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1. Introduction

The problem of stability detection is one of the most widely studied problems
in distributed computing [ 1-28 |. A stable property is one that persists: if the
property holds at any point, then it holds thereafter. Examples of stable
properties are termination, deadlock and loss of tokens in a token-ring. The
problem is to devise algorithms to be superimposed on the underlying
computation to determine whether a specified stable property holds for the
underlying computation. This paper presents a simple (almost trivial) algorithm
to detect guiescent properties, an important class of stable properties including
those mentioned above. Distributed snapshots [ 7 ] may be used to derive
algorithms for these problems. TIowever our approach in this paper is different

and results in simpler algorithms.
2. Model of Distributed Systems

2.1. The Model

A distributed system is a set of processes and a set of directed communication
channels.  Fach channel is directed from one process to another process.
Processes send messages on outgoing channels and receive messages on incoming
channels. A process sends a message along an outgoing channel by depositing it
in the channel. A process receives a message along an incoming channel by
removing the message from the channel. A process may receive a message some
arbitrary time after it is sent. Initially, all channels are emply. At any time
each process is in one of a set of process states and each channel is in one of a set
of channel states. The channel state for a [irst-in-first-out channel is the
sequence of messages in transit along the channel. For channels which deliver
messages in arbitrary order, the channel state is the set of messages in transit. A
system has a set of states, an initial state {rom this set, and a set of state
transitions. The system state at any time is the set of process and channel states.
Let S, S be states of a system. §%is reachable from S if and only if there exists
a sequence of state transitions from S to § . We assume that all system states

are reachable from the initial system state.



2.2. Quiescent Property
A stable property B of a distributed system is a predicate on system state

such that for all S* reachable from §:
B(S) implies B(S*)

In other words, once a stable property becomes true it remains true. A
qutescent property of a distributed system is a special kind of stable property
characterized by (1) a subset P of the set of processes, (2) for all processes p in
P'?, a predicate 5;) on the process states of p and (3) a subset C* of the set of
channels between processes in PoA process p in P’ cannot send messages along
channels in ¢ while bp holds. Furthermore, if z‘)p is frue, 16 must remain true at
least until p receives a message along a channel in ", The quiescent property B

18

® * 3 3 F *
all channels in C' are empty and for all processes pin P : b

It is easily seen that B is also a stable property. A process pis a predecessor of a
process ¢ with respect to B if and only if p and ¢ are both i P and there exists
a channel in € from p to g. For brevity we shall say p is a predecessor of ¢ and
drop the phrase "with respect to B". If for some system state, we have for some

E
process q in P
3w @ . *
bg and all of ¢'s incoming channels in € are empty and

for all predecessors p of ¢ b;; (1)
then this condition must persist at least until for some predecessor p of ¢, ép
becomes false. This fact is useful in understanding quiescent properties and

their detection,
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2.3. Problem Definition

Let the system computation go through a sequence of global states S, o120,
where SG is the initial state; this sequence of global states will be called the
underlying computation. Given a quiescent property B we wish to superimpose
a detection algorithm on the underlying computation to determine whether J3
holds. The detection algorithm sets a boolean variable claim to true when it
detects that B holds, and cleim is false until that point. The detection

algorithm must guarantee:
(Safety) : not clatm or B

(Liveness) : within finite time of B becoming true, claim is set to true.

We now present a brief discussion of three instances of quiescent properties:

termination, database deadlock and communication deadlock.

2.4. Termination

A computation is defined to be terminated if and only if all processes are 7dle
and all channels are empty. Thus " is the set of all channels, P"is the set of all
processes, and for each process p, bp is: p is <dle. Idle processes don’t send

messages and hence termination is a quiescent property.

2.5. Database Deadlock

A process is either active or waiting. A waiting state of 2 process p is
specified by a pair (Rp, H’p) where RP is a non-empty set of resources that p is
waiting for and Hp is a set of resources that p needs and holds (where B‘p and Hp
have no common elements). Resources are sent as messages from active processes
to other processes; a waiting process does not send any resource it needs and
holds. A process p, in a waiting state specified by (Rp, Hp), takes the following

action on receiving a resource r in Rp:
begin R =R - {r}; Hyp=H U {r};

p
if R, = { } then become active else wait

end



Here { } is the empty set. When p transits from active to waiting state, Rp and
B . *

Hp are set to values which are of no consequence to us here. A set P of
* » » - i 4

processes is deadlocked if every process in P is waiting for resources held by

*
other processes in P, i.e.

P* is database deadlocked ==

for all pin P p is waiting and there exists a ¢ in P’ such that
ROH, % ()

In this case, the predicate b is: p is waiting for P and p holds H A channel ¢
is in € if and only if ¢ is ;{rom a process ¢ to a process p where p fmd q are both
in P , and ¢ holds a resource required by p. Typically, " is not specified and it

*
is required to obtain a P as part of the deteclion algorithm.

2.6. Communication Deadlock

As in database deadlock a process is aclive or waiting. A wailing process p is
waiting on a set of incoming channels (Jp; on receiving a message along any
channel in C;;»’ process p becomes active. An aclive process may start waiting at
any time. Until it receives a message along a channel in C’p, a wailting process p
continues to wait on C’p. A waiting process cannot send messages. A set of
waiting processes is deadlocked if no process in the set is waiting on a channel
from a process outside the set, and all channels between processes in the set are

emply, i.e.,
" ‘* ® - ®
A set of processes P is communication deadlocked
o * ® -
for all pin P: p is waiting for a set of incoming channels C where each channel
¢in C’ is from a process in P , and ¢ is empty.

In this case, bp is: p is waiting on C‘p, C” is the union of all C’p for pin P,

3 Y @ * ° o) * »
As in database deadlock, the detection algorithm is required to find P if such
a set exists. Next we consider two specific classes of distributed systems: (i)

systems in which messages are acknowledged and (ii) systems in which channels



are first-in-first-out, and show how to detect quiescent properties in each class.

The latter class needs little description. We describe the former class next.

2.7. Systems with Acknowledgements

Let ¢ be a channel from a process p to a process ¢. On receiving a message
along ¢, process ¢ sends an acknowledgement ack, to p. We are not concerned
with how acks travel from one process to another. An ack is not considered to
be a message in that acks are not acknowledged in turn. Furthermore, the
statement “channel ¢ is empty” means that ¢ contains no message; it may or may
not contain acks. Let num, be the number of unacknowledged messages p has
sent along outgoing channel ¢, i.e.,
num,_ == number of messages sent by p along ¢ —

number of ac!cc acknowledgements received by p.

num_ = 0 umplies ¢ is empty.

We assume that every message sent is received in finite time and acknowledged
in finite time. We also assume that every ack sent is received in finite time.

Hence, an acknowledgement is received for each message within finite time of

sending the message. Therclore,
if B becomes true, then within finite time of B becoming true:

R *
forall ¢cin C num,_ = 0

3. The Paradigm

Our paradigm is based on observing each process computation for some
period of time called an observation period. An observation pertod for a process
p is specified by two integers, 5iartp and endp, sicirzip < encip, denoting that p's

computation is observed at every S st&?'ip << 6?2dp. An observation period

set for a quiescent property B is a set of observation periods, one for each process
*
in 7.

° a E = * “
An observation period set obs” :::{(startp” , endp"’) | pin P} is later than an



"~ * ® 5 £ ]
observation period set obs’ = {(sia?'tp', endp’) | pin P} if and only if all starting

times in obs” are after some starting time in obs', i.e.

min start 7 > min start '
p P p b

* = - 3
Let B be a predicate on observation period sets, defined as follows.
L . ,ak
B (obs) = [forall pin P :
for all states S5, where starép < < endp b holds in Sé]
£
and

H © * s 3 N
(for all p,g in P where p is a predecessor of ¢: all messages sent

by p at or before siarép are received by ¢ at or before end | (2)
'
Note: To ensure that messages sent by p at or before sta?'ip are
3 » ® - #
received by ¢ at or before endq, we must have for all p,gin P
where p is a predecessor of p : sta’rti) < endq (3)

3.1. Quiescence Detection Paradigm
clarm : = false; obtain an observation period set obs;
o *

while not B (obs) do
obtain an observation period set obs' later than obs;
obs : = obs’'

od;

clarm : = true

We next prove the correctness of this paradigm and postpone discussion of

techniques for implementing the paradigm to a later section.



3.2. Proof of Correctness
Safety : not claim or B
Safety holds while claim is fulse; therefore consider the final iteration of the

while loop after which claim is set to true. For this iteration, we prove the

following by inducting on ¢:
forall 7> 0: for all pin P
[[i< start or b holdsin S; | and

[i< endp or p’s incoming channels in ¢ are empty | ]
This induction follows from (1), (2), and (3).

Liveness: If there exists an 7 > 0 such that B holds for S, then there exists a
J 2 0 such that claim = true in S, . I B holds for 5, then for all observation
period sets, obs, where séartp > ¢, for all p, B (0bs) holds. From the paradigm,
either claim is set {rue or later observation periods are chosen indefinitely.

Hence if B holds for S, for any ¢ > 0, then claim will be true for some S0 420,

3.3. Implementation of the Paradigm
The key question for implementation is: How can we ensure that all messages

sent by a predecessor p of a process g at or before séartp, are received by ¢ at or

before endq?

3.3.1. Systems with Acknowledgements
The above question can be answered for systems with acknowledgements by

» a 2, . S “ o
ensuring the following condition: for all p,qg in P~ where p 1s a predecessor of ¢

and for all channels ¢ from p to ¢ :
num =0 at start  and start < end .
< P 7 q

Proof of this condition is as follows. At siartp, num =0 implies that ¢ is

empty and hence all messages sent along ¢ have been received. Hence all

messages sent at or before sia?‘tp, along ¢, are received at or before starép and



since 3tartp < endq, the result follows.

* . ; 3 . .
For all pin P, let quzetr = for all states 5, where seartp << eﬂa’p : [bp

and for all outgoing channels ¢ in ¢’ num,_ = 0).

In the paradigm we replace B (obs) by
[for all pin P’ qm’etp] and

* -
[for all p,gin P where p is a predecessor of ¢ : stawtp < 8ndq}.

We show, in section 4, how startpi e’ndq, can be maintained. num_ is
maintained as a local variable of p and hence quietp can be determined by p.
Note that for systems with rendezvous, such as CSP” and ADA, num, =0 holds at

all times.

3.3.2. Systems with First-In-First-Out Channels

To answer the key question posed at the beginning of this section, we use
special messages called markers, which are sent and received along channels in
c”. They have no effect on the underlying computation other than that they
occupy the same channels as regular messages. We wuse the following
implementation rules.

- ° * 1 ® 3 = Ed
R1. Every process p in P sends one marker along each outgoing channel in ¢
some (finite) time after (or at) start and,

& * " » .
R2. Every process p in P has reccived one marker along each incoming channel
* . )
in C' some time before (or at) eﬂd?.

Since channels are first-in-first-out, all messages sent along a channel before
the marker is sent on the channel must be received before the marker is received.
Hence every message sent at or before sia,rtp is received at or before endq, for all

p,¢ in Pg, where p is a predecessor of q.



¥ . . .
Each process p in P maintains a loeal boolean variable guz{:tp where

quret == for all states S. where start. <7 <end :b .
P ! p— v p

In the paradigm we replace B*(obs} by : [for all p in P qm@ip] and rules R1,

R2 are satisfied.

3.4. Notes on the Paradigm

Our constraints on observation period sets are weak. For instance it is
possible that for a predecessor p of g, siariq s mzd;} and there may be no
overlap between p’s and ¢’s observation periods. For a system with first-in-first-
out channels, process p may send markers on some or all outgoing channels after

endp, and may receive markers on some or all incoming channels be fore siarép,.

If the quiescent property never holds, the iteration in the paradigm will never

terminate, i.e. an infinite sequence of observation period sets will be obtained.
b

4. Applications of the Paradigm

There are many problems to which the paradigm may be applied and many
ways of applying the paradigm. We show two examples to demonstrate the
power of the paradigm: termination detection and (both types of) deadlock
detection, described earlier. We use termination detection as an example of the

use of markers and deadlock detection as an example of the use of acks.

4.1. Termination Detection
Processes are labeled Py O v <n. We employ a token to transmit the
values qu*ietp. The token cycles through the processes visiting Plit1ymod n after

departing from p; all ©. A cycle is initiated by a process called the

Piniv

initiator. If the token completes a cycle (i.e. returns to Pinit

processes) and if all processes p return a value qua’@:ﬁp of true in this cycle then

after visiting all

the initiator detects termination, i.e. it sets claim to true. If any process ¢

returns a value qu—ée;‘q of false in a cycle, then the current cycle is terminated and
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a new cycle is initiated with ¢ as the initiator. A process ends one observation
period and immediately starts the next observation period when it sends the
token. The algorithm, described next in detail, shows how qui@ip is set.
4.1.1. The Algorithm

The are no shared variables in a distributed system. However, for purposes
of exposilion we assume that claim is a shared global variable which has an
initial value of false and which may be set true by any process. Such a global

variable can be simulated by message transmissions; for instance, the process that

sets claim to true may send messages to all other processes notifying them.

Two types of messages are employed in the termination detection algorithm.

<marker>> : this type of message has already been discussed; it carries no
other information (except its own type).

<token, initiator> : this is the token and its initiator, as deseribed in
Section 4-1.

Fach process has the following constants and variables. These will be
bscripted, by 7, when referring to a specific process 7
suoscripted, by i, when referring to a specific process 4.
tc: number of incoming channels to the process, a constant,
tdle: process is idle,

uiet: rocess has been continuously idle since the token was last sent by the
y
process; fal.se if the token has never been sent by this process,

hold-token: process holds the token,

intt: the value of initiator in the <token, initiator> message last sent or
received; undefined if the process has never received such a message,

m: number of markers received, since the token was last sent by the process;
initial value as given in the algorithm.
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Initial Conditions
The token is at Py

m,; == the number of channels from processes with indices greater than 7, for

all ¢, i.e., the cardinality of the set, {c¢ | ¢ is a channel from P to p; and j > i}

(This initial condition is required because otherwise, the token will

permanently stay at one process.)

quz’eté == false, for all 7.

(The algorithm is slightly more efficient with different initial conditions, but
for purposes of exposition we shall make the simpler assumpltion.)

true, for =0
h@ld«toke'ni =

false, for 7540
z'm'tz. is arbitrary, for all ¢

Algorithm for a Process P,

The algorithm for a process is a repetitive guarded command. The repetitive
guarded command is a set of rules where each rule is of the form, condition —
action. The algorithm proceeds as follows: one of the rules whose condition part
evaluates to irue is selected nondeterministically and its action part is executed.
The repetitive guarded command consists of the following rules:

1. receive marker — my ==t 1

2. quz'etz. and receive regular message (i.e. underlying computation’s
message) — quiet 1 = false;

3. receive  <token, initiator> —  begin z'n'zfti ;= nilialor;
hold—iokené 1= lrue end;



12

4. hold-token; and (ic; = m ) and idle, —

&

if quiet; and (init; = ¢) then {termination detected} claim : = true;
if guiet; and (init, 54 ¢) then {continue old cycle}
begin
m, == 0;
Send marker along each outgoing channel;
hOld»iG!ﬁ‘@?’éi 1= false;
send <token, im'ti> to p(i + 1mod n
end
if ~quiet, then {initiate new cycle}
begin
my = 0; quiel, : = irue; i‘il’i:tz- P == g
Send marker along each outgoing channel;
hold”iokeni : = false;
send <token, tnil.> to p

{(i+1)mod n

end

4.1.2. Proof of Correctness

We need merely show that the algorithm fits the paradigm. A process p; ends
an observation period and starts the next one when the token leaves p; Initially,
an observation period is started when the token leaves py the values of m, are so
chosen initially that it is possible for the token to leave p,;, for the first time,
when p, has received markers from all lower numbered processes. We need to

show the following {initial conditions should be treated slightly differently}:

1. quiet, = p; has been continuously idle in the current observation
period, i.e. since the token last left p;
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2. Fach process sends a marker on each outgoing channel upon starting
an observation period.

3. Each process ends an observation period only after recelving exactly
one marker along each incoming channel.

4. clavm is set to true if and only if in one cycle of the token (which
corresponds to an iteration of the paradigm all processes p; return a
value of quz’eii == {rue at the end of their observation periods.

5. After termination, a cycle of the token is completed in finite time.
To guarantee this we must ensure that each process receives a marker
along each incoming channel in finite time.

Proofs of these assertions follow directly from the algorithm and the details

are left to the reader.

4.1.3. Overhead and Efficiency

The most overhead is incurred in rule 4, when a process is idle. The overhead
while a process is doing useful work in negligible. Also a process sends the token
only when the process is idle; this controls the rate at which the token cycles
through processes. For instance, if all processes are active, the token will not
move at all. Also observe that termination will be detected within two cycles of

after computation terminates.

4.2. Deadlock Detection
The following refinement of the paradigm is applicable to database deadlock
and communication deadlock, under the assumption that messages are

acknowledged.

A process which we call the detector sends initiate messages to all processes;
on receiving an snitiate message a process starts its observation period and
acknowledges the ¢nitiate message. After receiving acknowledgements to all the
tnitiate messages sent the detector sends finish messages to all processes, A
process p ends its observation period after receiving a finish message and replies

with a boolean value quz’etp and a set waitz’ng—fm}ﬁ where
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qm’etp = for all states in the observation period :

[p is waiting and for all outgoing channels ¢ : num, == 0]

set of objects that p is waiting for in the observation
period, if qufietp,
waiting—fc}rp =

arbitrary, if not quietp

" #
The detector determines whether there exists a set of processes P , such that
3 ‘* 3 . ] o -
for all p in P : qmetp and the sets waztmg-jorp are such as to constitute a

deadlock. The proof of correctness is that the algorithm fits the paradigm.

The algorithm, as stated above, appears to be centralized rather than
distributed. Note however, that the detector process could be different for
different initiations and there could be multiple detectors. The function of the
detector, i.e. sending messages, detecting deadlock, can be decentralized by
having messages forwarded to their destinations by intermediate processes and

deadlock detection computation carried out by intermediate processes.

5. Previous Work

The idea of observation periods is central to the works of Francez, Rodeh and
Sintzoff on distributed termination | 12-14 |, and Chandy, Misra and Hasas on
deadlock detection [ 6 |. Dijkstra [ 11 |, Gouda [ 16 | and Misra [ 26 | have
developed token based algorithms for termination detection, and these algorithms
also use observations over a period. We have attempted to generalize these
works to produce a particularly simple paradigm for detecting an important class
of properties, quiescent properties, in distributed systems with asynchronous

channels.
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