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abstract

An algorithm is proposed for generating unique identifiers in a distributed system.
The algorithm is robust in the sense that it can recover from node a failure, as long as at
least one of the nodes did not fail. It has a modest communication overhead, which is
two message passing per each identifier generated, and about 2log,N message passing per
recovery if node failure rate is low (N being the number of nodes). It is economical in
using the identifiers space, in the sense that the size of the identifiers may be relatively
small.  These properties make it superior to other unique identifiers generation

algorithms that run on non-broadeast distributed systems.

1. Introduction

Generating unique identifiers (UIDs) is needed in certain systems, particularly in
object-oriented systems [5, 1, 2, 3]. It was strongly argued by Fabry [5] that UID-based
addressing avoids most of the problems that appear while addressing shared relocatable
objects. His arguments were made in the context of centralized system. The problems
are even more acute in Distributed Systems. Thus there is a need for an effective

distribufed mechanism for generating UlDs.

It is relatively easy to generate UlDs in centralized systems; however, this is not
the case in a distributed system that needs to preserve the following properties:
a. Identifiers are unique systemwide, through the system’s lifetime.
b. The identifiers space is utilized economically.
¢. The system i1s immune against node failure.

d. The communication overhead necessary to generate dentifiers is limited.

By using the identifiers space economically we mean that the size of the UlDs may

be decided on the basis of the average rate of generating UIDs per node, rather then the

%
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the maximal rate per node (see example 2 below). Therefore we may assign a smaller
UID size. If the system is to be immune against failures, the mean time between failures

(MTBF) of a node should be considered a determining factor for identifiers space size.

Following are two examples of simple algorithms for generating UIDs, both

satisfying some of the requirements above but fail to satisfy all of them.

1. A centralized algorithm will satisfy properties a,b and d, but it is very
vulnerable to node failure. It may also suffer from contention for UlDs

generation.

2. A distributed algorithm, where each node generates identifiers for its own
use, by appending the node number to a local sequence, thus generating
identifiers which are unique systemwide.  This algorithm 1is neither
economical nor immune against failures. It is not cconomical, because each
node is assigned an equal share of the identifiers space, while some may need
much more than others. That will force us to make the size of that equal
share fit the maximal needed. It is not immune against failures since when a
node that does not have a nonvolatile memory recovers from failure, it
cannot know what identifiers it has already used (unless an exhaustive search

is conducted all over the system).

It may seem that a solution which is both economical and relatively robust must involve
a considerable amount of communication overhead (unless we use a broadcast channel).
L]

Yet, as will be seen below, this is not the case.

2. Assumptions

In order to develop an effective algorithm for generating UIDs, we need to make

the following assumptions:

1. When a node failure occurs it will be detected by the node, which will

immediately stop sending any messages until it recovers.

2. There is a timeout mechanism that will be set at a node waiting for an

answer, 1f and only if its counterpart in a dialogue is not active.

3. Any two nodes will always have a bidirectional (virtual) FIFO trustable

channel between the processes that handle UID generation at each node (id-



managers). Communication between other processes is assumed to go through

other virtual channels.

4. At any point in time, except before the system was initiated (i.e. before any

node become active), there exists at least one node which is not down.

5. There is a globally known linear ordering of the nodes.

3. The Algorithm

Reexamining our second example we can see that the identifiers space for both the

generation and the usage of the UlDs was divided in equal shares between the nodes.
The reason for the uneconomic behavior in that algorithm was the possibly unequal rates
of usage. The reason for the sensitivity for node failure was the fact that no
information was shared between nodes, regarding UIDs. These two principles of
distribution of usage and sharing of information are used to cure the above

problems. As we shall see, there is no need to distribute the generation of UlDs.

3.1. Basic Algorithm

The algorithm divides the identifiers space for the generation of UIDs in equal
shares between the nodes. The identifiers space is a set of pairs <n,5eq,>, where n is
the number of the node that generated the UID and Seq, is sequence number in that

node.

To distribute the usage of UlDs, we require each node to request different nodes
for UIDs, visiting one node at a time (including itself) in a cycle. This will be handled by
a distributed type manager [4] for UlDs, called the id-manager, that will maintain the
following variables:

o cycle count the number of times modulo 2 it cycled through the network.

e lastnode a pointer to the last node it visited in its cycle.

The kernel of each of the nodes will include a copy of the id-manager. These copies will
communicate with each other, in order to regulate the generation, usage and error

recovery of UlDs.

A process at node i that needs to acquire a new UID will call the getid function of

its resident copy of the td-manager (Figure 3-1). This function will request the id-
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manager of the next node k in its cycle {which may be the same node where the process
resides) for a UID, by sending it a request, accompanied by cycle__count;. cycle_ count,
is used in connection to the recovery process (see Sec.3.2). If the request is validated (see
Sec.3.2), the id-manager that got the request will generate the next UID in its own
exclusive class and send it back. The getid function will then return the UID to the

calling process.

This scheme requires the sending and receiving of at most one message per UID

generation, in the case of no failures.
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Figure 3-1: UID Generation

3.2. Error Handling and Recovery

As a result of assumptions 2 and 3 of section 2, occurrence of a failure at one node
is detected by the other nodes as a timeout. When a time-out is detected after delivering
a request, the originating node will ask the next node in its cycle for a UID. It must

ultimately find a responsive node, would it be someone else or itself.

To Le able to help others to recover from node failure, each node will maintain an
array of the number of times modulo 2 it was visited by each of the other nodes, called
count. When node 1 realizes it is faulty, it will cut communication with other id-

managers until it has recovered from the fault. At that time, it will look for its active or



recovering closest successor in the cycle and inform him about its recovering. Then it

will look for its closest active predecessor in the cycle, call it j, and ask it for its last

sequence Seq; and its count; table. After it got these variables, it will set its state
variables as follows:

Seqj if1>] count; if 1>] (1)

Seq;== countj::: -

Seqj+N otherwise —count;  otherwise

In order to avoid serving nodes that were already served by node j during the
current cycle, node 1 will ignore requests for UIDs from any node k if

cycle _count,=count[k].

After recovering its sequence, node i will recover its lastnode pointer to point to
the last node it accessed in its cycle, by conducting a binary search on the set {count,[i] |
k=1..n}, getting count,[i] from node k as nceded. When the point CUT; is found, where
count,[i] changes values between k=CUT; and the next node, (existence of a single such

point is given by lemma-1, page 11), node 1 will set lastnode;=CUT;.
Node i will recover its cycle _count; by setting it to count .y [i].
1

Note: The values of the state variables of an inactive node i will be defined by

those of its active predecessor }, according to 19q.1.

Sidce the recovery process involve in general communication with several nodes, we
need to take measures to make recovery processes serializable. To achieve that, we do

the following:

e While recovering, the node will not answer requests from other nodes.
Instead, it will send them a watt message and queue the requests for later
handling. The wait message include the time to wait, given in timeout units.
This time is the time the sending node itself have to wait. The receiving

node adds 1 to it, and send 1t to the nodes waiting for him.

e A recovering node 1 will inform its active or recovering successor in the cycle
- node j, about its being recovering. If node j is also recovering, it will stop
its recovery process (not before it informed its successor about its recovering),

and wait for node 1 to send him the data for recovering its state variables.

The average number of messages sent and received for node recovery, will not exceed
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Figure 3-2: The Recovery Process

(2N-K)[log,(N-K) + 4] /(N-K)
where K is the number of inactive nodes. This approaches 2log,N when K&N.

3.3. Formal Description
In the following, 1 will be the local node number, N is the number of nodes.

module td manager
—— .
entry stari,recover, getid
const
H
i
type
idtype : 0. .maxint;
cycletype @ 0..1;
nodetype : 1..N;
var
Seq : idtypse;
count : array[1l..N] of cycletype;
cycle count : cycletype;
lastnode : nodetype;

number of nodes;
local node number;

i
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function gelid;
[ Find next active node j in the cycle
and get a UID from it ]
var
j : integer;
found : boolean;
id : idtype;
begin

P(semaphore) ;
j:=lastnode;
repeatb
j:=j mod N + 1;
if j=1 then cycle count:=(count_cycle + 1) mod 2;
if j=1i then
begin
if cycla_pount<>counti[i} then
begin
count[i] :=cycle count;
Seq:=Seqtl;
id:=NxSeq + i; [ <i,Seq> ]
found:=true
end
end
else requestid(j,cycle count,id,found)
until found;
getid:=id;
lastnode:=j;
V(semaphore)

Critical-Section I

end;

pracedure answer{j:nodetype; cyclq“pountj:cycletype);
[ thswer a request(i,id,cyclq_pountj) from node j ]
begin

if cyclqﬂpountj<>counti[j] then

begin
count, [j]:=cycle county;
Seq:=5Seq+l;

id:=N*Seq + i; [ <i,Seg> ]
Send id back to node.
end

Critical-Section 11

end;



procedure recover;
[ recover from node failure ]
begin

Initiate semaphore, queue etc.
Inform closest acbive or recovering successor on our recovering.
Ask closest active or recovering predecessor h for help.
repeat
get (message) ;
case message.type of
vait: [ wait-message ]
Adjust wait-count.
Pass Wait to nodes waiting on us.
info: [ information-message about other node’s recovery ]

Answer the message by telling that we are recovering.
Then act as for Wait.

help: [ help-message from node h ]
Seq=Seq, (+N if h>i); Critical-Section I
for m:=1 to N do
if h<i
then counb{m]:=counthfm]
else count[m]:=(count,(m]+1) mod 2
other: [ other message-types ]
Queue the message.
Send Wait-message as an answer.

end;
until message.type=help;
find CUT; by binary search; [ see Lemma-1 page 11
lastnode:=CUT, for definition of CUTi ]
if i<lastnode

then cycle*pount::countlasmmde[i]

“else cycle count:=(count {i]J+1) mod 2;
‘handle queued messages.
Y (semaphore) ;

lastnode

poll

end;

procedure stari;

begin

If no active node exist then

begin
Seq:=0;
cycle count:=0;
lastnode:=N; (¥ set node-pointer in cycle x)
for j:=1 to n do count[j]:=0

end

else -
TECOVET

end;



procedure poll;

begin
repeat
if queue is not empty
then begin
P(semaphore);
getqueue (message)
end
else begin
wait for message from any channel;
P(semaphore) ;
get (message)
end;
case message.type of
request: [ request for UID from node j ]
answer(j ,cycle__count,j) ;
help req: [ help request from a recovering node ]
send help data.
info: [ information-message about other node’s recovery ]
tell the other node that we are active.
end;
V{senaphore)
until false (* forever %)
end;

procedure requestid(node:nodetype; cycle : cycletype;
var id:idtype; var found:boolean);
begin
set wait count to i;
Serui(node,'R’,cycle,waip_pount); [ R stands for Request ]
repeat
vait for any channel;
get (message) ;
s case message.type of
answer: [ answer to request ]
begin
found:=true;
id:=message.data
end;
request: [ request for UID from node j ]
nlunver(j,cyclq”pountj);
help req: [help request from a recovering node ]
send help data;

info: [ information-message about other node’s recovery ]
tell the other node that we are active.

wait: [ wait-message ]
begin

Adjust wait count.
Pass Wait to nodes waiting on us.
end;
end
until timeout [ according to wait count ]
end;



4. Proof of the Fulfillment of the Properties

We now prove that our algorithm is correct in the sense that it meets properties (a)

to (d) of section 1. This is accomplished by making several assertions that directly imply

these properties. The assertions are proved either directly or by showing that they hold

before initiation, and each state transition on a state where they hold, generate another

state where they hold. 1In order to accomplish this, we have to prove first the

serializability of certain processes that may execute at different cites at the same time.

That means that their total effect will be the same as running them in some serial order.

4.1. Definitions

oo

3.

Referring to critical-sections as they appear in section 3.3, we define:

. A node is called active if it is not down and it is outside critical-section L

. A node is called stable if it is active and not in a eritical-section.

The values of the state variables of an inactive node i will be defined by

those of its active predecessor j, according to equation 1 page 4.

The state of the system is defined as
_<Seqy,count,,cycle _count,lasinode,,...

aseqncounty,eycle countylastnodey>

L]

4.2. Assertions

i

2.

For any active node i, Seq;(t) is a monotonically increasing function in time.

For any two stable nodes j k,

let
Ajk:{il counfk[i]%countj{i] }
and
iAjkl if j<k
3”\ ==
-ay; otherwise
then
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3. For any two stable nodes j,k
1>k = SequSqu-ZSeqk-N

4.3. Rules of Use
We assume that any use of the procedures of the id-manager will obey the

following rules:

1. The first procedure that will be called at each node is start, and it will never

be called again.

2. After a node failure, the first procedure to be called is recover, and it will not

be called in any other case.

There are various mechanisms to enforce such rules [6], which we will not refer to here.

4.4. Serializability of Recovery Processes

Concurrent recovery of different processes may result in inconsistent system state
(where the assertions does not hold). Therefore, certain situations are avoided by the
interaction between nodes, as described earlier. In the following we prove that under our
algorithm, node recoveries are serializable, that is - their effect is always equivalent to

some serial schedule of execution.

Let us define a relation <, between recovering nodes. J<;k means that at time t,
k is waifing for j to fully recover, before it proceeds with its own recovery process (if it
does not wait on other nodes). We can see that il j</k, the same relation will hold
between j and k at later time, as long as none of them did not terminate its recovery
process. Since there cannot be any active nodes between j and k while k is waiting
directly on j to recover, j<;k implies that there are no active nodes in the cycle between ~
j and k. By Sec.2.4, that implies that at any time except for initiation, there are no

cycles in the graph of this relation.

If <k then ks recovery is based on data that came from j after it became active,
which means that k might have started recovering after j became active, with the same

results.

The above means that <, for t>0 is the precedence order and, since it has no

cycles, the set of recovering processes is serializable for any t>0. At initiation, if several
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nodes start at the same time, they will wait on one another and finally get timeout (since
no new wait-messages are sent). So they will try the next node, until one or more will
find there are no active nodes, in which case they initiate their variables to zero. Those
that initiate are serializable, since they do not relay on each other. For the others, the

former argument holds.

Using the serializability of recoveries we can choose a logical clock (event counter)
in which recoveries occur one at a time. We will use this clock in our proof, though it is

not part of the algorithm.

4.5. Sketch-Proof of the Assertions

Following is the sketch of the proofs of the assertions of section 4.2.

4.5.1. Proof of Assertion 1
It is easy to sce that Seq; is never decremented on state transitions other than

recoveries of node 1.

Suppose node i recovers at time t. We can prove by induction on time (i.e. number
of node recoveries) the existence of two sequences {nj}}‘:() and {tj}}!‘:g such that n, and i
were active at time t,, n =1, and for j=0.k-1, node n; helped node Dy to recover.
Figure 4-1 illustrate those sequences. Remembering the recovery procedure and

assuming (the induction hypothesis) that assertion 3 held at earlier time, we get
Seéi(t)ZSeqi(to)

4.5.2. Pr;mf‘ of Assertion 2

In order to prove assertion 2 we need to {irst prove the following lemma.

Lemma-1: For any active node m, there is a node k {not necessarily active - see definition
4.1.3), such that for any active node i
(a) i<k & count[m]=count, [m]
and  (b) m<lastnode , & cycle___countm:counilasmodem[m]

We will call such k "CUT _*.
Proof: The lemma holds trivially immediately after the first node m has initiated.

Assume the lemma holds at state S while a transition T to state S1 occurs.
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Figure 4-1: Recovery Sequence for Node i

First, assume the transition T was a result of node m requesting a UID.

Assume m<lastnode,  <CUT .
Assuming the lemma holds at state S, we have

lastﬁbden]SjSCfU'l‘m = cycle__counim:muntj[m}
therefoz;e m’s request for UID will be rejected by all nodes between lastnode, and
CUT,, including, but will be accepted by the next active node to CUT,,, which will
become the new CUT, ~and the new lastnode —as well. That proves part (a) of the

lemma holds at state S1 under the assumption that m<lastnode, <CUT, .

Similar argument will prove the same for all cyclic permutations of <m,
lastnode |, CUT_>. Noncyclic permutations are impossible, because CUT, may depart
from lastnode, only as a result of some node recoveries. In order to make a noncyclic
permutation, CUT_ have to go past m, which mean that m have to fail and recover.

But while recovering, m recovers lastnode, to be equal to CUT_, which prevent

m’
noncyclic permutation.

We can easily see that part (b) of the lemma always hold right after m gets a new
UID. Therefore the lemma holds at state SI.
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Second, assume the state transition T is a result of node m'’s recovery. The lemma

holds at state S1 because of the way m recovers count , lastnode  and cycle count .
This ends the proof of lemma-1.

Based on lemma-1, it 1s easy to see that
Akj(t):{il k<CUT(t)<) } ~

Assertion 2 holds trivially immediately after the first node has initiated.

Let us assume that assertion 2 (that is - equation (2) ) held at certain state of the

system, while a state transition that effect some components of equation (2) oceur.

Changing Seqj- as a result of a request from node i to node j, is always accompanied
by switching Cozmtj[i], which moves CUTi past ] and decrements ;- At the same time
e

Seqj is incremented, so equation (2) still holds.

If Seqj is changed as a result of recovery of node j by the help of node m, it will set

Seq;=Seqp, (+Nif m>j)
and for any 1
Counij{i]:co"untm[i} & m<]
Since counim[k} for k%) were not changed by j’s recovery (relaying on serializability), we
have for any node k (k may be j or m as well)
. ,
{count[i]=couni[i]
& count  [i]=count, [i]}
& ml]
Therefore
M= (-Nif m>j)
So
Seqk:Seqm+akm:Seqj+a.kj

and the validity of equation (2) is preserved.

Change in counij[i} may occur In the event of a request from node i to node j, or in

the event of the recovery of node j, which are the same events that were handled above.

Since Seq, and Soqj play symmetric roles in equation (2), the above hold for

changes in Seq, as well.
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That concludes the proof of assertion 2.

4.5.3. Proof of Assertion 3
Since j>k implies NZa.ka() (by definition), assertion 3 follows directly from

assertion 2.

5. Summary

The proposed algorithm for generating unique identifiers has the advantages that it

is simple, economie, relatively robust and has low communication overhead.

One disadvantage of the algorithm is that the total number of nodes N should be
globally known. To overcome this we may choose N to~be some maximal number of
nodes that the system may have at any time. By that, adding new nodes is made easy
(unless the maximum is exceeded), because the algorithm will handle missing nodes the
same way it handle failing nodes. This will cause more communication overhead, so it
may not be adequate for certain systems. In such systems we may add a reconfiguration

protocol for increasing N by some amount when needed.
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