Chapter 4

Discussion and Conclusion

In this research, we have developed a small grammar which can
translate a subset of English into Horn Clauses, and experimented with it over
the Blocks World domain. We have also developed a translator for the
experimental domain which can accept several tasks in English, translate them
into Horn Clauses by using the grammar, and interpret them as programs and
data.

In this chapter, we will discuss some points which have not been
covered yet, and then summarize the related works. In addition, with the
conclusions drawn from this research, we will discuss the directions for further
research.

4.1 Further Discussion

In the examples of the last chapter, we could see that some of the
descriptions of problem-solving methods were not very natural. There are some
reasons for this unnaturalness. One of the reasons is the use of variables such as
X and Y. Even though, by using variables, we can state our intentions clearly,
readability is reduced, since variables do not represent any semantic
information. If we use a noun phrase as a variable, e.g. *a block®, it will
increase the readability. However, this will cause some pronominal references
and will increase the ambiguity. Another cause which makes some rules
unnatural is the restricted types of formats for rules. Virtually, only one form
of rule, Le. if-then structure, is allowed. To represent some ideas naturally, we
may need more structures like "repeat® and "do while®. Also, to represent the
complex problem-solving methods easily, we need some kinds of data structure,

51

52

e.g. array or record. In HCPRVR, the dominant data structure is list and, in
the examples of the last chapter, we used it frequently.

In the first chapter, we observed the parallelism between Procedural
Logic and English which eases the process of translation of English to
Procedural Logic or vice versa. This research is about only one direction of the
translation. But, the other direction seems to be feasible, too. In some senses,
the translation from Horn clause programs to English seems to be more
promising for automatic documentation of programs. We can produce an
English description of a Horn Clause program with the reverse procedure of the
translation discussed in this paper. One merit of this translation is that the
grammar for the subset can be small. The system can explain the behavior of
the program by using only a few combining roles for simple English sentences.

As for the problem of "consistency®, we discussed the problem only
when we asserted something. But, we have to consider the problem also when
we delete something. It indicates that DB is non-monotonic. If we delete some
facts (or rules) without checking, it may make DB inconsistent. For example, if
we delete the fact "a red block is on the table* from DB of Figure 4-1, the
resulting DB will be inconsistent. Furthermore, we have the fact *a blue block
is on the red block,* which means that we have a block which is on a non-
existent block.

A Ted block is on the table.
A blue block is on the red block.

((INST 1 BLOCK COLOR RED) IF)
((INST 2 TABLE DET THE) IF)
((INST 3 BLOCK COLOR BLUE) IF)
((ON* (INST 1) (INST 2)) IF)
((ON* (INST 3) (INST 1)) IF)

Figure 4-1: Deletion from DB

A solution to this problem would be to resort on the consistency rules

53

again. Rules can specily the conditions which must be met in order to delete
something. In the example above, the following consistency rule can be used to
prevent the inconsistency shown above.

It is consistent to delete the fact that X ison Y
if ¥ is clear.

More general solutions to the problem of consistency of the non-
monotonic DB are discussed in [Doyle 79] [McCarthy 80] [Petrie 84],and the
rule-based control of DB state change is discussed in [Nicholas 78b].

4.2 Related Works

This work deals with the translation of English program descriptions
into Horn Clause programs by using a small grammar, and can be categorized
as Natural Language Computation(NLC) or Natural Language
Processing(NLP).

There have been lots of pros and cons about programming in natural
language, and it is still controversial. A summary of arguments can be found in
[Petrick 76]. The claims of proponents are that many potential users do not
want to learn and use a formal language, and that, in some applications, natural
language is a better tool for communication with the computer than formal
languages. Also they claim that the current state of art in NLC is sufficiently
advanced and many remaining problems can be solved. But, opponents argue
that natural language is so ambiguous and vague that NLC system can make
errors because of misunderstanding the input in natural language. They also
argue that it is very hard to provide a large subset of natural language for
computation in the near future. Recently, [Rosenschein 83| has stressed the
importance of studying NLC in current environment. That is, we have to study
NLC, because NLC is getting practical utility in some domains, e.g. natural
data base query language, and the study interlinks related fields such as
linguistics, philosophy, and psychology. In AL, the study of NLC accelerates
the study of ®explicit models of mind®, which is one of this field's ultimate
goals, and contributes to progress in knowledge representation and acquisition.

54

[Biermann 76] compared the efforts and time needed to make
programs using a subset of English and a formal language(PL/C). In this work,
experimentation was done by asking a group of students to program in both
languages about problems of arrays. The result from the statistics of time
measurements and also from interviewing students showed that natural
language fared better than PL/C.

Among the reports on individual projects related with this work, [Van
Baalen 83] developed a system which constructs a recursive LISP program out
of English sentences. This system accepts declarative sentences which are
programs and imperative sentences which are function calls. The declarative
sentence uses the "be" verb, and the basic translation mechanism is rather
syntactic. For example, a sentence of the following structure

‘noun + of + NP1 + qualifier + is + NP2

will be translated into the following LISP function.

(noun (LAMBDA (X)
(COND ((NP1% X)
(COND ((qualifier* X) NP2%))))))

where NP1* is a predicate function to check if X is NP1,
qualifier* is predicate function to check if X
has the required qualification,
and NP2% is a function which returns the value
which is specified by NP2.

The system also has a list of words and their corresponding LISP functions(user-
defined and system-defined), and uses it to choose the right function for each
word used in input.

About translating English to Procedural Logic, there have been two
previous works. [Wang 83] proposed the original idea of this kind of translation,
and experimented with the idea on a domain of family hierarchy with a small
grammar. [Simmons 84b] extended the idea to the extent that the grammar
understands comparative statements. Their works mainly dealt with facts and
rules which can make inferences from the given facts.

[#a}
(o)

4.3 Conclusion

In chapter 1, it was argued that Procedural Logic is not only an
excellent programming language, but also a good symbolism for representing
some human problem solving. In addition, by showing parallelism between
Procedural Logic and a small subset of English, we suggested that the
mechanical translation from English program descriptions to Horn Clause
programs was worth study.

In the next chapter, we introduced a small grammar which can
translate a subset of English sentences into Horn Clauses. The translation is
mainly based on the syntactic structures of simple semtences from which
sentences of complex structures can be built. Also, to make it easy to identify
the references to several objects, noun phrases were stored as frames. This
made changes in some literals. A program which is based on Relaxed
Unification algorithm was introduced to compare frames effectively.

In Chapter 3, an interpreter was described which uses the grammar
discussed in Chapter 2, and is able to accept English definitions of Blocks World
tasks. We experimented with the interpreter on an example domain, Blocks
World, to show its power. Also, in this chapter, we discussed the mechanism
which maintains DB consistency by using Consistency Rules. Throughout many
examples on the domain, we showed how several tasks such as programming,
querying, describing the Blocks World, and commanding the robot could be
done in English in a unified way.

As mentioned in the first chapter, this research was one of a series of
experiments relating to the automatic translation between English and Horn
Clauses. This research, even though limited to a small example domain, has
provided the following conclusions.

e Procedural Logic provides a unified system to accomplish a wide
variety of computations, and, because procedural descriptions in
English can closely parallel Procedural Logic descriptions,
translations between them are facilitated.

e The grammar used in the translation can be made small because the

56

translation procedure does not need any domain-specific or semantic
knowledge. The semantics of each predicate name and domain-
specific knowledge should be defined and given by users in the form
of rules and assertions whenever they are needed.

4.4 Further Research

Because we experimented with translation only in a simple domain, we
need more experiments on other domains to get insights into the problems in
this kind of translation. And, in further experiments -on other domains, the
following two points should be considered seriously.

e The characteristics of English descriptions of problem-solving
methods should be studied to provide a subset of English which is
small but which offers a reasonable and comfortable way of
describing the problem-solving methods.

e The practical domains, in which this kind of translation is helpful,
should be sought. One potential practical domain is expert systems
such as Emycin. It has been already known that Procedural Logic
can provide a good tool for implementing expert systems [Clark 80],
because many expert systems use rules as the main structure of
domain knowledge, and Procedural Logic can provide several
facilities which an expert system has to have. The remaining
problem is to determine if it is possible to convert English rules of
an expert system into Horn Clauses by the translation procedure
described in this thesis.

It is too early to evaluate the usefulness of this research. The accurate
evaluation will be possible only after we get more experiences from further
research.

Appendix A.

HCPRVR Program for Simple Sentences

(AXI0OMS
* (((SIMSNT X V R) -
< (SIMSNT1 X V R1) (OR* (EQ* R1 (AND . R)) (EQ* R1 R)))))

(AXIOMS
* (((SIMSNT1 (X THERE . Y) V R)

<
(VEBE XD
I

(STMSNT1 (THERE X . Y) V R))
((SIMSNT1 (THERE X . Y) (_PREP U V) R)

<

(VBE X0

(NP Y NFU (Z . R1))
(PREP 7)

i

(NP Rl NF2 V R)

(PREPARC NF Z NF2 PREP))

((SIMSNT1 (THERE X © Y) (THERE-IS V) R)
<

(VBE XD
i

(NPx Y NF V R))
((SIMSNTT (IS IT X . Y) (PRED V) R)
<
i (SIMSNT1 (IT IS X . Y) (PRED V) R))
((SIMSNT1 (IT IS X . Y) (PRED V) R)
<
(OR* (ADJ X X1 IDIOM PRED)

(AND* (PASTP X Z) (VERB Z Z1 Z2 PRED)))
i (NP Y CLAUSES V R)) -
((SIMSNT1 C{ . Y) V R1)
< (VERB X X1 X2 X3) ! (VP NIL NIL (X . Y) V R1))
((SIMSNT1 L . Y) V R1)
<

57

58

(VBE X)
(MOOD QUERY)
1

(NP Y NF ViR)
(VP Vi~ NF (X . R) V R1))
((SIMSNTT XV R1) < (NP X NF VI R) (VP V1 NF R V R1))))

(AXIOMS

*(((NP (LISTX . R) LISTXR) < 1)
((NP (THE X THAT . Y) CLAUSES V R)
<

(NOUN X NF X1)
'
(SIMCONJSNT Y V2 R)
(NORM V2 V))
_ ((NP (X THAT . Y) CLAUSES V R)
<

(OR* (NOUN X NF X1) (PRON X X1))
1

(SIMCONJSNT Y V2 R)

(NORM V2 V))

((NP (X . Y) PRON* X1 Y) < (PRON X X1))

((NP X . Y) VARx X Y) < (VAR* X) 1)

((NP (THAT . X) CLAUSES V R)

< 1 (SIMCONJSNT X Vi R) (NORM V1 V)) _

((NP (TO . X) CLAUSES VR) < ! (VP NIL NIL X V R))
(NP X . Y) NF (UDET X . V) R)

< (ARTX) ! NP1 Y NF (U . V) R)

((NP X _NF VR) < (NP1 X NF V R))))

(AXIOMS
*(((NPx (AND . X) NF (U . V) R)
< (NP X NF U RI) (NP* R1 NF V R))
((NP* NIL™ NF NIL NIL) < 1)~
((NPx (AND". X) NF NIL (AND . X)) < 1)
((NPx X NF YR)™
<
(NP X NF U (AND . R1))
(NPx (AND . R1) NF VR)
(NORM (U . V))
((NPx X NF VR) < (NP X NF VR))))

(AXIOMS
"(((NPL X . Y) NF USX.WVR
<
(ADJ X FA IDIOM PRED)
(NPL Y NF (U . V) R)
(FRAMEARC FA NF S))
(WP1 X . Y) NF USX . V)R)

59

<

(NOUN ¥ NF1 PRED)

(NP1 Y NF2 (U . V) R)

(FRAMEARC X U 8))

((NP1 (XY . Z) NF1 (X ARC V) R)
<

(NOUN X NF1 PRED)

(PREP Y)

(NP Z NF2 VR)

(PREPARC NF1 Y NF2 ARC))

((NP1 (X .7Y) NF O V) < (NOUN X _NF W1))))

(AXIOMS

*(((VP NP NF (X NOT . Z) (UNLESS+ V) R)
< (VBEX) ! (VP NP NF X . Z) VR))
((VP NP NF (X NOT .”Z) (UNLESS+ V) R)
<t (VP NP NF ZYR))
((VP NIL NIL X . Y) (PRED U V) R)
<
(VERB X VF IDIOM PRED)
(NEQx IDIOM NIL)
(NP Y "NF U R1)
(REMB ~IDIOM R1 R2)
(NP R2™ NF2 V R))
((VP NIL'NIL (X . Y) (PRED V) R)
<
(VERB X VF IDIOM PRED)
(REMB IDIOM Y R1)
(NP R1™_NF V R))
((VP NIL'NIL X . Y) (PRED V) R)
<
H
(VERB X VF IDIOM PRED)
(NP Y NF VRD B
(REMB TIDIOM R1 R))
(VP NP NF (XY .R) (_ARC NP Y) R)

<

(VBE X0

(ADJ Y FA NIL PRED)

(FRAMEARC FA NF ARC))
((vb NP NF (€Y ."R) (_PRED NP) R)

< (VBE XJ (ADJ Y FA NIL PRED))
((VP NP NF (XY T Z) (PRED NP _NP2) R)
<

(VBE X)

(ADJ Y FA IDIOM PRED)

(REMB TIDIOM Z R1)™

(NP R1™_NF2Z NP2 R))

((vP NP~ NFI" (XY . Z) (_PRED NP NP2) R)

<

(VBE X)
(PREP Y)
]

(NP Z NF2 NP2 R)

(PREPARC NF1 Y NF2 PRED))

(WP OV . V1) NFT XT 1) (ARC (V. V1) U) R)
<

(VBE X)

(NP Y NF2 (U . U1) R)

(FRAMEARC V U ARC))

((VP NP NF1 X . Y) (PRED NP W) R)

<

(VBE X)

(NP Y NF2 V R)

(REMDET V (U OF* W))

(NOUN U X1 _PRED))
((VP NP NFT (X . Y) (_PRED NP) R)

<

(VBE X)

(NP Y NF2 (U . V) R)

(NOUN U X1 PRED))
((VP NP NF (XY . Z) (PRED NP U) R)
<

(VBE X)

(PASTP Y Y1)

(VERB Y1 VF IDIOM PRED)

(REMB IDIOM Z R1)

(NP R1~ NF2 U R))

((VP NP NF XY . 2) (PRED NP) R)
<

(VBE X)

(PASTP Y Y1)

(VERB Y1 VF. IDIOM _PRED)
(REMB _IDIOM Z R))))™

(AXIOMS ‘
*(((OR%) < ! (FAIL))
(OR¥ X . Y) <X 1)
((OR* X . Y) < (OR* . Y))))

(AXIOMS

*(((NORM GO X) < 1) ((NORM X X)))) -

(AXIOMS

*(((REMB NIL X X)) ((REMB (X . Y) X'. Z) R) < (REMBY Z R))))
(AXIOMS ~

* (((NOUN LIST TYPE LIST«))

60

((NOUN BLOCK OBJ BLOCK*))

((NOUN CUBE OBJ CUBE%))

((NOUN MEMBER STATE MEMBER+))

((NOUN PYRAMID OBJ PYRAMID*))

((NOUN ROBOTARM OBJ ROBOTARM*))
((NOUN RULES TEXT NIL))

((NOUN TABLE OBJ TABLE%))

((NOUN FACT TEXT FACT%))

((NOUN INFERENCE TEXT INFERENCE%))))

(AXIOMS

* (((VERB ASSERT ASSERT NIL ASSERT*))
((VERB DELETE DELETE NIL DELETE))
((VERB DUMP PRINT NIL DUMP*))
((VERB MAKE CRFATE NIL MAKE%))
((VERB PICK MOVE (UP) PICKUP))
((VERB PRINT PRINT NIL RPRINT))
((VERB PUT MOVE (DOWN) PUTDOWN))
((VERB PUT MOVE (ON) PUTON))
((VERB CHECK TEST NIL CHECK*))))

(AXTOMS
* (((VBE IS)) ((VBE ARE}}))

(AXIOMS
* (((PRON NIL NIL)) ((PRON IT ID))))

(AXIOMS
* (((ADJ LARGER COMPAT (THAN) LARGER%))
((ADJ YELLOW COLOR NIL YELLOW%))
((ADJ BLUE COLOR NIL BLUE%))
((ADJ CLEAR PHYSTATE NIL CLEAR%))
((ADJ CONSISTENT STATE NIL CONSISTENT*))
((ADJ EQUAL RELATION (TO) EQ%))
((ADJ LARGE SIZE NIL LARGE*))
((ADJ RED COLOR NIL RED%*))
((ADJ SMALL SIZE NIL SMALL%))
((ADJ WHITE COLOR NIL WHITE%))
((ADJ FALSE VALUE NIL FALSE%))
((ADJ SUPPORTABLE REL NIL SUPPORTABLEx))
((ADJ TRUE VALUE NIL TRUE%))))

(AXIOMS
*(((ART A)) ((ART AN)) ((ART ANOTHER)) ((ART THE))))

(AXIOMS

* (((PASTP ASSERTED ASSERT))
((PASTP DELETED DELETE))
((PASTP MADE MAKE))

61

((PASTP PICKED PICK))
((PASTP PUT PUT))

((PASTP CHECKED CHECK))
((PASTP PRINTED PRINT))))

(AXTOMS
* (((PREP ON)) ((PREP OF)) ((PREP ABOVE)) ((PREP UNDER))))

(AXIOMS

* (((FRAMEARC BLOCK PYRAMID SUB))
((FRAMEARC VAR* PYRAMID SUB))
((FRAMEARC COLOR X COLOR))
((FRAMEARC SIZE X SIZE))
((FRAMEARC PRON* PYRAMID SUB))))

(AXIOMS

> (((PREPARC X ON Y
((PREPARC X OF Y
((PREPARC X ABOVE Y ABOVE%))
((PREPARC X UNDER Y UNDER%))))

62

Appendix B.

HCTRANS

B.1 ELISP programs

(DE HCTRANS NIL
(PROG (SENT SAVENUM)
(SETQ QFLAG)
(SETQ TFLAG)
(SETQ LIMIT 3000.)
(VARIABLES SOMETHING ANYTHING)
A (SETQ VARLIST NIL)
(SETQ SAVENUM OLDINSTNUM)
(SETQ IVARNUM O.)
(TERPRI)
(SETQ SENT (VARCHECK (READ-SENT)))
(COND [(EQ MOOD °7?)
(ASSERT (MOOD QUERY) TEMP)
(TRY (LIST °QUERY SENT))
(DELETE# (MOCD QUERY) TEMP)]
[(RULE? SENT)
(ASSERT (MOOD RULE) TEMP)
(TRY (LIST ’RULE SENT))
(DELETE* (MOOD RULE) TEMP)]
[(COMMAND? SENT) ,
(ASSERT (MOGD COMMAND) TEMP
(TRY (LIST °*COMMAND SENT))
(DELETE* (MOOD COMMAND) TEMP)]
[T (ASSERT (MOOD FACT) TEMP)
(TRY (LIST °*FACT SENT))
(DELETE* (MOOD FACT) TEMP)])
(COND [(NULL VAL)
(MSG T *(Processing of input aborted)*® T)
(CLEAR TEMP)
(PUTPROP °TEMP NIL *AXIOMS)
(SETQ OLDINSTNUM SAVENUM)])
(TERPRI)
(GO AN

63

64

(DE READ-SENT NIL
(PROG (SENT BUF TYPE)
(TERPRI)
(PROMPT 45.)
A (SETQ BUF (READL))
(COND [(AND [NOT (ATOM (CAR BUF))]
[NULL (CDR BUF)])
(PRINT (EVAL (CAR BUF)))
(TERPRI)
(GO A1)
(SETQ MOOD (CAR (LAST BUF)))
(COND [(MEMQ MOOD (LIST */. *?))
(SETQ BUF (REVERSE (CDR (REVERSE BUF))))
(PROMPT 42.)
(RETURN (APPEND SENT BUF))]
[(SETQ SENT (APPEND SENT BUF)) (GO A)1)))

(DE VARCHECK (SNT)
(COND [(NULL SNT) NIL]
[(VAR SNT) (CAR (VARCHECK (LIST SNT)))]
[(NOT (ATOM (CAR SNT)))
(CONS (CONS (VARCHECK (CAAR SNT))
(VARCHECK (CDAR SNT)))
(VARCHECK (CDR SNT)))]
[(VAR (CAR SNT))
(SETQ JJ (READLIST (APPEND *(V AR -)
(EXPLODE (CAR SNT)))))
(AXIOMS (LIST (LIST (LIST ’VAR* JJ) °LEXI)))
(COND [(MEMBER JJ VARLIST) NIL]
[T (SETQ VARLIST (CONS JJ VARLIST))1)
(CONS JJ (VARCHECK (CDR SNT)))]
[T (CONS (CAR SNT) (VARCHECK (CDR SNT)))1))

(DE RULE? (SENT)
(COND [(NOT (NULL VARLIST)) TI
[(OR [MEMBER °IF SENT] [MEMBER °UNLESS SENT]) TI]
[(HEAD ’ (IT IS ALWAYS THE CASE) SENT) T]
[(HEAD ’(IT IS NOT THE CASE) SENT) T]
[T NIL]))

(DE HEAD (X Y)

(COND [(NULL X) T] |
[(EQ (CAR X) (CAR Y)) (HEAD (CDR X) (CDR Y))]
[T NILI))

(DE COMMAND? (SENT)
(COND [(TRY (LIST *VERB (CAR SENT) °X 'Y ’Z)) T] [T NIL1))

65
{The following functions used in HCPRVR programs}

(DF VAR? (X) (OR [VAR (CAR X)] [HEAD *(V A R) (EXPLODE (CAR X))1))

(DE GETAVAR (V N)
(PROG (VAR VAR1)
(SETQ VAR1 (READLIST (CONS °* (APPEND (EXPLODE V)
- (EXPLODE N)))))
(PUTPROP VAR1 T °VARIABLE)
(SETQ VAR
(READLIST (APPEND °*(V AR -) (APPEND (EXPLODE V)
- (EXPLODE N)))))
(SETQ VARLIST (CONS VAR VARLIST))
(RETURN VAR)))

(DF MAKEAVAR (X) (READLIST (CDDDDR (EXPLODE (CAR X)))))

(DE PAIRVARS (LST)
(MAPCAR (F:L (XX) (CONS XX (READLIST (CDDDDR (EXPLODE XX)))))
LST))

(DF NOCONSRULE (O
(PROG (AXIOMS)
(SETQ AXIOMS (GET °CONSISTENT* ’AXIOMS))
(SETQ X (CAR X))
A (COND [(NULL AXIOMS) (RETURN T)]
[(EQ (CAADR (CAAR AXIOMS)) X) (RETURN)1)
(SETQ AXIOMS (CDR AXIOMS))
(GO A)))

B.2 HCPRVR programs

(AXTOMS
* (((ADDFRAME (INST N) ARC Y)
<
(INST N X . X1)
(DELETE (INST N X . X1))
(ASSERT* (INST N X ARC Y . X1)))))

(AXIOMS
* (((ALLTRUE* NIL) < 1)
((ALLTRUE* (X . Y)) < X (ALLTRUE* Y) 1)))

(AXIOMS

66
(((AND)) ((ANDx X . Y) < X (AND*

(AXIOMS
* (((APPEND* NIL X X))

((APPEND* X . Y) Z (X . V1)) < (APPEND* Y Z V1))))
(AXIOMS
*(((ART A)) ((ART AN)) ((ART ANOTHER)) ((ART-THE))))

(AXIOMS

*(((ASKS (U . V) . W)
< (ALLTRUE* ((U . V) . W)) (RPRINT* (YES (U . N))))
((ASKS X) < X (RPRINT* (YES X)))
((ASKS X) < (RPRINT (NO)))))

(AXIOMS

* (((ASS-TEMP)
<
(TEMP X)
(DELETE* (TEMP X))
(DELETE* X TEMP)
(ASSERT* X)
(FAIL))

((ASS-TEMP))))

.1

(AXIOMS
* (((ASSERT* X) < (RPRINT* (Asserted: X)) (ASSERT X IF))))
(AXIOMS

> (((ASSERT-FACT (THERE-IS X)) < (ASS-TEMP) (REFERENCES X))
((ASSERT-FACT (X Y Z))

< (FRAMEARC U V X) (REFERENCES (Z Y)) (ADDFRAME Y X 7))
((ASSERT-FACT X)

<

(ASS-TEMP)
(REVERSE* X X1)
(REFERENCES X1)

(SETVv* Y (SUBLIS (PAIRVARS VARLIST) X))
(ASSERT* Y))))

(AXIOMS
* (((ASSERT-RULE X)
<
(RPRINT* (ASSERTED: X))

(SETV* Y (SUBLIS (PAIRVARS VARLIST) °X))
(ASSERTB . Y)

D))
(AXIOMS

» (((CHANGEVAR (U DET U1l . U2)
(RELMATCH (INST Z1 U . U2) (INST Z1)) NIL)

<
(MEMBER* Ul (A AN ANOTHER))
]

(NEWIVAR N)

(SETV+ Z1 (GETAVAR VAR N))

(TEMP-ASSERT (INST Z1 U . U2)))

((CHANGEVAR (X . Y) V W) < (CHANGEVAR1 X . Y) V W)
((CHANGEVAR X X NIL))))

(AXIOMS
> (((CHANGEVAR1 (U DET Ul . U2)
(INST Z1)
((RELMATCH (INST Zi U . U2) (INST Z1))))

<

(MEMBER* U1 (A AN ANOTHER))

(NEWIVAR N)

(SETV+ Z1 (GETAVAR °VAR N))

(TEMP-ASSERT (INST Z1 U . U2)))
((CHANGEVAR1 (X . X1) Y Z) < (CHANGEVARZ (X . X1) Y Z))
((CHANGEVAR1 X X NIL))))

(AXIOMS
* (((CHANGEVAR2 NIL NIL NIL))
((CHANGEVAR2 (X . Y) (U . V) W)
<
(CHANGEVARL X U W1)
(CHANGEVAR2 Y V W2)
(APPEND* W1 W2 W))
((CHANGEVAR2 X X NIL))))

(AXIOMS
* (((CHECK* X) IF (MAKE* X))))

(AXIOMS

* (((CHK-OBJS (X . Y) U) < (NOUN X X1 X2) ' (CHKIN X . Y) U))

((CHK-OBJS X . Y) V) <t (CHK-OBJS1 (X . Y) V)
((CHK-OBJS X Y) < (PRON X X1) ! (CHKIN X Y))
((CHK-OBJS X X0)))

(AXIOMS
* (((CHK-OBJS1 NIL NIL) < 1)

67

((CHK-0BJS1 (X . Y) (U . V)) < ' (CHK-OBJS X U) (CHK-0BJS1 Y V))

((CHK-0BJS1 X X3)))

(AXIOMS
* (((CHKIN X (INST N))
<

68
(REVERSE* X ((R1 . R2) X1 . R))
!

(CHKIN (R1 . R2) W)

(REVERSE* R X2)

(REMDET X2 X3)

(RELMATCH (INST N . X3) (INST N))

(X1 (INST N) W) :
((CHKIN X (INST N)) < (PRON X X1) (INST N . Y))
((CHKIN (W DET THE . R1) (INST N))

< (RELMATCH (INST N W . R1) (INST N)))
((CHKIN (W DET THE . R1) (INST N))

<

(RELMATCH (INST N W . R1) (INST N))

!

(FAIL))

((CHKIN (W DET Y . R1) (INST N))
<

(MOOD FACT)

(MEMBER* Y (A AN ANOTHER))
(NEWINSTNUM N)

]

(TEMP-ASSERT (INST N W . R1)))

((CHKIN (W DET THE . R1) (INST N))

p 5
(OR* (MOOD FACT) (MOOD RULE))

(NEWINSTNUM N)

]

.(TEMP-ASSERT (INST N W DET THE . gRi)))
((CHKIN X . X1) (INST N))

<

(UNLESS* (MEMBER* DET (X . X1)))

(OR* (MOOD FACT) (MOOD RULE))
(NEWINSTNUM N)

!

(TEMP-ASSERT (INST N X DET NIL . X1)))
((CHKIN X DETY . R) XDETY . R))

<

(OR* (MOOD RULE) (MOOD QUERY))
(MEMBER* Y (A AN ANOTHER)))

((CHKIN X NIL)

< (RPRINT (Uidentifiable Object: X)) ! (FAIL))))

(AXIOMS ,

* (((CLEAR-TEMP) .
< (TEMP X) (DELETE* X TEMP) (DELETE* (TEMP X)) (FAIL))
((CLEAR-TEMP))))

(AXIOMS .
* (((COMMAND X) < (SNT X (Y IF)) (MULTI-CMDS Y))))

(AXIOMS
* (((CONJSNT (THEN . Y) NIL Y))
((CONJSNT (AND IF . Y) V2 R1)
<
'
(SIMCONJSNT Y V R)
(CONJSNT R V1 R1)
(APPEND* V V1 V2))

((CONJSNT (AND UNLESS . Y) ((UNLESS+ . V) . Vi) R1)

<

(SIMCONJSNT Y V R)
(CONJSNT R V1 R1))
((CONJSNT X NIL X))))

(AXIOMS
* (((CONSISTENT (U . V)) < (NOCONSRULE U) 1)
((CONSISTENT X) < (CONSISTENT* X))))

(AXTOMS

* (((DELETE X) < X (RPRINT* (Deleted: X)) (DELETEx X IF))))
(AXIOMS

(((EQ X 30)))

(AXIOMS

* (((EXECUTE X) < X (REVERSE* X Y) (REFERENCES Y)}))
(AXIOMS

*(((FACT X) < (SNT X (Y IF)) (MULTI-FACTS Y))))
(AXIOMS

“((LIST* (X . V) . DN

(AXIOMS

(((MEMBER X X . YD) < 1)
((MEMBER* X (Y . Z)) < (MEMBER* X Z))))

(AXIOMS
*((MEMPAIR (X Y) (XY . D))}
((MEMPAIR (X Y) (UV . Z)) < (MEMPAIR X Y) Z2))))

(AXIOMS

* (((MULTI-CMDS NIL) < 1)
((MULTI-CMDS ((U . V) . Y))
< 1 (SING-CMD (U . V)) ' (MULTI-CMD Y))
((MULTI-CMDS X) < (SING-CMD XD)))

(AXIOMS

69

70

> (((MULTI-FACTS NIL) < 1)
((MULTI-FACTS ((U . V) . YD)
< t (SING-FACT (U . V) ! (MULTI-FACTS Y))
((MULTI-FACTS X) < (SING-FACT X))))

(AXIOMS
(((NEQ X Y) < (UNLESS* (EQ*x X)

(AXIOMS
> (((NEWINSTNUM N)
< (SETV X (ADD1 OLDINSTNUM))
(SETQ OLDINSTNUM X) (EQ* N X) !)))

(AXIOMS
* (((NEWIVAR N)
<

(SETV X (ADD1 IVARNUM)) (SETQ IVARNUM X) (EQ* N XD !)))

(AXIOMS
*(((OR%) < t (FAIL))
(OCR¥ X . Y) <X 1) ((OR*X . Y) < (QR* . Y))))

(AXIOMS

*(((POINTERS X Y) < (VAR? X) (UNVAR X Y))
((POINTERS (INST N) (INST Y)) < (VAR? N) ! (UNVAR N Y))
((POINTERS (INST N) (INST N . X)) < (INSTN . XO 1)
((POINTERS X . V) (U . V))
< (POINTERS X U) (POINTERS Y V) 1)
((POINTERS X X) < D))

(AXIOMS
* (((QUERY XD
<

(SNT X (Y IF))

(TRANS-OBJS Y Z)

(SETV* W (SUBLIS (PAIRVARS VARLIST) °Z))
(ASKS W))))

(AXIOMS
* (((REFERENCES (INST N))
<
(INST N . X)
(DELETEx (INST N . X) IF)
(ASSERT (INST N . X0 1IF))
((REFERENCES (X . Y))
< ' (REFERENCES X) (REFERENCES Y))
((REFERENCES X))))

(AXIOMS

> (((RELMATCH (INST . X) (INST . X))
((RELMATCH (INST N X . X1) (INST N X .)
<
(RELUNIF (INST N X . X1) (INST N X .)
((RELMATCH (INST N) (INSTN X . Y))

<

(INST N . D)

(RELMATCH (INST N . Z) (INST N X . Y)))
((RELMATCH (INST N X . Y) (INST N))

<

(INSTN . 2D

(RELMATCH (INST N X . Y) (INST N . 7Z)))
((RELMATCH (INST N X . X1) (INST N Y . Y1))
<

(NOUN X NF1 U1)

(NOUN Y NF2 U2)

(FRAMEARC X Y SUB)

(RELUNIF (INSTNY . X1) (INSTN Y . Y1)
((RELMATCH (INST NY . X1) (INST N X .)
<

(NOUN X NF1 U1)

(NOUN Y ~NF2 U2)

(FRAMEARC X Y S)

(RELUNIF (INST NX SY . X1) (INST N X . YADIDY

(AXIOMS

* (((RELUNIF (INST NX) (INSTN X . Y)))
((RELUNIF (INST N XUV . R) (INST N X .)
<
(MEMPAIR (U V))
(RELUNIF (INST N X . R) (INSTN X . Y)))))

(AXIOMS
*(((REMDET (X DET Y . R1) X . R1))) ((REMDET XXNN

(AXIOMS
* (((REVERSE# NIL NIL))
((REVERSEx* X . Y) V)
< (REVERSE* Y Y1) (APPEND* Y1 (O V))))

(AXTOMS
* (((RPRINT* X) < (POTINTERS X YY) (RPRTNT Yy U3

(AXTOMS
CCCRKEAD X < (GETVA 4 (READ) D))

(AXIOMS

*(((RULE X) < (SNT X Y) (TRANS-0BJS Y 7) (ASSERT-RULE Z))))

71

72
(AXIOMS

(((SETvx X Y) < (SETV Z Y) (EQ X Z) 1))

(AXIOMS

* (((SIMCONJSNT NIL NIL NIL) < 1)
((SIMCONJSNT (IF . X) NIL (AND IF . X)))
((SIMCONJSNT (UNLESS . X) NIL (AND UNLESS . X)))

((SIMCONJSNT (THEN . X) NIL (THEN . X)))
((SIMCONJSNT X (U . V) R)

< (SIMSNT X U R1) (SIMCONJSNT R1 V R))
((SIMCONJSNT X NIL X))))

(AXIOMS

*(((SING-CMD X) < (CHK-OBJS X Y) (CONSISTENT Y) (EXECUIE Y))
((SING-CMD XD

< (RPRINT* (Unacceptable Command : X)) ! (FAIL))))

(AXIOMS
* (((SING-FACT X)

< (CHK-OBJS X Y) (CONSISTENT Y) (ASSERT-FACT Y))
((SING-FACT XD

< (RPRINT* (Unacceptable Fact: X)) ! (FAIL))))

(AXIOMS

*(((SNT (IT IS ALWAYS THE CASE THAT . X) (V IF 1))
< t (SIMSNT X V NIL))

((SNT (IT IS NOT THE CASE THAT . X) (V IF ! (FAIL)))
<

(SIMSNT X V NIL))
((SNT (IF . X) (V1 IF . V))

< ! (CONJSNT (AND IF . X) V R) (SIMSNT R Vi NIL))
((SNT (UNLESS . XD (Vi1 IF . V))
<

!
(CONJSNT (AND UNLESS . X) V R)
!

.(SIMSNT R V1 NIL))
((SNT X (U IF . V1))

< (SIMCONJSNT X V R) (NORM V U) (CONJSNT R V1 NIL))))
(AXIOMS
* (((TEMP-ASSERT X) < (ASSERTB (TEMP X)) (ASSFRTB X TEMP))))

(AXIOMS

* (((TRANS-0BJS X Y) < (MOOD RULE) (TRANSFORM X Y) (CLEAR-TEMP))
((TRANS-0OBJS X Y)

< (MOOD QUERY) (TRANSFORM1 X Y) (CLEAR-TEMP))))

73

(AXIOMS

*(((TRANSFORM (XY . Z) UY . V))
<
(TRANSFORM1 X (U . R))
(TRANSFORMN Z U1)
(APPEND* R U1l V))))

(AXIOMS
»(((TRANSFORM1 (FATL) ((FAIL))))
((TRANSFORM1 ! (1)))
((TRANSFORM1 (UNLESS+ . X) ((UNLESS+ . Y)))
< 1 (TRANSFORMN X Y))
((TRANSFORM1 (THERE-IS (U . V) . Y)) Z)
< (TRANSFORMN (U . V) . Y) 2))
((TRANSFORM1 (THERE-IS X) Y) < (TRANSFORM1 X Y))
((TRANSFORM1 (X Y Z) ((RELMATCH (INST V1 V2 X Z) Y1)))

<

(FRAMEARC X1 X2 X)

(NEWIVAR N)

(SETV# Vi (GETAVAR °VAR N))
(NEWIVAR N1)

(SETV* V2 (GETAVAR 'VAR N1))
(CHK-0OBJS Y Y1))
((TRANSFORM1 X (X2 . V))

<

(CHANGEVAR X X1 V)
i

(CHK-OBJS X1 X2)
(REVERSE* X2 Y)
g

(REFERENCES Y))))

(AXIOMS
* (((TRANSFORMN NIL NIL))
((TRANSFORMN (X . Y) W)
<
(TRANSFORM1 X U) (TRANSFORMN Y V) (APPEND* U V W)

(AXIOMS
> (((TRUE* NIL)) ((TRUEx X < X)
((TRUEx (X . X1) . Y)) < X . X1) (TRUEx Y))))

(AXIOMS
" (((UNLESS* X) < X ! (FAIL)) ((UNLESS* X))))

(AXIOMS

* (((UNLESS+) < ' (FAIL))
((UNLESS+ X . Y) < X ! (UNLESS+ . Y))
(CUNLESS+ X . Y) < 1))

,(AXIDMS
(((UNVAR U V) < (SETV* V (MAKEAVAR U)))))

74

Appendix C.

Planning

MAKE*
X is made if X is true.

The fact that X is on Y is made
if it is made that X is clear and Y is clear
and the robotarm is clear
and if it is printed that X is put on Y
and if X is put on Y.

The fact that the robotarm is clear is made
if X is on the robotarm
and if X is put down.

The fact that the X is clear is made
if Y is on X
and if it is made that Y is clear
and the robotarm is clear
and if it is printed that Y is put on the table
and if Y is put on the table.

X is made
if X is equal to list (X1 . R)
and if X1 is made
and if R 1is made
and if X is checked.

((MAKE* X) IF (TRUE* X))

((MAKE* (ONx X Y))

IF

(MAKE#* ((CLEAR* X) (CLEAR* Y) (CLEAR* (INST 2 ROBOTARM))))
(RPRINT* (PUTON X YD)

(PUTON X Y))

((MAKE* (CLEAR* (INST 2 ROBOTARM)))

IF

75

(ON* X (INST 2 ROBOTARM))

(RPRINT* (PUTDOWN X))

(PUTDOWN X))

((MAKEx (CLEAR* X))

IF

(ONx Y XO

(MAKE* (CLEAR* Y))

(RPRINT* (PUTON Y (INST 1 TABLE)))
(PUTON Y (INST 1 TABLE)))

((MAKE* X)

IF

(EQx X (X1 . R)) (MAKE* X1) (MAKEx R) (CHECKx X))

CHECK?*
X is checked if X is made.
((CHECK* X) IF (MAKEx X))
MEMBER+

It is always the case that X is a member of list (X .

X is 2 member of list (Y . Z) if X is a member of Z.

((MEMBER+ X (X . Y)) IF 1)
((MEMBER+ X (Y . Z)) IF (MEMBER+ X Z))

INFERENCE®*

The fact that U is above V is an inference of X
if the fact that U is on W is a member of X

76

.

and the fact that W is on V is another member of X.

The fact that U is above V is an inference of X
if the fact that U is on W is a member of X

and the fact that W is above V is an inference of X.

((INFERENCE* (ABOVEx U V) X)

IF

(MEMBER+ (ON* U W) X) (MEMBER+ (ONx W V) X))
((INFERENCE*x (ABOVE* U V) X)

IF

(MEMBER+ (ON* U W) X)

(INFERENCE* (ABOVEx W V) X))

CONSISTENT®*

It is consistent to make X

unless U is above U is an inference of X.

((CONSISTENT* (MAKE* X))
IF
(UNLESS+ (INFERENCE* (ABOVEx* U U) X)))

7

[Biermann 76]

[Chester 80]

[Clark 78]

[Clark 80]

[Colmerauer 78]

[Doyle 79]

Bibliography

Biermann, A. W.

Approaches to Automatic Programming.

In Morris Rubinoff and Marshall C. Yovits (editor), Advances
in Computer, vol 15, . Academic Press, New York, 1976.

Chester, D.

Using HCPRVR.

Technical Report, Department of Computer Science,
University of Texas, 1980.

Clark, K. L.

Negations as Failure.

In Gallaire, H., and Minker, J. (editor), Logic and Data Bases,
. Plenum Press, New York, 1978.

Clark, K. L., McCabe, F. G.

PROLOG: A Language for Implementing Expert Systems.

In Hayes, J. and Michie, D. J. (editor), Machine Intelligence
10, . Ellis and Horwood, 1980.

Colmeraruer, A.

Metamorphosis Grammars.

In Bole, L. (editor), Natural Language Communication with
Computers, . Springer-Verlag, New York, 1978.

Doyle, J.
A Truth Maintenance System.
Arti ficial Intelligence 12(3), 1979.

78

[Ehrlich 81]

[Fikes 71]

[Jaffer 83

[Kowalski 78]

[Kowalski 79]

[LeVine 80]

[McCarthy 80]

[Nicholas 78a]

[Nicholas 78b]

79

Ehrich, K.

Search and Inference Strategies in Pronoun Resolution: An
Experimental Study .

In Proceedings of the Con ference: 19th Annual Meeting of
the Association for Computational Linguistics.
Association for Computational Linguistics, 1931.

Fikes, R. E. and Nilsson, N. J.

Strips: A New Approach to the Application for Theorem
Proving to Problem Solving.

Arti ficial Intelligence 2, 1971.

Jaffer, J., Lassez, J., Lloyd, J.

Completeness of the Negation as Failure Rule.

In Proceedings of the 8th International Con ference on
Artificial Intelligence. Karlsruhe, West Germany, August,
1983.

Kowalski, R.

Logic for Data Description.

In Gallaire, H., and Minker, J. (editor), Logic and Data Bases,
. Plenum Press, New York, 1978.

Kowalski, R.
Logics for Problem Solving.
North Holand, Limerick, Ireland, 1979.

LeVine, S. H.
Questioning English Text with Clausal Logic.
Master’s thesis, University of Texas, December, 1980.

McCarthy, J.
Circumseription - A Form of Non-Monotonic Reasoning.
Arti ficial Intelligence 13(1,2), 1930.

Nicholas, J. M. and Gallaire, H.

Data Base: Theory vs. Interpretation.

In Gallaire, H., and Minker, J. (editor), Logic and Data Bases,
. Plenum Press, New York, 1978.

Nicholas, J. M. and Yazdanian, K.

Integrity Checking in Deductive Data Bases.

In Gallaire, H., and Minker, J. (editor), Logic and Data Bases,
. Plenum Press, New York, 1978.

[Petrick 76]

[Petrie 84]

[Rich 83]

80

Petrick, S. R.
On Natural Language Based Computer Systems.
IBM Journal of Research Development , July, 1976.

Petrie, C.

The Problem of Consistency in Non-Monotonic Logics.
1984.

Submitted to AAAI-84.

Rich, E.
Artifictal Intelligence.
MeGraw Hill, New York, 1983.

[Rosenschein 83] Rosenchein, S.

[Simmons 83]

[Simmons 84a]

[Simmons 84b]

[Tseng 83]

[Van Baalen 83]

Natural Language Processing:Crucial for Computational
Theories of Cognition.

In Proceedings of the 8th International Con ference on
Arti ficial Intelligence. Karlsruhe, West Germany, August
1983.

’

Simmons, R. F.

A Text Knowledge Base for the AI Handbook.

Technical Report TR-83-24, Department of Computer Science,
University of Texas, 1983.

Simmons, R. F.
Compultations from the English.
Prentice-Hall, Englewood Cliffs, New Jersey, 1984.

Simmons, R. F.
Simple.Sim.
1984,

Lecture Material.

Tseng, S. H.

Questioning English Test with Clausal Logic: Case Studies of
Three Texts.

Master’s thesis, University of Texas, December, 1983.

Van Baalen, J. .

Using Natural Language to Solve Recursive Programming
Problems .

Technical Report No. 2, Department of Computer Science,
University of Wyoming, August, 1983.

[Wang 83]

[Warren 77]

[Wiederhold 84]

[Winograd 72]

81

Wang, T. C.

Understanding a Subset of English.
1983.

Draft.

Warren, D. H. D, Pereira, L. M., and Pereira, F.

PROLOG - The Language and its Implementation Compared
with LISP.

SIGPLAN Notices 12(8), August, 1977.

Wiederhold, G.
Knowledge and Database Management.
So ftware, Computer Society, IEEE 1(1), February, 1984.

Winograd, T.
Understanding Natural Language.
Academic Press, New York, 1972.

