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Abstract

Relaxing the assumption that relations are always in First-Normal-Form (1NF) necessitates a re-
examination of the fundamentals of relational database theory. In this paper we take a first step
towards unifying the various theories of ~1NF databases. We start by determining an appropriate
model to couch our formalisms in. We then define an extended relational calculus as the theoretical
basis for our ~1NF database query language. We define a minimum extended relational algebra
and prove its equivalence to the =1NF relational calculus. We define a class of ~1NF relations with
certain “good” properties and extend our algebra operators to work within this domain. We prove
certain desirable algebraic equivalences that hold only if we restrict our language to this domain.

1. Introduction

A fundamental property of existing relational database theory is that relations must be at least in first-
normal-form (1NF), in which only atomic (i.e., non-decomposable) valued domains are allowed. Although
there are many valid arguments in support of INF normalization it has been long recognized by both
researchers and practitioners that there is a need for unnormalizing relations. Codd, himself, less than a
year after the original paper [Cod1] was published, stated in [Cod2]:
“For presentation purposes, it may be desirable to convert a normalized relation to unnormalized
form. The operation of factoring accomplishes this.”
This idea lay dormant until Makinouchi [Mak] recognized the need for utilizing relational databases for non-
business data processing applications such as picture and map processing, and computer-aided design. He
realized the restriction imposed by 1NF hinders such applications and proposed allowing set-valued domains
and defined a new normal form which incorporated set-values in a 4NF design.

Exploratory work dealing with —1NF relations includes Furtado [Fur] and Furtado and Kerschberg
[FK], who examined horizontal decomposition of relations and their properties, Orman [Orm], who looked at
indexed (partitioned) relations as a conceptual model, and Kambayashi, et al. [KTT], who proposed using
—1NF relations to handle redundancies caused by dependency constraints as opposed to using decomposition.

Jaeschke and Schek [JS] defined a class of ~1NF relations limiting domains to be powersets of atomic
domains. They extended the relational algebra by adding a nest operator to form sets of values and an
unnest operator to take sets apart. Arisawa, et al. [AMM] examined —~1NF relations in which all attributes
of the corresponding INF relations are nested one level deep. Abiteboul and Bidoit [AB] describe the use
of =1NF relations in the VERSO machine [Ban]. They allow multiple attributes to be nested and define
recursive operators to work on their structures.
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Ozsoyoglu and Ozsoyoglu [0O] extend the algebra of [JS] by adding aggregation-by-template, an oper-
ator to apply a function to a set of values. Aggregation was also studied by Klug [Klu] and Epstein [Eps].
Fischer and Thomas [FT] explore general ~1NF relations as in [AB] but with the basic operators of [I8].
Finally, Jaeschke [Jael, Jae2], and Schek and Scholl [Sch, ScS] define recursive relational algebras which are
equivalent to the nonrecursive algebra of [FT].

1t is now well recognized that non-traditional database applications (e.g., image and sound processing,
text processing, and forms management) require relations to be in non-first-normal-form (—1NF). Thus,
in this paper we take a first step towards unifying the various theories of —1NF databases. We start by
determining an appropriate model to couch our formalisms in. We then define a relational calculus as the
theoretical basis for our ~1NF database query language. We define a minimum relational algebra and prove
its equivalence to the —1NF relational calculus. We define a class of ~1NF relations with certain “good”
properties and extend our algebra operators to work within this domain. We prove certain desirable algebraic

equivalences that hold only if we restrict our language to this domain.

2. Model Definition

When set-valued domains are allowed, standard first-order predicate logic becomes cumbersome and some-
what inadequate to use. Several existing models have the extensions we desire, the database abstractions of
Smith and Smith [SmS], the Format Model of Hull and Yap [HY], and the databases logics of Jacobs |{Jac]
and Kuper and Vardi [KV]. We follow the the lead of [FT] and adopt a formalism adapted from the database
logic of Jacobs. The following condensation is basically that of [FT].

A database scheme S is a collection of rules of the form R; = (Rj,, Rj,, ..., R;,). The objects R;, R;,,
1< i < n, are names. R; is a higher order name if it appears on the left hand side of some rule; otherwise
it is zero order. Each zero order name has an associated domain from which the names values are drawn.
The names on the right hand side of rule R; form a set denoted Eg;, the elements of R;. As with any set,
names on the right hand side of the same rule are unique, and to avoid ambiguity, no two rules can have the
same name on the left hand side.

To illustrate this, consider an employee database containing, for each employee (EMP), his identification
number (ID#), his name (E.NAME), information about his children (CH) and a salary history (S_H). A
possible database scheme would consist of the rules:

EMP = (ID#, E.NAME, CH, S H),
CH = (C_NAME, AGE, SEX),
S_H = (YEAR, SALARY).

In this example the higher order names are EMP, CH and S_H. All others are zero order names.
A name R; is ezternal if it appears only on the left hand side of some rule, otherwise it is snternal. Thus
in the above example, EMP is external while all other names are internal.
We often are concerned with an individual table or relation scheme, not with the entire database. Let
R, be an external name in database scheme S. The rules in S which are accessible from R; form a subscheme
of S, defined as follows:
1. R; = (Rj,, Rj,, ..., R;,) is in the subscheme, and
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2. When a higher order name Ry is on the right hand side of some rule in the subscheme, the rule

Ry = (Rk,, Rk,,- .-, Ri,) is also in the subscheme.

A subscheme is called a relation scheme if in addition:

3. No zero order name appears on the right hand side of two different rules in the scheme.
For example, consider the employee database scheme. The subscheme starting with EMP contains the rules
for EMP, CH, and S_H, and the subscheme starting with CH contains only the rule for CH. Since there are
no zero order names appearing in more than one rule, both of these subschemes are also relation schemes.

A INF database scheme is a collection of rules of the form R; = (Rj,, Rj,, ..., Rj,) where all the R;,
are zero order. Our —1NF scheme may contain any combination of zero or higher order names on the right
hand side of the rules as long as the scheme remains nonrecursive. Note that a nested relation is represented
simply as a higher order name on the right hand side of a rule.

Let R be a name in a database scheme S. An instance of R, written r, is an ordered pair of the form
(R,Vg) where Vf is a value for name R. When R is a zero order name, Vg is just any value from the domain
of R. When R is a higher order name, Vg must be expanded in terms of the names on the right hand side of
rule R. We write t{A;A2.. .Ap] to denote the Ay, Az,..., A, components of tuple t. A database structure
§ = (S, s) refers to a database scheme S and some instance of that scheme s. A relation structure R = (R, r)
denotes a relation scheme R and instance r. In no case are null values or nested empty relations allowed in
instances. For simplicity, we do not consider null values in this paper. [RKS] presents a thorough study of
null values in —=1NF relations. ‘

Two schemes R; and R; are equal if they are comprised of the same rules. In order for two structures
to be equal, their schemes and instances must be equal. Two instances r; and r; of equal relation schemes
R, and R, are equal if the identity mapping is an isomorphism from r; to ra.

In this paper, we use the terms attribute and name interchangeably, especially when it is not important
to distinguish between zero and higher order names. If X and Y are sets of attributes then XY is the union

of X and Y. We use A instead of {A} when the meaning is clear from context.
3. Relational Calculus

3.1 Basic Definstions

Borrowing notation from [Ull], we define a tuple relational calculus (TRC) with expressions of the form
{t | ¥(t)}, where t is a tuple variable of fixed length and ¢ is a formula built from atoms and a collection of
operators defined below. The arity (¢) of a tuple variable ¢ can be specified by t(*).

The atoms of formulas ¢ are of four types.

1. s € r, where s is a tuple variable, and r is a relation name. This specifies that s is a tuple in relation r,

or s is an element of r. The arity of s is equal to the degree of r.

2. s € t[i] where t and s are tuple variables. This specifies that s is a tuple in the relation specified by the
ith component of ¢, whose value must be a set-of-tuples. The arity of s is the arity of the tuples in the
set.

3. a 8 s[i], s[t] 6 a, s[t] 8 t[j], where s and ¢ are tuple variables, a is a constant, and ¢ is an arithmetic
comparison operator {=,>). Note that constants may be simple values or non-empty sets-of-values,

however equality is the only operator which can compare non-simple values, We chose = and > since
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Figure 3-1. Result of calculus query 4.

other comparison operators, such as <, 2, C, etc., can be expressed with calculus expressions which do
not use them.

4. s[¢] = {u]y'(u,t1,t2,...,tk)}, where ¢’ is a formula with free tuple variables u,t;,t,...,tk; s is some
t;. This specifies that the sth attribute of s is the set of u tuples such that ¢' holds. Note, if no tuples u

satisfy ¢’ then this atom evaluates to false. This is to comply with our requirement that no null values
appear in instances.

Formulas are defined with the usual operators (—, A, V,V, 3). See [Ull] for the formal definitions.
To illustrate these concepts, let us consider a number of examples.
1. Given a INF relation r on scheme R = (A4, B), the TRC expression which nests r on the B attribute
producing a relation with scheme R’ = (4, B'), B' = (B) is:
{t® | Bs)(s € r At[1]=5[1] A t[2]={u®) | Bv)(v €7 A s[1]=v[1] A u[1]=v]2])})}
2. Given a nested relation r with scheme R = (A, B'), B’ = (B), the 1NF relation with scheme R’ = (4, B)
is:
{t(z) | 3s)(s €7 A t[1]=5[1] A (3u)(u € s[2] A t[2]=u[1]))}
3. Given a nested relation r with scheme R = (4, B, E'),B = (C,D'), D' = (D), E' = (E), the set of all
tuples in r with a C value of ‘c’ and within that B tuple a D value of ‘d’, is:
{t|ter A (3s)(s €t[2] A s[1]="c A (3u)(u € 5[2] A u[1]="a"))}

4. Given a nested relation as in example 3, the set of all tuples in r, removing all B tuples from each B

subrelation that do not have any D values greater than 6, and in those that do, eliminating all D values
< 6, is:

{t®) | (3s)(s € r A t[1]=5[1] A t[3]=5[3] A t[2]={u? | (3v)(v € s[2] A u[l]=v[1]
Au2l={wV) | w e v[2] A w[1]>6})})}

Figure 3-1 shows a sample relation r and the result of this query.
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[ULl] points out that the TRC allows us to define some infinite relations such as {t | ~(t € )}, which
denotes all possible tuples that are not in r, but are of the arity we associate with t. These types of expressions
have not been eliminated in our present calculus and can even occur in nested expressions.

A safe TRC incorporating nesting is defined in the same manner as an ordinary safe TRC. The primary
difference is that our attributes may be defined, not only over simple domains, but domains that may
contain sets, sets-of-sets, and so on. Thus, we define DOM (¥) as the set of symbols that appear explicitly
in expression  or are recursively components of some tuple in some relation mentioned in ¢. An expression
¢ is safe if each component of any ¢ that satisfies ¥ must be a member of or, recursively, a relation on
DOM(y).

With this modification of DOM (), and the proviso that each calculus expression, nested or otherwise,
must be safe, the rest of the formal definition of safety is the same as [Ull].

4. Relational Algebra

In order to have the same power as the safe relational calculus, we need to add only two new operators to
the basic set of union, set difference, cartesian product, projection, and selection. These are the nest (v)

and unnest (u) operators as defined in [JS, FT]. The basic set of operators work exactly as before except the
domains may now be atomic or set-valued.

1. Nest takes a relation structure R = (R,r) and aggregates over equal data values in some subset of
the names in R. Formally, let R be a relation scheme, in database scheme S, which contains a rule
R = (A1, A2z,...,Ap) for external name R. Let {B,,Bs,...,Bn} C Eg and {C1,Cy,...,Cy} =
Eg — {B1,Ba,...,Bn}. Assume that either the rule B = (B1, Bz, ..., Bp) is in S or that B does not
appear on the left hand side of any rule in S and (B1, Bz, ..., By) does not appear on the right hand
side of any rule in S. Then vg=(B,,5,,...B.)(R) = (R, r') = R' where:

1. R' = (C1,Cz,...,Ck, (B1,Bz,...,Bn)) = (C1,Ca, ..., Ck, B) and the rule B = (By, Bz, ..., Bm)
is appended to the set of rules in S if it is not already in S, and

2. r' = {t | there exists a tuple u € r such that t{C1C2 - Ck] = u[C1C2 - - - Ck] A
t{B] = {v[BiBz2---Bm]|vE T A [C1C; - Ck] =t[C1Cs - -Ck]}}

2. Unnest takes a relation structure nested on some set of attributes and disaggregates the structure to
make it a “fatter” structure. Formally, let R be a relation scheme, in database scheme S, which contains
arule R = (41, Az,..., Ay) for external name R. Assume B is some higher order name in Er with an
associated rule B = (By, By,..., By). Let {C1,Cx,.. .,Cx} = Er — B. Then ;43__:(3‘,37,"_,3,")(2) =
(R',r") = R' where:

1. R' = (C1,Ca,...,Cx, B1, Bz, ..., By,) and the rule B = (Bi, Bz, - .., By) is removed from the set
of rules in S if it does not appear in any other relation scheme, and
2. ¢’ = {t| there exists a tuple u € r such that ¢{C1C2---Ci] = u[C1C2---Ck] A t{BiB2---Bn] €
u|B]}.
Note that unnesting an empty set produces no tuples.

We often omit the right hand side of rules in unnest operations since the rule name is adequate. In a similar
manner, when writing a nest operation we may choose not to specify the name of the rule to be added to
S, only the name of the attributes to be nested. When this is done, we assume that a unique rule name is
generated if the names being nested do not already appear on the right hand side of any rule in S.

Let us consider a number of examples to illustrate these concepts.
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Figure 4-1. Result of algebra query 2.

. Given the relation r on scheme R = (A4, C, D, E), the relation with the C and D attributes nested

together, and renamed B, ia:

VB:(GD)(")

This produces the scheme R’ = (4, B, E), B = (CD).
. Using the same relation r, the relation with scheme R' = (4, B, E'), B = (CD), E' = (E) is:

ve=(cp)(ve'=(8)(r)) or ve=(E)(vB=(cD)(r))

Although both of these expressions produce the desired scheme, the relations may be radically different
(see Figure 4-1).

. The relation on scheme R’ = (4, B, E), B = (CD'), D' = (D) produced from r is:

ve=(cp)(vpi=(D)(r))

In this case only one order is possible since D must be nested before D' can be further nested as part
of B.

. Given the relation s on S = (A, B, E'), B = (CD), E' = (E), the relation with attribute E’ unnested,
is:
pe(s)

. Given relation s on S as in 4, the relation with attribute B unnested, giving the scheme S’ =

(A,C,D,E'), E' = (E), is:

us(s)

6. Given relation s on S as in 4, the relation with each of the D’ sets within each B subrelation unnested,
producing the relation with scheme S’ = (4, B, E'), B = (CD), E' = (E), is:

ve=(cp)(pkp' (1B (s)))
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5. Equivalence of the Relational Calculus and the Relational Algebra

In this section, we prove that the relational calculus and algebra as extended to handle nested relations
are equivalent. We first show that all relational algebra expressions can be expressed in the safe relational

calculus, and then the inverse relationship.

5.1 Reduction of Relational Algebra to Relational Calculus

Theorem 5-1. If E is a relational algebra expression, then there is a safe expression in the relational
calculus equivalent to E.

Proof: The proof is by induction on the number of occurrences of operators in E. The basis and the five
cases (Cases 1-5) for U, —, X, 7, and o are as in [Ull]. We need two more cases for the operators v and u.

Case 6: E = vp=(a,4,..4,)(E1)- Let E; be equivalent to safe expression {t(™ | ¥1(t)} and let attribute A;
correspond to the 7’th attribute, for 1 < ¢ < k, and let all attributes not among the A; correspond to the
je’th attribute, for k < £ < n. Then E is equivalent to

{t=5+1) | Qu) (i (u) A A timl=ulse] A tl]={w® @) (@1(v) A A timl=vlie] A A wlil=v[z])})}

m,¢ m,2 i=1

where m ranges over [1:71 — 1, 51 +1:n — k+ 1] as £ ranges over [k +1: n].

Since sets-of-values are being created, we need to check if the elements are from a finite domain, and, in this

case, they are from DOM (), so this expression is safe.

Case 7: E = us(E;). Let E; be equivalent to safe expression {t{") | ¥1(t)} and let attribute A correspond
to the tth attribute and let the arity of A be k. Then E is equivalent to

{t 0 | Gu)(eu(w) A N timl=ulf] A Fw)(w € ui] A A tpl=ulq])}
m,¢ L

where m ranges over [1:1—1,i+k:n+k— 1] as £ranges over [1:4— 1, ¢+ 1: n], and where p ranges over

[¢:4+ k — 1] as g ranges over [1: k].

As in case 6, the elements of DOM (1,) are the only ones used in this expression, so it is safe as well. [

5.2 Reduction of Relational Calculus to Relational Algebra
Theorem 5-2. If E is a safe expression in the relational calculus then there is a relational algebra expression
equivalent to E.

In order to prove the theorem we must first establish some basic results.

Lemma 5-1. If ¢ is any formula in tuple calculus then there is an equivalent formula ' of tuple calculus

with no occurrences of A or V. If y is safe, so is ¥'.

Proof: See [Ull], Lemma 5-2. -



Lemma 5-2. If ¢ is any formula in tuple calculus then there is an algebra expression for DOM ().

Proof: For each relation and constant, that contains nested relations, and appears in ¢, completely unnest
them. Then, as in [Ull], use projection and union to form a unary relation, containing all possible values
that are mentioned in ¢. O

Our proof of the theorem mirrors the proof in [Ull] of the equivalence of the (1NF) relational calculus
and algebra. In [Ull], an algebra expression was created which produced a unary relation E of all values
either mentioned explicitly as constants in the calculus expression or exists in any relation mentioned in the
calculus expression. Each atom of the calculus expression is then translated as a function of xX7_, E where
n is the number of attributes in all tuples variables being used in the subexpression where the atom occurs.
The relation E is basically a domain of values from which the calculus expression must create the tuples
in the result. However, when we move to —1NF relations, it is not possible to create a domain of values
using this technique. Each tuple variable may range over values that are nested relations, and so to include
all possible nested relations, we would have to have a technique for creating a powerset using the relational
algebra. Since it is not possible to create a powerset using the algebra, we will use subsets of all possible
tuples for each tuple variable and each component of a tuple variable that is defined as a nested relation.

These limited domains contain all possible tuples from which the calculus expression will select tuples for
the result.

Definition 5.1: A limited domain for a tuple variable ¢, denoted Dy, appearing in a safe calculus expression,
{z | ¥(z)}, is an extended relational algebra expression which produces a —1NF relation r in which each
nested relation in r, and r itself, contains all tuples, made up of values from DOM (4), which need to be
tested for inclusion or exclusion, by the atoms of the calculus expression referring to t.

If there is a subformula of the form (3t)(p(t)), then the limited domain for t contains tuples to be
included in the result if they satisfy p. If there is a subformula of the form —(3t)(p(t)), or (¥t)(—p(t)), then
the limited domain for ¢ contains tuples to be ezcluded from the result if they satisfy p. In the main body

of the proof we present a way to construct an algebra expression which performs the proper inclusions and
exclusions on the tuples in each limited domain.

Lemma 5-8. Given a safe tuple calculus expression {t | ¥(t)}, there is an algebra expression D, for the
limited domain of each tuple variable t; mentioned in v, or any nested expression of 1.

Proof: Since the calculus expression is safe, we claim that we can determine each D, by scanning the
expression for named relations and constants. Each atom in the expression constrains the values that a tuple
variable or a component of a tuple variable may assume.

The following algorithm examines each atom in the expression and adds algebra expressions to each
domain so that the possible values which that atom references will be included in the domain. The intuition
behind this algorithm is as follows. When atoms refer to named relations and constants the reference is
direct and known. However, when the atoms refer only to tuple variables, then the reference is indirect,
and must be solved in terms of tuple variables which have direct and known references. In addition, there
may be more than one atom which references a particular attribute of a tuple variable, and so we may get
multiple expressions for each domain. Thus, as the algorithm creates the algebra expression for each domain,
it also creates a graph which tells us how to solve the indirect references in our algebra expressions. Let Dj
be the algebra expression for the limited domain of the ith attribute of tuple variable t. The graph will be
constructed of nodes, directed edges, and directed and-edges. A directed and-edge is a single edge which goes
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from a single node to a set of one or more nodes. Nodes will be labeled with the limited domain variable,
and edges will be labeled with algebra expressions which may become part of the limited domain of the node
from which the edges emanate, and a special label if the atom for which the label was created involved a >
comparison. Atoms involving > comparisons usually do not add anything to the limited domains that would
not be included by another type of atom. However, there is the special case where two atoms define a range
of values, which is the only specification of the limited domain of some component of a tuple variable; e.g.,
z[1] > 2 A —(z[1] > 5). In this case, we use the algebra expression for DOM(y) (Lemma 5-2), so that we
get every value in the range. Note that if there are values in the range that are not in DOM(y) then the
expression is not safe.

Algorithm 1
Create a graph with one node labeled RC, standing for named relations and constants;
For each tuple variable ¢
do
let k denote the arity of ¢;
create k nodes in the graph, labeled Di, 1 <:1 <k
end do
For each atom in the calculus expression
do
case atom
ter:
let k denote the arity of ¢;
add directed edges from Di to RC,1<1i < k;
for 1 < ¢ < k, label the edge from D to RC with =;(r);
teulj]:
let k denote the arity of ¢;
add directed edges from D; to Di, 1 <1< k;
for 1 <4 < k, label the edge from D} to DI with m;(u1(D2));
t[j]faoraft(j], b € {=,>}:
add a directed edge from D{ to RC;
label the edge C, where C is a new unary relation containing the single tuple < a >;
add a special label, ®, to the edge if 6 = >;
tl7]0ulf, 0 € {=,>}:
add directed edges from D! to D¢ and from D¢ to DI;
label the edge from D! to D with D¢;
label the edge from D¢ to D! with DJ;
add a special label, ®, to each edge if 6 = >;
tls] = {u(® | ¥/ ()} : |
add a directed and-edge from D] to the set of nodes D}, 1 <i < ¢
label the and-edge vy=(1,2,....¢)(Ds X D% x --- x D{);
end case ‘
end do
Mark node RC;



Let D be the algebra expression for DOM (¥);
While some node in the graph is not marked
do

Choose an unmarked node N with at least one edge, without a special label &,
directed towards a marked node, or
at least one and-edge directed towards a set of nodes, all of which are marked, or
if neither of the above cases applies, at least one edge, with a special label &,
directed towards a marked node;

If the special case using label ® was invoked then let C = D else let C' = 9;

Set the algebra expression for the domain labeled N to L, U Lyu---UL,uC,
where p is the number of edges and and-edges directed from N to marked nodes,
and L; is the label of the ith such edge;

Mark node N

end do
For each tuple variable ¢ with arity k, set D to D} x D x ---x Df.

The correctness of this algorithm follows from the following arguments. First, we show that the algorithm
halts. Suppose that it does not halt. Then there must be unmarked nodes in the graph and no path from
them to the node RC. Consider the tuple variables naming these nodes. The variables are used only in
atoms which never refer to any of the relations or constants in the expression. So they can take unknown
values and still satisfy the expression. As there iz no way to determine these values, the expression must be
unsafe. This is a contradiction, and so the algorithm must halt.

The expressions are correct if each limited domain includes all possible tuples which the calculus ex-
pression will include or exclude from the result. Suppose some limited domain D, does not include all such
tuples. Then, there must be an atom in which ¢ appears that must test values not appearing in D;. The
atom cannot compare t or a component of ¢ to a named relation or constant using = or €, since these tuples
always included due to the initial marking of node RC. If the comparison involves >, then the there must
be other comparisons involving ¢ in order for the expression to be safe. Thus, the atom compares ¢, or a
component of ¢, with either the component of another tuple variable, z, or a set of tuples, u, created by a
nested calculus expression. Let us assume that the entire tuple variable is being accessed, otherwise add the
appropriate superscript to the limited domain variable if only a component is being accessed.

In the first case, either Dy, D,, or both D; and D, are determined by other comparisons in other
atoms. Consider each of these subcases. (1) If D; is determined by comparisons within other atoms and
D, is not, then the comparison involving ¢ and z does not add any tuples, and D, is a subset of D:. (2)
If D, iz determined by comparisons within other atoms and D, is not, then D; is a subset of D, and we
must make a new argument for D,. If we continue to invoke this subcase, a trivial induction shows that we
eventually run out of tuple variables and if the last variable used is not expressed in terms of named relations
or constants then the expression is not safe. (3) If both D, and D, are determined by other comparisons

then the algorithm either adds D, to D; or D; to Dz, and so subcase 1 and subcase 2 apply, respectively.

In the case of comparison with a set of tuples u, it must be that the limited domain D,, does not contain
all possible tuples, and so we make a new argument for D,. This case can only be invoked as long as there

are still nested calculus expressions. Once we have exhausted them, the first case applies.

Thus, either the expression is unsafe, or we have included all the necessary tuples in our limited domains,

10



and so the algorithm is correct. -

Proof of Theorem 5-2: Let {t | ¥(t)} be a safe tuple calculus expression. We construct an equivalent
algebra expression. By Lemma 5-3 we have an algebra expression D, for each tuple variable z mentioned in
¥. By Lemma 5-1 we may assume that ¢ has only the operators V, -, and 3. We prove by induction on the
number of operators in a subformula w of ¥ that if w has free variable s, then

D, N {s |w(s)}

has an equivalent expression in relational algebra. Then, as a special case, when w is ¢ itself, we have an

algebraic expression for

Den{t|¥(t)}

Since ¢ is safe, intersection with D, does not change the relation denoted, so we shall have proved the
theorem.

In order to avoid problems where v4(ua(r)) # r we assume each database relation (r,g,...), and their
nested relations have an implicit keying attribute whose value uniquely determines the values of all other
attributes. We consider this attribute to be added to each relation before it is used and removed when the
relation is projected or presented as the final result, using appropriate algebra operations.

We now proceed with the inductive proof.

Basis: Zero operators in w. Then w is an atom, which we may take to be in one of the forms described in
gection 3.1. In order to specify an algebra expression for these atoms, which may, as themselves, specify
infinite relations, we need to operate on an expression D = D,, x D,, X ---x D, , where the s; are all free
tuple variables of the formula w of which this atom is currently a part.

The atoms are thus translated:
1. s € r: Replace D, in D by r.
2. s € t[i]: Let p1,p2,...,px be the attributes of D, in D, let g* be the 2th attribute of Dy in D, and let

g1,92, - - -, gk be the attributes of g».
Then the desired expression is

Vgr=(q1,92:...,qk) (Op1=g1A-Apr=ax (1q«(D)))

By unnesting we can access the elements of t[t] using standard relational algebra operators. The selection

picks out those values corresponding to tuple variable s’s domain D,. The final nest returns the structure
to its intended form.

3. a6 sli], s[t]8a, s[i]6t[j]: Let p be the ith attribute of D, and g be the jth attribute of Dy, then desired

algebra expressions are, respectively:

Uaap(D) "pé’a(D) Upeq(D)

4. sfi] = {u | $'(u,t1,t2,...,tn)}: We have s as one of t1,t2,...,tn, and 7 as the arity of a new tuple
variable u. Let E' be an algebra expression for ', p be the ith attribute of D,, and k be the arity of
D, then the desired algebra expression is

11



71,2,....k (Up=(k+1) (Vk+1=(k+ 1,k+2,....k+7) (£'))

Induction: Assume w has at least one operator and that the inductive hypothesis is true for all subformulas

of ¢ having fewer operators than w. We now proceed to a case analysis covering each of the three operators.

Let D= Dy, X Dy, X--- X Dy,.

Case 1: w(ti,t2,...,tn) = wi(ts,t2,...,ts) Vwa(ts,t2,...,t,) where the t; are the free tuple variables in the
expression w. We do not require w; or w; to use any or all of the ¢;. Let E; be an algebraic expression for

Dn{ti,tz, ... ta |wilts,t2,-. . tn) }

and E; an algebraic expression for

Dn{ty,ta,...,tn |wal(ts,t2,...,t.) }

Then the desired expression is

EiUE,

Case 2: w(ty,t2,...,tn) = ~wi(t1,t2,...,t,). Let E; be an algebraic expression for

Dn{ty,ta,...,te |wi(ts,ta,...,t0) }

then

is an expression for

D—{t1,ta,...,t |wilts,t2,...,ta} }
which is equivalent to
Dn{t,ta,. .ty | ~wi{ts, ta, ..., ts) }

Case 3: w(ty,t2,..-,tn) = (Ftnt1)(wi(t1,t2,...,tn41)). Let E; be an algebraic expression for

DX Dy, N{t1,t2,...,tne1 |wilts,t2,. .. tns1) }

Since 4 is safe w is safe. The expression wj(t1,t2,...,8n+1) is never true unless ¢, is in the set DO M (w),
which is a subset of DOM (). Therefore n;(E,}, J = the attributes of t,%z,...,¢,, denotes the relation

Dm{tla la,...;tn ! (atn+1)(w1(t1’t2s“'1tn+1)}

which completes the induction, and proves the theorem. O

12



Figure 5-1. Graph produced by Algorithm 1.

5.8 Ezamples

To illustrate Lemma 5-2, consider the following calculus expression:

{t(z) | (3s)((ser vseq) As[l]=t[]1] At2]= {u(® |u€s[2] v ues3]})}

Assume that r and q are relations with three attributes, the second and third attributes being nested relations

having two attributes each.

Before the marking phase of the algorithm the graph is as shown in Figure 5-1. During the marking
phase, RC is marked. Then D!, D% and D? are marked and the term D is not included in the expression
for D!, since D} is not yet marked. Then, D}, D}, and DZ can be marked, and, finally, D? is marked since

all nodes at the end of the and-edge are marked. The algebra expressions at the end of the marking phase

D; = m(r)Um(q)
D? = my(r) Um2(q)
D} = ms(r) Ums(q)
D} = D}

th = V1=(1,2)(D'1‘ X Dz)
D, = mi(u1(D?)) U m1 (11 (D7)
D} = m3(pa(D3)) U m2(u1 (D7)

13



Substituting for the variables and applying the final cartesian products, we have:

D, = (m1(r) Umi(q)) x (m2(r) Unz(q)) x (m3(r) Um2(q))
D, = (m1(r) Um1(g)) X vi=(1,2)((m1(p1(m2(r) Uma(g))) U mi(wa(ms(r) Ums(g))))x
(w2 (p1(m2(r) U m2(q))) U m2(p1(7s(r) U ms(q)))))
D, = (my (p1(72(r) Uma(q))) U mi(pi(ms(r) Ums(q)))) X (m2(a(mz(r) U m2(q))) Umz(u1(na(r) Ums(a))))

For a complete example of the transformation process of Theorem 5-2, consider the following calculus

expression:

{t@ | 3s)(s € r A t[1]=s[1] A t[2]={u® |ues[2] A u[2] <‘1970%})}
where r is a relation on R = (COURSE, DATE), DATE = (MONTH,YEAR). This query is asking for
all courses and the set of dates for the course with a year at most 1970.
Using the methodology of section 5.2 we translate this TRC expression into an equivalent relational

algebra expression. We start by transforming the expression so that -, V, and 3 are the only operators
present.

{t@ | @) (=(=(s €7) v =(t1]=s[1]) v ~(t[2]={u®® | ~(=~(u € s[2]) V (u[2] > 19707)}))}

The domains corresponding to each tuple variable are
D, = =1 (r) x m2(r),
D, = my(r) X vi=(1,2)(m1 (#1(m2(r))) X (m2(p1(72(r))) U {(1970)})),
D, = my(pa(m2(r))) x (r2(u1(r2(r))) U {(1970)}).
We now proceed with the translation.

Translate each atom:

sSET — Ey=Dyxr
t{1]=s[]1] — E;=o01=3(D: x D)
t[2]={ N .} . E3 = 7r1,2‘3,4(0’2=5(l/5=(5,6)(E')))

where E’ is the algebra expression for {...}.

Translate negation and disjunction:

Ey = (Ds x D,) — (D x D,) = E1) U ((De x D,) — Ez) U (D¢ x D,) — Es))

Translate existential quantifier and the final expression is:

E = Wl’g(E.;)

E’ is determined similarly.
Translate the atoms:

u € s[2] —  E{=vs=(4,5)(04=6 A 5=7(1a(D: X D, x Dy)))
u[2] > ‘1970°  — E£=0'5>‘1970'(D¢ x Dy X Du)

Translate negation and disjunction (and since there are no existential quantifiers) giving the result:
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S.NAME COURSE
C_NAME GRADE S,
Jones Math A S.NAME COURSE
Science B C.NAME GRADE
Smith Math A Jones Physics B
Physics C Smith Chemistry A
Science A English B

Figure 6-1. Two STUDENT instances.

E'=(D; x D, x D,) - (((D: x Dy x D,) — E{) U E3)

This ends the translation process. For comparison purposes the query as it would directly be written
in the algebra is

vpare(oyEar<aoro(upaTE(")))

This assumes that the COURSE values are all unique in r. If not we would need to make a key to the
relation so that the nest does not combine sets that were separate in the beginning.

6. Restricting the class of -1NF relations

Consider the relation scheme

STUDENT = (S_.NAME, COURSE)
COURSE = (C_.NAME, GRADE)

In Figure 6-1 we have two instances of STUDENT, S, and Sz, where S; contains previous work of two
gtudents and Sz contains some new data on these students.

A natural step would be to add the new information in S to that in S;. If we apply the union operator
then we get the relation in Figure 6-2.

Although all of the information is certainly represented in this relation it lacks the intuitive appeal of
the relation in Figure 6-3 in which the COURSE sets are combined for each unique value of STUDENT.

One alternative is to use an unnest operation followed by the corresponding nest operation after taking the
union. So the query would be

veourse(kcourse (81 U S2))

This takes advantage of the property that, in general, nest is not always an inverse operator for unnest.
This property is intuitively unappealing and impedes query optimization.

We, therefore, will restrict the class of ~1NF relations to relations in which there is always a sequence
of nest operations which will be an inverse for any sequence of valid unnest operations. In the next section,

we extend the meaning of our relational algebra operators to work within this domain.

Definition 6.1: 6-1: Let X C Eg, Y C Eg for some relation structure R = (R,r). The functional
dependency (FD), X — Y, holds in r iff for all tuples ¢1,¢; in r if t1{X] = t2[X] then t;[Y] = £3[Y]. If X or
Y is a higher order name then we mean set equality.
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S;US,

S_.NAME COURSE S.NAME COURSE
C_NAME GRADE C.NAME GRADE
Jones Math A Jones Math A
Science B Science B
Jones Physics B Physics B
Smith Math A Smith Math A
Physics C Physics C
Science A Science A
Smith Chemistry A Chemistry A
English B English B

Figure 6-2. Union of instances in Figure 6-1. Figure 6-3. Better representation of Figure 6-2.

Definition 6.2: 6-2: Let R = (R, r) be a relation structure with attribute set EFr containing sero order
names Aq, Az, ..., Ax and higher order names X3, X5,..., X¢. R is in partitioned normal form (PNF) iff

o AjAy--- Ay — Ep, and

e Forallt € rand for all X;:1<1<£: Ry is in PNF, where Ry; = (X;, t[X;])-

Note, if k = O then § — Eg must hold and if £ = O then A; Az - Ax — A1 Az - A holds trivially.
Thus a 1NF relation is in PNF. *

PNF is not normalization in the usual sense. Although PNF relations have less redundancy than their
non-PNF counterparts, some nesting schemes will be less redundant than others, even if all relations are in
PNF. PNF is a desirable goal for the representation of relationships in ~1NF relations. This stems from our
belief that a particular nesting scheme should not be used unless the FDs which enforce PNF hold in the
relation. For a traditional normalization technique for ~1NTF relations, the reader is refered to [OY].

We would like to ensure that given a relation in PNF when we apply a nest or an unnest operator then we
get a PNF relation in return. In general this is true only for the unnest operator. The nest operator returns

a PNF relation if and only if certain functional dependencies hold in the relation and each subrelation.

Theorem 6-1. The class of PNF relations is closed under unnesting.

Proof: Let R be any relation structure R = (R, r) with attribute set Eg containing higher order name B
with scheme B = (B, Ba, ..., B;). We show that R’ = up=(8,,B,....,B,) R i8 a PNF relation.

Since R is in PNF we know that A; A5 --- A,, — Er where the A;, 1 <t < n, are the zero order mames
in Er. We also have that in each subrelation B, By B, -+ By — Ep where the B;, 1 <1 < {, are the zero
order names in Ep.

The attributes of R’ are, by definition of unnest, the attributes (Er — B) U (By1Bz---B,). These
attributes can be partitioned into four sets, the gzero order names of Er (4;4z - -Ap), the higher order
names in Er — B (X1 X2+ Xym), the zero order names of Ep (B1Bz -~ - By), and the higher order names of
Ep (Y1Yz---Y,). Our task then is to show that for any tuples ¢; and tz, if t1{A1A2 - AnB1Bz-- - Byl =
tg[AlAg - ApB1B; - Bd then tl[X;le e XY Yo - Yp] = t2[X1X2 o X Y1 Yo - Yp]

Since AjAz---A, — X;X5 - X, in R, and unnesting only duplicates these values, we have that
t1[X1 Xz - Xpm) = t2[X1X2 - - - Xi|. Since t; and t; agree on A1 Az - - Ay, they came from the same tuple
of r, and in this tuple By B, --- By — Y1Y2---Yp. So in the set of tuples obtained after unnesting the same
FD applies and since t; agrees with t; on By Bz --- B, 4[{V1Y2 - Y| = t2[Y Y2 - ~Y;}. O

Theorem 6-2. The nesting of a PNF relation is in PNF iff in the PNF relation R = (R,r), A1Az-- - Ax —
XX, - X,, where A1, Az, ..., Ay are the sero order names in Egr not being nested and X, Xo, ...y Xg are
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the higher order names in Er not being nested.

Proof: We show that R' = vx,=(as41,4x42.1An.Xe41.Xe42,...Xm) (R) i8 in PNF if and only if 4; 42 --- Ax —
X1X5---X,, where A;, Az, ..., A, are the zero order names in Er and X, X3, ..., X, are the higher order
names in Ep.

if: We prove that, if AjA; - Ax — X1X2 - X, then R’ is in PNF. We utilize a case analysis on the values

on m, n, k, and £. Note that either k < n or £ < m if we are nesting something.

Case 1: m = 0, n > 0. Then we have a 1NF relation and by definition of nest the relation is partitioned by
the nonnested attributes A; A - Ax. So AjAz - Ax — X in R’ and thus R’ is in PNF.

Case 2: m > 0, n = 0. Then there is one tuple in the relation as the FD § — X, X3 --- X, holds. Nesting
cannot produce fewer tuples and any subrelation created can only have one tuple so the new relation
is in PNF.

Case 3: m > 0, n > 0, k < n, £ = m. Then we are nesting only zero order names. So A;4;--- Ax —
X1X2---X,. Then in each partition on AjA; - Ax the X; Xz -+ X, values will be the same
so a partition on Aj Az - - AxX1X3 - X, used by the nest, will be isomorphic to a partition on
A; Az - Ax. The nest will form a set X of Axy1Axt2 -+ A, values in each partition and the FD
AjAy - A X Xg - X, — Xo will hold. So A3 45+ Ax — XoX1 X2 -+ - X, giving a relation in
PNF.

Case 4: m > 0, n > 0, k = n, £ < m. Then we are nesting only higher order names. So A;4;--- A,, —
X3 X2 - X, Nesting will be done by grouping X¢41Xe42 - Xm in each tuple, since A; 4z - - - A,
will continue to form a tuple-wise partition. So A; A5 - - A, — XoX; X3 - - - X, giving a relation in
PNF.

Case5: m > 0, n > 0, k < n, £<m. Then we are nesting some zero order and some higher order
names. So A;A; - Ax — X; X2 ---X,. Then during nesting a partitionon 41 A, --- 4;: X1 X - - - X,
will be created and by definition each set Xy of Ax+14k+2 AnXer1Xe42 - Xm values will be
uniquely determined by A1 Az - - AgX1X3---X,. Thus, AjAz---Ax — XoX:1X3--- X In each
new subrelation the Ax41Ax4z- -+ A, values are unique since A; A;--- Ax was the same for each
of these tuples and A; Az --- A, values were unique as R is in PNF. Thus Ax414k42 - A —
Xet1Xe+2 - - Xm in each subrelation. Thus the relation is in PNF.

only if: We prove if R’ is in PNF then A; Az - Ax — X1 Xz X .
Since A; Ao - - - Ax are the zero order names of R’, by definition of PNF A; A, --- Ax — Eg holds in R'.
By the projectivity FD axiom, A; Az - - Ax — X1 X3 - Xo.

Therefore, R’ is in PNF iff A; 45 -4 — X1 X2+ X O

7. Extending the basic relational algebra operators

As the example in section 6 showed we need to extend our basic algebra operators to work within the class of
PNF relations. We first extend the traditional set operators—union, intersection, difference, and cartesian
product, and then extend natural join and projection. Some of these operators are similar to the extended
operators of [AB]. However, our definitions arose out of the PNF requirement and since our model does
not include null values or empty sets, the operations are well defined. In [AB], empty sets are allowed but
null values are not, so there are problems when tuples with empty sets are unnested. Unlike [AB], we do

not extend selection in this paper. Finally, we show that the class of PNF relations is closed under the
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r ry U ry ry Nery

A X A X A X
B Y B Y B Y
C D C D D
ay by c1 dy ay by 1 dy a; by ¢ d;
c1 dy 1 dg az bs c2 d2
bz (51 d1 Cc3 d2
ca ds by c1 dy r1 —°rg
ay by €1 d; c2 d, A X
c2 ds b3 C4 dy B Y
c3 d1 anz bl [+51 dl C D
b3 c2 d2 c2 ds a; by 1 dy
as by c1 dg c3 dy b2 2 d;
bs c2 dy c2 dz
ra as by c1 do az by 1 dy
A ag bz Cy dz [23/] d3
B Y c1 ds c3 dy
C D as b4 [ dz
ay by 1 d;
c3 dy
bs cq dg
az bs c2 dy
a4 b2 1 dy
c1 ds

Figure 7-1. Examples of U, N¢, —¢,

extended operators. Note, the extended operators can be applied to to non-PNF relations in a well defined
way, however, the result is not necessarily a PNF relation.

7.1 Traditional set operators

We present below our definitions of the extended traditional set operators and provide illustrative examples
in Figure 7-1.

eExtended Union— In order to take the union of two relation structures R; and R, we require that
they have equal relation schemes. The scheme of the resultant structure is also equal to schemes R; and R;.
We define union at the instance level as follows. Let X signify a zero order name in Eg, and Y signify a
higher order name in Eg,. Then,

riUry={t|(3t1 €r,3t2€r2: (VX,Y € Eg, : t{X] = ;[ X] = t2[X] A t[Y] = (t1]Y] U° t2[Y]) )
V(ters AVt €ry: (VX € Eg, : t[X] # t'[X])))
vV (tery A(Vt' €ry: (VX € Eg, : t[X] #¢'[X])))}
Note, this definition is recursive in that we apply the extended union to each higher order name Y.
eExtended Intersection has the same requirements and note about recursion as union. Two tuples
intersect if they agree on their zero order names and they have non-empty extended intersections of their

higher order names. Let X signify a zero order name in Er, and Y signify a higher order name in FEg,.
Then,

riN*ry={t|(3t1€r1 AJtaEry:
(VX,Y € Epg, : t{X] = t:[X] = tz[X] A t[Y] = (t1[Y] n° £2[Y]) A ¢t[Y] # 0))}
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sExtended Difference also has the same requirements and note about recursion as union. Inr; — rp
a tuple is retained from ry if it does not agree with any tuple in r, on the zero order names or if it does then

it has non-empty extended differences between the higher order names. Let X signify a zero order name in
Eg, and Y signify a higher order name in Eg,. Then,

ri—re={t|(Bt1€r, Adtz € AIY €ER:
(VX,Y € Eg, : t|{X] = t1[X] = t2[X] A t[Y] = (t1]Y] =° t2[Y]) A t[Y] # 6))
V (ter, AVt €ry: (VX € Eg, : t[X] # t'[X])))}

eCartesian Product requires no changes to the basic definition. We just need to ensure that common

names are changed to maintain uniqueness in the new structure. See [FT] for a formal definition.

7.2 Natural Josn and Projection

We present below our definitions of the extended natural join and extended projection operators and provide
illustrative examples in Figure 7-2.

eExtended Natural Join— Join operations are difficult to define in the —1NF model due to the
possibility of different nesting depths for the attributes. The problems with an extended natural join (p<°)
can be illustrated as follows. Let r; be a relation on R; = (4, X),X = (B, C) and let r; be a relation on
R; = (B, D). Then ry ><® ry is the cartesian product of r; and rg since Eg, N Eg, = 8. However, in the
INF counterparts of r; and ry, attribute B is a common attribute so a join on B could take place. Thus, we
limit the relations which can participate in an extended natural join to those whose only common attributes
are elements of the top level scheme, i.e., in Eg for scheme R, or are attributes of a common higher order
attribute.

Let R; = (R1,r1) and Rz = (Ry, r2), be two relation structures. We define the extended natural join
Ry < R, as a recursive application of a rule similar to the definition of natural join used for standard flat
relations.

In the standard natural join, two tuples contribute to the join if they agree on the attributes in cormmon
to both schemes. Under extended natural join, two tuple contribute to the join if the extended intersection
of their projections over common names is not empty.

Let X be the higher order names in Eg, N Eg,, A = Eg, — X, and B = Er, — X. Then the join is
Ri<® Rz = (R, r) where

1. R= (A, X, B), and
2. r={t|(3u € r1,v Ery:t[A] = u[A] A t[{B] = v[B] A t[{X] = (u[X] n° v[X]) A t[X] # 0}
Note, the intersection specified in the instance definition is the extended intersection as defined above.
eExtended Projection is a normal projection followed by a tuplewise extended union of the result.

The union merges tuples which agree on the zero order names left in the projected relation. Formally, we
define eztended projection as

5= U

t€nx(r)

This operation can also be logically accomplished by unnesting and nesting one higher order name in the
projected relation. Note, that projection still removes duplicate tuples, that is those which agree on all
attributes, with set equality holding on higher order names.
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81 8; Da® 82 W’A,X (81 pa® 32)

A B X A E B X A X
C D C D C D
ay by c1 dy ay e1 by 1 d; ay 1 d;
c2 dg 1 d3 c1 d3
1 ds az e1 by €1 dy az c1 d,
az by c3 d; ag 4 by c3 d; c3 dy
c2 dz az e3 by c3 dy c3 dz
1 dy
az | b2 1 dy 7°E B.x (81 ><° 83)
c3 d2 E B X
C D
82 €1 bl C1 d1
E B X c1 ds
C D €4 by c3 d;
€ bl C1 dl €3 bz Cc3 d2
1 ds
c3 dg
€3 b2 c3 dz
4 by €3 dy
cq dz

Figure 7-2. Examples of <, #°.

7.8 Closure of PNF relations under the ertended operators

Theorem 7-1. The class of PNF relations is closed under extended union, extended intersection, ext ended
difference, cartesian product, extended natural join, extended projection, and selection.

Proof: The proofs for each operator are presented below.

eExtended Union— We show that for any relation structures R = (R,r;) and § = (R,r;) with
attribute set Er that T = R U® § is a PNF relation.

By definition of U®, T has scheme R with attribute set Egr. Let the instance of 7 be r3. We need to
show that, in r3, A — Eg, where A is the set of zero order names of Er. Suppose it does not. Then two
tuples £; and ¢ in r3 must agree on A and yet disagree on Er. Now t; (and likewise t3) either was carried
over in total from r; or r; since it disagreed on A with all tuples in the other relation, or was created from
tuples, one each in r; and rz which agreed on A and had the values of their higher order names combined
with a recursive application of extended union. Thus there are four cases:

Case 1. t; and t; were both carried over in total:
t; and t; cannot both come from one relation as each is in PNF and if ¢, agrees with t; on A then
they agree on Er. They cannot come from different relations as they agree on A and yet each is
required to disagree with all other tuples in the other relation on A. Thus we have a contradiction
for case 1.

Case 2. t; carried over in total and ¢, created from a tuple in each of r; and rq:
Suppose t; came from r;. Then t; disagrees with all tuples in r; on A. But ¢, was created from
tuples that agreed on A, one in each of r; and r;. The argument for ¢; coming from r; is symmetric,
and so case 2 leads to a contradiction.

Case 3. Symmetric to case 2 with ¢, and t; interchanged.

Case 4. t; and ¢tz both created from a tuple in each of r; and rs:

20



Since t; and t; agree on A then all tuples in r; and ro from which they were created agree on A.
Thus all tuples from r; must be the same tuple as A — Eg holds in r;. The symmetric argurnent
holds for ro. Thus t; and ¢, were both created from the same two tuples, by an identical operation,
and, therefore, agree on Ep. Thus we have a contradiction for case 4.

Since cases 1-4 all produced a contradiction the hypothesis is false and indeed A — Eg inrz andso 7 is in

PNF.

sExtended Intersection— This proof is the same as for extended union except that there is only one
case in the case analysis that applies, case 4.

sExtended Difference— This proof is the same as for extended union except we need only consider
tuples carried over in total from just r;.

eCartesian Product— Let V = (V,v) = R x §, where R = (R,r) and § = (S,s). We assume that
the attributes have been renamed so that Er N Eg = #. Then Ey = Eg U Eg. We show that AB — E r Eg
holds in v where A is the set of zero order names in Er and B is the set of zero order names in Eg. Suppose
it does not. Then two tuples t; and t in v must agree on AB and yet disagree on ErEs. Assume the
disagreement is in Er as a symmetric argument can be made for Es.

We have A — Er in r gince R is in PNF. We also have that each tuple in v agrees with some tuple inr
on Egr. Thus there are tuples in r that agree with ¢; and t; on Er. Since t; and t; agree on AB they agree
on A, but, as assumed, disagree on EREs and so disagree on Eg. Thus, A — Egr does not hold in r which
is a contradiction. Therefore, the hypothesis is false and V is in PNF.

eExtended Natural Join— Let V = (V,v) = R <® §, where R = (R,r) and § = (5,s). We have
that Ey = ErEs. Let X = ERNEs, A= Ep—~X and B = Eg — X. Let A, A, = A, where A; are the
gero order names of A and Aj, are the higher order names of A. Similarily, let B, B, = B and X, X, = X.

We show that A,B,X, — EgrEs holds in v. Suppose it does not. Then two tuples t; and £2 in v
must agree on A, B, X, and yet disagree on EgrEs. This disagreement is either on As, Bp, or Xj,. If the
disagreement is on Ap or By then the arguments of cartesian product apply and a contradiction is reached.
If the disagreement is on X}, then the argument of case 4 of union applies since the tuples from which £; and
t, came must be identical in r and s as FDs A, X, — Eg holds in r and B, X, — Eg holds in s. Thus we
reach a contradiction and so V is in PNF.

sExtended Projection— When an extended projection operation is applied to a relation we do not
change any FDs that hold in the subrelations of each tuple, as we either take the subrelation in total or
eliminate it. Also if all subrelations meet the requirements to be in PNF then a single tuple containing these
subrelations is automatically in PNF. Therefore, we can apply the proof for union since extended projection
is a tuplewise extended union of the tuples resulting from a normal projection operation, each of which we
determined was a PNF relation.

eSelection— A subset of the tuples of a relation cannot violate an FD that holds on the entire relation,
gso any selection of tuples from a PNF relation produces a PNF relation. -

8. Properties of the Extended Algebra

In addition to properties which hold between relational algebra expressions when using the usual realtional
algebra operators there are some important equivalences which hold when using the extended operators

defined in section 7.

Below we state some equivalences already proven on the extended algebra without the extended opera-
tors.
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Theorem 8-1 ([FT]). Given relation structures R and § the following properties hold
a. pa(va(R)) =R
b. pa(up(R)) = pe(pa(R))
c. pa(Rx S)=pa(R)xS§,ifAis A"in R
pa(Rx §) =R x pan(§),if Ais A" in §
d. pA(R U 5) = ﬂA(R) U[lA(S)
e. vp=(v)(or(R)) = or(ve=(v)(R))
#B:(Y)(UF(R)) = or(pB=(v)(R))
where predicate F does not involve names B or Y.
f. FB:(Y)(WXB(R)) = rxy (kB=(v)(R))
Proof: See [FT].

The following theorem shows equivalences that hold for the extended operators.

Theorem 8-2. Given relation structures R and § the following properties hold
a. [lA(R ne S) =[IA(R) ne HA(S)
b. pa(R pa® §) = pa(R) = ua($)

Proof (a): ua(R N° §) = pa(R) N° pa(S)

Let R = (R,r), § = (R,s), A€ Er and A = (A1, Az,..., Ay). The relation schemes for each side
of the equivalence are equal since extended intersection preserves the scheme of the operands and so the
unnest replaces A by A; Az -+ A,, on each side. We now show inclusion both ways to prove equivalence at
the instance level.

C We partition ps(R N° §) on Er — A1Az--- A, and then show that all tuples t;,t2,...,¢, in any
partition are in ua(R) N° pa(S). The tuples t1,¢2,...,t, must have been unnested from a set of tuples

u1, Uz, ..., uk which form a partition on Er — A in r N°® s, where for all 4, 1 < 1 < n, there exists 7,

1< j < k such that t;[A; Az - - - Ap] € u;{A]. We then have U;?:lu_,-[A] = {t;[A142- - An] |1 <1 < n}.

Each u; was created by an extended intersection of two tuples, u} in r, and u? in 3. So we have

Uk_ ui[A] € U u}[A4] and Uf_ us(4] C Uk_,uZ[A]. When we unnest r on A the tuples u} unnest into

tuples w}, 1 < £ < p. Similarily, when we unnest s on A the tuples u? unnest into tuples w?, 1< £ <g,

where U5_ u}[A] = {w}[4142- - An] |1 < £< p} and Ub_ u?[A] = {w[A14: - Am] [ 122 < g}

Following the chain of equalities we have {t;[4142---Am]|1<i<n} C {wi{A142 - -An] | 1< € <p}

and {t;[A14z - Am] |1 <1 < n} C {w}[A14z---Am] | 1 < £ < g}. Therfore, in pa(r) and pea(s)

we have agreement on at least all values of A1, A2,..., Am in {t;[A142- - An] |1 <1 < n} and so
pa(r) N° pa(s) includes all tuples ty,t2,.. ., tn.

1V)

We show that if ¢ € {(ua(r) N° pa(s)) then t € pa(r N® s). So t must be the extended intersection of
some t; in p4(r) and some t3 in pa(s). Also t; was unnested from some u; in r and t; was unnested
from some up in s. We have that t;[A; A2 A,n] € ui[A] and t2[A142 - Am] € uz[A]. Therfore
in the extended intersection of r and s, u; and u; will combine to produce w where, in particular,

w|[A] = u1[A] N° uz[A]. w will then unnest to include ¢ and we have that t € palr nc s). O

Proof (b): pa(R <* §) = pa(R) = ua($)
This proof is similar to that of part a. -]

In the next theorem we prove that nest is an inverse for unnest when operating on PNF relations.
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Theorem 8-8. Given relation structures R, § in PNF the following properties hold
a. va(pa(R)) =R

b. va, (- (Van(pan (- (Bay(R)) <)) ) =R

Proof (a): va(pa(R)) =R
Let R = (R,r), A€ Ep and A = (A1 Az --- A,). The relation schemes will be equal as the modific ation

made by the unnest will be exactly reversed by nest. We now show inclusion both ways to prove equivalence
at the instance level.

€ We show that if t € v4(pa(r)) then t € r. So there must be tuples t1,%3,...,%, in us(r) that form some
partition of pua(r) on Er — A1 Az - - A,,, where t{A] = {t;[A142---A,,] | 1 <t < n}. We claim that
in r, the tuple that unnested to t;,%z,...,¢,, must be . If it was not then there is some ¢ that also
unnested, and agrees with t;,t5,...,t, on Ep — A; Ay - - - A, since, by Theorem 6-1, u4(r) is in PNF.
But ¢’ was not included in the nest so must disagree on Ep — A; Az - -+ A,,, with t;,%5,...,t,. This is a
contradiction, so t € r.
We show that if t € r then t € v4(pa(r)). Since ris in PNF X — A. t € r implies t;,t2,...,t, € g2.a(r)
and these tuples are the only tuples which have equal X values due to X — A. Therefore, in v4(u_4 (7)),

)

ti,t2,...,t, will reform to the tuple t again. O
Proof (b):

va, (- (van(Ban(- (pay(R)) ) ) = R

This follows immediately from Theorem 6-1 and Theorem 8-3a. [

9. Conclusion

Some straightforward extensions to fundamental calculus and algebra languages allow us to have set-vralued
domains in the relational model. We lose none of the power of the original model and gain the power to
manipulate sets of values. We have found that —1NF relations in PNF have some good properties, and by
extending our basic relational algebra operators we can formulate queries that have more meaning to wus. By
limiting the database to PNF relations, we will always have that some sequence of nest operations will be
an inverse for a sequence of unnest operations.

We plan to further investigate query languages for ~1NF databases, especially towards more user friendly
languages. We will examine the optimization and performance issues associated with set-valued doxmains.
We will also look at dependency theory, as have others [FvG1, FvG2, KTT, TFS], to see what effect our
extensions will have.

Some interesting problems occur in our formulations if we allow the empty set and null values, n ot the
Jeast of which is determining an appropriate semantics for the empty set, and the effect of unnesting on it.
This will be the topic of a forthcoming report.

We also plan to implement our ideas within the ROSI project [KS] at the University of Texas at A ustin.
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