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Abstract

This is an attempt to combine the two research areas of programming methodology and automated
theorem proving. The potential for automation of a programming methodology is investigated that sup-
ports the compile-time derivation of concurrency in imperative programs. In this methodology, concur-
rency is identified by the declaration of certain semantic properties, so-called "semantic relations™, of
appropriate program parts. Semantic relations can be exploited to transform the sequential execution of
the program into a parallel execution. The methodology is applied to a limited domain of programs: sort-
ing networks. A mechanized theory of transformations of sorting networks is presented and observations

about the mechanical certification of three transformations are made.

Most mechanical verification systems do not actually use the formal semantics of the programming
language but rather employ some ad hoc device which stands between the program to be verified and the
formulas to be proved, for instance, an informally derived verification condition generator. The present
approach makes the formal semantics available to the deduction engine directly. This increases the burden
on the deduction system, but has several distinct advantages. One advantage is higher confidence in the
correctness of the verification system itself. Another more important advantage is that the structure of
proofs depends solely on the formal semantics of the programming language. This permits reasoning

about the semantics itself rather than just reasoning about individual programs.



1. Introduction

This paper is about the feasibility of a research area: programming methodology, or the formal
derivation of programs. Programming methodology employs techniques of formal semantics, i.e., the
formal description of the meaning of programming language constructs and veri fieation, i.e., the formal
proof of programs. Like the formal proof of programs, the formal derivation of programs will be feasible
in a software production environment only if it is mechanically supported. Program logics in their present
form are technically too intricate to be effectively and reliably applied by hand on a large scale, and it is
doubtful that they will become simpler in the future. (This is not to say that the formal derivation and
proof of programs by hand is not of considerable academic interest.) The research area that deals with
the automation of formal logics is automated theorem proving. We would like to contribute to the cur-

rently emerging and very important link between programming methodology and automated theorem

proving.

The methodology in whose automation we are interested focusses on the static derivation of concur-
rency in imperative programs [11, 12]. The derivation of concurrency proceeds by a successive compres-
sion of the program’s executions based on the declaration of certain useful program properties. Most
interesting programs contain recursions or loops. The most effective and practical transformations of such

programs will also be recursive, and their proofs of correctness will require induction. We are therefore

interested in the mechanical treatment of recursion and induction.

The following section contains a brief review of our methodology. Details can be found in (11, 12].
Sect. 3 introduces the class of programs that we explore: sorting networks. We then describe a mechanized
theory of trace transformations, its application to several sorting networks, and the challenges we encoun-
tered in our mechanical proofs (Sect. 4). We conclude the paper with a discussion of the role that we see

for the mechanization of semantic theories (Sect. 5). An appendix contains the executable code of our

mechanized theory.

2. The Methodology

Our methodology supports the derivation of concurrency after the program development. It does
not permit the speci fication of concurrency before the program development. We view concurrency is an

optimization, not as a structural property of the program. The sole purpose of the concurrency that we

consider is to accelerate the acquisition of results.

The most common approach to programming in which the derivation of concurrency is divorced from
the derivation of the program is data flow programming [1]. A data flow program makes no explicit refer-
ence to the order of execution. It is executed on a special machine architecture that follows the sequencing

imposed by the data dependencies of the program’s variables. Data flow languages are "referentially



transparent”: they do not permit the re-assignment of variables. This simplifies the identification of data
independencies so much that, commonly, no programmer assistance is needed to identify concurrency.
We take the "referentially opaque" approach, i.e., permit the re-assignment of variables and, con-
sequently, require a more complicated data flow analysis. We have to explicitly declare and subsequently

exploit data independencies as what we call "semantic relations”. In our methodology, the development

of programs is divided into two stages:

Stage 1:  The development and formal semantic description of a program that achieves the desired
result. This requires a formal refinement and the declaration of semantic relations. Programs
are composed by the usual program combinators, e.g., composition: S1;S2 (read: "S2 is ap-

plied to the results of S1"). Programs do not explicitly address the question of execution or-
der.

Stage 2:  The derivation of a fast execution of the program produced at Stage 1. (An execution of a
program is also called a trace.) This is conceptually simple but computationally complex. It
involves the computation of execution times and the invocation of semantic relations to trans-
form traces and improve execution time. There are two trace combinators: S1+S2 (read:
"execute S1 and then S2"), and <S1 S2> (read: "execute S1 and S2 in parallel").

The refinement suggests an easy sequential implementation: replace every composition S1;S2 by se-

quential execution S1-+82,

Semantic relations are, for instance, the commutativity of the components S1 and S2 (written
S1&52), and the independence of S1 and S2 (written S1|]S2). S1 and S2 are commutative, i.e., S1252
may be declared if the execution of S1 and then S2 has the same effect as the execution of S2 and then
S1. If S1&82 is declared, S1;S2 may also be implemented by S2+S1. S1 and S2 are independent, i.e.,
511182 may be declared if the execution of S1 and S2 in parallel has the same effect as their execution in
order. If S1|182 is declared, S1;S2 may also be implemented by <S1 S2>. A third semantic relation is
the idempotence of component S (written !S). S is idempotent, i.e., !S may be declared if S has the same

effect as S;8. If IS is declared, we may add to or delete from a sequence of consecutive calls of S.

Idempotence helps eliminate superfluous parts of an execution, or duplicate parts of an execution for
commutation to appropriate places. Commutativity helps distribute program components to places in the

execution where they can be executed in concurrence with others. Independence helps add concurrency.

Independence implies commutativity.

We call Stage 1 the refinement calculus and Stage 2 the trace calculus. Either of the two stages has
the potential for automation. We are interested in the mechanical support of Stage 2. Our current focus
is the correctness proof of trace transformations. We view trace transformations as theorems of trace

equivalences.!  Induction permits us to certify unbounded transformations by a finite argument.

For an elaboration, see Sect. 3 of {13].



Presently, we accept the source and target trace of a transformation as given and, therefore, leave execu-
tion time out of our mechanization. For the certification of trace transformations, we employ Boyer &
Moore’s induction prover [4] that is based on a mechanized functional logic particularly suitable for
program verification [3]. The prover is designed to prove theorems about recursive functions but is not an
expert on sorting networks and their trace transformations. By implementing our theory of trace transfor-

mations in Boyer & Moore’s logic, we attempt to turn their prover into such an expert.

3. The Expository Domain: Sorting Networks

Semantic relations, as defined in our methodology, can be declared for programs in any imperative
programming language that has a weakest precondition semantics. For the purpose of our investigation
we choose a very simple language. We do not want to complicate our mechanical proofs of trace transfor-
mations by unduly complicated semantics of programs and traces. We define the language of sorting
networks [10]. The general problem that we pursue is to sort an array a, , of numbers into ascending
order in no more time than O(n). The linear time requirement forces us to consider a concurrent execu-
tion. In the language of sorting networks, refinements can have the following structure:

(1) The null statement skip does nothing.

(2) The comparator module cs(i,j) accesses an array a of numbers. It compares elements a,
and a, and, if necessary, interchanges them into order. A simpler version of comparator
module deals with adjacent elements a, , and a,. Instead of writing cs(i-1,1), we shall

give simple comparator modules only one argument cs(i). We call sorting networks that are
composed of simple comparator modules simple sorting networks. The comparator module is
of imperative nature, i.e., its implementation requires assignment.

(3) The composition S1;S2 of refinements S1 and S2 applies S2 to the results of S1. Each of
S1 and S2 can be a refinement call (i.e., a refinement name, maybe, with an actual parameter
list), a comparator module, or the null statement. Sequences of compositions S1:S2;...:Sn
are also permitted. Refinement calls may be recursive.

Sorting networks are well-suited for our methodology because they terminate and only their results,
not their behaviors matter. They also have a wide range of applications and are extensively researched. It

is important to realize that we are not trying to do research in sorting networks. We chose them as a

well-understood first domain in which to test our ideas of automation.

Since we are concerned with the trace calculus of the methodology, we do not dwell on the refinement
of programs but accept the particular sorting networks whose trace transformations we want to study as
given. We will study three sorting networks: the insertion sort, the odd-even transposition sort, and the
bitonic sort [10]. The insertion sort and the odd-even transposition sort can be expressed as simple sorting

networks. The bitonic sort expects array a already presorted in bitonic order. Let us describe each of the

three sorting networks in turn.



3.1. Insertion Sort
The following refinement describes a sorting network that performs an insertion sort:
insertion-sort(n): sort(n)

sort(0): skip

{i>0} sort(i): sort(i-1); S(i)
S(0): skip
{i>0} S(i): cs(i); s(i-1)

Comparator modules may be declared idempotent. Consecutive applications of the same comparator
module do not yield any new results. For |i~j|>1, ie., if 1 and j are not "neighbors", c¢s (i) and
cs(j) are disjoint: they do not share any variables. Components that do not share variables may be
declared independent.

tes (1)
[i-j1>1 = es@|les(y)

Note that the prerequisite |i-j|>1 makes cs(i)||cs(j) a semantic rather than syntactic con-
dition. (Semantic declarations can also be qualified with respect to a postcondition. For the underlying
theory see [12].)

For, say, a 6-element array (n=5), the refinement suggests the following sequential execution, if we

expand components sort (i) and S(i) (i<5) of sort(5):

tau(d) = ecs(1)~»cs(2)»cs(1)
»+cs(3)»cs(2)»cs(1)
+cs(4)+es(3)»cs(2)+cs(1)
+cs(5)+cs(4)»cs(3)»es(2)+es(1)

If we count the number of comparator modules cs, tau(5) has length 15. In general, tau(n) has length
n(n+1)/2, i.e., is quadratic in n. To derive a linear execution, we have to exploit the independence decla-
ration for sort(n) and compress tau(n) into a trace with concurrency. We have already laid out the
sequential trace tau(5) in a form which suggests how this can be done. We commute comparator
modules in tau(8) left, and then merge adjacent modules whose indices differ by 2 into a parallel com-

mand:

tau~(5) =

es(1) cs(2) es(1) 05(2)\ es(1)
cs(1)~»cs(2)=» > +<<cs(3) »<i :>+cs(2)+cs(1)
cs(3) cs(4) cs(5) cs(4)// cs(3)

If we assume instantaneous initiation and termination of parallel commands (instantaneous forks and
joins), this execution is of length 9. In general, tau™(n) is of length 2n-1, i.e., linear in n. The degree of
concurrency increases as we add inputs. This is a property of all three sorting networks. They are not
limited to a fixed number of concurrent actions. However, if only a fixed number k of processors is avail-

able, the independence declaration may be exploited only to generate a concurrency degree of k or less.



Note that the idempotence declaration of comparator modules does not help in the derivation of con-
currency for the insertion sort. As we shall see in the next section, array a, , can be sorted faster than

by tau™(n), but not when we start with the refinement of the insertion sort.

3.2. Odd-Even Transposition Sort
The odd-even transposition sort is the simplest possible example of the transformation of a sorting
network. Here is the refinement:
odd-even-sort(n): sort(n+1,n)

sort(0,j): skip
sort(1,j): S(j-1)
{i>1} sort(i,j): S(j-1); s(j); sort(i-2,j)

S(0): skip
sS(1): es (1)
{i>1} S(i): cs(i); s(i-2)

As a simple sorting network like the insertion sort, the odd-even transposition sort adopts the seman-
tic declarations of the previous section:
tes(d)
li-j1>1 = ecs()lles(j)

For, e.g., a 5-element array (n=4), the sequential trace suggested by this refinement is:
tau(4) = cs(3)»cs(1)~cs(4)+cs(2)+cs(3)»cs(1)+cs(4)+cs(2)+cs(3)»cs(l)
The number of comparator modules in tau(4) is 10. In general, tau(n) has length n(n+1) /2. In every

S(1), the indices of all comparator modules differ at least by 2. Thus we can convert each S(i) into one

parallel command. The resulting parallel trace is:
cs (1) cs(2) cs(1) cs(2) cs(1)
tau~(4) = > > -+ -»
cs(3) cs(4) cs(3) cs(4)// cs(3)
tau~ (4) is of length 5. In general, tau™ (n) is of length n+1.

3.3. Bitonic Sort

An array a, i1s in bitonic order if ag2...2a,<. . .<a; for some i such that 0<i<n. Let us write
array a,  as a sequence (ao, 8y, ... ,an). The bitonic sorting algorithm sorts such a sequence, if it is
already in bitonic order, into non-decreasing order by sorting the subsequences (ao, &y, - - .} and
(a.1 By, .) independently, and then comparing and interchanging (a.o, ai) , (a2, a.s),... . Since the sub-
sequences of a bitonic sequence are also bitonic, (ay,2,,...) and (a,,a,, .. .) can be sorted by the same
algorithm, until all subsequences have length 1. The bitonic sort is not a simple sorting network. It

requires the general comparator module es(i, j).



The significance of the bitonic sort lies in the fact that we can derive from it a network that sorts

arbitrary (not bitonic) sequences.2 We have to make the following additional requirements:

(1) the length of the sequence is a power of 2, and

(2) two versions of the comparator module are available, one that swaps into ascending order and
one that swaps into descending order.

Then, a sorting network based on the bitonic sort exists that sorts sequence a in O(log2 n) time if com-
parator modules may be applied concurrently. Each node of the network appropriately represents one or
the other type of comparator module. The extension to arbitrary sequences does not add any new issue in

our program development. Therefore we shall not address it any further.

The refinement of the bitonic sort is:

bitonic-sort(n): sort(0,1,n+1)
sort(base,step,0): skip
sort(base,step,1): skip

{leng>1} sort(base,step,leng): sort(base,step*2,[leng/2]) ;

sort(base+step,step*2,|leng/2|);
S(base,step,|leng/2))

S(base,step,0): skip
{leng>0} S(base,step, leng): cs(base,base+step) ;
S(base+step*2,step,leng-1)

Refinement sort performs the bitonic sort as described. Refinement S performs the step of comparisons
and interchanges by applying the appropriate comparator modules. Both refinements are qualified by
three parameters, base, step, and leng, that identify a subsequence of a: base is the index of the first

element, step is the difference of the indices of any two adjacent elements, and leng is the number of

elements in the subsequence.

Like simple comparator modules, general comparator modules may be declared idempotent. Also, dis-
joint comparator modules may be declared independent. General comparator modules cs (11,12) and
es(j " j2) are disjoint if they do not overlap, i.e., if 117£j v iis«fj o i27fj1 and izasz.

!cs(ii,iz)

11¢j1 A il¢j2 A :'L2¢j1 A iz;éjz = cs(il,iz)llcs(ji,jz)

Let us construct a binary tree of bitonic sequences whose root is the entire sequence a, and whose left
and right subtrees are recursively constructed by splitting the root into subsequences as prescribed by the

bitonic sorting algorithm. We call this tree the sequence tree of a. The sequence tree of an 8-element

sequence (n=7) is:

%See Exercise 13 of [10}.



(ay.2,,8,.23,5,2,,3,,3,,2,)

(ag.25.2,,35) (a,,2,,2.,2,)
/ \ / \
(a5:2) (a5.35) (a;.a) (ag.a)
/ \ / N\ / N\ / \
(25) (a,) (ay) (24) (a)) (ag) (25) (a,)
At each node (ail,aiz,ais,ai4, ...), the bitonic sorting algorithm requires an application of com-
parator modules ¢s(1,,1,);es(i,,1,) ;. .., which we shall call a segment. The following segment tree

corresponds to the above sequence tree:

cs(0,1);¢c8(2,3);c8(4,5);¢cs8(8,7)
/ \
¢s(0,2);cs(4,6) c8(1,3);e8(5,7)
/ \ / \
cs(0,4) cs(2,6) cs(1,5) cs(3,7)

Segments of leaves in the sequence tree are null and are not represented in the segment tree.

Note that, in the refinement of the bitonic sort, segments are represented by calls of S. We can now
view the sequential trace tau suggested by the refinement as the post-order traversal of segments in the

segment tree:

tau(7) = ¢s8(0,4)~cs(2,6)»cs(0,2)+cs(4,86)
+cs(1,5)»¢cs(3,7)»cs(1,3)»cs(5,7)
+cs5(0,1)»cs(2,3)+cs(4,5)+cs(8,7)
tau(7) has length 12. In general, tau(2¥-1) has length 2 *k. The refinement works for all bitonic
sequences, but we choose to consider only sequences whose length n+1 is a power k of 2. Such sequences
yield complete sequence and segment trees. Also, for such sequences, the bitonic sort can be extended to a
network which does not require the bitonic order of its input, as mentioned earlier. With n=2k—1, trace

tau(n) has a length of order O(n log n).

Observe that any two distinct segments X and y in the segment tree which are not in an
ascendant/descendant relationship do not access common elements. Such x and y are independent, and we
can commute them or make them parallel. For instance, we can commute all segments that are on the
same level in the tree (i.e., that have the same distance from the root) into adjacency:

tau’ (7) = ¢s{0,4)~»cs(2,8)+cs(1,5)=»cs(8,7)
+cs8(0,2)»cs(4,8)+cs(1,3)+cs(5,7)
+c8(0,1)»cs(2,3)»cs(4,5)+»cs(6,7)
Then we can merge each level into one parallel command:
tau~(7) = <cs8(0,4) ¢s(2,8) c¢s(1,5) cs(8,7)>
+<cs8(0,2) cs(4,6) cs(1,3) ¢s(5,7)>
+<cs8(0,1) ¢s(2,3) cs5(4,5) cs(6,7)>

tau~(7) is of length 3, with a concurrency degree of 4. In general, tau~ (2¥-1) is of length k, with a



concurrency degree of 2%t With n=2k-1, trace tau™ (n) has a length of order O(log n) and a concur-

rency degree of order O(n).

4. The Mechanical Correctness Proof of Trace Transformations

We have implemented our theory of trace transformations in Boyer & Moore’s mechanized logic 3]
Boyer & Moore express terms of first-order predicate logic in a LISP-like functional form.? Predicates are
functions with a boolean range. Functions can be declared (submitted without a function body) or
de fined (submitted with a function body), and facts can be asserted (submitted as an aziom) or proved
(submitted as a lemma). There are no quantifiers. A variable that appears free in a term is taken as

universally quantified. For example, the term

(NUMBERP X) = X < X+1

expresses the fact that any number is smaller than the same number incremented by 1. NUMBERP recog-
nizes numbers. Two basic types of inductively constructed objects in the logic are relevant to our applica-
tion: the natural number and the ordered pair. They closely resemble the number and ordered pair of
LISP. The ordered pair (CONS t1 t2) of the two terms t1 and t2 may be abbreviated (t1 . t2) and
lists can be formed by nesting ordered pairs, as in LISP. E.g., list (t1 t2 .. tn) of the n terms
ti,..,tnisreally (t1 . (t2 . (.. (tn . NIL)))). Other object types may be added by the user.
For instance, we add the object type (PAIR i, 1,) or, abbreviated, (1,:1,) which is a second kind of

ordered pair - its components must be numbers. We use this object type to represent comparator modules.

The theorem proving program employs a number of heuristics in the attempt to establish the validity
of a conjecture. Simplification (i.e., rewriting into a simpler or "normal" form) and induction are the
heuristics used most in our proofs of transformations of sorting networks. There are several ways to
make use of a previously established lemma in subsequent proofs. Our proofs employ previously proved
lemmas as rewrite rules. Appropriately chosen lemmas, provided as rewrite rules, will steer the prover
into the intended direction of the proof. If all other heuristics fail, the prover appeals to induction. The

induction scheme is derived from an analysis of the recursive function definitions and the inductively con-

structed types involved in the conjecture.

This section sketches the implementation of the semantic theory that is necessary to prove trace
transformation theorems for sorting networks in Boyer & Moore’s logic. We present the theory of general
sorting networks, which is a generalization of the theory of simple sorting networks presented in a pre-
vious paper [13}.4 An appendix contains the executable code. We advise readers without experience in

Boyer & Moore’s logic to consult [3] before studying the appendix.

3For clarity, we shall here, unlike LISP and Boyer & Moore, keep some basic logic and arithmetic operations in infix notation.

4In the theory of simple sorting networks, the comparator module is represented by a number, not a pair of numbers.



4.1. Trace Representation

Our goal is to prove the semantic equivalence of traces tau(n) and tau~™(n). We represent a trace
as a multi-level list. Alternate levels indicate sequential execution and parallel execution, in turn. For
instance, if the top level of the list indicates sequential execution, then the second level indicates parallel
execution, the third level indicates again sequential execution, etc. In the realm of sorting networks, we
can represent traces as multi-level lists of pairs of numbers, where the top level represents sequential ex-

ecution. For example, the sequential trace of the bitonic sort

tau(7) = ¢s(0,4)-cs(2,6)+cs(0,2)»cs(4,6)
+cs(1,5)+cs(3,7)»cs(1,3)»cs(5,7)
+cs(0,1)»cs8(2,3)+cs(4,5)+cs(6,7)

is represented as

(TAU 7) = *( (0:4) (2:8) (0:2) (4:8)
(1:8) (3:7) (1:3) (5:7)
(0:1) (2:3) (4:5) (6:7) )

and the parallel trace

tau~(7) = <cs8(0,4) c¢s(2,8) cs(1,5) cs(3,7)>
+<cs(0,2) ¢s(4,8) cs(1,3) cs(5,7)>
+<cs(0,1) ¢8(2,3) cs(4,5) cs(6,7)>

is represented as

(TAU™ 7) = " ( ((0:4) (2:8) (1:5) (3:7))
((0:2) (4:8) (1:3) (5:7))
((0:1) (2:3) (4:85) (B:7)) )

where (i % 12) denotes our new object type that represents a comparator module cs (11 s 12).

4.2. Trace Semantics

We give traces weakest precondition semantics [12]. The weakest precondition of a fixed program S
is a function pr(R) that takes a postcondition R and maps it on the weakest possible constraints under
which program S terminates and establishes R [7]. To give a programming language weakest precon-
dition semantics, one must provide weakest preconditions for the smallest possible programs in the lan-
guage and for combining smaller into bigger programs. The smallest possible sorting networks are the
null statement and the comparator module. We need not implement the weakest precondition of null,
because traces do not contain nulls (null has the empty trace). But we must implement the weakest

precondition of the comparator module.

Our methodology divides the development of programs into two stages. Stage 1, the refinement cal-
culus, is concerned with the derivation of program semantics, i.e., the derivation of a refinement. Stage 2,
the trace calculus, is concerned with the preservation of program semantics, i.e., the transformation of
sequential executions into concurrent executions. We are implementing Stage 2, and are therefore only

interested in the equality of weakest preconditions, not in their actual values. If the inside of a program



10

component is never affected by a trace transformation, we need not spell out its semantics but may
provide it as a "black box". In Boyer & Moore’s logic, a black box is represented by a function that has

been declared (without a function body) rather than defined (with a function body).

The inside of comparator modules will never be subject to transformation. Therefore we declare the
weakest precondition wp__ G.oi )(R) of comparator module c¢s(i,,1,) as a function
1772

Declaration

(CS I R)

where I denotes a pair, (11:12), and R denotes a postcondition. Since function CS is declared, not
defined, we must provide by axiom some essential information about CS that is not evident from the
declaration. We add two axioms. One restricts the domain of comparator modules to pairs of numbers:

Axiom CS-TAKES-PAIRS:

(NOT (PAIRP I)) = ({(CS I R) =F)

Axiom CS-TAKES-PAIRS states that the weakest precondition of CS for any non-pair and postcondition
is false,® i.e., that such a CS is not permitted. PAIRP recognizes pairs. The other axiom expresses the
“rule of the excluded miracle" (Dijkstra’s first healthiness criterion [7]) for comparator modules:

Axiom CS-IS-NOT-MIRACLE:

(CSIF)=F

Axiom CS-IS-NOT-MIRACLE states that the weakest precondition of any CS with false postcondition is

false, i.e., a comparator module cannot establish *false".

Our way of combining smaller into bigger traces is by composition (i.e., execution in sequence or in
parallel). To determine the weakest precondition of some trace L that is composed of comparator
modules CS for postcondition R, we define a function M—CS. As for subsequent defined functions that we

introduce, we shall first present the definition of M~CS and then explain its function body:

5In Boyer & Moore’s logic, F stands for *false® and T stands for "true®.
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Definition

(M—-Cs FLAG L R)

(IF (NOT (LISTP L))
(IF L=NIL
R
(Cs L R))
(IF FLAG="PAR

(IF (ARE-IND-CS (ALL-ATOMS (CAR L)) (ALL-ATOMS (CDR L)))
(M-CS °SEQ (CAR L) (M-CS 'PAR (CDR L) R))
F)

(M-Cs °"PAR (CAR L) (M-CS °SEQ (CDR L) R)))))
M—-CS composes calls of CS as prescribed by trace L. Besides L and R, M-CS takes a FLAG that signals
whether the trace is to be executed in sequence (FLAG="SEQ) or in parallel (FLAG="PAR). In accordance

with our trace representation, FLAG="SEQ in top-level calls and FLAG alternates with every recursive call.

When FLAG="PAR, the trace represents a parallel command and its elements must be checked for
independence. Like weakest preconditions, independence properties must be provided for the smallest
program parts that are affected by a trace transformation and for combinations of these program parts.
The smallest program parts affected by trace transformations of sorting networks are comparator
modules. Since we do not provide the complete semantics of comparator modules, we cannot provide a
complete characterization of their independence [12]. We express independence, again, by a declared func-
tion

Declaration

(IND-CS I I)

where I and J are pairs which represent comparator modules. As we did with CS, we characterize ITND-CS

by axiom. For instance, we establish that IND-CS is a predicate:
Axiom IND-CS-IS-PREDICATE:
(CR (TRUEP (IND-CS I J)) (FALSEP (IND-CS I J)))

In the following section on trace transformations, we shall discuss what other properties of function

IND-CS we need to know.

We may now determine the independence of traces of comparator modules with defined functions

that employ IND-CS appropriately. We define three functions.

IS-IND-CS establishes the mutual independence of one comparator module I with all comparator

modules of a trace L:



Definition
(IS-IND-CS I L)

(IF (NOT (LISTP L))
(IF L=NIL
T
(IND-CS I L))
(AND (IND-CS I (CAR L))
(IS-IND-CS I (CDR L))))

ARE-IND-CS establishes the mutual independence of all comparator modules of a trace L1 with all

comparator modules of a trace L2:

Definition

(ARE-IND-CS L1 L2)

(IF (NOT (LISTP L1))
(IF Li=NIL
T
(IS-IND-CS L1 L2))
(AND (IS-IND-CS (CAR L1) L2)
(ARE-IND-CS (CDR L1) L2))))
If the two members of a parallel command pass test ARE-IND-CS, function M—~CS gives their parallel ex-

ecution the semantics of their sequential execution.

A third function, TOTALLY-IND-CS, determines the mutual independence of all comparator modules

of a trace L:

Definition

(TOTALLY-IND-CS L)

(IF (NOT (LISTP L))
T
(AND (IS-IND-CS (CAR L) (CDR L))
(TOTALLY-IND-CS (CDR L)))))

If trace L passes test TOTALLY-IND-CS, the execution of all members of L has identical semantics in

parallel as in sequence.

Note that IS-IND-CS, ARE-IND-CS, and TOTALLY-IND-CS are only interested in the comparator
modules of traces, not in the traces’ structure. Therefore, these functions expect traces in a "flattened"
form, i.e., as single-level lists with all comparator modules in the trace enumerated from left to right.

The flattening is performed by function ALL~ATOMS:
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Definition

(ALL-ATOMS L)

(IF (NOT (LISTP L))
(IF L=NIL
NIL
(LIST L))
(APPEND (ALL-ATOMS (CAR L)) (ALL-ATOMS (CDR L))))

APPEND appends two lists. It differs from the regular LISP (and Boyer & Moore) append function which
only works for proper lists, i.e., lists that end with NIL. Our APPEND works for lists that end with any
atom. One theorem that we use often in our proofs is the composition rule of weakest preconditions [7]:
Lemma M-CS—APPEND:

(FLAG="SEQ)

= ( (M-CS FLAG (APPEND L1 L2) R)
= (M-CS FLAG L1 (M-CS FLAG L2 R)) )

This concludes our implementation of the trace semantics. The semantic equivalence of tau~ and

tau can now be formally expressed by the equation:

(M-Cs ’SEQ (TAU™ N) R) = (M-CS *SEQ (TAU N) R)

4.3. Trace Transformation

We are now at the point where we can begin formulating the transformation of tau into tau~ in
Boyer & Moore’s logic. We need transformation rules that express commutations and parallel merges of
independent program components. All theorems except the first, which does not require induction, are

proved by structural induction, i.e., by an induction that mirrors the recursive definition of weakest

precondition generator M~CS.

We provide several theorems for parallel merges. Two theorems express transformation rules (G3i)

and (G3i1) of Sect. 5.2 of [12]:
Lemma G3i:
(ARE-IND-CS (ALL-ATOMS L1) (ALL-ATOMS L2))

= ( (M—-CS °PAR (CONS L1 L2) R)
= (M-CS °SEQ (APPEND L1 (LIST L2)) R) )

Lemma G3ii:
(ARE-IND-CS (ALL~ATOMS L1) (ALL-ATOMS L2))

= ( (M~CS *PAR (CONS (APPEND L1 L) L2) R)
= (M-Cs °SEQ (APPEND L1 (LIST (CONS L L2))) R) )

Phrased abstractly, G3i states the semantic equivalence of traces <L1 L2> and L1-L2, G31ii of
traces <L1-L L2> and L1-<L L2>, provided L1 and L2 are independent. Our third theorem is:
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Lemma M—-CS-TOTALLY-IND:
(TOTALLY-IND-CS (ALL-ATOMS L))
= ( (M~CS 'PAR L R) = (M~CS "SEQ L R) )
Both G3ii and M—CS-TOTALLY-IND are generalizations of G31i.

To express commutations, we must be more specific about the meaning of "independence®. The dec-
laration of IND-CS does not provide any clues. Just as about declared function CS, we need not know
much about IND-CS for the purpose of trace transformations. For one, we must be able to conclude that

independent comparator modules may be commuted:

Axiom IND-CS—-IMPLIES-COMMUTATIVITY:

(IND-CS I J) = ((CSJ (CSIR)) = (C8SI (CSJTR))
If we instantiate both FLAG1 and FLAG2 to *SEQ, the following theorem enables commutations:
Lemma ARE-IND-CS-IMPLIES-COMMUTATIVITY:

(ARE-IND-CS (ALL~-ATOMS Li1) (ALL-ATOMS L2))

= ( (M—-CS FLAG1 L1 (M-CS FLAG2 L2 R))
= (M-CS FLAG2 L2 (M-CS FLAGt L1 R)) )

Just as we cannot compute weakest preconditions of comparator modules with declared function CS,
we cannot determine their independence with declared function IND~CS. While, in our applications of the
theory, we are not interested in the actual weakest preconditions of comparator modules, we do need to
know about the circumstances of their independence. We established in Sect. 3 that two comparator
modules are independent if they do not access common array elements, i.e., if they do not overlap.6 Our

final axiom about IND~CS expresses this fact:

Axiom NO-OVERLAP-IND-CS:

(NO-OVERLAP I J) = (IND-CS I )
Function NO-OVERLAP identifies non-overlap:

Definition

(NO-OVERLAP I J)

(AND (PAIRP I)
(PAIRP J)
(FIRST I)#(FIRST J)
(FIRST I)#(SECOND I)
(SECOND I)#(FIRST J)
(SECOND I)#(SECCND J))

6We called simple comparator modules with this property #non-neighbors®.
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FIRST and SECOND access a pair’s components: (FIRST (11:12))=:‘L1 and (SECOND (11:12))212.
Additional defined functions HAS-NO-OVERLAP, HAVE-NO-OVERLAP, and TOTALLY-NO-OVERLAP are ex-
actly identical to IS-IND-CS, ARE-IND-CS, and TOTALLY-IND-CS, respectively, with calls of
NO~-OVERLAP substituted for calls of IND-CS. Theorems stating that each of the three non-overlap funec-

tions implies its respective independence counterpart can be proved from  axiom
NO-OVERLAP-ARE-IND-CS.

This concludes the implementation of our basic theory: the part that applies to all transformations of
sorting networks. One might call this our metatheory of sorting networks, since it deals with properties of

the programming language per se, not with properties of one specific sorting network.

The basic theory is not fully represented in the mechanized logic: we introduced two declared (not
defined) functions CS and IND-CS. To be able to reason about them, we had to formulate five axioms.
They reflect the properties of comparator modules and their independence that we are willing to accept
without certification. With suitable definitions of CS and IND-CS these axioms could be converted into
theorems. It is important that every axiomatic assumption is fully understood. An inconsistency in an

axiom is not recognized by the prover and puts the entire mechanized theory in jeopardy!

The next section summarizes our applications of the basic theory: the transformations of the inser-

tion, odd-even transposition, and bitonic sort.

4.4. Applications

Ideally, we would like to submit to the prover nothing else but an application theorem - ours are of

the form:

Lemma: TAU-MAIN:

(M-Cs ’SEQ (TAU™ N) R) = (M-CS °*SEQ (TAU N) R)
where TAU and TAU™ are defined appropriately - and have it certified without any further input.
However, no existing prover is expert enough in the theory of trace transformations of sorting networks to
accomplish such a proof on its own. To educate the prover, we must implement our theory on it, i.e.,

express the theory in the mechanized logic, and have it certified and at disposal for further proofs.

Even with the basic theory in place and after proper definition of the initial trace TAU and the final
trace TAU™, the work required to make the proof of an application TAU-MAIN succeed is substantial. Es-
sentially, we have to communicate our proof strategy to the prover. Where the transformation consists of
several steps, the prover may have to be informed about each individual step. For instance, since we can
commute at any place where we can merge (remember that independence implies commutativity), we

must tell the prover what transformation we prefer: commutation or merge. Our transformations of the
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insertion sort and the bitonic sort each consist of two steps: one of commutations and one of merges. The
transformation of the odd-even sort consists of only one step of merges. For every step of the transfor-
mation, the trace parts that are manipulated must be identified, and their independence must be es-
tablished. This generally involves educating the prover about useful facts of number theory. For our
simple sorting networks, we had to tell the prover about properties of maximization, for our general sort-
ing network about properties of division. Establishing these prerequisites before the proof of the applica-
tion theorem is the most tedious aspect of a mechanical certification.” For an effective use of a

mechanized theory in many applications, clean and widely applicable proof strategies are of central im-

portance.

BASIC
THEORY

trace semantics
trace transformation rules
independence criterion

insertion sort odd-even sort bitonic sort

algebraic | maximization maximization division
prerequisites

APPLICATION  transformation | Ist step: commute

one step: merge Ist step: commute
strategy | 2nd step: merge

2nd step: merge

1

augiliary | see [13] see [9]

lemmas

main theorem | TAU-MAIN TAU-MAIN TAU-MAIN

The previous table displays the overall proof structure of our three applications. The proof of the
insertion sort in the theory of simple sorting networks is documented in [13]. We have since converted it

to the theory of general sorting networks. [9] describes the proof of the bitonic sort.

While the basic theory may contain some declared functions and axioms (and ours does), the applica-

tion part of the proof should not (and ours do not). That is, with respect to the basic theory, applications

should be completely certified.

4.5. Discussion

By its very name, the area of automated theorem proving invites high expectations: the hope is
kindled that, whenever the human prover seems lost or uncertain in a proof, the mechanism will take over
and guide him along. A presently more fitting name would be automated proof checking: the human has
to conceive and carry out the proof; but he can count on a mechanical certification of his proof steps, if

these steps are chosen appropriately. In order to make the mechanical certification succeed, the human

We have concentrated our efforts on the implementation of the theory of trace transformations, not the theory of natural
arithmetic.
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prover has to be familiar not only with the abstract theory on which his proof relies but also with its
mechanized counterpart. Like it is the crux of numerical analysis that floating point numbers do not have
the nice properties of real numbers, it is the dilemma of automated theorem proving that the mechaniza-
tion of a logic does not preserve many of its desirable properties. Therefore, a proof certified by a

mechanism is actually more difficult than a proof certified by a human. But it is also more reliable.

Let us summarize some of the difficulties that we encountered in the automated as opposed to human

certification of trace transformations.

Automated provers work by a set of heuristics. The human who develops the proof is best advised to
follow these heuristics. Good heuristics are, of course, those that are naturally followed in many proofs.
When the heuristics fail, the human has to document his proof strategy with "proof hints". If a proof is
loaded with proof hints, it is probably not tailored very well to the automated prover. (This could in-

dicate a bad proof or a bad prover.) We have spent considerable effort on minimizing and structuring

proof hints.

A proof assertion may have many different representations. For instance, all of the formulas below

represent the same assertion about a, b, and c:

(a) a%+p? = c?

(b)  a?+b%-c? =0

(¢) c2-a%-p? = 0

@ aa+bb = cc
An automated prover may not recognize an assertion in all representations - unless it happens to be an
expert on this particular class of assertions. Boyer & Moore’s prover, for instance, is not enough of an
expert in algebra to treat representations (a), (b), (c), and (d) equivalently. The human has to make sure
that the proof uses only representations that the prover can treat as is desired. This can be accomplished
by either disciplining the proof or educating the prover, i.e., making it aware of equivalent represen-

tations. Education of the prover is a two-edged sword. With too much knowledge, it may spend a long

time searching for appropriate facts or even apply at points inappropriate proof rules.

One major concern of automated certification is execution efficiency. The most fundamental ef-
ficiency requirement is termination. An inappropriate choice of proof steps may lead to an infinite com-
putation. For instance, many automated provers, like Boyer & Moore’s, rewrite equalities only in one
direction in order to avoid infinite looping. E.g., with the knowledge of A=B, Boyer & Moore’s prover will
substitute B for A in proofs, but not vice versa. This has immediate consequences for the implementation

of our theory: semantic declarations may be exploited only in one direction. In any particular proof, we
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may commute left or commute right, but not both; we may use idempotence to compress traces or expand

traces, but not both; we may increase or decrease the parallelism in a trace, but not both.®

When solving a programming problem, a programmer has the choice of programming in an existing
language, or designing a new language which is particularly suited for the class of problems that he is
investigating. A new “special purpose® language may permit him to write more natural programs and
may yield more efficient executions. An existing "general purpose® language may grant him more
flexibility in reformulating the problem or moving to a different problem class altogether. The same
choice presents itself in mechanizing certification. One might use an existing general purpose prover, or
one might build a new special purpose prover. In choosing Boyer & Moore’s mechanized logic, we have
taken the *general purpose" option. We prefer general certification power for the development of our
mechanized theory of trace transformations and, in the long run, we do not want to confine ourselves to

the language of sorting networks. Boyer & Moore’s prover is a suitable and user-friendly tool for the

implementation of specialized theories.

5. Conclusions

Our interest is in the mechanical support of formal reasoning about properties of programming lan-

guages and programs. Presently, we focus on the transformation of program executions to derive concur-

rency.

Our approach differs from most mechanical verification systems in that we make the formal semantic
definition of the programming language itself available to the prover. The more popular approach is to
employ some ad hoc device instead which stands between the program to be verified and the formulas to
be proved, for instance, an informally derived verification condition generator. While the use of a
verification condition generator reduces the burden on the mechanical prover and permits highly
automated and reasonably practical verification systems, the price paid is that the deduction system can-
not be used for reasoning about program properties other than the ones handed to it by the verification
condition generator. Making the formal semantics of the language available to the prover enables inde-
pendent reasoning about program properties and metareasoning about properties of the language itself.
(Here, the metareasoning is the more significant gain. For example, our metareasoning is about equiv-
alences of program executions.) Also, one has to believe the correctness of only one computer program:
the mechanical deduction system. One does not have to rely additionally on the correct implementation of
a second program (the verification condition generator) and the fact that it corresponds to the formal

semantic definition of the programming language. We have chosen Boyer & Moore’s logic as our deduc-

8It turns out that a transformation from parallel to sequential is more easily certified than a transformation from seguential to
parallel as the methodology suggests.
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tion system. Other mechanized logics have been used for similar purposes, e.g., PL/CV [2, 6] and LCF
[5, 8].

Our experience in mechanical proofs of trace equivalences suggests that a mechanical prover will, in
general, follow the clean strategy of an on-paper proof, if it is communicated properly. Still, even though
successful and with undeniable structure - the tediousity of the mechanical proof, compared to the infor-
mal description of the transformation, cannot be denied. Our point of view is that it should be expected.
A mechanical proof does not permit any short-cuts. Each ever so little detail has to be formalized. It is
the producer of the program or programming language about which is reasoned who has to suffer from
this stringent requirement. The consumer reaps the benefits. Besides believing the correctness of the
theorem proving program, he only has to be convinced that the theorem to be proved meets his needs and

is appropriately represented in the mechanized logic. He does not have to be concerned with any aspects

of the proof 9

Ultimately, the producer benefits as well: while the theorems about his product will be harder to
establish, they will be easier to sell. It must be added that not every programming product justifies com-

pletely formal and mechanical scrutiny. There must be a substantial interest in the product’s Pprecise

properties because the cost of the proof will be high.
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Appendix: Events of Proof Session

This appendix presents all commands (so-called "events") in the order in which they have been ac-
cepted by the theorem prover. We use five kinds of events: declaration of a function, definition of a
function, addition of a shell, addition of an axiom, and proof of a lemma. We shall briefly review the
input command format of each. The User’s Manual [4] explains how to run proof sessions, in general.

1. Function Declaration: (DCL name args)
DCL declares name to be an undefined function with formal arguments args.
2. Function Definition: (DEFN name args body hints)

DEFN defines a function name name with formal arguments args and with body body. Before
admission of the function, the prover attempts to certify its termination by identifying a well-
founded relation such that some measure of args gets smaller in every recursive call. In some
cases, this relation and measure must be provided in the fourth argument hints.

gThe consumer must believe that M~CS properly defines the trace semantics, that TAU and TAU™ properly define the seque ntial and

parallel trace, and that no illegal axiomatic assumptions have been made. The manner in which the prover certifies theorems
TAU-MAIN is of no concern to him.
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3. Add Shell: (ADD-SHELL const btm Tecog acces)

ADD-SHELL defines a new type of object. const, the type’s constructor function, takes n ar-
guments and returns an n-tuple object of the new type. n is the number of accessor functions
that access components of objects of the type. Optional btm is the bottom object of the type,

Tecog is the recognizer function that identifies an object of the type, and acces specifies all
accessor functions.

4. Add Axiom: (ADD-AXIOM name types term)

ADD-AXIOM adds a new axiom. The name of the axiom is name, types specifies the ways in

which the axiom is used by the prover, and the statement of the axiom is term. All of our
axioms are of type REWRITE, i.e., are used as rewrite rules.

5. Prove Lemma: (PROVE-LEMMA name types term hints)

PROVE—LEMMA attempts to prove the conjecture term and remember it as a lemma named
name. Only successfully proved lemmas are admitted as events. Lemma name will be used ac-
cording to types. Our lemmas are all used as rewrite rules. The fourth argument hints may
contain several kinds of directives to aid the proof. We use the following hints:

(INDUCT (name args))

Use the induction scheme reflected by the recursive definition of function
(name args).

(USE ev . evn)

Enforce the use of axioms or lemmas ev, to ev . Each ev, has the form

(name (V1 tl) - (Vn tn)), where name is the name of an axiom or

lemma to be used, \A is one of the free variables of name, and T, is a sub-~
stitution term for v,

BASIC THEORY OF SORTING NETWORKS
Trace Composition

(DEFN APPEND (X Y)
(IF (NLISTP X)
(IF (EQUAL X NIL)
Y
(CONS X Y))
(CONS (CAR X) (APPEND (CDR X) Y))))

(PROVE~LEMMA ASSOCIATIVITY-OF-APPEND (REWRITE)
(FQUAL (APPEND (APPEND X Y) Z) (APPEND X (APPEND Y Z))))

(DEFN ALL-ATOMS (L)
(IF (NLISTP L)
(IF (EQUAL L NIL)
NIL
(LIST L))
(APPEND (ALL~ATOMS (CAR L)) (ALL-ATOMS (CDR L)))))
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(PROVE-LEMMA ALL-ATOMS—-APPEND (REWRITE)
(EQUAL (ALL-ATOMS (APPEND X Y))
(APPEND (ALL-ATOMS X) (ALL-ATOMS Y))))

Trace Semantics

(DCL €S (I R))
(DCL IND-CS (I 1))

(ADD-AXIOM IND-CS-IS-PREDICATE (REWRITE)
(OR (TRUEP (IND-CS I J)) (FALSEP (IND-CS I 1))

(DEFN IS-IND-CS (I L)
(IF (NLISTP L)
(IF (EQUAL L NIL)
T
(IND-CS I L))
(AND (IND-CS I (CAR L)) (IS-IND-CS I (CDR L)))))

(PROVE-LEMMA IS-IND-CS-APPEND (REWRITE)
(EQUAL (IS-IND-CS I (APPEND L1 L2))
(AND (IS-IND-CS I L1) (IS-IND-CS I L2))))

(DEFN ARE-IND-CS (L1 L2)
(IF (NLISTP L1)
(IF (EQUAL Li NIL)
T
(IS-IND-CS L1 L2))
(AND (IS-IND-CS (CAR L1) L2) (ARE-IND-CS (CDR L1) L2))))

(PROVE-LEMMA ARE-IND-CS—-APPEND-RIGHT (REWRITE)
(EQUAL (ARE-IND-CS L1 (APPEND L2 L3))
(AND (ARE-IND-CS L1 L2) (ARE-IND-CS L1 L3))))

(PROVE-LEMMA ARE-IND-CS-APPEND-LEFT (REWRITE)
(EQUAL (ARE~IND-CS (APPEND L1 L2) L3)
(AND (ARE-IND-CS L1 L3) (ARE-IND-CS L2 L3))))

(DEFN TOTALLY-IND-CS (L)
(IF (NLISTP L)
T
(AND (IS-IND-CS (CAR L) (CDR L))
(TOTALLY-IND~CS (CDR L)))))

(PROVE-LEMMA TOTALLY-IND-CS~APPEND (REWRITE)
(IMPLIES (TOTALLY-IND-CS (APPEND L1 L2))
(AND (ARE-IND-CS L1 L2)
(TOTALLY~-IND-CS L1)
(TOTALLY-IND-CS L2))))
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(DEFN M-CS (FLAG L R)
(IF (NLISTP L)
(IF (EQUAL L NIL)
R

(Cs L R))
(IF (EQUAL FLAG ’PAR)
(IF (ARE-IND-CS (ALL-ATOMS (CAR L))
(ALL-ATOMS (CDR L)))

(M-CS °SEQ (CAR L) (M~CS ’PAR (CDR L) R))
F)

(M-CS *PAR (CAR L) (M-CS ’SEQ (CDR L) R)))))

(ADD-SHELL PAIR NIL PAIRP ((FIRST (ONE-OF NUMBERP) ZERO)
(SECOND (ONE~OF NUMBERP) ZERO)))

(ADD-AXIOM CS-TAKES-PAIRS (REWRITE)
(IMPLIES (NOT (PAIRP I)) (EQUAL (CS I R) F)))

(ADD-AXIOM CS-IS-NOT-MIRACLE (REWRITE)
(EQUAL (CS I F) F))

(PROVE-LEMMA M-CS-IS-NOT-MIRACLE (REWRITE)
(EQUAL (M—CS FLAG L F) F)
((INDUCT (M-CS FLAG L R))))

(PROVE-LEMMA M-CS-IDENTITY (REWRITE)

(EQUAL (M-CS FLAG (LIST (LIST L)) R) (M-CS FLAG L R))
((INDUCT (M-CS FLAG L R))))

(PROVE-LEMMA M-CS-APPEND (REWRITE)
(IMPLIES (OR (EQUAL FLAG °’SEQ)
(AND (EQUAL FLAG "PAR)

(ARE-IND-CS (ALL-ATOMS L1) (ALL-ATOMS L2))))
(EQUAL (M-CS FLAG (APPEND L1 L2) R)

(M-CS FLAG L1 (M-CS FLAG L2 R))))
((INDUCT (M-CS FLAG L1 R))))

Trace Transformation Rules

(PROVE-LEMMA M-CS-TOTALLY-IND (REWRITE)
(IMPLIES (TOTALLY-IND-CS (ALL-ATOMS L))
(EQUAL (M-CS °PAR L R) (M-CS ’SEQ L R)))
((INDUCT (M-CS FLAG L R))))
(PROVE-LEMMA G3i (REWRITE)
(IMPLIES (ARE-IND-CS (ALL-ATOMS L1) (ALL-ATOMS L2))
(EQUAL (M-CS °*PAR (CONS L1 L2) R)
(M-CS *SEQ (APPEND L1 (LIST L2)) R))))
(PROVE~LEMMA G3ii (REWRITE)
(IMPLIES (ARE-IND-CS (ALL-ATOMS L1) (ALL-ATOMS L2))
(EQUAL (M-CS °PAR (CONS (APPEND L1 L) L2) R)

(M~CS °SEQ (APPEND L1 (LIST (CONS L L2))) R)))
((INDUCT (APPEND L1 L))))
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(ADD-AXIOM IND-CS-IMPLIES-COMMUTATIVITY (REWRITE)
(IMPLIES (IND-CS I J)

(EQUAL (CS J (CS I R)) (CS I (CS J R)))))

(PROVE-LEMMA IS-IND-CS-IMPLIES-COMMUTATIVITY (REWRITE)
(IMPLIES (IS-IND-CS I (ALL-ATOMS L))
(EQUAL (CS I (M-CS FLAG L R))
(M-CS FLAG L (CS I R))))
((INDUCT (M-CS FLAG L R))))

(PROVE-LEMMA ARE-IND-CS-IMPLIES-COMMUTATIVITY (REWRITE)
(IMPLIES (ARE-IND-CS (ALL-ATOMS L1) (ALL-ATOMS L2))
(EQUAL. (M-CS FLAG1 L1 (M-CS FLAG2 L2 R))
(M-CS FLAG2 L2 (M-CS FLAG1 L1 R))))
((INDUCT (M-CS FLAG1 L1 R))))

(PROVE-LEMMA ARE-IND-CS-IMPLIES-COMMUTATIVITY-SEQ (REWRITE)
(IMPLIES (ARE-IND-CS (ALL-ATOMS L1) (ALL-ATOMS L2))
(EQUAL (M-CS °SEQ L1 (M-CS ’SEQ L2 R))
(M-CS °*SEQ L2 (M-CS ’SEQ L1 R))))
((USE (ARE-IND-CS-IMPLIES-COMMUTATIVITY (FLAG1 °SEQ)
(FLAG2 *SEQ)))))

Theory of Non-Overlap

(DEFN NO-OVERLAP (I I)
(AND (PAIRP I) (PAIRP J)
(NOT (EQUAL (FIRST I) (FIRST J)))
(NOT (EQUAL (FIRST I) (SECOND J)))
(NOT (EQUAL (SECOND I) (FIRST J)))
(NOT (EQUAL (SECOND I) (SECOND J)))))

(ADD-AXIOM NO-OVERLAP-IND-CS (REWRITE)
(IMPLIES (NO-OVERLAP I J) (IND-CS I J)))

(DEFN HAS-NO-OVERLAP (I L)
(IF (NLISTP L)
(IF (EQUAL L NIL)
T
(NO-OVERLAP I L))
(AND (NO-OVERLAP I (CAR L))
(HAS-NO-OVERLAP I (CDR L)))))

(PROVE-LEMMA HAS-NO-OVERLAP-IS-IND-CS (REWRITE)
(IMPLIES (HAS-NO-OVERLAP I L) (IS-IND-CS I L))

(DEFN HAVE-NO-OVERLAP (L1 L2)
(IF (NLISTP L1)
(IF (EQUAL L1 NIL)
T
(HAS-NO-OVERLAP L1 L2))
(AND (HAS-NO-OVERLAP (CAR L1) L2)
(HAVE-NO-OVERLAP (CDR L1) L2))))

(PROVE-LEMMA HAVE-NO-OVERLAP-ARE-IND-CS (REWRITE)
(IMPLIES (HAVE-NO-OVERLAP L1 L2) (ARE-IND-CS L1 L2)))
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(DEFN TOTALLY-NO-OVERLAP (L)
(IF (NLISTP L)
T
(AND (HAS-NO-OVERLAP (CAR L) (CDR L))
(TOTALLY-NO-OVERLAP (CDR L)))))

(PROVE-LEMMA TOTALLY-NO-OVERLAP-TOTALLY-IND-CS (REWRITE)
(IMPLIES (TOTALLY-NO-OVERLAP L) (TOTALLY-IND-CS L)))

(PROVE-LEMMA HAS-NO-OVERLAP-APPEND (REWRITE)
(IMPLIES (AND (HAS-NO-OVERLAP T L1)
(HAS-NO—-OVERLAP I L2))
(HAS-NO-OVERLAP I (APPEND L1 L2))))

(PROVE-LEMMA HAVE-NO-OVERLAP-NIL (REWRITE)
(HAVE-NO—-OVERLAP L NIL))

(PROVE-LEMMA HAVE-NO-OVERLAP-APPEND-RIGHT (REWRITE)
(IMPLIES (AND (HAVE-NO-OVERLAP L1 L2)
(HAVE-NO-OVERLAP L1 L3))
(HAVE~NO-OVERLAP L1 (APPEND L2 L3))))

(PROVE-LEMMA HAVE-NO-OVERLAP-APPEND-LEFT (REWRITE)
(IMPLIES (AND (HAVE-NO-OVERLAP L1 L3)
(HAVE-NO-OVERLAP L2 L3))
(HAVE-NO—~OVERLAP (APPEND L1 L2) L3)))

(PROVE-LEMMA TOTALLY-NO-OVERLAP-APPEND (REWRITE)
(IMPLIES (AND (TOTALLY-NO-OVERLAP L1)
(TOTALLY-NO~OVERLAP L2)
(HAVE-NO-QOVERLAP L1 1L2))
(TOTALLY-NO-OVERLAP (APPEND L1 L2))))
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