PROTOCOL VALIDATION BY
FAIR PROGRESS STATE EXPLORATION

M. G. Gouda and Ji-Yun Han

Department of Computer Sciences
University of Texas at Austin
Austin, TX 78712

TR-84-31 October 1984

Abstract

Consider a network of two communicating finite state machines that exchange
messages over two one-directional, unbounded, FIFO channels. The fair reachability
graph of such a network is a directed graph whose vertices correspond to global states
(of the network) that are reachable by forcing the two machines in the network to
progress in equal speeds. It is shown earlier that if the fair reachability graph of a given
network is finite, then it can be used to decide whether the communication of this net-
work is free from deadlocks and unspecified receptions. In this paper, we complement
this result by showing that if the fair reachability graph of a given network is finite,
then it can be used to decide whether the communication of this network is bounded.
Moreover, if the communication is found to be bounded, then the finite fair reachability
graph can be also used to compute the smallest possible capacities for the two channels
in the network.

=3 O O b WD

Table of Contents

. INTRODUCTION

- NETWORKS OF COMMUNICATING FINITE STATE MACHINES
- FAIR REACHABILITY GRAPH (FRGs)

. DECIDING NODE REACHABILITY USING FRGs

. DECIDING BOUNDEDNESS USING FRGs

. COMPUTING CHANNEL CAPACITIES USING FRGs

. CONCLUDING REMARKS

b 8D S U QO b e

1. INTRODUCTION

Many communication protocols can be modeled as a network of two communicat-
ing finite state machines that exchange messages over two one-directional, unbounded
FIFO channels [1, 6, 9]. It is useful to validate these protocol models by showing that
their communications satisfy certain desirable properties such as boundedness, and
freedom from deadlocks and unspecified receptions [2]. (Definitions of these properties
are given in Section 2.)

The most straightforward technique to validate a given network of two com-
municating finite state machines is called state exploration [9]. In this technique, the
reachability graph of the given network is constructed; it is a directed graph whose ver-
tices correspond to the reachable states of the network, and whose arcs correspond to its
state transitions. If the reachability graph is found to be finite, then the communication
of the network is determined to be bounded, and its freedom from deadlocks and un-
specified receptions can be decided. Moreover, the smallest possible capacities for the
two channels in the network can be computed. Unfortunately, this technique suffers
from a major drawback: Since most reachability graphs are "huge," constructing them
requires "large" execution time and memory. The problem arises, because a reachability
graph exhibits the progress of its two machines by allowing all their relative progress
speeds.

This last observation has led Rubin and West [5] to suggest an improved protocol
validation technique that uses a special type of reachability graphs, called fazr rea-
chability graphs in the current paper. In this technique, the fair reachability graph of
the given network is comstructed by forcing the two machines to progress in equal
speeds. (Indeed, the resulting fair reachability graph is usually much smaller than its
corresponding reachability graph.) Rubin and West argued [5] that if the constructed
fair reachability graph is found to be finite, then it can be used to decide whether the
communication is free from deadlocks and unspecified receptions. However, they left
open the problem of deciding boundedness.

In this paper, we close this open problem. In particular, we present an algorithm
that uses the finite fair reachability graph of a given network to decide whether its com-
munication is bounded. We also present another algorithm (based also on finite fair rea-

chability graphs) to compute the smallest possible capacities for the two channels of a
network whose communication is bounded.

2. NETWORKS OF COMMUNICATING FINITE STATE
MACHINES
A communicating finite state machine M is a labeled directed graph with two
types of edges, namely sending and receiving edges. A sending (or receiving) edge is
labeled -g (or +g, respectively) for some message g in 2 finite set G of messages. For
convenience, we assume that each node in M has at least one outgoing edge. A mnode in

M whose outgoing edges are all sending (or all receiving) edges is called a sending (or
recetving) node. A node in M whose outgoing edges include both sending and receiving
edges is called a mized node. One of the nodes in M is identified as its inetial node, and
each node in M is reachable by a directed path from the initial node.

Let M and N be two communicating finite state machines with the same set G of
messages. [M,N] denotes the network consisting of machines M and N connected by two
FIFO channels in opposite directions.

A state of a network [M,N] is a four-tuple [v,w,x,y], where v and w are two nodes
in M and N respectively, and x and y are two strings over the messages in
G. Informally, a state [v,w,x,y] means that the executions of M and N have reached
nodes v and w respectively, while the input channels of M and N store the strings x and
y respectively.

The 2nitial state of a network [M,N] is [VO,WO,E,E] where v, and w, are the initial
nodes in M and N respectively, and E is the empty string.

Let s=[v,w,x,y] be a state of a network [M,N]; and let e be an outgoing edge of
node v or w. A state s’ is said to follow s over e iff one of the following four conditions
is satisfied:

i. e is a sending edge, labeled -g, from v to v’ in M, and s’=[v’,w,x,y.g|, where
"." is the concatenation operator.

ii. e is a sending edge, labeled -g, from w to w’ in N, and s’=|v,w’ x.g,y].

iii. e is a receiving edge, labeled +g, from v to v’ in M, and s'=[v’,w,x"y],
where x=g.x’.

iv. e is a recelving edge, labeled +g, from w to w’ in N, and s'=[v,w’,x,y’],
where y=g.y’.

Let s and s’ be two states of a network [M,N], s’ follows s iff there is a directed
edge e in M or N such that s’ follows s over e.

Let s and s’ be two states of a network [M,N], s’ is reachable from s iff s=s’ or
there exist states Syse-sS, such that s==s;, §'=s_and Sii1 follows s, for i=1,...,r-1.

A state of a network [M,N] is said to be reachable iff it is reachable from the in-
itial state of [M,N].

A state [v,w,x,y] of a network [M,N] is a deadlock state iff (i) both v and w are

receiving nodes, and (ii) x=y=E (the empty string). If no reachable state of network
[M,N] is a deadlock state, then the communication of [M,N] is said to be deadlock- free.

A state [v,wx,y] of a network [M,N] is an unspeci fied reception state for M iff
X=8,.8y -+ -8} (k>1), and v is a receiving node and none of its outgoing edges is
labeled +g,. A state [v,w,x,y] is an unspeci fied reception state for N iff Y=8,-8g - -8
(k>1), and w is a receiving node and none of its outgoing edges is labeled +g;- I no

reachable state of [M,N] is an unspecified reception state for M or N, then the com-
munication of [M,N] is said to be free from unspeci fied receptions.

The communication from M to N (or from N to M) in a network [M,N] is said to
be bounded by K iff for every reachable state [v,w,x,y] of [M,N], |y|<K (|]x|<IK). The
communication of [M,N] is said to be bounded by K iff each of the communications
from M to N, and from N to M is bounded by K. If the communication from M to N
(or from N to M) is bounded by K but not by K-1, then K is called the smallest pos-
sible capacity for the input channel of N (M).

3. FAIR REACHABILITY GRAPH (FRGs)

A state [v,w,x,y] of network [M,N] is fair iff |x|=]y|, where |x| is the number of
messages in string x. Obviously, the initial state of [M,N] is fair. Also, any deadlock
state of [M,N] is fair.

Let s, and s, be two fair states of [M,N], and let e and f be two edges in M and N
respectively. s, fairly follows s, over (e,f) iff there exists a state s such that

either s follows s, over e and Sq follows s over f,

or s {ollows s, over f and Sq follows s over e.

The fairly reachable states of a network [M,N] are defined recursively as follows:

1. The initial state of [M,N] is fairly reachable.

ii. If a state s is fairly reachable, and if a state s’ fairly follows s over (e,f) for
some edges e and f in M and N respectively, then s’ is fairly reachable.

iii. No state, other than those defined by i and ii, is fairly reachable.

The fairly reachable states of a network [M,N], and the relationship of *fairly
follow" over them can be represented by a labeled directed graph G, called the fair rea-
chability graph of [M,N], as follows:

1. For each fairly reachable state s of [M,N], add a vertex, labeled with state S,
to G. (A vertex labeled with a state s in G is referred to as vertex s.)

ii. If two fairly reachable states s; and s, of [M,N] are such that s, fairly fol-

lows s, over (e,[f), then add an arc, labeled (e,f), from vertex s; to vertex s

in G.

2

(Notice that G has vertices and arcs to be distinguished from the nodes and directed
edges of M or N.)

Rubin and West observed [5] that if the fair reachability graph G of a network
IM,N] is finite (i.e. has a finite number of vertices and arcs), then it can be used to
decide whether the communication of [M,N] is free from deadlocks and unspecified
receptions. Their algorithm can be stated as follows:

i. The communication of [M,N] is deadlock-free iff no vertex in G is labeled
with a deadlock state.

ii. The communication of [M,N] is free from unspecified receptions iff (a) no
vertex in G is labeled with an unspecified reception state, and (b) no state
that "follows" any of the states that label the vertices of G is an unspecified
reception state.

The termination of this algorithm follows from the fact that G is finite. (Later, Yu and
Gouda (7] presented another algorithm that uses fair reachability to decide, in polyno-
mial time, freedom of deadlocks for networks, where the two machines exchange one
type of message.)

Example 1: Consider the network [M,N] whose communicating finite state machines M
and N are shown in Figures 1a and 1b, respectively. The exchanged messages between
the two machines have the following meanings:

Ragst denotes a request to send date messages.

Acpt denotes a positive acceptance of Rast.

Rjet denotes a rejection of the request Rgst.

Data denotes a data message.

Ack denotes an acknowledgement of receiving a data message.
End denotes an end to transmitting data messages.

The fair reachability graph G for this network is shown in Figure lc. G has no
deadlock states, but it has an unspecified reception state [2,3,Rqst,Rgst] for
M. Therefore, the communication of [M,N] is free from deadlocks, but not from un-
specified receptions. o

In their paper [5], Rubin and West contended that they couldn’t extend their algo-
rithm to decide boundedness. (In [8], Yu and Gouda presented an algorithm that uses
fair reachability graphs to decide boundedness for networks, where the two machines
exchange one type of message.) In this paper, we extend the Rubin and West algorithm

Initial node

Initial state

4

Initial node

LA

2,2,E,E

4,4,E,E

T v

6,6,E,E

3

(c) The fair reachability graph of

1,1,E,E

AR

2,3,Rgst,Rgst

network [M,N].

Figure 1.

An Example.

3,3,E,E

5,5,E,E

5

to decide boundedness for any network whose fair reachability graph is finite. But be-
fore we discuss this algorithm, we need to discuss how to solve another problem using
finite fair reachability graphs. The solution to this other problem will be used later in
our algorithm to decide boundedness.

4. DECIDING NODE REACHABILITY USING FRGs

It is required to construct an algorithm to decide for any network [M,N], whose
fair reachability graph G is finite, and for any node v in machine M, whether v is reach-
able in [M,N]. In other words, decide whether there is a reachable state of [M,N] of the
form [v,w,x,y], for some w, x, and y. (Obviously, an algorithm to decide whether a node
w in N is reachable in [M,N] is similar.)

The required algorithm uses an augmented version Gf; of G; Gy is called the

augmented fair reachability graph of [M,N] with respect to M. It can be constructed
from G by the following three-step procedure.

i. Initially, Gf\kfl = Q.

ii. For every vertex s in G
do if s’ is an unspecified reception state for N that follows s
then add a vertex s’ to Gip

add an arc from vertex s to vertex s’ in Gl*\(/I'

iii. For every unspecified reception state s for N, in Gy
do if there is a state s'=[v’,w’,x",y’] that follows s over an edge in M, and if
Gf\k/i has no vertex s" with a directed path to vertex s, where
(a) s"=[v",w"x",y"], and (b) y" is a prefix of y’
then add a vertex s’ to Gi‘/l; add an arc from vertex s to vertex s’ in Gi‘d.

Next, we sketch an argument that G& resulting from the above algorithm is

finite; this in turn implies that the algorithm terminates. Each vertex that is added to
Glti in Step ii corresponds to an unspecified reception state for N that can be reached

after M progresses over one edge from a state in G. Since G is finite, the number of ver-
tices added to GM in Step ii is finite. Moreover, every vertex that is added to Gi‘,l in

Step iii corresponds to a state that is reached by the sole progress of M while N remains
in an unspecified reception state. This sole progress of M can either lead to a halting
state (e.g. an unspecified reception state for M, or a state where M is at a receiving node
and its input channel is empty) or lead to M reaching a directed cycle of all sending
edges. However, the progress of M in Step iii is stopped before M completes a directed
cycle of all sending edges. Hence, the number of vertices added to Gﬁ/{ in Step iil is

finite, and the resulting Glt{ is finite.

The following theorem states a necessary and sufficient condition (based on Gf))
for a node in M to be reachable in [M,N].

Theorem 1: Let [M,N] be a network whose augmented fair reachability graph Gy is

finite, and let v be a node in M. Node v is reachable in [M,N] iff Gf has a vertex
labeled with a state of the form [v,w,x,y], for some w, x, y.

Proof: The if part is immediate; we sketch the proof for the only if part. Assume that
node v in M is reachable in [M,N], i.e. there exists a reachable state [v,w,x,y] of [M,N],
for some w, X, y. Also assume that to reach this state, M and N progress over the
directed paths P and Q. Let |P| and |Q| denote the number of directed edges in paths P
and Q respectively. There are three cases to consider:

Case 1 (|[P| = |Q]): In this case, [v,w,x,y] is fairly reachable, and so it must label one
of the vertices in G&. Therefore, the condition is satisfied.

Case 2 (|P| < |Q): In this case, there exists a proper prefix Q' of Q such that (a) |P|
= |Q'|, and (b) as M and N progress over P and Q’ (respectively), the network [M,N]
reaches a state [v,w’,x’,y’], for some w’, x’, y’. This state is fairly reachable, and so it
must label one of the vertices in G&. Therefore, the condition is satisfied.

Case 3 (|P| > |Q|): In this case, we try to extend the directed path Q in N into Q’
such that (a) [P| = |Q'|, and (b) as M and N progress over P and Q’ (respectively), the
network [M,N] reaches a state [v,w’x,y’], for some w’, x’, y’. There are two possible
outcomes of this trial:

a. Such an extension is possible: In this case, the reached state [v,w’,x’,y’] is
fairly reachable, and so must label one of the vertices in Glt{‘ Therefore the

condition is satisfied.

b. Such an extension ts tmpossible: In this case, Q can be extended only to Q **
such that (a) [P| > |Q"|, and (b) as M and N progress over P and Q*
(respectively), the network reaches an unspecified reception state, for N, of
the form s"=[v,w"x"y"]. Let P" be a proper prefix of P such that
(a) either [P"| = |Q"| or |P"| = |Q"| + 1, and (b) as M and N progress
over P" and Q" (respectively), the network [M,N] reaches an unspecified
reception state s, for N. State s must label one of the vertices in G&. State

s" is reachable from s. If s" is reachable from s without M ever completing =a
directed cycle of all sending edges, then [v,w" ,x",y"] must label one of the
vertices in Gi"d and the condition is satisfied. If it is reachable from s only

after M completes one or more directed cycles of all sending edges, then
there is another state s’'=[v,w" x",y’] that is reachable from s without M

ever completing a directed cycle of all sending cycles. State s’ must label one
of the vertices in GK/I’ and the condition is satisfied. o

Theorem 1 suggests the following algorithm.

Algorithm 1: to decide whether a node v in a communicating finite state machine M is
reachable in a network [M,N]:

i. Construct the augmented fair reachability graph Gy of [M,N] with respect
to M.

ii. If Gi\k/l has a vertex labeled with a state of the form [v,w,x,y] for some w, x,
and y
then v is reachable in [M,N]
else v is not reachable in [M,N]. o

A similar algorithm can use the augmented fair reachability graph Gi{l of [M,N] to
decide whether a node w in N is reachable in [M,N].

Example 1 (continued): Consider the network [M,N] in Figure 1, and assume that it
is required to decide whether nodes 5 and 7 in machine N are reachable. Following Al-
gorithm 1, we construct GI"{I as shown in Figure 1d. Since GItI has two vertices labeled

with the states [5,5,E,E] and [2,7,Rgst,E], then both 5 and 7 in N are reachable. o

In the next section, we employ these algorithms to decide whether the communica-
tion of [M,N] is bounded.

5. DECIDING BOUNDEDNESS USING FRGs

It is required to comstruct an algorithm to decide for any network [M,N], whose
fair reachability graph G is finite, whether the communication from M to N is bounded.
In other words, decide for any such network [M,N] whether there exists a positive in-
teger k such that for any reachable state [v,w,x,y] of [M,N], |y|<k. The required algo-
rithm is based on the following theorem.

Theorem 2: Let [M,N] be any network whose fair reachability graph G is finite. The
communication from M to N is unbounded iff there exists a reachable state [v,w,x,y] of
[M,N], where node v is in a directed cycle of all sending edges.

Proof: The if part is immediate; we prove the only if part by contradiction. Assume
that the communication from M to N is unbounded (i.e. for every positive integer k,
there exists a reachable state [v',w’,x",y’] such that |y’|>k), and that no reachable state
[v,w,x,y] of [M,N] is such that v is in a directed cycle of all sending edges. We show

Initial state

1

2 i
el 1,15E3E -
2,2,E,E 2,3.Rgst,Rgst 3,3,E,E
4.4 ,E,E 2,7,Rgst,E 5,5,E,E

:

2,5,Rgst.Acpt,E

:

2,1,Rgst.Acpt.End,E

!

2,3,Rast.Acpt.End.Rgst,E

*

(d) The augmented fair reachability graph GN
of [M,N] with respect to N.

Figure 1. (Continued)

that the fair reachability graph of [M,N] is infinite, which contradicts the fact that G is
finite.

To show that the fair reachability graph of [M,N] is infinite, we show that for
every positive integer k, there exists a reachable state [v,w,x,y] of [M,N] such that
|x|=ly|>k.

Let k be any positive integer. Since the output channel of M must be unbounded,
there exists a reachable state [v,wx,y] of [M,N] such that |y|>mk+n-1, where m is the
number of nodes in machine M. Let P and Q be the two directed paths to be traversed
by M and N (respectively) for the network [M,N] to reach [v,w,x,y]. Let [P| (|Q|) be the
number of directed edges in path P (Q). There are three cases to consider: (We show
that in each case the network can reach a state [v',w’,x’,y’], where [xX’|=|y’|>k.)

Case 1 (|P|=|Q|): In this case, the reachable state [v,w,x,y] is such that
[x|=|y|=mk+m-1>k.

Case 2 (|P|<|Q]): In this case, there is a proper prefix Q’ of Q such that (a) [P|=|Q’|,
and (b)as M and N progress over P and Q’, the network [M,N] reaches a state
[v,w’ x",y’], where [X’|=]y'|>|y|=km+m-1>k.

Case 3 (|P|>|Q]|): In this case, there is a proper prefix P’ of P such that (a) |P’|=|Q|,
and (b)as M and N progress over P’ and Q, the network [M,N] reaches a state
[v',w,x',y’], where |x’|=|y’| and |y|-]y’| < (m-1) (]x'|]x]) + m-1. (The last inequality is
due to the fact that M cannot traverse a directed cycle of all sending edges as it
progresses from P’ to P.) Therefore, |x'|=|y’|>k. o

Theorem 2 suggests the following algorithm.

Algorithm 2: to decide whether the communication of a network [M,N] whose fair rea-
chability graph G is finite, is bounded:

i. If M has a directed cycle C whose edges are all sending, and if any node in
C is decided (by Algorithm 1) to be reachable in [M,N]
then the communication from M to N is unbounded
else the communication from M to N is bounded

ii. If N has a directed cycle D whose edges are all sending, and if any node in D
is decided to be reachable in [M,N]
then the communication from N to M is unbounded
else the communication from N to M is bounded. 0

L 74

Example 1 (continued): Consider the network [M,N] in Figure 1, and assume that it
is required to decide whether its communication is bounded. From Theorem 2, the com-
munication from M to N is bounded since M has no directed cycles of all sending edges.
Following Algorithm 2, since the state [5,5,E,E] is in G;I and since node 5 in N has a

sending self loop, then the communication from N to M is unbounded. o

Once it is decided that the communication of a network [M,N] is bounded in one
direction, i.e. from M to N or from N to M, the next question to ask is what is the smal-
lest possible capacity for the channel in that direction. In the next section we show that
this question can also be answered using finite fair reachability graphs.

6. COMPUTING CHANNEL CAPACITIES USING FRGs

It is required to construct an algorithm to compute the smallest possible capacity
for the output channel of M in any network [M,N], whose fair reachability graph G is
finite, and where the communication from M to N is decided (by Algorithm 2) to be
bounded. In other words, compute the smallest possible integer k such that for any
reachable state [v,w,x,y] of [M,N], |y]<k.

The required algorithm uses an extended version le\tl of G. GIJ\F/I is called the

extended fair reachability graph of [M,N] with respect to M. It can be constructed from
G by the following two-step procedure.

i. Initially, Gy, := G.

il. For every vertex s in Gl_‘ti
do if there is a state s’ that follows s over an edge in M
then add a vertex s’ to Gﬁ; add an arc from vertex s to vertex s’ in

..{,.
Gy

Next, we sketch an argument that G;,[, resulting from the above procedure, is
finite; this in turn implies that the procedure terminates. Every vertex that is added to
Gi\z in Step ii corresponds to a state that is reachable, by the sole progress of M, from a

state in G (which is finite). Since the communication from M to N is bounded, then (by
Theorem 2) M can never reach a directed cycle of all sending edges. Therefore, every
sole progress of M in Step ii must lead to a halting state for M (i.e. either an unspecified
reception state for M, or a state where M is at a receiving node and its input channel is

empty). Hence, the number of vertices added to GI‘\L/I in Step ii is finite, and the resulting
Gy is finite.

The following theorem explains why a finite GI_\TL/I is useful in computing the smal-
lest possible capacity for the output channel of M.

10

Theorem 3: Let [M,N] be a network whose extended fair reachability graph GIT/I is

finite. For every reachable state [v,w,x,y] of [M,N], there exists a state [v’,w’,x’,y’] that
labels a vertex in G;,I such that |y’|>]y]-

Proof: Let s=[v,w,x,y| be a reachable state of [M,N], and let P and Q be the two
directed paths to be traversed by M and N (respectively) for the network [M,N] to reach
s. Also let |P| (|Q]) be the number of directed edges in path P (Q). There are three cases
to consider: (We show that in each case, G;/I has a vertex labeled with a state
s'=[v',w’,x",y’] such that |y’|>|y]|.)

Case 1 (|P|=|Q]|): In this case, state s=[v,w,x,y] is fairly reachable, and so must label
one vertex in G, and in GIT/I’

Case 2 (|P|<|Q]): In this case, there is a proper prefix Q’ of Q such that (a) |P|=|Q’],
and (b) as M and N progress over P and Q' (respectively), the network [M,N] reaches a
state s'=[v,w’,x",y’], where |x’'|=|y’|>]y|. State s’ must label one vertex in G and in
Gy

M

Case 3 (|P|>|Q]): In this case, there is a proper prefix P’ of P such that (a) |P’|=|Q|,
and (b) as M and N progress over P’ and Q (respectively), the network [M,N] reaches a
state s'=[v’,w,x,y’], where |x’|=|y’|. State s’ must label one vertex in G, and so must
label one vertex in G;V”{. Moreover, state s is reachable from s’ by the sole progress of M;

therefore state s” must label one vertex in GK}I. ol

Theorem 3 suggests the following algorithm.

Algorithm 3: to compute the smallest possible capacity kM for the output channel of

M in a network [M,N], whose extended fair reachability graph Gi‘j{ is finite, and where
the communication from M to N is decided to be bounded (by Algorithm 2):

i. Construct the extended fair reachability graph Gf& of [M,N].

ii. Find the state [v,w,x,y] that labels a vertex in Gi& such that for any state
[v,w’x",v’] that labels a vertex in GK/I’ ly|>1y']-

ift. ky, o= |y]- o

A similar algorithm can use GKT to compute the smallest possible capacity kN for
the output channel of N. '

11

Example 1 (continued): Consider the network [M,N] in Figure 1, and assume that if
it is required to compute the smallest possible capacity k), for the channel from M to

N. Following Algorithm 3, we construct Gl‘\tl as shown in Figure le. Since each state

[v,w,x,y] that labels a vertex in Gl—\F/I is such that |y|<2, then ky=2. o

7. CONCLUDING REMARKS

We have presented three algorithms that decide the following three questions for
any given network whose fair reachability graph is finite:

a. whether a node in one of the two machines in the network is reachable,

b. whether the communication is bounded, and

c. whether the smallest possible capacity for one channel that can be bounded
is k, for some given k.

Each of the three algorithms is based on the finite fair reachability graph of the given
network or some augmented or extended version of it. Notice that if the given network
is free from unspecified receptions, then the augmented versions of its fair reachability
graph becomes identical to the fair reachability graph itself. In this case, the two al-
gorithms to decide problems a and b above will use only the fair reachability graph of
the given network.

In [3], Gouda, Chow, and Lam have considered the class of communicating finite
state machine networks, where the communication is known to be bounded in one direc-
tion. They showed that the fair reachability graph of each network in this class is finite.
This result along with the result of Rubin and West [5], and that in the current paper
show that boundedness, and freedom of deadlocks and unspecified receptions can all be
decided for this class of networks. This confirms the previous results concerning this

class in [2] and [4], and provides different decidability algorithms to achieve these
results.

REFERENCES

[1] G. B. Bochmann, "Finite state description of communication protocols,®
Computer Networks, Vol. 2, pp. 361-371, 1978.

[2] D. Brand and P. Zafiropulo, "On communicating finite-state machines,"
JACM, Vol. 30, pp. 323-342, April 1983.

3] M. G. Gouda, C. H. Chow, and S. S. Lam, "Livelock detection in networks
of communicating finite state machines,” Technical Report, TR-84-10, Dept.

