MODELING AND VERIFICATION OF A
BIT-STUFFING PROTOCOL USING
COMMUNICATING FINITE STATE MACHINES

Mohamed G. Gouda
Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712

TR-84-32 October 1084

Abstract

We define a bit-stuffing procedure of two communicating finite state machines M
and N; the procedure is similar to that used in the standard HDLC protocol. Machine M
continuously sends a stream of bits to N via an unbounded, FIFO channel. At some in-
stants, M stuffs extra zero bits into the data bit stream to prevent the current bit pat-
tern from looking like a special pattern that signals the end of the data stream. Machine
N receives all the bits sent by M, detects the stuffed zero bits, and removes them f{rom
the data stream. We verify the safety and liveness properties of this network by con-
structing and examining a {inite representation of its infinite reachability graph.

ey
.

RN

Table of Contents

Introduction

. Network of Communicating Finite State Machines

Modeling the Bit-Stulling Protocol

1. Verification of the Bit-Stulfing Protocol

4.1. Proving Safety Properties
4.2. Proving Liveness Properties
4.3. Proving Total Correctness

. Concluding Remarks

S VI S

oW

1. Introduction

We consider a system of two processes called "sender” and "receiver:® Con-
tinuously, the sender sends a stream of binary bits to the receiver. When the sender has
no useful data bits to send, it merely sends bits of ones. When the sender has some use-
ful data bits, it sends them preceded by a special pattern "01110," and followed by the
same pattern. This special pattern is called the flag. The function of these two flags is
to inform the receiver that all the bits in between the two flags are useful data. To ach-
ieve this function, the sent data bits between the two flags should not contain the spe-
cial pattern "01110." Therefore, as M sends the data bits, it keeps track of the number
of ones which follow the last sent zero. Whenever this number becomes two, the sender
inserts an additional zero into the data bit stream, forcing the sent pattern to become
"0110." On the other side, whenever the receiver receives the pattern "0110" in the
data bit stream, it recognizes that the last zero in this pattern was not in the original
data stream and so discards it. In this note, we formally model this system as a net-
work of two communicating [inite state machines [1, 2, 6], and verify the correctness of
our model.

The technique of stufling extra zero bits into the bit stream at one end, and
deteeting and removing them from the data stream at the other end is called
bit-stuffing [7]. It has been employed in the standard HDLC protocol, and its many
versions such as SDLC, LAP, and ACCP [7].

Following the introduction, this note is organized as follows. First, networks of
communicating finite state machines are briefly presented in Section 2. Then in Section
3, we discuss how to model the above system of sender and receiver using a network of
two communicating {inite state machines. Verification of this model is discussed in Sec-

tion 4, and concluding remarks are in Section 5.

2. Network of Communicating Finite State Machines

A communicating finite stale machine M is a labeled directed graph with two
tvpes of edges, namely sending and recetving edges. A sending (or receiving) edge is
labeled -g (or +g, respectively) for some message g in a finite set G of messages. For
convenience, we assume that each node in M has at least one outgoing edge. A node in
M owhose outgoing edges are all sending (or all receiving) edges is called a sending (or
receiving) node. One of the nodes in M is identified as its tnitzal node, and each node
in M is reachable by a directed path from the initial node.

Let M and N be two communicating finite state machines with the same set G of
messages. [M,N] denotes the network consisting of machines M and N connected by two
unbounded FIFO channels in opposite directions.

A state of a network [M,N] is a four-tuple [v,wx,y], where v and w are two nodes
in M and N respectively, and x and y are two strings over the messages in

(i, Informally, a state [v,w,x,y] means that the executions of M and N have reached
nodes v and w respectively, while the input channels of M and N store the strings x and
y respectively.

The initial state of a network [M,N] is [v,,w I, E] where v, and w, are the initial

0
nodes in M and N respectively, and E is the empty string.

Let s={v,w,x,y] be a state of a network [M,N}; and let e be an outgoing edge of
node v or w. A state ¢ is sald to follow s cver e iff one of the following four conditions
is satisfied:

i. e is a sending edge, labeled -g, from v to v’ in M, and s’=[v’,w,x,y.g], where
" " is the concatenation operator.

ii. e is a sending edge, labeled -g, from w to w’ in N, and s'==[v,w’ x.g,y].

iii. e is a receiving edge, labeled +g, from v to v’ in M, and s'=[v’,w,x")y],

il

where x=g.x’.

iv. e is a receiving edge, labeled +g, from w to w' in N, and s'==[v,w’x,y],
where y=g.y’.

Let s and s” be two states of a network [M,N], s’ is reachable from s iff s=s’ or

there exist states s ,...,s_ such that 5==5,, s’:sr and for i==1....,r-1, Sip1 follows s, over
E 1

some edge ¢ in M or N. A state of a network [M,N] is said to be reachable iff it is

reachable from the initial state of [M,N].

A state [v,wx,y] of a network [M,N] is a deadlock state iff (i) both v and w are
receiving nodes, and (it) x=y==I (the empty string). If no reachable state of network

M, N] is a deadlock state, then the communication of [M,N] is said to be deadlock-free.

A state [v,w,x,y] of a network [M,N] is an unspect fied reception state for M iff
x=g,.8, - -8 (k>1), and v is a receiving node and none of its outgoing edges is
labeled +g,. A state [v,w,x,y] is an unspect fied reception state for N iff Yy=g,-8g - &
(k>1), and w is a receiving node and none of its outgoing edges is labeled +g,- If no
reachable state of [M,N] is an unspecified reception state for M or N, then the com-
muunication of {M,N] is said to be free from unspecified receptions.

3. Modeling the Bit-Stuffing Protocol

We model the system defined in Section 1 as a network [M,N], where M models
the sender, N models the receiver, and the set G of messages sent from M to N is {0,1}.
(0 denotes a zero bit, and 1 denotes a one bit.)

igure 1 shows the sender M. Each edge in M is a sending edge where exactly one
bit is sent, and so each edge is labeled with -0 or -1. For convenience, we add a one-
letter "comment" beside the label of each edge to describe the sent bit at this edge:

L. indicates that the sent bit is a filling; i.e. it is sent only because the sender
has no useful data bits to send.

I indicates that the sent bit is part of a flag.

D indicates that the sent bit is part of the useful data.

S indicates that the sent bit is a "stuffed” extra zero bit.

Figure 2 shows the receiver N. Each edge in N is a receiving edge, where exactly
one bit is received, and so cach edge is labeled with +0 or +1. For convenience, we add
a comment beside the label of each edge to deseribe how N recognizes the received bit
at this edge: The labels L, I, D, and S indicate respectively that N recognizes the
received bit as a filling, part of a flag, part of the useful data, or as a stuffed bit. The
inbel X indicates that N cannot determine at this instant whether the received bit is
part of a flag or part of the useful data; this determination will be made at some later
instant as indicated by the added comments. For example, the edge from node 6 to
node 7 is labeled with "+0" and with the comment "X", and the self-loop at node 7 is
labeled with "+0" and with the comment "X and the last 1 bit is D.» Thus, if N
receives two successive zero bits starting from node 6, then it will not be able to deter-
mine before receiving the second zero, whether the first received zero is part of a flag or
part of the useful data. But after receiving the second zero, N determines that the first
zero is part of the useful data. (However, it will not yet be able to determine for the
seeond zero bity}

4. Verification of the Bit-Stuffing Protocol

The network [M,N], where M and N are defined in Figures 1 and 2 respectively,
has an en finele number of reachable states. Hence, its communication cannot be verified
by generating and examining all its reachable states. Instead, we generate and examine
only those states that are reachable by forcing the two machines to progress in equal
speeds. Since machine M only sends, and the other machine N only receives, then forc-
ing M and N to progress in equal speeds will cause the network IM,N] to reach only
states of the form [v,w,E5E], where E denotes the empty string. The set of all such
reachable states is {inite, and can be represented by the finite directed graph R in
Figure 3. (R is called [3, 8] the fair reachability graph of network [M,N].)

In R, each vertex corresponds to a reachable state of the form [v,w,E,E], and each
arc corresponds to a transition {rom such a state to the next. Thus, each arc in R cor-
responds to two directed edges one in machine M and one in machine N. For example,
the arc from vertex [8,8,E,E] to vertex [10,7,E,E] corresponds to the two directed edges,
one is from node 8 to node 10 in M, and the other is from node 8 to node 7 in N. For
convenience, we label each arc in R with the concatenation of the labels of the two cor-
responding edges in M and N. Next we discuss how to use R to verify the safety and
liveness properties of this network.

Initial node

Figure 1. Sender M

Initial node

+0F

+0X and last
2 bits are D

+0F

©

) HF
+1L
3
+1F
4
+1D
+1F

+0S and last
3 bits are D

&= 9

+1F and last
3 bits are F

Figure 2.

Receiver N

Initial state

U

-0F ,+0F ~0F ,+0F
13,10,E,E &1 1,1,E,E =1 2,2,E,E

-1F,+1F and i;w;> ~1F,+1F

tast 3 bits

_ 1L, +IL
are F
12,9,E,E 3,3,E.E
~1F,+iX -1F,+1F
11,8,E.E 4,4,E,E
I ~10,+1D
-1F 41X (f\} -1F,+1F
~0F ,+0X -0F ,+0F ?
10,7 ,E,E |- 6,6,E,E sy 5,5,E,E
-0F,+0X and | _
~_ Tlast 1 bit | 0D»*0X
is
5 -0D,+0X and
75’3515 last 1 bit is D
‘ @ -05,+0S and
~00,+0% and last 3 bits
tast 2 bits ~1D,+1X are D
~0F ,+0X and ave D 1D +1x
_last 2 bits are D 8.8.E.F i =] 9,9.F.F

Figure 3. Fair reachability graph
of network [M,N].

4.1. Proving Safety Properties
The salety properties of this network can be stated as follows:

A. No reachable state of [M,N] is a deadlock or an unspecified reception state.
{This safety property is needed later to prove the liveness properties of the
network.)

B Forit = 1,2, ..., if machine N recognizes that its i h received bit is L, F,
" i * !: ™ -y &
D, or S, then the i*¥ sent bit by machine M is L, F, D, or S respectively.

Proving A is straightforward: Since machine M has no receiving nodes, then no
eachable state of [M,N] is a deadlock or an unspecified reception state for M. Also from
3, 5], since no state in R, and no state that follows a state in R is an unspecified recep-
ion state for N, then no reachable state of [M,N] is an uuspecified reception state for
N.

!

-

Assertion B can be proved by checking that the label { of each arc ¢ in R satisfies
the following two conditions:

i. If | contains the term "+i I;" where i = Qor 1, and K = L, F, D, or S,
then { must also have the term "-1 K* with the same i and K.

ii. Il [contains the term "the last 1 bits are K," where i = 1, 2, or 3 and K =
I"or D, then for every are ¢’ in R from which ¢ can be reached by a directed
path of at most 1 ares, the label of ¢’ must contain the term *-j K," for the

same I, and {or some j = Q or 1.

4.2. Proving Liveness Properties
The liveness properties of this network can be stated as follows:

C. Fori==1,2, ..., machine N will receive the it e
D. Tori==1,2 ..., machine N will recognize that the i'" received bit is L, F,
D, or 5.

Assertion C follows immediately from the salety property A and the weak fair-
ness assumption [4] that "if a machine can progress infinitely often, then it will
progress infinitely often," where progress in this context means receiving a message.

Assertion D can be proved by checking that the label [of each arc ¢ in R satisfies
the following condition: If [contains the term "+] X," where j = 0 or 1, then in each
directed path that starts with ¢ there exists an arc ¢’ such that (a) ¢’ is at most 1 ares
away from ¢, and (b) the label of ¢’ contains the term "the last i bits are I," for some
I = F or D.

4.3. Proving Total Correctness

Combining the safety and liveness properties B, C, and D, we have established the
following: For i = 1, 2, ..., machine N will receive the ith bit, and will recognize
whether this bit is L, ', D, or 8; moreover this recognition is in agreement with machine
M’s intention when it has sent this i bit.

5. Concluding Remarks

The stuffing-bit protocol discussed in this note is different from, and in some sense
nore efficient, than the one discussed in {7]. The protocol in [7] requires that a zero
it be stuffed after every two successive ones in the data stream regardless of whether
or not this pair is preceded by a zero. Therefore, if the data stream consists of n bits of
all ones, then the protocol in [7] requires to stuff extra n/2 zero bits, while our protocol
requires to stuff only one zero bit, irrespective of the value of n.

7
t

The flag of the HDLC protocol is 01111110; it is three bits longer than our flag.
Nevertheless, it is straightforward to modify machines M and N according to this longer
flag. (Hint: the modified machine M has 22 nodes.)

References

[1] G. V. Bochmann, "Finite State Description of Communication Protocols,”
Computer Networks, Vol. 2, pp. 361-371, 1978.

(2] D. Brand and P. Zafiropulo, "On Communicating Finite State Machines,"
JACM, Vol. 30, pp. 323-342, April 1083.

pu—
Lo

(3] M. G. Gouda and J. Y. Han, "Protocol Validation by Fair Progress State
[oxploration,” Technical Report 85-31, Dept. of Computer Sciences, Univ. of
Texas at Austin, October 1984. (Submitted for journal publication.)

1 M. G. Gouda and C. K. Chang, "Proving Liveness for Networks of Com-
municating Finite State Machines," Technical Report 84-4, Dept. of Com-
puter Sciences, Univ. of Texas at Austin, February 1984. (Submitted for
journal publication.)

(5] J. Rubin and C. H. West, "An Linproved Protocol Validation Technique,?

Computer Networks, Vol. 8, April 1982,

6] C. A. Sunshine, "Formal Techniques for Protocol Specification and
Verification,” Computer, Vol. 12, No. 9, pp. 20-27, September 1979.

7] A. 8. Tanenbaum, Computer Networks, Prentice-Hall Inc., Englewood Cliffs,
pp. 167-170, 1984,

3] Y. T. Yu and M. G. Gouda, "Unboundedness Detection for a Class of Com-
municating Finite State Machines," Information Processing Letters, Vol.
17, pp. 235-240, December 1983.

