricted to
such fairness constraints is still of great applicability. We will develop the linear time al-

gorithm for FMCP under such a restriction in the coming paragraphs.

We first show how detect fair components (recall that a strongly connected strue-
ture is fair iff there is a fair path in it). Given a strongly connected structure C=(S, R,
L), and a fairness constraint #5= A (%Qpi V %}Oqi)‘, the algorithm deseribed in Figure 2 can
decide whether C is a fair comporllfnt w.r.t. & in time O(|C|-|#y]).

The proof that C is a fair component w. r. t. &, iff the recursive function AFC(C,
) returns true is by induction on the number of the conjuncts k in &,

Basis: k=0, #,=true, and the program AFC returns true immediately. Hence the
hypothesis holds. (Note that any strongly connected component is fair w.r.t. *“true®.)

Induction step: Assume true for k<n, prove for k=n as follows:

[Only if part]: If AFC returns true, then it must do so either at statement (8) or
statement (8). Case 1: AFC returns true at statement (6). By induction hypothesis, at
least one of the strongly components in C’ is fair w.r.t. &,. Let D be one of such
strongly connected components. Since D is contained in C’ and every nodes of C’
satisfies q;, every path in D satisfies E}oqi. Hence D is also a fair component w.r.t. to &.
Hence C is a fair component.

Case 2: AFC returns true at statement (8). In this case, some node in C satisfies
p; Vi€[l,n]. Hence any cycle in C which includes all nodes of C is a fair path w.rt. &,



(because C is strongly connected, there exists at least one such path). Let x be one such
eycle; it's obvious that M, x|=¢,. Hence C is a fair component.

[If part]: Assume that Cis a fair component, we prove that AFC will return true
either at statement (6) or at statement (8). (The following argument is essentially the
reverse of the previous proof.)

Case 1: Vj€[1,n](3s€S(C, sl:%p}-)). In this case the condition of statement (5) is
always false. Hence the program will terminate at statement (8).

Case 2: 3j€[1,n](Vs€S(not C, s|=4¢4 pj)). Let 1 be the smallest integer such that
¥s€S(not C, s ]z% pj). Since C is fair, ?3 contains some fair cycle x w.r.t. &, Every
node on x must satisfy q. Hence x must be included in some strongly connected com-
ponent D of C'. By induction hypothesis, AFC(D, #y) will return true, and so will
FC(C, ¢y)-

To analyze the complexity, let m=|C|, n=|#;|, and k= the number of of con-
juncts of ¢, Define function T(j, j) to be the time complexity of AFC when the size of
input structure is i and the input fairness constraint has k conjuncts. Let X={D,, ...
D,} be the set of strongly connected components of C'. If we let d; denote |D;|, then
Z 4,<|C[<m. Clearly, T(m, 0)=O0(1) since the program AFC returns true im-
E—édiateiy. Note that for any recursive call each statement in AFC can be executed at
most k times. Furthermore, the compound statement beginning at (5) can be executed
at most once (because it always returns control to the caller). Hence we have the follow-
ing recurrence relation:

O(mp) + £ T(d; k-1)

T(m, k)< .
i=1 i=1

| M

1
Which can be simplified to T(m, k)<O(mn) + Z T(d, k-1). By induction on k, we can
easily show that T(m, k)<O(m-n). The details are left to the reader.

The program AFS(M, &, S') of Figure 3 is an algorithm for FSP of time com-
plexity O(|M]-|#,|). The for-loop checks fair components in M, if a state s is in a fair
component then it is a fair state. The while-loop picks out nodes which can reach a fair
state. It is clear that a state which can reach another fair state is a fair state. So the al-
gorithm picks fair states. Conversely, for any fair state s in M, if s lives on a fair com-
ponent then it will be put in S’ during the execution of the for-loop ; otherwise, s can
reach a fair state and will be put into S’ during the execution of the while-loop.

The complexity bound follows from the complexity analysis of algorithm AFC. To



see this, assume that M=(S, R, L) can be partitioned into 1 strongly connected com-
ponents C;, C,, ... C;. Then each step of the for-loop requires time |AFC(C,,&,)|+O|C;|
which is equal to O(|C;|-|#,|). Hence the for-loop requires time O(|M]-|#;|). The while
loop requires only O(|M) time, so the whole algorithm takes only O(|M)-|#y|) time.

We have thus established,

Theorem 1: FMCP for input structure M=(S, R, L), and input specification (py,
n o0 0.0}
é,) with %:iil(F p; V Gg;) can be solved in time O(|pgl-IM|-|2g])-

3.3. Complexity of The General Case

We show, in this section, that FSP (and hence also FMCP) is NP-complete for
general fairness specification &.

Theorem 2: FSP is NP-complete.

Proof: We will reduce 3-SAT to FSP, with fairness constraint of the form /\ (G'-wpl
v G-y

Given a formula g in 3-CNF with n variables and m factors, we show how to con-
struct, in polynominal time, a structure M=(S, R, L) with a designated state s€S, and a
fairness constraint @, such that there is a path z in M starting from s and M, z |= &, iff
g is satisfiable.

Let x,, Xo, ... X, and Cy, Gy, . . C_, be the variables and factors of g (ie. g— /\ C,),
where C=1; V I, V 3 for 1<1<m and L =x, or —x for some k€[1,n]. ’i‘ake

AP={p;, Pg, - Pyps dy> 9, - qn} as the underlying set of atomic propositions. Construct
a structure M=(S, R, L) as follows:

=({s,t} U {v--: 1<i<m, 1<j<m}
R={(s,v4;): 1<i<8} U {(vyppt): 113} U {(t, 9))
U {{v Vi Vit1 i) 1<i<m-1 and 1<j, k<3}
L{s)=L(t)=0
n cO O
Let 3= A (G-p; V G—g).

Structure M is shown in Figure 4. It is quite clear that the above construction can be



done in polynomial time. We claim that g is satisfiable iff there is some path z in M
starting from s such that M, z |= #,. Proof of the claim is given in the appendix.

[Membership]: It has already been shown in [SC82] that the model checking
problem for linear time temporal logic with F, and G operators can be solved in NP
time, Hence FSP is in NP, thus FSP is NP-complete. In [SC82] it was shown that, in ef-
fect, FSP for any arbitrary linear time formula over F, G is NP-complete. For FSP with
¢, of the type we construct, membership in NP follows since our language of fairn;ss
constraints may be viewed as a sublanguage of linear time logic by the equivalences ¥ p
= GFp and %}ép = FGp. But NP-hardness for &, of our type does not follow from the
proof in [s¢82] which used a different reduction to a formula Fp;A ... A Fp,. Because F'p
is not expressible in our &, language, that proof cannot be applied. Since our &, lan-
guage has a more restricted syntax, its decision problem might be easier. Our NP-
hardness argument shows that such is not the case: even a simple &, of the form %Op vV

oo

E;Qq can be *hard®. This is surprising since the dual property Fp AFqis "easy"®.
Corollary: FMCP is NP-complete.

Proof: NP-hardness follows directly from Theorem 2, and NP-membership follows
from the reduction algorithm in Figure 1 and the Theorem 2.

4. Applications

n xR oo
Our canonical form fairness specification ¢5= A (Gp;VF g;) allows us to perform
. . . i=1 . . .
model checking efficiently under many commonly used spractical® fairness assumptions
and a wide variety of fairness related notions. To handle a given fairness-type notion

using the canonical & form, it is often helpful to apply the following equivalences:

(1) E{(pvq) = Ep V Eq

(o) o0 o0
(2)F(pva)=FpVFq
0 (o) fore)
(3) GlpAg) = Gp A Gq
- . n ] [o:] .8
Note that a consequence of (1) is that any & of the form ,\/1 Al(Gpiij qij) can
i=1 j=
be handled with linear time complexity as well because E¢, = I\]‘/ E x/l‘{ (o(gpij\/%oqij)_ To
i=1 j=1

see if a node is fair w.r.t. &;, one merely checks if it is fair w.r.t. one of the disjuncts of

$,. Such a &y may thus viewed as a generalized canonical form for doing model checking
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in linear time.

4.1. Expressible Fairness Notions

We can succinctly express the following fairness notions using our generalized
canonical form (with a liberal interpretation of the meanings of atomic propositions):

1. Impartiality: .I/l\l(%oe:vecutedi)
jo==

2. Weak Fairness: (%}oenablediéi}*’oezecutedi)

n

A

i=1

..o X 00

= i/=\1 (F (—enabled,)VF executed,)
n
A
1=

(F

=

—enabled,Vexecuted,))
1
3. Strong Fairness: I/1\1(

i

I8

[v.9] o o0 0
enabled; =T executed)= A 1(G'menablealivF ereculed;)
1=

The following definitions of acceptance for finite automata on infinite strings are closely
related to fairness and can also be readily expressed:

4. Buchi Acceptance: %oGreen

o 0 0.9] n e, o0
5. Pairs Acceptance: V 1("xF Red A\Y Green))=V 1(G(—:R’edi)/\F Green,)
i= == ‘
6. Complemented Pairs Acceptances: ‘I/l'\ 1(%0Redi———>%oGreeni)
i=

n

e.9] 0
= A (G-Red\VF Green;)
1==1

4.2, Extended Semantics with Arc Labels

There was a point glossed over in our rendering of the fairness properties above,
whereas the enabling condition for performing a step of process i is properly viewed as a
predicate on states (i.e. nodes), the actual execution of the step is more naturally
modeled as a transition (i.e. traversal of an arc). To allow a precise differentiation be-
tween execution of transition actions and enabling of state conditions, we can extend the
semantics of FCTL so that a structure M:(S,Al,AQ,...,Ap,L) where each A;CSXS
represents (the atomic actions of) process i, and where we think of each each arc
(51,80)EA=AU...UA  as being labeled with the set {i: (s;,5,)€A,} of processes which can
cause a transition from state s; to state s,. We can now extend the fairness specifica-
tions to allow atomic assertions: executed; hold at (s;,s,) iff (s{,8,)€EA;. The fairness
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o0 [o.e}
specifications such as F enabled =} erecuted; can be given a rigorous definition. It is
straightforward to formalize this approach and to extend our efficient mode] checking al-
gorithm to the extended semantics, but the details are tedious.

As an alternative, we can encode the extended semantics with arc labels into the
original semantic framework. One way to do this involves duplication of nodes: Given
an extended structure M:(S,Al,...Ap,L) we can formm an ordinary structure
M'=(S",A",L’) where S'={(s,1)ES X [0:p]: s€S and [(i=0 and s has no predecessor in M)
or {i€[1:p] and s is an Ajsuccessor for some state t in M)}, A'={({s,1),(t,}))ES’ XS
(s,t)EAj}, and for i€[L:p], L'((s,i))=L{s)U{ezecuted,} where ezeculed; is a distinguished
proposition while for i=0, L’((s,0))=L(s). Intuitively, (s,i) is a copy of state s reached by
a transition of process i. See Figure 5. Also note that one potential drawback of this
method is that the size of the graph representation of the new structure can be p? times

the size of the old structure, where p is the number of processes. This method is similar
to that of [Pn77] and [CES83].

Another way to encode the extended semantics into the original framework is to in-
sert an intermediate node ®in the center® of each arc. Each such inserted node is labeled
with a distinguished proposition Arc plus the process numbers labeling its corresponding
arc. The label of each original node is augmented with a distinguished proposition Nodec.
Formally, if Mz{S,Ap...,Ap,L} then the new structure M'=(S’,A’)L’}) where, letting
A=A U..UA,, S'=8SUA, A'={(s,(s,t)): s€S and (s,t)€A}U{((s,t),t): (s,t)EA and t€S},
L'(s)=L(s)U{ Node} for s€S, and L'((s,t))={Arc;U{i€[1:p]: (s,t)EA}.

Let +: assertion of M — assertion of M’ be a translation defined recursively as fol-
lows:

(1) Pt =P where P is an atomic proposition
(2) (=p)t = —pt

(3) (pAQ)t = pTAqt

(4) (EgXp)t = EgXEzXpT

(5) (AgXp)t = AgXAXpt

(6) [Eg(pUq)]t = Egl(Node=>pt)U(NodeAqT)]

We then rewrite the original specification according to the translation t. The method is
illustrated in Figure 6. One advantage of this encoding is that the size of (the graph
representing) the new structure does not depending on the number of processes; rather,
the increase in size is linear. If the graph representing the original structure has v nodes
and e arcs, the new structure’s graph has v+e nodes and 2-e arcs. Of course, there is also
a linear blowup in the size of the specification formula.
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4.3. Examples

Example 1 (Dijkstra’s random number generator): Figure 7.(a) is a guarded com-
mand program for a random number generator, the corresponding global state graph is
given in Figure 7.(b), and Figure 7.(c) is the resulting graph of 7.(b) after applying the
first encoding scheme discussed in the previous section. We want to show that under
strong fair scheduling of processes, the program fairly terminates, i.e. the program ter-
minates on every path satisfying the strong fair scheduling condition. We can express the
above statement as an  FCTL  specification: (P 8g)=(AgFA X false,
(%Oenabledlzi%oe;recutedl'} A (P@enabledQﬂf‘gexecutedQ), where &, is the fairness assump-
tion which requires that if a process is enabled infinitely often then it must be executed
infinitely often, and p, is the functional assertion which asserts that along every fair path
the program terminates. We then apply our model checking algorithm to (p,, ¢;) on the
model in Figure 7.(c). The result is given in Figure 7.(d) which shows that p  holds on
every state of the structure. Hence the program in Figure 7.(a) fairly terminates.

Note that if we change the underlying fairness assumption in the above example to
either weak fairness or impartiality, program 7.(a) still terminates fairly because the only
infinite execution sequence is unfair w.r.t. all these three notions of fairness. However, if
no fairness assumption is taken, the program might always execute process 1 and never
terminates.

Example 2 (Mutual Exclusion): We illustrate our efficient model checking algorithm
by considering a solution to the mutual exclusion problem for two processes P, and P,.
In the solution each process is always in exactly one of the three code regions:

N, the Noncritical region.
T, the Trying region.
C; the Critical region.
A global state transition graph is given in Figure 8. Note that we only record transitions

between different regions of code; internal moves within the same region are not con-
sidered.

To establish absence of starvation, we must show that T,=A4FC; for each process
i. Note that the solution is not starvation free under an unfair scheduler, for example, in
the infinite execution sequence sy,s;,5,,57,8,84,S7-.- process 1 Is in its trying region in-
finitely often but it never enters its critical region. We will show that the solutlon is star-
vatlon free under the weak fairness assumption QO—(Genabled =P erecuted ) A
((;enabledzr:'F ezecuted,). Without loss of generality, we only consider the starvation
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free property for process 1: p,=AgG(~T VAZFC,). The states of the global transition
graph will be labeled with subformulae of p, during execution of model checking algo-
rithm. On termination every state will be labeled with =T;VAZFC,, as shown in Figure
8.(b). Thus we we can conclude that s|=4 p,. It follows that process 1 cannot be

prevented from entering its critical region once it has entered its trying region.

Appendix: Proof of Theorem 1 Continued

[only if part]: Assume that g is satisfiable. Since g is satisfiable, there exists a truth
assignment A such that g is true under A, i.e. for any factor C;, there is a literal 1-~ in C,
such that l is true under this particular truth assignment. Now consider a cycle z in M

t, such that for all i, v;, is true under the assignment

formed by nodes s, vhl’ “Jn’ i,

Al

We ‘v\ﬂl show that M, z |= %8 by showing that %}oﬁpk vV %xo—qu holds on z for every
ke[in]. If Gﬂpk holds on z then G-p, V qu also holds on z. Hence, we only have to
show that when Gﬁpk does not hold on z, Gﬂpk V Gﬂqk still holds on z. Because Gﬂpk
does not hold on z, there must be some node v in z such that p €L(v). Note that
L(s)=L{(t)=0. Hence v is Vii, for some i€[1,n]. By the construction of the labeling fune-
tion L, we conclude that L. —xk By the construction of z, 1 is true, ie. the assignment
A assigns true to Xj. Hence —x; is false under A. C!eariy under A, llJ #ﬂxk for any
i€[1,n]. Again by the definition of L, qk#ilJ , le. Gﬂqk holds on z. Hence G—xpk \% G
qy holds on z for any k€[1,n]. We conclude tﬁat @ holds on z.

[if part]: Assume that there is a path z in M startmg from s such that ¢, holds on
2. Let 2’ be a suffix of z starting from state s such that /\ (G-py V G*qu) holds on z'.
Note that either p, or q, does not appear on the label of1 any node on z’. Consider the
truth assignment A: x, — {T, F} as follows:

Alx)=T if 3i] pkEL(VU)]

=F if3ij] quL(vu)]

It is quite easy to check that A is consistent in the sense that A assigns a unique value to
each x,. Furthermore, the assignment caused by any L(Vij) will guarantee that C; is true
under the assignment A. Hence g is satisfiable. This completes our proof.
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Let AFSP(M, (PO{) be an algorithm for solving TSP which returns the set of fair states of the imput
structure M w.r.t. Tairness constraint &@,.

procedure AFMCP(M, (pg, P4}k

/* M=(S, R, L) is the input structure, and (pg, @) is the specification */
hegin
. $' 1= AFSP(M, (py, %)) /* use algorithm AFSP to identify fair states in M */
2. for each s€S do if seS’ then label(s) := {®,} else label(s) := {~Py};
3. for each formula f€SF(py) do /* Inductively, taking the shortest formula first. */
case { of the form
3.1 atomic formula: for each s€S do if fEL(s) then label(s) := label(s) U {f};
3.2 —p: for each s€S do if {Zlabel(s) then label(s) := label(s) U {}
3.3 p A q: for each s€S do if p, q€label(s) then label(s) := label(s) U {f};
3.4 E4Xp: for each s €5 do if 3(s, ¢ JER[p, $yElabel(t)]
then label(s) :== label(s) U {f} ;
3.5 AgXp: for each s €S do if ¥(s, t)ER|&,Elabel(s) = pElabel(s)]
then label(s) := label{s} U {f};

3.6 Eglp U a):
EU := empty set;
for each s€S do
if q,8, E€label(s) then begin label(s} :== label(s) U {f}
EU :=EU U {s}
end;
while EU 3£ @ do
begin
let ¢ be the first element of EU;
D = {s€S: (s, t)ER A pElabel{s) A q, Eglp U q)¢label(s);
for each s€D do label(s) = label(s) U {f};
EU:=EUUD\ {t}
end of while;
3.7 Aglp U al
Label the states of M with —p, =q, =p A —q by using 3.2 and 3.3.
Label the states of M with Egz[-q U {(-p A —q)} using 3.6.
Label the states of M with ~E4[-q U (=p A —*q)} using 3.2.
= {s€S: ~q€label(s}};
M = (S, R|S'xS", LIS);
FS' = A(M, &,);
for all s€FS’ do label(s) := label(s) U {EzG—a};
Label the states of M with ~EzG~g;
for all s€S do
if =E;Gq, ~Egl(~q) U {-*D A =q)]
then label(s) := label(s) U {A4lp U qf;
end of cases;

~—

end of procedure;

Figure 1. Reduction Algorithm
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Recursive Boolean Procedure AFC(C, &)
/* input: C=(S, R, L) is a strongly connected structure, and

n w w . . -
® _ A (Fp; vV Gg;) is a fairness constraint
0 i=1

output: true - if C is a fair component
false - otherwise */
begin
if k==0 then return(true};
for =1 to k do
begin

p__occursi] ;= false;
for each s€S do if C, s }:s% p; then p__occursi] := true;

if p__occurs|i|=false then

begin
, =1 oo . 0 k oo o0
$y = A (Fp;VGa)A A (Fp; Vv Gay
=1 7 = )

¢’ := maximal substructure of C s.t. every states of C’ satisfies g;;
X := {D: D is a maximal strongly connected component of C'}
for each DEX do if FC(D, @,)=true then return{true};
returns{false)

end

end;
return(true)

end;

Figure 2:  Fair Component Detection Algorithm



procedure AFS(M, &, s
/* input: M=(S, R, L) is a structure, and

g o0 G
'Z",{m / (r [ o)
oo b

output: 5' - the set of fair states of structure M */

begin

end;

S =B
let X={C: Cisa maximal strongly connected component of M};
for each CEX do if AFC(C, ¢, then g .= §' U {s: 5 is a state of CY;

/* calculate the set of states in S which can reach some state in 8" ¥/
CLOSE = §';
while CLOSE#8 do
begin
choose an arbitrary element t from CLOSE;
= {s: (s, t)}ER A sgS'};
§ =5 UD;
CLOSE := CLOSE U D \ {t}

—

end;

Figure 3: Algorithm for Caleulating Fair States.






{b) A structure without arc labels

Figure 5
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{b) Global state graph after termination of model checking algorithm

Figure 8



