ON *A SIMPLE PROTOCOL
WHOSE PROOF ISN'T*":
THE STATE MACHINE APPROACH

Mohamed G. Gouda

Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712

TR-84-21 July 1984

ABSTRACT

We discuss how to model a synchronous protocol (due to Aho, Ullman, and
Yannakakis) using communicating finite state machines, and present a proof for its
safety and liveness properties. Our proof is based on constructing a labeled finite rea-
chability graph for the protocol. This reachability graph can be viewed as a sequential
program whose safety and liveness properties can be stated and verified in a straightfor-
ward fashion. ’

ON
A SIMPLE PROTOCOL WHOSE PROOF ISN'T:
THE STATE MACHINE APPROACH

Mohamed G. Gouda

Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712

TR-84-21 July 1984

ABSTRACT

We discuss how to model a synchronous protocol (due to Aho, Ullman, and
Yannakakis) using communicating finite state machines, and present a proof for its
safety and liveness properties. Our proof is based on constructing a labeled finite rea-
chability graph for the protocol. This reachability graph can be viewed as a sequential
program whose safety and liveness properties can be stated and verified in a straightfor-
ward fashion.

-~

1. INTRODUCTION

Hailpern [5] presented a correctness proof for a synchronous protocol (due to Aho,
Ullman, and Yannakasis [1]) using the abstract-program approach, and temporal logic.
He also considered modeling the protocol using ®pure® communicating finite state
machines (i.e. communicating finite state machines without local variables), but con-
tended that this model can only exhibit the liveness properties (without the safety
properties) of the protocol.

In this paper, we discuss how to model this protocol using "extended” communicat-
ing finite state machines (i.e. communicating finite state machines with local variables, as
suggested by Bochmann [2] and Sunshme [7]). We also discuss a proof for its safety and
liveness properties.

Our proof is based on constructing a labeled, finite reachability graph for the
protocol. This reachability graph can be viewed as a sequential program that operates on
the local variables of the communicating machines in the protocol. Hence, the safety and
liveness properties of the protocol can be expressed as safety and liveness properties for
this sequential program, and so can be verified in a straightforward fashion.

2. MODELING THE PROTOCOL USING COMMUNICATING
FINITE STATE MACHINES

We consider a protocol where two communicating finite state machines A and B
exchange bits, in steps, over two 1-bit registers x and y. In each step,

(a) machine A reads register x, and machine B reads register y, then

(b) based on the read values, machine A writes register y and machine B writes
register x.

Each machine has some local variables that it can update in each step immediately after
it writes in its register. The local variables in each machine, and their initial values, are
defined in Figure 1 using a Pascal-like notation. Notice that machine A has a constant,
infinite array *a® of bits, and machine B has a varlable infinite array *b® of bits.
(Variables *i® and *j* are used as indices for arrays *a* and "b*, respectively.)

The function of this protocol is to copy the bit values of array *a*® into array *b*®
under the assumption that registers x and y can lose their values. (After a machine
writes a value 0 or 1, in its register in some step, the written value may be changed into
the lost, or empty, value A before the next step.)

To achieve this function, Aho, Ullman, and Yannakakis [1] defined the control
structures of the two machines to be as shown in Figure 2. (We have used a slightly dif-
fersnt notation to be consistent with our data structure in Figure 1.) Each machine has
two local states called nodes, and some local state transitions called edges. Each edge is

register x,y:(1,0,1) init a
. []
: i

A L — X e B
]
]
l
a } b
> ' ’
R | r
) I
» ‘) -
i ’ J
: y e e
I
A: const a: array linteger] B: var b: array [integer]
of (0,1);3 of (0,173
var i: integer init 1; j: integer init 0

I: (0,1) init a 1

Figure 1. Data structure of the protocol.

[]

Initial node

x=r/y =1
X=A/y = A
(a) A
y=A/X = A
yEA/x =1
YEA/X = 1
J = 3+l
blJ] :=
y=A/X 1= X
(b) B

Figure 2. Control structures of the protocol.

labeled with a pair: condition/action sequence. Initially each machine is at its initial
node. In each step, each machine traverses exactly one edge to reach from its current
node to its next node. The edge selected for traversal in each step is the outgoing edge,

of the current node, whose condition is true. The traversal of an edge in a step implies -

the execution of its action sequence in that step. Notice that with the exception of the
labeling action sequences that update the local variables of each machine, Figure 2 is es-
sentially the same as Hailpern's Figure 2 in [5].

3. A REACHABILITY GRAPH FOR THE PROTOCOL

In this section, we construct a reachability graph, for the above protocol, whose
vertices correspond to the reachable global states of the protocol, and whose arcs cor-
respond to global state transitions. Later, we use this reachability graph to establish the
safety and liveness properties of the protocol.

The first question that arises in constructing the reachability graph of a given
protocol is how to define the global state of the protocol? In our case, the obvious answer
of defining the global state by (a) one node in each machine, and (b) one value for each
register or local variable in the data structure, will cause the reachability graph to be in-
finite, and so not useful for our purposes. Instead, we define the global state of the
protocol by (a) one node in each machine, and (b) one value for each register (thus ignor-
ing the values of the local variables of the two machines). Formally the global state (or
state for short) of the protocol is defined to be a four-tuple [m,y,x,n], where

m is a node in machine A,

y is a value for register y,

x is a value for register x, and

n is a node in machine B.

(This notation is identical to Hailpern’s [5].)

Based on this definition of a state, a reachability graph for the protocol can be con-
structed as shown in Figure 3. Each vertex in this graph is labeled with a reachable state
of the protocol. (For instance, vertex 1 is labeled with the initial state [1,\,\,1], and ver-
tex 2 is labeled with the state [2,X,1,2], where the value of register y is identical to the
current value of local variable 1.) Each arc in the graph corresponds to one step. A
dashed arc corresponds to a step followed by one of the two registers losing its value,
and a solid arc corresponds to a step after which the values of the two registers are not
lost. (For instance, the solid edge from vertex 1 to 2 corresponds to a step where A
copies the value of I into y which is not lost. By contrast, the dashed edge from 1 to 3
corresponds to the same step followed by the loss of y's value.)

In this reachability graph, the values of the local variables are not recorded in the
protocol’s states. Therefore, each arc in the reachability graph must be labeled by some
action sequence that updates the local variables of the two machines in accordance with
the protocol’s definition. To figure out the labeling sequence for each arc, notice that

!

Initial state (vertex)

pQ.}\SAQY‘
\
= i+l 2 3
= alil
g,1,2,s gsA,A,8
J 1= JHls \ J T It
bljl:=y \b[j] =y
Y5
psk’lss 4 p,)\,)\,S
/
/
/
!
g,1,x,r q,A,A,r

Figure 3. A labeled finite reachability graph for the protocol.

every arc ¢ corresponds to two directed edges e, and ey, one in machine A and the other
in B. Thus, a concatenation of the two action sequences that update the local variables
and label the two edges e, and e, should label arc ¢. (For example, the arc from vertex 1
to 2 in the reachability graph corresponds to two edges from nodes 1 to nodes 2 in
machines A and B; since these two edges are not labeled with action sequences that up-
date the local variables, the arc from vertex 1 to 2 is labeled with the empty sequence, or
equivalently not labeled as shown in Figure 3.) Notice that with the exception of the
labeling action sequences that update the local variables of the two machines, Figure 3 is 7
identical to Hailpern’s Figure 4 in [5].

On one hand, the reachability graph in Figure 3 is a complete definition of the
protocol defined earlier in Figures 1 and 2. On the other hand, this reachability graph
can be viewed as a sequential program that operates on the variables x, y, a, b, i, j, and
I; hence proving its safety and liveness properties is straightforward as shown next.

4. PROVING SAFETY PROPERTIES

The safety property of this protocol can be stated as follows: After each step, the
written string in array *b* is identical to the initial string, of equal length, in array "a*®.
To prove this property, we need to prove that the following assertion P is {rue at each
vertex in the reachability graph (i.e. it is an invariant):

P:{i-j>0AVYk=L.], ak] = blk]}

We follow the style of Floyd [3] and Hoare [6] to annotate the reachability graph
according to the following three rules:

i. Assign one assertion to each vertex in the reachability graph.

ii. The assertion assigned to vertex 1 (i.e. the initial state) should be computed
to true when each variable in the assertion is assigned its initial value.

iii. If vertices v and w in the reachability graph are assigned assertions P and
QAQ! respectively, and if there is an arc from v to w labeled with the action

sequence S, then P{S}Q and Q! should be computed to f{rue when x and y
are assigned their values in the protocol’s state at vertex w.

The following three assertions are selected to annotate the reachability graph:

P,uof{l=af]Ai=j+1AVk= 1] ak] = blk]}

P,:{y=1}

- Pya{l=aljAi=jAVk=1], alk] = b[k|}

In particular, assertion P, is assigned to vertices 1 and 3, assertion P; A P, is assigned to
vertex 2, and assertion Pj is assigned to vertices 4, 5, 6, and 7. It is straightforward to
show that this annotation satisfies the above three rules. (Guessing these assertions is no
great mystery. Since P should be true at each vertex in the reachability graph, each ver-
tex should be assigned an assertion of the form P A Q. The additional assertions Q’s
should ensure that at vertex 2 - just before y is assigned to b[j] , y = I = ali].)

S

Since in this annotation each vertex in the reachability graph is assigned an asser-
tion that implies P, then P is an invariant.

5. PROVING LIVENESS PROPERTIES

The liveness property of this protocol can be stated as follows: The arc from ver-
tex 2 to vertex 4 in the reachability graph should be traversed in finitely often provided
that the value loss from registers x and y is constrained in some way. There are three
reasonable ways to constrain the value loss:

i. Values can be lost up to a certain time instant: After this instant no value
can be lost from register x or y. Therefore from this instant on, the rea-
chability graph is the same as in Figure 3 except that all dashed arcs are
removed. In this new reachability graph, there is exactly one directed cycle;
moreover this cycle contains the arc from vertex 2 to 4. Therefore, this arec
will be traversed infinitely often. (This proof is due to Hailpern [5].)

ii. Values can always be lost, but in finitely o ften the value loss will stop for at
lease siz steps: As mentioned earlier stopping the value loss is equivalent to
removing the dashed arcs from the reachability graph. Thus, every time the
value loss is stopped for at least six steps, the arc from vertex 2 to 4 will be
traversed at least once. Since this is guaranteed to occur infinitely often, the
arc will be traversed infinitely often. (This notion of liveness along with the
notion of safety discussed earlier corresponds to the notion of robustness dis-
cussed in [1].)

iii. Values can always be lost, but in a fair fashion: Under this constraint, if a
vertex in the reachability graph is reached infinitely often, and if this vertex
has two outgoing arcs, then each of the two arcs will be traversed infinitely
often. It is straightforward to show that under this constraint, each arc in the
reachability graph (including the arc from vertex 2 to 4) will be traversed in-
finitely often. For more details about these notions of liveness and fairness for
networks of communicating finite state machines, we refer the reader to
Gouda and Chang [4].

6. CONCLUDING REMARKS

The basic idea of our proof is to construct a finite (but labeled) reachability graph
for the protocol. This reachability graph can be viewed as a sequential, nondeterministic
program, and so can be verified in a straightforward manner. This approach can be used
to verify many synchronous protocols, and some asynchronous protocols with bounded
communications (for which finite reachability graphs can be constructed).

Acknowledgements: I wish to thank Brent Hailpern whose trials with this protocol
have inspired this paper. I am also thankful to Carl Sunshine for his
suggestions that have greatly improved the presentation.

REFERENCES

[1] A. V. Aho, J. D. Ullman, and M. Yannakakis, ®*Modeling communications
protocols by automata,* Twentieth Annual Symposium on Foundations of
Computer Science, IEEE, October 1979, pp. 267-273.

[2] G. V. Bochmann, and J. Gescei, *Unified method for the specification and
verification of protocols,* Information Processing Congress 77, 1977, pp.
229-234. %

[3] R. W. Floyd, ®Assigning meanings to programs,® Proc. of Symposia in Ap-
plied Mathematics XIX, American Math. Society, 1967, pp. 19-32.

[4] M. G. Gouda, and C. K. Chang, ®"A technique for proving liveness of com-
municating finite state machines with examples,® Proc. of the Third ACM
Symposium on Principles of Distributed Computing, August 1984.

[5] B. T. Hailpern, *A simple protocol whose proof isn't,* IEEE Trans. on
Comm., to be published.

[6] C. A. R. Hoare, ®*An axiomatic basis for computer programming,®* Comm.
of the ACM, Vol. 12, No. 10, May 1969, pp. 276-281.

[7] C. A. Sunshine, *Formal techniques for protocol specification and .
verification,® Computer, Vol. 12, No. 9, Sept. 1979, pp. 20-27.

