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Abstract
This paper analyzes Davidson’s method for computing a few eigenpairs of large sparse symmetric
matrices. An explanation is given for why Davidson’s method often performs well but occasionally per-
forms very badly. Davidson’s method is then generalized to a method which offers a powerful way of

applying preconditioning techniques developed for solving systems of linear equations to solving eigenvalue
problems.
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1. Introduction

The Lanczos algorithm is a powerful technique for computing a few eigenvalues of a symmetric matrix
A. If the matrix (A - ) can be factored for one or more values of o near the desired eigenvalues then the
Lanczos algorithm can be used with the inverted operator and convergence will be very rapid. Otherwise
the Lanczos algorithm can be used with the original matrix A but convergence can be very slow.

Slow convergence can also plague the conjugate gradients method for solving systems of linear equations
which is an analog of the Lanczos algorithm. Convergence of the conjugate gradients algorithm can be
accelerated by computing and using an approximate inverse (preconditioner). Much work has been done
developing effective preconditioning techniques ( [3], [5], [8], [1]). Unfortunately preconditioning cannot be
directly applied to eigenvalue problems. If the preconditioner multiplies both sides of the equation
Az = )z then the problem becomes a generalized eigenvalue problem which is no easier to solve. If only
A is multiplied by the preconditioner then the answers are changed.

One approach for using preconditioners on eigenvalue problems is to convert them to linear equation
problems by using inverse iteration or the Rayleigh quotient iteration and then use preconditioned
conjugate gradients (actually SYMMLQ [6] since the matrices involved will be indefinite). This approach
was investigated by Szyld [9]. A different approach is Davidson's method [2] which can be interpreted as
a method for using diagonal preconditioning in solving eigenvalue problems. This paper analyzes
Davidson's method from this point of view and then generalizes it to obtain a method which uses more
powerful types of preconditioners.

2. Davidson’s Method

Davidson [2] introduced a new method for computing a few eigenvalues of sparse symmetric matrices
arising in quantum chemistry calculations. The standard solution technique for such problems is the
Lanczos algorithm { [7] chap. 13) which is a clever implementation of the Rayleigh-Ritz procedure applied
to a Krylov subspace. Davidson’s method also uses the Rayleigh-Ritz procedure (see [7] p. 213) but on a
non-Krylov subspace. Formally Davidson’s method is as follows.



Davidson’s Method

Initialize: Let A be the matrix of interest and let D be the diagonal of A. Choose an initial trial
space H, = span(h,, hy,... h, ) and compute (¥i:8y) the best approximation to the

eigenpair of interest using the Rayleigh-Ritz procedure and compute the residual vector

= Ay, - YOy
Then FOR j = k+1, k+2, ... until convergence DO 1 to 4
1. Compute h; = (D - 95-1)'1’5-1
2. Set Hj == span(Hj_1 , hj)
3. Compute (yj, Hj) from H.i using the Rayleigh-Ritz procedure
4. Compute the residual ry = (A- Oj)yj

Convergence is measured by the norm of the residual vector.

Thus the new trial vector is just (D - §)'{A - f)y. Except for the cost of forming the matrix vector
product (which is the same for either method), this algorithm is much more expensive per step than the
Lanczos algorithm since a full Gram-Schmidt process is needed to compute an orthogonal basis for the
space H and a full (rather than tridiagonal) reduced matrix is generated by the Rayleigh-Ritz procedure.
Despite this higher overhead, Davidson reported favorable results for his method compared to the Lanczos
algorithm for problems arising in molecular energy calculations. In one example of dimension 372,
Davidson's method reduced the residual norm to le-6 in 10 iterations while 28 iterations of Lanczos
reduced the residual norm to only 2e-2. The improvement is due entirely to the premultiplication by the
matrix (D - 95)‘1 in step 1, since without this perturbation, Davidson’s method would just reduce to a very
expensive way of implementing the Lanczos algorithm (provided k = 1).

The new trial vector obtained by Davidson’s method is the correction which would be obtained by one

step of the Jacobi method for solving the system of equations
(A-0)x =0

with y; as the initial guess for x. This looks a little strange since in general A - § is not singular and the
only solution to the system of equations is x = 0. A more satisfying explanation of the algorithm is as
follows. Let (y, 6) be the current approximation to the desired eigenpair. For 2 given coordinate i, the
best improvement which can be made in y by perturbing its i(th) component can be determined by the
Rayleigh-Ritz procedure. The best approximations to eigenpairs of A obtainable from the space spanned
by {y, ei} are obtained by solving the 2x2 generalized eigenvalue problem H; - aW; where
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is close to singular where r; is the ith component of the residual vector and d; is the ith diagonal element
of A. If we are near convergence then the residual will be small, and the small eigenvector of H-0W will
be approximately

s = (1, -(di-ﬂ)'lri)T.
Thus the best linear combination of y and e, is (approximately)

z=y -(d-0)"re;.
Davidson’s method just lumps all of these perturbations into one vector and adds this composite vector to

the trial space. (The dropping of the minus sign is of no account since only the trial space is important
for the Rayleigh-Ritz procedure not the particular basis chosen.)

Example 1.

To compare Davidson’s method to the Lanczos algorithm, the smallest eigenpair of a symmetric matrix
A of order 20 was computed using both methods. A was tridiagonal except that a, and a , were

nonzero. a; = 1 for all i while all other nonzero elements were 1. The starting vector was
p; = (1,01,01, ., 0.1)T which is moderately but not exceptionally accurate. Table 2-1 illustrates the
behavior of the methods. The Ritz value for Davidson’s method was-accurate to 9 decimal digits at step
10 while the Lanczos value at step 10 was accurate only to 2 digits. This behavior is very similar to that
reported by Davidson [2]. Note that the Lanczos algorithm has better global convergence than Davidson's

method (better for the first five steps).

In the next section we examine our derivation of Davidson’s method in more detail.



S

Table 2-1: A Comparison of the Lanczos and Davidson Methods

Davidson Lanczos

step Ritz value Residual norm Ritz value Residual norm
1 3.23529 5.27 3.23529 5.27

2 3.17006 3.17 1.21302 1.83

3 1.65718 1.80 784054 1.34

4 1.48600 1.78 476551 1.07

5 .291006 953 .320862 664
6 .223536 0764 .2603309 423
7 .222866 01177 .2352622 .264
8 222847 00241 2263713 .149
9 .222846 000229 .2237563 0783
10 222846 .0000249 2230518 .0381

3. Local Analysis of Davidson’s Method
One major assumption in the derivation of Davidson’s method is the form of s, the eigenvector of
interest of the 2x2 problem H; - aW,. Let m;, = r,/(d; - 6) be the components of the Davidson vector p. If
7, < 1 then the eigenvalue near § and corresponding eigenvector can be expanded in a power series in 7;.
— 2 -3
a=0-nm-2nym° + O(7,%)
and normalizing the first component of s to be 1,
s = (1, -1 - y;m2 + O(r3)T.
(It is interesting to note that the lowest order terms do not depend on yi.) Thus Davidson’s method does
implement the correct first order perturbation correction provided that 7, < 1.

Asymptotically r; converges to zero while d;-6 converges to d; - X, where X is the desired eigenvalue.
Thus 7; converges to zero for all i unless ) is equal to some diagonal element of A. If \ = d, for some i
then the behavior of 7, depends on whether or not the corresponding eigenvector is ;. In any case §, the
Rayleigh quotient of y, will satisfy

d; - 8 = O(|Ir[*)
(see [7] p. 222). If z = e; then y; ~ 1, r; will be just (d; - 8)y; and =; will approach 1. Otherwise r; will be
some constant times |[r|| and x; will diverge to infinity. In either case Davidson’s method may perform
badly.

Example 2.

The matrix A from example 1 was modified so that a,, = a, = a; = a;, = 0. This made the
smallest eigenvalue of A equal to 1 with e, as the corresponding eigenvector. The next smallest
eigenvalue is 1.2538... . The same starting vector was used. By step 8 of the algorithm the second
smallest eigenvalue had been computed to 8 decimal places but no approximation to the smallest
eigenvalue had appeared at all. On step 9 a poor approximation to the smallest eigenvalue had appeared
(1.21315) but had only converged to 1.0285 by step 16.

Example 3.

To obtain an example of the other kind of unusual behavior, the matrix A from Example 1 was modified
by deleting its last row and column. The resulting matrix has 10 both as an eigenvalue and as a diagonal



element. The starting vector had all equal components except the tenth which was ten times larger. By
step fourteen the desired eigenvector approximation had a residual of .000587. This is almost as fast as
Example 1 and much faster than Example 2. This difference in behavior will be examined in the next
section.

4. Convergence of Davidson’s Method

Despite the dramatic results reported by Davidson for molecular energy calculations, Kalamboukis [4]
reported that Davidson’s method converged no faster than Lanczos on nuclear modeling problems. Since
the overhead is much higher in Davidson’s method, Kalamboukis recommended that Lanczos be used for
this type of problem. Kalamboukis also suggested that the differing behavior of Davidson’s algorithm
could be explained by the degree of diagonal dominance of the matrices involved--the more diagonally
dominant the matrix was, the better Davidson’s method worked. This is not entirely true. If the diagonal
of A is constant, then Davidson’s method is equivalent to Lanczos regardless of the degree of diagonal
dominence. More distressing is the fact that Davidson’s method fails completely when A is a diagonal
matrix since the new trial vector will just be y and the trial basis will become linearly dependent.

The best way to understand the behavior of Davidson’s method is to analyze the operator
N(8) = (D - 6(A - 6). Each new trial vector is N(f) times some vector in the space. If § were constant,
the trial space would just be the Krylov space generated by N. (Unfortunately since N is nonsymmetric in
general, it would not be possible to use the symmetric Lanczos algorithm on it.) Of course ¢ is not
constant but it does converge to the desired eigenvalue X and so the properties of N(6) for values of 6 near
X are crucial to the behavior of the algorithm. N(6) is just the operator obtained by applying diagonal
scaling to (A - 6). It is well known, from studying diagonal scaling as a preconditioner for conjugate
gradients, that this diagonal scaling will tend to compress the spectrum of (A - §) closer to 1. For
conjugate gradients, this is the goal in itselfl since the compressed spectrum will have a lower condition
number and conjugate gradients will converge faster. For eigenvalue problems we are interested in how
rapidly the Krylov subspace generated by N will contain good approximations to the desired eigenvector.

The dominant term in the convergence rate for Krylov subspaces depends on the gap ratio of the desired
eigenvalue which measures the relative separation of the desired eigenvalue from the rest of the spectrum
(see [7] p. 244). Convergence to interior eigenvalues is also possible but usually implies earlier
convergence to all of the eigenvalues on one side of the desired eigenvalue. Compression of the spectrum
by itself is not sufficient to insure rapid convergence. Two additional conditions must be met. First the
desired eigenvalue (the smallest eigenvalue of (A - §)) must be moved less than the rest of the spectrum so
that the gap ratio of the desired eigenvalue is increased. Furthermore the preconditioning must not
greatly perturb the desired eigenvector so that convergence to the eigenvector of N implies convergence to
the desired eigenvector of A.

If the desired eigenvector is a coordinate vector, e; say, then e; is also an eigenvector of N(6) for all ¢
and the second condition is satisfied. Unfortunately the corresponding eigenvalue is exactly 1 which lies
right in the middle of the spectrum of N and so convergence is very slow. In the special case of a
diagonal matrix A, all the eigenvalues of N are 1 and the method breaks down. Table 4-1 shows the
spectrum of N(1.0001) for Example 2. Note that the desired eigenvalue lies in the middle of the spectrum.

The situation is rather different in Example 3. For 's near the desired eigenvalue, (D - 6) is nearly
singular and N(8) will have a very large singular value. After one matrix multiply a vector very close to
e,o Will be in the trial space. Essentially one step is wasted obtaining the approximation to e, and then
the process procedes as if the large singular value did not exist.



Table 4-1: Spectrum of N(1.0001) for Example 2

0.1683 0.6377 0.7689 0.8304
0.8661 0.8902 0.9128 0.9392
0.9688 0.9999 1.0000 1.0311
1.0608 1.0872 1.1098 1.1339
1.1696 1.2311 1.3623 1.8317

In the regular case, (D - 6)'1 remains bounded as 8 approaches \, the desired eigenvalue N becomes zero,
and the corresponding eigenvector of N converges to the desired eigenvector of A. Thus the method does
converge to the desired eigenvector with a better (and perhaps much better) convergence rate. In
Example 1 the gap ratio of the desired eigenvalue () for the original matrix A is

(Xg - >\1)/()\20 - Ng) = (1.854160 - .222851)/(20.41594 - 1.866517)
= 087943
For different values of 4, Table 4.2 gives the smallest eigenvalue of N(8), its gap ratio, and the sine of the
angle between the corresponding eigenvector of N(6) and the smallest eigenvector of A.

Table 4-2: Gap Ratios and Sines for Different Values of ¢

8 Eigenvalue of N Gap Ratio Sine

0.9 -2.16723 0.722 0.3776
0.5 -0.30592 0.499 0.1010
0.3 -0.06670 0.447 0.0246
0.22 0.00227 0.431 0.0009
0.2 0.01788 0.427 0.0069

It is clear from Table 4-2 that N is not very semsitive to changes in §. The gap ratio for N for ¢
anywhere near \, is five times the gap ratio for A. This makes an enormous difference in the convergence
rate of the algorithm. Furthermore the eigenvector is hardly perturbed. Thus rapid local convergence is
to be expected. The first value of ¢ encountered in Example 1 is 3.23529. This lies between the third
eigenvalue (2.95594) and the fourth eigenvalue (3.99522) of A. Some of the eigenvalues of N(3.23529) are
complex (which is not disastrous by itself) but the desired eigenvector is not well represented in the
extreme eigenvalues of N. This explains why the first few Davidson steps in Example 1 were not as
effective as the first few Lanczos steps. Davidson’s method was happily trying to converge to the wrong
eigenvector. It is only after 4 is closer to the desired eigenvalue than to any of the others that the method
starts converging rapidly. The gap ratio for the desired eigenvalue of N is at least a factor of five larger
than the gap ratio for A for all values of § near \. Since the convergence rate depends exponentially on
the gap ratio this makes an enormous difference in the convergence rate of the algorithm.

5. Generalizing Davidson’s Method

Unfortunately Davidson’s method does not always increase the gap ratio. If the diagonal of a matrix A
is constant, then Davidson’s method reduces to the Lanczos algorithm. If the diagonal is almost constant
then Davidson’s method may be slightly faster than Lanczos but it will probably not be worth the higher
overhead. This was the conclusion of Kalamboukis [4] when he investigated using Davidson’s method on
nuclear modeling problems.

Interpreting the operator (D - 95_1)'1 as a preconditioner for (A - (?j_l), the obvious way to improve
Davidson’s method is to use a better preconditioner. The generalized algorithm requires modification of



only step one of the original algorithm as follows:

1. Compute p; = (M - gj‘l)‘l’j-v
where M - (Jj_l is some easily inverted approximation to (A - 9;‘-1)' One potential advantage of this use of
preconditioners over conjugate gradients is that here there is no requirement that the preconditioner be

positive definite. This allows the preconditioner to more closely approximate the indefinite matrix (A - o).
In what follows the generalized algorithm will be refered to as the GD algorithm.

Obviously the effectiveness of the GD algorithm depends on how well (M - 6)! approximates (A - 6).
The GD algorithm was applied to Example 1 using the preconditioner (T - 6y where T is the tridiagonal
part of A. Table 5-1 gives the sequence of eigenvalue approximations obtained by the GD algorithm
(starting with the same vector).

Table 5-1: Behavior of the GD algorithm on Example 1

step 0 residual norm

i 3.23529 5.274

2 2.58389 3.777

3 1.54362 1.286

4 1.49082 1.121

5 .38969 1.024

6 .22286 0151

7 .22285 de-7

8 .22285 .6e-13

As can be seen from Table 5-1, the first four steps are very similar to the behavior of the original
algorithm with convergence to the wrong eigenvalues. Once § is closer to the desired eigenvalue than to
the rest of the spectrum, convergence is almost immediate. As before the behavior of the algorithm can
be understood by examining the spectrum of N(¢) = (T - 6)}(A - 6) for values of ¢ near the desired
eigenvalue.

Table 5-2: Gap Ratios for Different Values of § for GD

8 Eigenvalue of N Gap Ratio Cosine
9 1.0 4+ 171 1.0 4761
.2 0.2388 1.0 0165
.222846097 .494e-7 1.0 .839e-6

As before, for all values of 6 near the desired eigenvalue there is a well separated eigenvalue of N(f) with
a corresponding eigenvector which is nearly parallel to the desired eigenvector of A. The extremely rapid
convergence obtained with the tridiagonal preconditioner is due to more than just the increased gap ratio.
For all values of § near the desired eigenvalue, the spectrum of N(#) with tridiagonal preconditioning
consists of a cluster of 18 eigenvalues within le-16 of 1 and two other eigenvalues symmetrically located
around 1. This distribution is guaranteed to converge after only 3 steps.



8. Global Convergence
As seen above, both Davidson’s Method and GD do not converge rapidly to the desired eigenvalue as

long as § is far away. If the desired eigenvalue is specified as the eigenvalue of A closest to a given
number o, then it is possible to modify the algorithm to improve the global convergence. Instead of using
(M - 8)! as the preconditioner, (M - o) can be used until § has started converging to the desired
eigenvalue. Tables 6-1, 6-2, and 6-3 give the behavior, for different values of o, of both diagonal
preconditioning and tridiagonal preconditioning on Example 1 when the preconditioners are fixed at o

until 4 has settled down.

Table 8-1: o= 9

Diagonal Tridiagonal
step 6 residual norm 6 residual norm

1 3.2352 5.2740 3.2352 5.2740

2 9007 1.3130 5190 1.5320

3 33217 5493 2276" 2001

4 2347 .2184 .2229 .0331

5 2236 .0613 2228 .0002

6 2229 .0130 .2228 3813e-11

7 .2228 .0023

*Switch from o to

Table 8-2: o=.5

Diagonal Tridiagonal
step g residual norm 6 residual norm

1 3.2352 5.2740 3.2352 5.2740

2 7455 1.1730 2911 9275

3 3055 4406 2220° 0168

4 2318" 1978 .2228 0022

5 2234 .0494 2228 .1154e-5

6 2229 0117 2228 .3836e-13

*Switch from o to §

As can be seen from the tables, this modification improves the global convergence of the algorithm and

does not require a particularly accurate value for 0.

7. Conclusions
The success of Davidson’s method on some types of eigenvalue problems shows the potential power of

diagonal preconditioning. Generalizing Davidson’s method allows for more powerful preconditioners to be
used which makes the method effective for a much wider class of matrices. Using (M - ¢} instead of (M
- 6?)'1 as the preconditioner shows that it is possible to force global convergence to a particular eigenvalue.
If the formation of a matrix-vector product is very cheap then the overhead required in the GD algorithm
will not be cost effective, but if the matrix-vector product is expensive then the GD algorithm will
significantly reduce the number of matrix-vector products required and thus will be significantly cheaper



Diagonal

step ]

1 3.2352
7054
2987
.2308
2233
2298"

S O e WD

*Switch from o to 4

than the Lanczos algorithm.

Table 8-3: o= .2

Tridiagonal

residual norm 0 residual norm
5.2740 3.2352 5.2740
1.1160 .2493 7077

4254 .2230 0294

1854 2228” 7790e-4

0462 2228 .2244e-7

.0109 2228 4518e-13
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