A LIST EXPRESSION INTERPRETER

AS A TEACHING TOOL

Jeffrey A. Brumfield

Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712

TR-84-23 July 1934

Abstract. Implementing an interpreter for a simple list
manipulation language gives students experience with a variety of
data structures and programming techniques. This paper
describes a complete programming project and discusses its
educational value.

1. INTRODUCTION

This paper describes a programming project used in a data structures course taken by
second year undergraduate computer science majors. While the primary goal of the assignment
is to give students experience with generalized lists, several important programming techniques

and language concepts are used.

The assignment requires the students to implement an interpreter for a simple list mani-
pulation language. Although the language is similar to Lisp, no knowledge of that language is
required. In fact, students are often not told of the similarities until after the assignment has

been completed.

An interesting feature of this assignment is that the sofiware being written could be
extended to a complete Lisp interpreter. The program is not a toy used only to illustrate a par-

ticular data structure or programming technique.

In the next section, we overview the project and describe how it is partitioned for presen-
tation to students. We then discuss the important concepts that are illustrated by the assign-
ment. Finally, we describe several variations on the project that increase its usefulness. The
complete text of the assignment can be found in the appendix, along with test data and a sam-

ple solution to the first part of the project.

2. OVERVIEW OF THE PROJECT

A list expression is a generalized list (i.e., a list whose items may themselves be lists} that
specifies a composition of functions operating on data. A list expression is written as a sequence
of items enclosed in parentheses. The first item specifies a function; the remaining items are

operands, which may also be list expressions. For example, the arithmetic expression 2%4 + 7

could be represented by the list expression (PLUS (TIMES 2 4) 7). The value of a list expres-

sion is the value of the function applied to the operands.

The goal of the project is to design and implement an interpreter that reads and evaluates
list expressions. A set of primitive functions is built into the interpreter; one of these functions
allows the user to define additional functions. Because the data on which functions operate has
the same syntax as a list expression, a QUOTE function must be provided to prevent the

evaluation of data.

To make the project manageable by students who have never written large programs, the
assignment is divided into several parts. Each part builds on the previous parts. Thoroughly

testing each part before beginning the next has proved essential.

In part 1, routines to read and write generalized lists are implemented. All input and out-
put is performed by these routines. An internal representation of generalized lists that does not

require the use of Pascal variant records was chosen. Details can be found in Appendix A.

In part 2, the core of the interpreter is implemented. The resulting program is capable of
reading a list expression, evaluating it, and writing the result. Seven primitive functions and

predicates are supported at this stage so the interpreter can be tested on simple list expressions.

To allow simple programs to be written as list expressions, two features are needed: a
conditional function {analogous to an if-then-else statement in procedural languages) and the
ability to define recursive functions. Both of these features are added to the interpreter in Part
3. A built-in function called DEFINE allows a list expression having at most two parameters to
be saved and later referenced by name. The evaluation routine must be modified to distinguish

among built-in functions, user-defined functions, and parameter names.

Parts 1 & 2
Primitive list functions

|

Part 3 Part 4 Part 5
User-defined Numbers and Assignment function
recursive functions arithmetic functions and storage management

Figure 1. Possible extensions to the basic assignment.

components selected, a 10 day to 8 week assignment can be created.

Part 4 could consist of adding numbers and arithmetic functions to the interpreter. A
minimum set of functions should include relational predicates as well as addition, subtraction,
multiplication, and division. While this extension requires only a few new ideas, it makes the
list manipulation language more powerful and interesting. If interactive execution is possible,
the interpreter can then be used as a desk calculator. Parts 3 and 4 together allow list expres-

sions to be written for solving complicated programming problems.

Part 5 could introduce an assignment function that aliows a value to be associated with a
name. Like the DEFINE function, the assignment function requires that a name and the inter-
nal representation of a generalized list be saved after the evaluation of a list expression. A com-
plementary function could disassociate the name and the value. To allow large amounts of
input to be processed, the storage occupied by list structures that are no longer needed should
be freed at the earliest possible time. Since several names can be associated with different parts

of a list structure, reference counts must be used. Nodes in the internal representation of a gen-

eralized list can be disposed only when they are not associated with any name.

Error detection and recovery is an important part of any language processor. If students
will be writing their own list expressions, the detection of some common errors will make their
interpreter much easier to use. Aun error message can be issued if an unrecognized function or
parameter name is referenced, or a built-in function is invoked with the wrong number or type
of arguments. When one of these errors is detected, the evaluation of the current expression can
be aborted; the processing of the remaining expressions should be unaffected. While extra clos-
ing parentheses in a list expression could be ignored, a missing closing parenthesis will cause all
remaining input to be read as part of the current list expression and an unexpected end-of-file to
be encountered. There is no way to prevent this without using a special list expression ter-
minating character. If a data structure such as the function symbol table or the execution stack

becomes full, the interpreter should write a descriptive message before halting.

5. EXPERIENCE AND CONCLUSIONS

Student feedback on this assignment has been eucouraging. Students most frequently
remark that they feel comfortable with recursion for the first time. (In fact, after completing
the assignment students often produce recursive solutions to exam problems for which their
instructor was expecting iterative solutions!) Many students express an interest in learning Lisp;

others plan to extend their programs to support additional features.

As with any challenging project, not all students successfully complete this assignment.
Part 1 seems to take the greatest toll. Depending on the amount of assistance students are
given, 10 to 20 percent of all students are not able to implement the first two parts. This

assignment has been a motivating factor for students withdrawing from the course.

The success of this project indicates the value of programming assignments that students
find meaningful. The large number of variations allow the assignment to be used several semes-
ters, stressing a different set of data structures and algorithms each time. Overall, the project

has proved to be ideal for use in an undergraduate programming course.

Acknowledgments

The initial idea for this project came from a problem in Fundamentals of Data Siructures

by Horowitz and Sahni, Computer Science Press, 1976.

Appendix A - Text of the Assignment

External format of generalized lists. The format of a generalized list can be defined
recursively as

atom
g-list = { (g-list ... g-list)

where g-list ... g-list is a sequence of zero or more generalized lists separated by at least one
blank. An atom is an alphanumeric string of up to 10 characters. See the test data file for
examples of generalized lists. In the test data each generalized list will begin on a new line, but

may span several input lines.

Internal representation of generalized lists. In our representation of a generalized
list, nodes will have three fields whose contents depend on whether the node represents an atom

or a list.

npame head tail
Atom node: atom name /
name head tall
List node: whk ST+ 3 to tail of list
L
to head
of list

The following structure shows the representation of the list ((A B) ((C D) E)). The list node flag

is abbreviated ‘.

% > | %
N N
* B - I i * = * g
\ J . !
A B * > ¥ || / E
\ J
C D

Part 1. Design, code, and test two recursive procedures named READLIST and WRI-
TELIST. READLIST inputs a generalized list and creates its internal representation as
described above. WRITELIST outputs a generalized list. As a list is being read, every charac-

ter must be echoed to the output file.

Implementing READLIST and WRITELIST will be simpler if you first write a set of
input/output routines. A function NEXTINPUT could return the next nonblank character
from the input file without advancing the file pointer past it. Procedures READSTRING and
WRITESTRING could read and write alphanumeric strings. NEXTINPUT and READSTRING
could also echo the input characters to the output file. Try to eliminate all input/output state-

menis from READLIST and WRITELIST.

Part 1 can be implemented in about 130 lines of Pascal, not including comments. Test
vour routines by reading and then writing each list in the first set of test data. If you have
difficulty debugging your routines, test them on the sequence of lists A, (A}, (A B), ((A) B},

{{A) (B)), and desk check your code for the first input that causes your program to fail.

Part 2. Write procedures or faunctions to perform the following basic operations on the

internal representations of generalized lists:

Function Value
HEAD ! first item in !
TAIL ! list | with first item removed
CONS s 1 2 list with head s and tail {
QUOTE s s itsell
NULL I true if | contains no items
ATOM s true if 5 is an atom

EQUAL s1 82 true if 51 and s 2 are identical

An argument | may not be an atom; s, a1, and s 2 may be atoms or lists. The parameters of
these procedures should be pointers to generalized lists. Operations that have a value of true or

false should return a pointer to a predefined atom *T* or *Fx,

Implement a recursive procedure EVAL that invokes the function specified by the head of

a list using the values of the tail of the list as arguments. For example,

(QUOTE (A B C)) has the value (A BOC)

(HEAD (QUOTE (A B C)))) has the value A

(CONS (QUOTE A) (QUOTE (B C))) has the value (A B C)
(EQUAL (QUOTE (A B)) (QUOTE (A C))) has the value *F*

Write a driver program that calls upon the routines you have implemented to process an
ipput file consisting of a sequence of lists. BEach list should be read and evaluated; its value

should then be written to the output file. The output could be formatted as follows:

LIST MANIPULATION LANGUAGE INTERPRETER

EXPRESSION = (QUOTE (A B C))
VALUE —(ABC)

EXPRESSION = (HEAD (QUOTE (A B C)))
VALUE = A

END OF INPUT

Run your program on the first test data file. The test data will contain no errors. At this time

you are not required to dispose of nodes that are no longer needed.

Part 3. Add to your list processing language a function named COND whose value

depends on whether a test is true or false. The syntax of COND is

(COND test true-val felse-val)

where fest, true-val, and false-val are list expressions. The following is an example of its use:

(COND (NULL (QUOTE (}))
(QUOTE (LIST IS NULL))
(QUOTE (LIST IS NOT NULL))) has value (LIST IS NULL)

The evaluation of COND causes the list fesf to be evaluated. If its value is true, then the list
true-val is evaluated and its value becomes the value of the COND function. Otherwise, the list

false-val is evaluated and its value becomes the value of COND.

Also, add to your language a function named DEFINE which allows the user to define a

{possibly recursive) function having at most two parameters. The syntax of DEFINE is

(DEFINE fctn-name param-list fetn-body)

where fcin-name is an atom different than any system function name, and peram-list will always

be a list. The following is an example of 1ts use:

(DEFINE SECOND (LIS)
(HEAD (TAIL LIS)})

The evaluation of the DEFINE Tunction causes the following information to be saved in a

table: (i) the name of the function, (ii) the names of its parameters, and (ili} a pointer to the

list representing the function body. We will arbitrarily let the value of DEFINE be the name of

the newly defined function. DEFINE is evaluated for its effect, not its value.

When a function name is encountered in a list, your EVAL procedure must determine if it
is a system function or a user-defined function. If the function is user-defined, its parameters
must be evaluated and pointers to their values must be pushed onto an execution stack. (An
element of this stack will consist of the name and value of each parameter.) Then the function
body should be evaluated. Finally, the pointers to the parameters must be poped from the

stack.

EVAL must also handle references to parameter names. Whenever EVAL is given an
atom, it determines which parameter is being referenced. It then obtains the value of the
parameter from the top of the execution stack. Note that there are no local or global variables;

a function can reference only its parameters.

Run your program on the second set of test data. The test data contains no errors. After
a list expression has been evaluated, you may wish to dispose of its nodes provided that the

expression does not define a new function.

It may be helpful to add to your program a trace option that causes the values of the
parameters to be printed each time a function is invoked. The functional value may also be
printed when the evaluation is complete. The trace option may be implemented as a pair of
system functions, TRACE and UNTRACE, that have no parameters. Use your WRITELIST

routine for output.

Appendix B - Test Data

i. First Set

(QUOTE (MAKE SURE YOU ARE ECHOING THE INPUT EXACTLY))
(QUOTE (THIS
LIST
SPANS
FIVE
LINES))
(QUOTE (ATOMS MAY HAVE TEN CHARACTERS))
(QUOTE ())
(QUOTE (A))
(QUOTE ((A B) C ((D E) (F)) () (G)))
(HEAD (QUOTE (A)))
(HEAD (QUOTE (A B C)))
(B)) ((C) D) ((E F)}))))

(HEAD (QUOTE ((A
(TAIL (QUOTE (A)))
(TAIL (QUOTE (A B C)))

(TAIL {QUOTE ((A (B)) ((C) D) ((E F)))))
(CONS (QUOTE A) (QUOTE (B)}))

(CONS (QUOTE (A)) (QUOTE (B)))

(CONS (QUOTE ()) (QUOTE (B)))

(CONS (QUOTE A) (QUOTE ()))

(CONS (QUOTE (A (B C))) (QUOTE ((D E) F)))

(ATOM (QUOTE THISISTRUE))
(ATOM {QUOTE {THIS IS FALSE)))

(NULL (QUOTE ())

(NULL (QUOTE A)}

(NULL {QUOTE (A B C}))

(NULL (QUOTE ((})})

(EQUAL (QUOTE A) (QUOTE A))

(EQUAL (QUOTE A) (QUOTE B))

(EQUAL (QUOTE A) (QUOTE (A)))

(EQUAL (QUOTE (A B C)) (QUOTE (A B C)))

(EQUAL (QUOTE (A B C)) (QUOTE (A B C D)))

(EQUAL (QUOTE ()) (QUOTE ()}))

(EQUAL (QUOTE ((A B (C D)) ((E) () F)))
(QUOTE ((A B (C D)) ((E) () F))))

(EQUAL (QUOTE ((A B (C D)) ((E) () F)))
(QUOTE ((A B (C D)) ((E) F))))

(HEAD (TAIL (TAIL (TAIL (QUOTE (A B CDE F)})))))

(EQUAL (HEAD (TAIL (QUOTE (A B C D))))

(HEAD (TAIL (TAIL (QUOTE (D C B A))))))
(CONS (HEAD (QUOTE ((A (B)) ((C) D (E)))))
(TAIL (QUOTE ((A (B)) ((C) D (E))))))

(ATOM (NULL (QUOTE (A))))

2, Second Set

(COND (NULL (QUOTE ()))
(QUOTE (LIST IS NULL))
(QUOTE (LIST IS NOT NULL)))
(COND (NULL (QUOTE (A B C)))
(QUOTE (LIST 1S NULL))
(QUOTE (LIST IS NOT NULL)))
(COND (EQUAL (QUOTE (A B)) (QUOTE (B A)))
(HEAD (TAIL (QUOTE (A))))
(HEAD (TAIL (QUOTE (A B)))))

(DEFINE CONST ()
(QUOTE (THIS FUNCTION HAS A CONSTANT VALUE)))
(CONST)

(DEFINE SECOND (LIS)

(HEAD (TAIL (LIS)))
(SECOND (QUOTE (A B C)))
(SECOND (CONST))

(DEFINE FIRSTIN (ARGl ARG2)
(COND (ATOM ARG1)
(CONS ARG1 ARG2)
(COND (NULL ARG1)
ARG?2
(CONS (HEAD ARG1) ARG2))))
(FIRSTIN (QUOTE A) (QUOTE (B C D)))
(FIRSTIN (QUOTE ()) (QUOTE (B C D)))
(FIRSTIN (QUOTE (A)) (QUOTE (B C D)))

(DEFINE APPEND (LIS1 L1S2)
(COND (NULL LIS1)
L1S2
(CONS (HEAD LI1S1) (APPEND (TAIL LIS1) LIS2))))
(APPEND (QUOTE ()) (QUOTE ()))
(APPEND (QUOTE ()) (QUOTE (A B C)))

{(APPEND (QUOTE (A)) (QUOTE (B C})))
(APPEND (QUOTE (A B)) (QUOTE (C)))

(DEFINE REVERSE (L1S)
(COND (NULL LIS)
(QUOTE (})
(APPEND (REVERSE (TAIL LIS))
(CONS (HEAD LIS) (QUOTE ()}))))

(REVERSE (QUOTE ()))
(REVERSE (QUOTE (A B C)))
(REVERSE (QUOTE ((A B) C (D E F) (G) H)))

Appendix C - Solution to Part 1

PROGRAM RWLIST (INPUT,OQOUTPUT);

(¥ o e e e *)
(* THIS PROGRAM READS AND WRITES GENERALIZED LISTS %)
(* ——— *)
CONST

(*¥ PROGRAM LIMITS *)
MAXSTRING = 10; (*¥ MAX STRING LENGTH *)

(* SPECIAL CHARACTERS AND FLAGS ¥)

LPAREN = (_;

RPAREN = _)_;

BLANK =

LISTFLAG = ¥¥XLIST*¥¥* ; (* LIST NODE FLAG *)
TYPE

STRING = PACKED ARRAY [1..MAXSTRING] OF CHAR;
NODEPOINTER = TNODE; (* POINTER TO NODE IN LIST *)

LIST = NODEPOINTER; (¥ POINTER TO FIRST NODE IN LIST ¥)
NODE = RECORD (* NODE IN LIST REPRESENTATION *)
NAME : STRING; (¥ ATOM NAME OR LIST FLAG *)
HEAD : NODEPOINTER; (¥ NIL IF ATOM NODE *¥)
TAIL : NODEPOINTER; (¥ NIL IF ATOM NODE *)

END; (¥ NODE ¥*)

VAR
LISTEXPR : LIST; (¥ LIST INPUT BY MAIN *¥)

(¥ GLOBAL TO READSTRING AND WRITESTRING *)

STRINGCHAR : SET OF A .. < ; (% SET OF VALID STRING CHARS ¥)
VALUE

STRINGCHAR = [A .. Z , 0 .. 9 J; (* VALID STRING CHARS *)
(o e s *)
(¥ PROCEDURES NEXTINPUT, SKIPIT, ENDFILE, READSTRING, AND *)
(* WRITESTRING PERFORM ALL INPUT AND SOME OUTPUT FOR THE %)
(* PROGRAM. *)
e e e il ¥

(¥ NEXTINPUT RETURNS THE NEXT NONBLANK CHARACTER IN THE *)
(¥ INPUT FILE. THE FILE POINTER IS LEFT POINTING TO THE ®)
(¥ NONBLANK CHARACTER. L

FUNCTION NEXTINPUT : CHAR;
BEGIN
WHILE (INPUTT = BLANK) AND (NOT EOF(INPUT)) DO BEGIN
WRITE (INPUTT);
IF (EOLN(INPUT)) THEN BEGIN
WRITELN:
WRITE (_ _,_) (* INDENT *)
END:
GET (INPUT);
END; (* WHILE %)
NEXTINPUT := INPUTT;
END; (¥ NEXTINPUT *)

(% SKIPIT IS CALLED AFTER NEXTINPUT TO ECHO THE NONBLANK *)
(* CHARACTER AND ADVANCE THE FILE POINTER. *)

PROCEDURE SKIPIT;
BEGIN
WRITE (INPUTT);
GET (INPUT);
END; (% SKIPIT %)

(* ENDFILE IS TRUE IF THERE ARE NO REMAINING NONBLANK ®)
(* CHARACTERS BEFORE THE END OF FILE MARKER. *)

FUNCTION ENDFILE : BOOLEAN;

BEGIN

ENDFILE := (NEXTINPUT = BLANK) AND EOF(INPUT);

END; (* ENDFILE %)
(% READSTRING READS AND ECHOS A STRING, PADDING OR *)
(* TRUNCATING IT TO MAXSTRING CHARACTERS. *)

PROCEDURE READSTRING (VAR S:STRING);

VAR

I : INTEGER; (* STRING INDEX ¥)
BEGIN

I = 13

WHILE (INPUTT IN STRINGCHAR) AND (I <= MAXSTRING) DO BEGIN
WRITE (INPUTT);

S[I] == INPUTT;

GET (INPUT);

I = I + 1;

END;

WHILE I <= MAXSTRING DO BEGIN (¥ PAD WITH BLANKS ¥)

S[1I] := BLANK;

I := 1 + 13

END;

WHILE INPUTT IN STRINGCHAR DO BEGIN (* TRUNCATE IF NEEDED ¥)
WRITE (INPUTT); ’

GET (INPUT);

END:
(% READSTRING ¥*)

END;

(* WRITESTRING WRITES A STRING UP TO THE FIRST BLANK

(* CHARACTER.

PROCEDURE WRITESTRING (S:STRING);

VAR
I
DONE
BEGIN
I :=
DONE

INTEGER;
BOOLEAN;

15
:= FALSE;

(% STRING INDEX *)
(* FINISHED FLAG ¥)

WHILE (NOT DONE) AND (I <= MAXSTRING) DO
${1I] <> BLANK THEN BEGIN
WRITE (S[I1);

Ir

I := I + 1;
END

ELSE DONE := TRUE;
(*# WRITESTRING *)

N
I I 3

PROCEDURE READLIST READS A LIST FROM THE INPUT FILE
AND CREATES ITS INTERNAL REPRESENTATION.
.. POINTS TO THE FIRST NODE.

PROCEDURE READLIST (VAR L:LIST);

VAR
PREV,
BEGIN

TEMP : NODEPOINTER; (% TEMPORARY LIST PUINTERS *)

NEW (L)

LT.HEAD := NIL;
LY. TAIL := NIL;
XTINPUT IN STRINGCHAR THEN (¥ ATOM *)

IF NE

READSTRING (L1

ELSE

IF NEXTINPUT

SKIFIT;
LT.NAME := LIS
IF NEXTINPUT <
PREV := L;
WHILE NEXTINPUT <> RPAREN DO BEGIN

NEW (TEMP);

(¥ ALLOCATE A NEW NODE ¥)
(% AND INITIALIZE IT ¥)

.NAME)
= LPAREN THEN BEGIN (*¥ LIST *)

TFLAG;

> RPAREN THEN READLIST (LT.HEAD);

TEMPT.NAME := LISTFLAG;
PREVT.TAIL := TEMP;
READLIST (TEMPT.HEAD);
PREV := TEMP:
END; (* WHILE *¥)

SKIPIT;

PREVT.TAIL := NIL;

END;

END:; (% READLIST *)

UPON RETURN,

*)
*)

(F o o e e m o — o — oo %)
{ PROCEDURE WRITELIST FORMATS AND OUTPUTS THE LIST *)
(* WHOSE FIRST NODE IS POINTED TO BY L. *)
(B s e e S %)

PROCEDURE WRITELIST (L:LIST);

VAR
TEMP : NODEPOINTER; (# TEMPORARY LIST POINTER ¥)
BEGIN
IF LT.NAME <> LISTFLAG THEN (* ATOM *)
WRITESTRING (LT.NAME)
ELSE BEGIN (* LIST *)

WRITE (LPAREN);
IF LT.HEAD <> NIL THEN WRITELIST (L7T.HEAD);
TEMP := LT.TAIL;
WHILE TEMP <» NIL DO BEGIN
WRITE {BLANK);
WRITELIST (TEMPT.HEAD);

TEMP := TEMPT.TAIL;
END;

WRITE (RPAREN);

END;

END; (# WRITELIST *)

(K e oo #)
(* MAIN PROCEDURE *)
(% o o o)

BEGIN (* MAIN *)
WRITELN (1 _, _TEST OF READLIST AND WRITELIST) s
WRITELN;

(% READ AND WRITE LISTS UNTIL END OF FILE ¥)

WHILE NOT ENDFILE DO BEGIN

WRITE (_ , _READLIST => _);
READLIST (LISTEXPR);

WRITELN:

WRITE (_ , _WRITELIST => _);
WRITELIST (LISTEXPR):
WRITELN:

WRITELN;

READLN;

END; (¥ WHILE *)

WRITELN (_ _, _*¥% END OF INPUT **¥*_);
END.

