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Abstract

We present a class of efficient algorithms for termination detection in a distributed
system. These algorithms do not require the FIFO property for the communication
channels. Assumptions regarding the connectivity of the processes are simple. Messages
for termination detection are processed and sent out from a process only when it is idle.
Thus it is expected that these messages would not interfere much with the underlying
computation, i.e., the computation not related to termination detection. The messages
have a fixed, short length. After termination has occurred, it is detected within a small

number of message communications.

The algorithms use markers for termination detection. By varying assumptions
regarding connectivity of the processes, and the number of markers used, a spectrum of
algorithms can be derived, changing their character from a distributed one to a
centralized one. The number of message communications required to detect termination
after its occurrence depends on the particular algorithm — under reasonable

connectivity assumptions it varies from order N (where N is the number of processes) to

a constant.

This paper introduces message counting as a novel and effective technique in designing
termination detection algorithms. The algorithms are incrementally derived, i.e., a
succession of algorithms are presented leading to the final algorithms. Proofs of

correctness are presented. We compare our algorithms with other work on termination

detection.
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1. Introduction

We develop a class of efficient algorithms for termination detection in a distributed
system. We do not require the FIFO property for the communication channels, which is
usually assumed in other works. (The FIFO property for a communication channel
means that messages in the channel are received in the same order as they were sent.)
Our assumptions regarding connectivity of processes are simple. We have categorized
our algorithms in three classes. Algorithms in classes 1 and 2 assume that there exists a
cycle involving all processes in the network. This cycle need not be an elementary
cycle, i.e., a process may be arrived at several times in a traversal of the cycle.
Moreover, the edges of the cycle need not be primary edges, i.e., the edges involved in
the underlying computation; secondary edges may be introduced in the network to
facilitate termination detection. (We wuse the terms edges, lines, and channels
interchangeably.) Normally the length of this cycle would affect performance of the
algorithms; by using secondary edges, if necessary, the length of this cycle may be kept
to a minimum. Algorithms in class 3 assume the existence of cycles in several parts of

the networks.

In these algorithms, messages for termination detection are processed and sent out
from a process only when it is idle. Thus it is expected that these messages would not

interfere much with the underlying network computation, i.e., the computation whose

termination is to be detected.

Except for algorithms in class 1, the messages for termination detection in these
algorithms have a fixed, short length (a pair of integers). In all algorithms presented,

termination is detected within a small number of message communications after its

occurrence.

In devising an algorithm for detecting termination, deadlock, or some other stable
property [Chandy 85a, Chandy 85b], one important issue is how to determine if there
are no primary messages in transit (primary messages are those transmitted in the

underlying computation; secondary messages are those related to termination
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detection). Several approaches have been developed to handle this issue —
acknowledgement messages [Chandy 85a], using a marker to "flush out" any messages
in transit (with the assumption of FIFO property) [Misra 83, Chandy 85a], etc. One
contribution of this paper is to suggest a new approach — counting the number of
primary messages sent and received. As shown in this paper, this approach has several
desirable features — it results in simple and flexible connectivity requirements, it does
not require the FIFO property for the communication channels, and it does not generate
too much overhead in terms of the number of secondary messages after the occurrence
of termination. Moreover, we show that it is not necessary to count and transmit
information regarding number of primary messages on individual lines — it is sufficient
to count and transmit information about the total number of primary messages received

and the total number of primary messages sent by individual processes.

Classification of Our Algorithms

Algorithms in class 1 are based on counting primary messages on every line. Each
process keeps a count of the number of primary messages it has received or sent on each
adjacent line (i.e., input line or output line respectively). As mentioned above,
algorithms in class 1 assume that there exists a cycle C including every process of the
network at least once. A marker traverses the cycle, and uses these counts in detecting
termination.  After termination has occurred, it will be detected within |C|-1
communications of the marker. (|C| refers to the length of the cycle C, i.e., the number
of edge traversals required to complete the cycle.) The problem with this algorithm is

that each message is long — it consists of E number of integers where E is the total

number of primary lines in the network.

Algorithms in class 2 reduce the message length. In these algorithms, each process
counts the total number of primary messages received by it, and the total number of
primary messages sent by it. Here counts are not being kept for individual adjacent
lines. A marker traverses the cycle C, and collects this information to detect
termination. In this case the message length is short (two integers).  After the
occurrence of termination, it will be detected within 2|C| - 2 message
communications. Note that if C is an elementary cycle then |C| = N, where N is the

number of processes in the distributed system.



Next, class 3 of our algorithms improve the performance of the algorithms in class 2,
by using multiple markers which traverse different parts of the system. We make
simple connectivity assumptions to permit these traversals. Using two markers, under
reasonable assumptions the number of message communications after the occurrence of
termination is reduced to approximately 3N/2, each message carrying an integer and a
boolean. As the number of markers is increased, this number reduces further and the
algorithm tends to change its character to a centralized one. Finally, using N markers,

this number is reduced to the constant 4, and the algorithm becomes a purely

centralized one.

On the Nature of This Presentation

A number of excellent papers on deadlock and termination detection for distributed
systems have appeared in recent years. These papers usually discuss how the algorithm
executes, i.e, what are the key data or execution steps in the algorithms. Proofs of
correctness are usually provided to convince the reader that the given algorithm works.
However, certain other important questions are usually left unanswered. How was the
algorithm developed in the first place? Why were certain decisions (conventions,
assumptions, major data, major execution steps) in the design of the algorithm taken —
are they critical to the correctness, or are they present simply to enhance performance,
or understandability, etc.? How would a simple variation of these decisions affect either
correctness or performance? For the algorithms discussed here, our presentation
attempts to answer some of these questions to a certain extent. We discuss a succession
of algorithms, each algorithm differing from the previous ones in a simple manner.
Several simple variations of the algorithms are considered. As would be noted in the
discussion, some of these "algorithms" are not even correct; they are discussed simply to
enhance understandability of later algorithms. Moreover, specific details, for instance
initial conditions, are derived from more general considerations. It is hoped that with
this method of presentation, the reader can develop a better insight as to how various
decisions were arrived at. Since the relationships among various algorithms are

explicitly discussed, this approach would also help keep a clear and organized view of

the class of algorithms presented.



Related Work

Termination detection in distributed systems has been a subject of much study in
recent years. One of the earliest works in this area is the elegant algorithm of [Dijkstra
80]. This is one of the few algorithms that do not assume the FIFO property for the
communication channels. However, this algorithm requires that for any primary line
from a process i to a process j, there must be a line from j to 1. Termination is detected
within N message communications after its occurrence, where N is the number of
processes in the system. However, depending on the nature of the underlying
computation, tn the entire computation the total number of secondary messages
generated in this algorithm may be too much. (The total number of secondary
messages in this algorithm is equal to the total number of primary messages.) This may
severely affect performance. Moreover, secondary messages are processed and sent out

from a process even when it is active. This may slow down the underlying computation

itself.

The above algorithm was extended in [Misra 82a] to CSP [Hoare 78] environment. The
basic idea of the algorithm has been used in several distributed algorithms in many

application areas [Cohen 82, Misra 82b, Chandy 82b, Chandy 81].

Marker based algorithms usually do not suffer from the drawbacks mentioned above
for the algorithm in [Dijkstra 80]. A marker is sent from a process only when it is idle.
Therefore normally the secondary computation would not significantly slow down the
underlying computation. (Secondary computation is that related to termination
detection; the underlying computation is also called the primary computation.)
Moreover, usually the total number of secondary messages would also be small.
Roughly speaking, if the primary computation becomes more intense (i.e., primary
messages are being generated at a higher rate), then the recipient processes are likely to
be active more of the time (i.e., idle for lesser time). Hence the marker is likely to move
less frequently since it has to wait till the process has become idle. However, this is not
to say that marker based algorithms always result in better performance; in fact many

such algorithms require more than N message communications after the occurrence of

termination.



Distributed termination detection using a marker was devised by Francez et. al.
[Francez 80, Francez 81, Francez 82]. This approach was improved upon, removing
some of its restrictions, in another marker based algorithm [Misra 83]. In this algorithm
a marker traverses a cycle C’ that includes every edge of the network at least once.
The algorithm requires the FIFO property for the communication channels.
Termination is detected, after its occurrence, within two rounds of this cycle. Note
that, in principle, assuming the existence of a cycle traversing every edge is equivalent
to assuming the existence of a cycle traversing every process (as in our approach).
However, the performance resulting from the two approaches would normally be
different. The cycle C’ in general may be quite large — usually it would be longer than
the total number of primary edges in the network, and the number of primary edges
can be O(NQ). In contrast, in our approach we can always define an elementary cycle
(whose length will be N), introducing secondary edges if necessary. Defining an optimal
or near optimal cycle in our approach is much simpler, since we don’t require the cycle
to involve every primary edge. If the network is evolving over time (e.g., new primary
lines or processes being added to the network) our approach would normally require

simpler changes in the data stored at the processes regarding this cycle.

In several recent works [Chandy 85a, Chandy 85b) the notion of termination and
deadlock has been generalized and elegant schemes have been presented to solve these
general problems. [Chandy 85a] shows how the general scheme presented there can be
applied in many ways to solve the specific problems of termination and deadlock
detection. The termination detection algorithm described there assumes the FIFO
property for the communication channels. A marker traverses a cycle that includes
every process of the network at least once. Termination is detected, after its occurrence,
within two rounds of this cycle. The marker is a short message, containing only one
integer. However, before the marker is sent out from a process, another message
(containing no data) is sent out on output lines of this process. This effectively doubles
the number of message communications after occurrence of termination. Since our
algorithms in class 2 involve two rounds of the same cycle, with each secondary message

having two integers, we expect comparable performance between the above algorithm



and our algorithms in class 2. However, our schemes in class 3 improve the
performance even further. As indicated in [Chandy 85a], the FIFO requirement for the
communication channels may be removed, leading to another algorithm. But that

algorithm would involve too many acknowledgement messages (equal to the number of

primary messages).

One nice property that the two algorithms above ([Misra 83] and the algorithm in
[Chandy 85a] using the FIFO property) enjoy is that the termination detection
algorithm may be initiated with the underlying computation of the network in an
arbitrary state, i.e., there may be an arbitrary number of primary messages in transit
and the processes may be in arbitrary states. Our algorithms and most of the other

algorithms published require special initializations for the secondary computation before

the underlying computation starts.

As mentioned earlier, termination detection has been used in designing several other
distributed algorithms. Many distributed algorithms can be devised as multiphase
algorithms, where a new phase is started after the termination detection of the previous
phase. Distributed simulation schemes have been devised using this approach [Chandy

81, Kumar 85]. [Francez 81] suggests a methodology for devising distributed programs

using termination detection.

A problem of considerable importance that is closely related to termination detection,
is the problem of deadlock detection in distributed systems. Several important pieces of

works have appeared in this area [Gligor 80, Beeri 81, Obermarck 82, Chandy 82a,
Chandy 83, Bracha 83, Haas 83].

Synopsis of the Rest of the Paper

Section 2 defines the model of computation and defines the termination detection
problem.  Criteria used for comparing termination detection algorithms may vary
widely — performance, storage requirements, communication cost, simplicity of
implementation, etc. In this paper we concern ourselves only with performance. In

section 3 we discuss our performance criteria. Sections 4, 5, and 6 discuss our



algorithms in classes 1, 2, and 3 respectively (we have commented on these classes

earlier in the introduction). Finally section 7 gives concluding remarks.

2. Problem Definition

First we describe a basic model of a distributed system. For ease of exposition, we
discuss our algorithms in terms of this basic model. Our algorithms are applicable to

more general distributed systems; we briefly mention these systems later in this section.

The Basic Model
A distributed system consists of a finite set of processes, and a set of unidirectional
communicalion channels (or lines, or edges). FEach communication channel connects

two distinct processes. Given two processes i and j, there is at most one communication

channel from i to j, denoted by the ordered pair (i, j).

In addition to their local computations, processes may send or receive messages.
Process i can send a message to process j only if the line (i, j) exists. Process i does so
by depositing the message in the channel (i, j). This message arrives at process j after
an arbitrary but finite (possibly zero) delay. Process j receives the message by removing
it from the channel, within a finite time (possibly zero) of its arrival. The channels are

error-free, except that they need not be FIFO channels.

The "Underlying" Computation

Now we describe the nature of the computation (called the underlying computatzon or
the primary computation) whose termination is to be detected. The messages sent or
received in this computation are called primary messages. Later other computation

(called secondary computation) would be superimposed on this computation for the

purpose of termination detection.

From the point of view of the underlying computation, at any moment a process is in

one of two states:

1. Active state: In this state, a process may send primary messages on its
outgoing lines. It may become idle at any time.



2. Idle state: In this state, a process can not send any primary messages. On
receiving a primary message, it may remain idle or switch its state to active.

A process in any of the two states may receive primary messages or do any local
computations. It is assumed that initially, (i.e., when the primary computation starts)

there are no primary messages in transit; though the processes may be in arbitrary

states.

The Termination Detection Problem

A message in the distributed system is said to be a transient message if it has been
sent, but has not been received yet. We say that at a moment t the distributed

computation is terminated iff:

1. all the processes are idle at time t, and

2. there are no transient primary messages at time t.

It is obvious that if the network computation is terminated at a time instant t, then it
would remain terminated for all times after t (unless forced otherwise by some outside
agent). The problem is to detect the state of termination within a finite time after its
occurrence. To this end, we will devise an algorithm to be superimposed on the

underlying computation; this algorithm must satisfy the following properties:
1. Termination is reported, to some process in the network, within a finite time

after termination of the underlying computation, and

2. if termination is reported at some time t, the network must be terminated at
time t (i.e., no "false detection" of termination is allowed).

Messages related to termination detection are called secondary messages. It may be

noted that an idle process may send secondary messages, even though it can not send

primary ones.

Other Models

We briefly mention here other features that could be incorporated in our model of

computation, without affecting the applicability of our algorithms (possibly with some

minor modifications).



1. We may allow multiple communication channels from a process i to a
process j. Also, a process could be allowed to send a message to itself.

These extensions may be useful if a process consists of a set of interacting
subprocesses.

2. A process may broadcast a message to a set of processes. This is equivalent

to sending the same message via communication lines to each process in the
set.

3. There may be a third state for a process — a terminated state. A process
enters this state when it is guaranteed that it will not send out any primary

messages in future, and no more primary messages would arrive at its input
lines.

3. Performance Criteria

There are two major criteria for performance evaluation of termination detection

algorithms:

1. The effect of secondary computation on the primary computation itself, i.e.,
how the primary computation gets slowed down and

2. How long it takes to detect termination after its occurrence.

In general, the two criteria above would be assigned different weights, depending on
the objectives of the primary computation and its termination detection. One has to
consider not only the time delays involved, but also how time critical the two delays

are. Depending on application, one of these may carry a higher weight than the other.

The following examples illustrate this:

1. Consider a distributed system that monitors a physical system. The primary
computation is triggered by an extreme state in the physical system and its
objective is to bring the system to a steady state. The primary computation

terminates after the system returns to the steady state. Here the former
criterion would be more significant.

2. Consider a secondary computation whose objective is to detect the
termination of a token in a token ring [Misra 83]. Suppose the loss of the
token represents an extreme state that must be corrected immediately. Here
the second criterion would be more significant.

3. Consider a multiphase distributed simulation [Chandy 81, Kumar 85]. Here
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the objective is to reduce the total simulation time. In this case none of the
two delays above are time critical and both affect the overall objective in the
same way; thus both criteria would have equal weights here.

In this paper we will focus on the second criterion. (As mentioned above, in a
particular application this may or may not be a good criterion for performance

measurement.) Let I denote the time interval between the occurrence of termination

and its detection.

How should one estimate I? Obviously, the value of I depends on characteristics of the
system that supports the primary computation. We use the number of (secondary)
message communications during the interval I and the lengths of these messages as a
measure of I. Knowing the characteristics of communication delays, one may establish
either I or an upper bound on it. For simplicity of discussion, we assume that any
communication delay in the system is a linear function of message length. We mention

below a few details about our performance evaluation:

1. Note that the value of I (and the associated measures mentioned above)
would depend on where the marker is at the time when termination occurs,
etc. For simplicity, we would normally consider only the worst case values.

2. Message communications at the same time on different lines will be taking

place in parallel — this must be taken into account in determining the
number of messages, i.e., during any overlapping period, only one message is
considered being communicated. In general, any two independent events
will be assumed to take place in parallel.

3. During the interval I, the number of messages received may be different
(slightly) from the number of messages sent. We consider the latter one as
the number of message communications. (This would be more reasonable in
situations where the time involved in the act of sending a message, i.e., the
transmaission time, is longer than the propagation delay of the message. )

4. By message length we mean the total length of data in it. Tt is assumed that

even for a message of length zero, there would be a non-zero communication
delay.
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4. Class 1 of Algorithms: Counting Primary Messages on Each Line

In these algorithms, a marker traverses a cycle C that includes every process of the
network at least once (discussed in section 1). Information as to how many messages
are in transit is kept by counting the number of primary messages sent, and received,
for each line. Each process i has two local arrays S’NTPi and REC’Pi. (For simplicity of
discussion, we assume here that primary lines in the network are globally numbered
1, 2, ..., E and each array SNTP, and RECP, has E elements. We will discuss more
appropriate data structures later.) At any time, SNTP(e) = the number of primary
messages sent by process i on line e after the last visit of marker at i (or since the initial
time, if the marker has not visited i yet). RECPj(e) is similarly defined for messages

received. Each process i increments SNTP,(e) or RECP,(e), respectively, on sending or

receiving a primary message on line e.

The marker has two arrays SNTM and RECM, where it keeps its knowledge as to

how many primary messages have been sent or received on each line.

(For convenience, in this paper we use the obvious notation for array assignments,

array equality, etc. Also, we often use a time argument in a variable to refer to its

value at that time.)

An Algorithm-Skeleton

The following basic algorithm-skeleton is followed by the marker.

(* marker arrives at process i, Le. it is received by i. *)
The marker waits till process i becomes idle;

(* Process i is idle now. Marker starts its visit at i. *)
SNTM := SNTM + SNTP;

SNIP, = 0;
RECM := RECM + RECP;
RECP, 1= 0;

(* The visit at process i is completed. *)

(* Declare termination or depart from process i. *)

Under an appropriate condition (to be discussed) the marker
declares termination. If this condition does not hold,
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the marker leaves process i along the next line on cycle C.

We discuss later (under the heading "some improvements and details") the algorithm

and data structures required to facilitate the repeated traversal of the cycle C by the

marker.

A process does not receive any messages during the interval between the start of
marker’s visit and its departure. In other words, the underlying computation at a
process is carried out only before the marker’s visit and after its departure. As
mentioned earlier, the variables S’NTPi and REC’Pi are incremented on sending or

receiving (respectively) a primary message.

The variables related to termination detection are initialized before the primary
computation starts. Initially, a value of zero is assigned to all elements of SINTM,
RECM, SNTPi, and REC'Pi. (This initialization will be changed later in the discussion.)

Also, the marker is initially at an arbitrary process, and visits it when the process

becomes idle.

The above is only a skeleton of an algorithm; we have not yet discussed when the
marker declares termination. We address this issue now. Suppose the primary
computation terminates at time T;. Then within a finite time after T; the system
would reach a state where the condition SNTM = RECM is true (i.e., the
corresponding elements of the two arrays are equal) and would remain true forever.
(After T, this condition may become true or false several times, but definitely after one
complete traversal of the cycle C by the marker it will remain true forever.) This is
stated as theorem 1 below. This suggests a way of detecting termination, but we still
have to avoid the possibility of detecting "false termination". Note that the condition
SNTM = RECM being true at a point in computation does not guarantee that
termination has occurred. For example, initially this condition holds, but the system
may have active processes. We ask the question — suppose in a sequence of visits along
the cycle C, the marker continuously finds that SNTM = RECM. Can it conclude

termination after a (predefined) finite number V of such visits? Theorem 2 looks at this
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question in a ’brute force’ manner, and answers it in the affirmative with V — 2.|C|.
Using this theorem one can complete the algorithm. Thereafter we consider the question
of efficiency. Theorem 3 improves the efficiency of this algorithm by reducing V to |C|.
Theorem 4 provides a way of reducing V to 1 if an additional condition is guaranteed
before announcing termination. Later we discuss how to ensure this condition in an
efficient way. (It will be observed that as we progress from theorem 2 towards theorem
4, the results become less obvious and the proofs of correctness more complex.) Let us

first discuss some intermediate results that will be used in the proofs of these theorems.

For convenience, in this paper we will be implicitly using the convention that events
are totally ordered, e.g., as in [Misra 81]. The events of interest are — sending a
primary message, receiving a primary message, a process changing its state, and the
marker arriving at a process, starting a visit, completing a visit, and departing the
process. All time instants mentioned in this paper correspond to a point in the trace of
events in the system, unless otherwise specified. In particular, normally no time instant
refers to a moment in between the start and completion of a visit. (Otherwise many of

our lemmas will become incorrect!)

Let tsnt(e, t) = the total number of messages sent on line e up to (including) time t.
trec(e, t)is similarly defined for messages received.

Let r(e, t) = the number of transient messages on line e at time t.

Lemma 1: For any line e and any time t:

tsnt(e, t) = trec(e, t) + r(e, t) (1)
and tsnt(e, t) > trec(e, t) (2)
Proof: Follows from the definitions.

Lemma 2: For any line e and any two time instants t, t’ such that t < t’:

tsnt(e, t) < tsni(e, t) (3)
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and irec(e, t) < trec(e, t') (4)

Proof: Follows from the definitions.

Lemma 3: For any line e = (i, i) and for any time t:

tsnie, t) = SNTM(e, t)+ SNTP(e, t) (5)

and trec(e, t) = RECM(e, t) + REC’Pj(e, t) (6)

Proof: The proof is by induction on the number of events in the system [Misra 81].

Initially, (5) and (6) are true. Also, each event leaves any of them invariant.

Lemma 4: For any line e = (i, j) and for any time t:

r(e; t) = SNTM(e, t)- RECM(e, t)+ SNTP(e, t) - RECP,(e, t) (7)

Proof: Follows from (1), (5), and (6).

Lemma 5: Consider a "current” moment T in computation. For a line e = (i, j),
suppose both processes i and j have been visited by the marker at least once. Let t. and

tj, respectively, be the last times at which visits at processes i and j were completed.
Then,
SNTM(e, T)- RECM(e, T) = tsni(e, t.) - trec(e, tj)

(8)

Proof: Obviously SNTM(e, T) = SNTM(e, t,), RECM(e, T) = RECM(e, tj),
SNTP(e, t,) =0, and RECPj(e, tj)zO. The result follows from lemma 3.

Note: Later we will make certain changes that will make lemma 2 incorrect. However,
lemmas 1, 3-5 will not be affected. Proofs of theorems 1-6 below will rest only on

lemmas 1, 3-5 — they will not use lemma 2 directly.
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Theorem 1: If the underlying computation terminates at = time Ty, then within a
finite time after Tf the system would reach a state where the condition
SNTM = RECM is true and would remain true forever thereafter (until termination is

declared and possibly a new primary computation is started).

Proof: After T4, all processes remain idle forever; therefore the marker does not wait
indefinitely after its arrival at a process. Hence, within a finite time after Tf (say at a
time T, T > Tf), the marker would have made a complete traversal of the cycle C, i.e.,
it would have visited every process at least once after time T (unless it has declared
termination earlier). Let T > T be any "current" time. For any line e = (i, j) let t,
and tj, respectively, be the last times at which processes i and J were visited. Obviously,
t; > T, and tj > T; From lemma 5,
SNTM(e, T')- RECM(e, T') = tsni(e, t,) - trec(e, tj)

But tsni(e, t,) = tsnt(e, T,), trec(e, tj) = trec(e, T,), and tsni(e, T;) = trecle, T,).

The result follows.

il

Theorem 2: Suppose in a sequence of V = 2.|C| visits, the marker continuously finds
the condition SNTM = RECM to be true after each visit in the sequence. Then at the

end of this sequence it can conclude that the underlying computation has terminated.

Proof: Let T, be the time when the marker has completed |C| number of visits in the
above sequence. We will show that at time T, the primary computation is terminated.
Let t., be the time at which the marker completed its last visit at process i up to
(including) time Ty Also, let t,, and t. be the times at which the marker started and
finished, respectively, its fist visit at process i after time TO (here we are considering the
start and completion of a visit as two distinct events in the history of events in the

system). Obviously, for all i tig < Ty < by < t.

We first show that at time Ty, for all primary lines e = (i, j), SNTPe, T,) = o.

In a similar manner it can be shown that REC'Pj(e, TO) = 0. Suppose for some
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e = (i, J), SNTP(e, T,) > 0. Obviously SNTP e, ty) = SNTP(e, T, > o.
Hence SNTM(e, ) = SNIM(e, ) + SNTP(e, t;) > SNTM(e, t.). But
SNTM(e, t,,) = RECM(e, t;;) and RECM(e, t,y) = RECM(e, t.). Therefore
SNTM(e, t,) > RECM(e, t,). This contradicts the hypothesis of the theorem.

Since for every line e = (i, j), SNTPi(e, T, = RECPJ.(e, TO) = 0 and
SNITM(e, T,) = RECM(e, T,), it follows from lemma 4 that r(e, Ty) = 0. In other

words there are no transient primary messages at time TO‘

Now we show that every process i is idle at time Ty Obviously i is idle at time b
Also, i did not receive any primary messages during the interval [tio, TO], otherwise we
will have RECPi(e, T;) > 0 for the corresponding input line e, which will contradict
the above result that RECP(e, T,) = 0. Thusiis idle at time Ty. This completes the

proof.

il

Theorem 3: Theorem 2 remains valid if the requirement V = 2.|C| in it is changed to
V = |C|.

Proof: Let T, and T, respectively, be the times when the first and the last visits in the
sequence are completed. For any process i, choose any particular visit that was
completed in the interval [Ty, T] and let t;, and t,, respectively, be the times at which
this visit was started and finished. Claim (A) below can be shown easily (if i is the first

process visited in the sequence and t; = T, then (A) follows readily; for other cases it

follows as in the proof of theorem 2):

(A) At any time t during the interval [Ty t;], process i has
SNTPi(e, t) =REC’Pi(e, t) = O for any adjacent primary line e.

Since SNTM = RECM after each visit in the sequence, from (A) we conclude that:

(B) At time T, there are no transient primary messages, and

(C) Process i did not send or receive a primary message in the interval

[Tor t-
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Note that a process i may be active at time Ty We will show that after time t., process
i will never receive a primary message. Since any message in transit will be received
after a finite time, this proves that there are no transient messages at time T when the
above sequence of visits is completed. Moreover, since process i is idle at time t. and

does not receive any primary messages after time t., it will be idle at time T.

We say that a primary message is a bad message if it is received at a process i after
time t. We will prove by contradiction that there can be no bad messages in the
system. Suppose there are bad messages in the system. Let m be the bad message with
the earliest time of reception (say tr). Suppose m was sent on a line e = (i, j) at time

t.. Obviously, t. > t_ and t. > tj. Consider the following two cases.

Case 1: te > b, i.e., m was sent out after the marker’s last visit at i. Then process i
must have received a bad message after t. and before t. (hence before t ). this

contradicts the assumption that m is the bad message with the earliest time of

reception.

Case 2: t_ < t,. We have shown above (C) that process i does not send any primary
messages in the interval [T, t]. Therefore m must have been sent before T, Hence

m is in transit at time T(. This contradicts (B) above. This completes the proof.

il

Now we attempt to reduce further the length of the sequence of visits required with
the condition SNTM = RECM before the marker can conclude termination. Note that
in order to detect termination, the marker must visit every process at least once after
the start of the secondary computation; since in our scheme the state (idle or active) of
a process can not be deduced from the information available at the other processes. We
show below in theorem 4 that if every process has been visited at least once, then the

condition SNTM = RECM after visiting a process guarantees that termination has

indeed occurred.

Theorem 4: Suppose, after visiting a process, the marker finds that SNTM = RECM.
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Also, suppose the marker has visited every process at least once by this time. Then at

this time T the underlying computation is in the terminated state.

Proof: Let t, be the last time that the marker completed its visit at process i up to time
T (i.e., t, < T). We will show that after time t,, process 1 would never receive a

primary message. As argued in the proof of theorem 3, this leads to the conclusion.

With the above definition of t.;, we define bad messages in the same way as in the

proof of theorem 3. The argument continues as before and case 1 is the same. Case 2

is different now and we consider it below.

Case 2: t, < t, i.e., m was sent before the marker last visited process i. Since
SNTM(e, T) = RECM(e, T), from lemma 5 we get tsni(e, t.) = trec(e, tj).

Consider the following two subcases.

Case 2.1: t, < tj. By definition of m, process i1 did not receive any primary messages in
the interval [ti, tj]. Therefore process i did not send any primary messages in this
interval. Therefore, tsni(e, t,) = tsnt(e, tj). Hence tsni(e, tj) = trec(e, tj). But
there is at least one transient message, namely m, on line e at time tj (since m was sent

before t. and received after tj). This contradicts (1).

Case 2.2: t, < t;. Since tsni(e, t,) = trec(e, tj), using (2) and (3) we conclude in this
case that tsni(e, t,) = tsni(e, tj) = trec(e, tj). In other words, no primary messages
were sent on line e during [tj, t;] and there are no transient messages on line e at time

tj. Hence m was sent before tj and received by the time tj. This contradicts with the

definition of m.

i

Note: The proof of case 2 will be simpler if one assumes the FIFO property for the
communication channels. Informally, since m has been counted in tsni(e, ti) and has
not been counted in irec(e, tj), by the FIFO property we will get

tsni(e, t.) > trec(e, tj)‘ Therefore we won'’t have to consider the cases 2.1 and 2.2.
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Completion of the Algorithm

It may be noted that if the hypothesis of theorem 2 or theorem 3 is true then the
hypothesis of theorem 4 is true as well, but not vice versa. Therefore the method
suggested by theorem 4 would be more efficient. Hence we use theorem 4 to complete
the algorithm. How would the marker decide that it has visited every process at least
once? Omne brute force method would be to have a counter in the marker that counts
how many visits have been completed. When this counter becomes |C|, obviously every
process has been visited at least once. (Alternatively, the marker could count how

many distinet processes it has visited, by marking a process "visited" after visiting it.)

We use a more efficient strategy — the initial values of the variables SNTM, RECM,
SNTPi, RECP; are assigned in a different way than mentioned earlier. This assignment

guarantees the following two conditions:

1. As long as there is at least one process that has not been visited yet, the
condition SNTM = RECM will remain false, i.e., at least one pair of
corresponding elements in the two arrays will not match. (We will be
assuming that each process has at least ome adjacent primary line.
Otherwise we have isolated processes in the system. If needed, such cases can
be incorporated in the scheme in obvious ways.) This is stated as lemma 6
below.

2. Moreover, this assignment does not affect the correctness of theorems 1 and

4. (In fact, all of lemmas 1, 3-5 and theorem 1-4 remain valid.) This is
stated as lemma 7 below.

Obviously, this strategy is more efficient since the additional counter in the marker is
avoided, reducing its length. An infinite set of assignments guaranteeing the above

conditions exist; here we consider one specific assignment.

Corresponding to every primary line e = (i, j), we initialize SNTM(e) = 1,
RECM(e) = 0, SNTP,(e) = 1, and REC'Pj(e) = 2. The marker declares termination
after a visit if it finds that SNTM = RECM. The rest of the algorithm remains the

same as before. Theorems 5 and 6 below prove the correctness of the algorithm.
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Lemma 6: With the above initialization, suppose after visiting a process the marker

finds that SNTM = RECM. Then, the marker has visited every process at least once
by this time (say T).

Proof: For any line (i, j), we show that the marker has visited both i and j by the
time T. (Since every process has at least one adjacent line, this establishes the result.)

Suppose, to the contrary, this is not true for a line e = (i, j). Consider the following

cases.

Case 1: The marker has not visited the process j by the time T. Obviously, in this case

SNTM(e, T) > 1 and RECM{(e, T) = 0. This contradicts the assumption that
SNTM = RECM at time T.

Case 2: The marker has visited process j, but not i, by the time T. Obviously, in this
case SNTM(e, T) = 1, and RECM(e, T) > 2. Again, this leads to a contradiction.
This completes the proof.

Lemma 7: With the new initial values lemmas 1 and 3-5, and theorems 1-4 remain

valid.

Proof: Note that with the new initial values, lemmas 1 and 2 remain valid. The results
(5) and (6) in lemma 3 become slightly incorrect — the corrected versions of these

results are:

tsnt(e, t) = SNTM(e, t)+ SNTPj(e, t)- 2 (5")

trec(e, t) = RECM(e, t) -+ REC’Pj(e, t) - 2 (67)

The proofs of (5’) and (6’) are similar to the proofs of (5) and (6) before. From (5’) and

(67) it follows that lemmas 4 and 5 remain valid.

The previous proofs of theorems 1-4 do not directly rest on lemma 2 or the initial
values of the program variables (so long as lemmas 1 and 3-5 remain valid). Therefore

their correctness is not affected. This completes the proof.
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Theorem 5: If the underlying computation is terminated at a time Tf, then the marker

would declare termination within a finite time after Tf.

Proof: Follows from lemma 7 and theorem 1.

Il

Theorem 6: Suppose at a moment T, the marker declares termination. Then at this

moment, the underlying computation is, indeed, in the terminated state.

Proof: The theorem follows from lemmas 6 and 7 and theorem 4.

Some Improvements and Details

We briefly mention below some simple performance improvements to the algorithm.

We also discuss a few details related to implementation.

1. Instead of keeping the two arrays SNTM and RECM in the marker, it is
sufficient to keep a single array, say SRM, which would equal
SNTM - RECM. This would reduce the secondary message length. Also,

this reduces the chances of an overflow. (Elements of arrays SNIM and
RECM are non-decreasing with time.)

2. In our description of the algorithm, the arrays SNTP. and RECP; have an

element for every primary line of the network. Usually a process is
connected to only a few other processes; in such cases, with this data
structure updating SNTM or RECM or SRM may be quite inefficient. It
may be more efficient to assign contiguous local line ids to the adjacent lines
at each process, keep elements only for the adjacent lines in arrays SNTP;

and RECP,, and keep an array that maps from local line ids to global line
ids.

3. How does the marker determine the next line to be traversed? If C is a
simple cycle, then obviously just keeping the successor’s id at each process is
sufficient. Otherwise, one may keep a circular list of outgoing lines at each
process (a line may be repeated several times in this list) and a local pointer
that points to the next line to be followed by the marker. These circular
lists can be initialized by considering a single traversal of the cycle C "by
hand". The pointers can be initialized by defining the starting point of the
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marker on the cycle. Note that the marker itself does not carry any
information about its path of traversal; otherwise the secondary messages
would become even longer.

Performance of the Algorithm

In the worst case, the number of message communications after the occurrence of
termination is |C|-1. C can be chosen to be an elementary cycle, in which case this
equals N-1, where N is the total number of processes in the system. Each message has a
length of E integers, where E is the number of primary lines in the system. If
communication delays depend significantly on the length of the messages, then this
would be quite inefficient. On the other hand, if the message length does not
significantly affect communication delays then this scheme would give a reasonable
performance. One nice feature of this scheme is that in the best case, the number of
message communications after termination is zero. Normally marker based algorithms

[Misra 83, Chandy85a] require at least one complete cycle between the occurrence of

termination and its detection.

5. Class 2 of Algorithms: Counting Total Number of Primary Messages
Sent and Received in the System

Our motivation for devising algorithms in this class is to reduce the length of
secondary messages. Here the marker has two scalar variables SNTM2 and RECM?2
where it keeps its knowledge regarding the total number of primary messages sent and
received, respectively, in the system. This differs from algorithms in class 1 where
information about ¢ndividual lines was being kept. Each process i has two scalar
variables SNIPZ and RECPEi. At any time SNTPZ = the total number of primary
messages sent out by process i after the last visit of the marker at i (or since the initial
time, if the marker has not visited i yet). RECPZ, is similarly defined for messages
received. The algorithm-skeleton of class 1 remains the same for this class, except that
the variables SNTM, RECM, SNTPi, and REC’P.1 are replaced by SNTM2, RECM2,
SNTPZ, and RECPZ, respectively. These variables are initialized to be zero, before the
primary computation starts. (Unlike the discussion in class 1, we won't find a need to

change this initialization later.) As in class 1, a process does not receive any messages
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during the interval between the start of the marker’s visit and its departure. As before,
the variables SNIPZ and RECPZ, are incremented on sending or receiving

(respectively) a primary message.

Now we consider the issue of when the marker declares termination. Theorem 7
below states that if the primary computation terminates at time T, then within a finite
time after T, the system would reach a state where the condition SNTM2 = RECMZ2
will be true and will remain true forever afterwards. As before, we have to avoid the
possibility of detecting "false termination". Again we ask the question — suppose in a
sequence of visits along the cycle C, the marker continuously finds that
SNTM2 = RECM2. Can it conclude termination after a (predefined) finite number V
of such visits? Unfortunately, the answer in this case is in the negative, as shown in
example 1 below. Theorem 8 below gives a method to complete the algorithm.
Theorem 9 considers simple variations of the method given by theorem 8. "These
variations reduce the computational requirements at the processes; they do not improve
communication requirements. Theorem 10 improves the performance of the algorithm
by reducing the number of message communications after termination. After proving
theorem 10, we show that certain simple and obvious variations of theorem 10 do not

work. First let us discuss some intermediate results that will be used in the proofs.

Note that the variables SNTM, RECM, SNTPi, and REC’Pi of class 1 can be used as
"auxiliary" or "ghost" variables in our proofs. The notion of auxiliary variables is
discussed, for example, in [Owicki 76]. The use of these auxiliary variables in our proofs
is not essential; we use them only to simplify our proofs by exploiting the results in

section 4. We assume that these variables are initialized to be zero at the start of

primary computation.

Lemma 8: Lemmas 1-5 and theorems 1-4 of section 4 remain valid for the present

algorithm-skeleton (when the wvariables SNTM, RECM, SNIF, and RECP; are

interpreted as auxiliary variables).
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Proof: In the algorithm-skeleton of section 4, let us introduce variables SNTAMZ,
RECMe, SNTPZ, and RECPZ in the same way as they are used in the present
algorithm-skeleton. Obviously, the previous results of section 4 hold for this new
algorithm-skeleton. Now in this algorithm-skeleton, let us treat variables SINTM,

RECM, SNTPi, and REOPi as auxiliary variables. Obviously, the results would still
hold.

Lemma 9: At any time t,
SNTM2(t) = sum {SNTM(e, t), over all primary lines e} (9)
RECMZ2(t) = sum {RECM(e, t), over all primary lines e} (10)
SNTP2(t) = sum {SNTPF(e, t), over all outgoing primary lines e of process i} (11)

RECPg(t) = sum {RECP|(e, t), over all incoming primary lines e of process i} (12)

Proof: Obvious, by induction on the number of events in the system.

Lemma 10: At any time t,

tr(t) = SNTM2(t) - RECMZ(t) + sum {SNTP2(t), over all processes i} -
sum {RECPZ2/(t), over all processes i} (13)

where tr(t) = the total number of primary messages in transit at time t.

Proof: Let us take the sum of each side of (7) over e, e ranging over all primary lines in

the system. The result follows from lemmas 9 and 8.

Theorem 7: Theorem 1 of section 4 remains valid if SNTM and RECM in that
theorem are replaced by SNTMZ2 and RECM?2 respectively.

Proof: Follows from lemma 8 and the results (9) and (10) in lemma 9.



25

Example 1: To show that there exist computations (following the algorithm-skeleton)
where in an infinite sequence of visits, the marker continuously finds that

SNTM2 = RECMZ2, and yet the primary computation never terminates.

Consider a network of 10 processes. The cycle C is the elementary cycle 1, 2, ..., 10, 1.
Initially the marker is at process 1, process 5 is active, and process 10 is idle. Processes
1-4 and 6-9 never send or receive a primary message and are always idle. Consider the

following sequence of events at processes 5 and 10:

1. 5 sends a primary message to 10, 10 receives it, 10 sends a primary message
to 5, 5 receives it. At this point 5 becomes idle and 10 remains active.

2. The marker visits 5, and departs.

3. 10 sends a primary message to 5, 5 receives it, 5 sends a primary message to
10, 10 receives it. At this point 10 becomes idle and 5 remains active.

4. The marker visits 10, and departs.

5. The above steps 1-4 are repeated indefinitely.

Obviously, after every visit the marker will find that SNTM2 = RECMZ2. But the

primary computation would never terminate!

The above example illustrates why after a finite number of visits with
SNTM2 = RECM?2 after each visit, the marker can not in general announce
termination. Roughly speaking, a process i may have sent and received messages in

between two successive visits by the marker. Theorem 8 is based on this observation.

Theorem 8: Suppose in a sequence of V = |C| visits, the marker continuously finds
that SNTP2, = RECPZ = 0 before each visit (except possibly the first visit in the
sequence) and SNTM2 = RECMZ after each visit. Then, at the end of this sequence of

visits it can conclude that the underlying computation has terminated.

Proof: We show by induction on the number of visits in the sequence that after each

visit SNTM = RECM. The result follows by theorem 3.
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Base Case: Consider the first visit. Let TO be the time when the first visit in the
sequence is completed. Obviously, SNTP2(T,) = RECP2(T) = 0 for each process in

the  system. Therefore  from  (11) and (12) in  lemma 9,
SNTP(e, T,) = RE'C’Pj(e, T,) = 0 for each primary line e = (i, j). Hence from
lemmas 4 and 1, SNTM(e, T,) > RECM(, T,) for any e. But

SNTMZ(T,) = RECMZ(T,). Therefore from (9) and (10) in lemma 9, we get

SNTM(e, T,) = RECM(e, T) for every primary line e. Therefore SNTM = RECM
at time T,,.

Inductive Case: Inductively, suppose SNTM = RECM after the k™ visit. By the
hypothesis of the theorem, at the start of the (k41)% visit SNTP2, = RECP2, = 0

where 1 is the process being visited. Using (11) and (12) in lemma 9 it follows that
SNTM = RECM at the end of the visit.

il

Note: The above proof shows that if in a computation the hypothesis of theorem 8 is
true then so is the hypothesis of theorem 3. The converse also follows, in an obvious
way. Hence the two algorithms will require the same number of secondary message
communications after and before the occurrence of termination. (Since the computation
time in a visit in the two algorithms is different, the sequence of events in the two

algorithms may be different. The above remark ignores any such differences.)

We state below some simple variations of theorem 8. These variations reduce only the
processing requirements during a visit by the marker. Theorems 8 and 9 require the
same number of secondary message communications after and before termination

(again, this assumes that different processing requirements during a visit won’t affect

the sequence of events).

Theorem 9: Theorem 8 remains valid under any one of the following modifications

(note: we are not considering here a combination of these modifications):
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1. The requirement SNTPZ, = RECPZ, =0 is replaced by SNTP2 = 0.
2. The requirement SNTP2, = RECPZ, = 0 is replaced by RECPZ, = 0.

3. The requirement "SNTMgZ = RECMZ2 after each visit" is replaced by
"SNTM2 = RECMSZ2 at the end of the last visit of the sequence".

Proof: It is easy to see that any variation stated in theorem 9 is equivalent to theorem

8, in the sense that if the hypothesis of one is true then so is the hypothesis of the
other.

i

Now we consider a stronger modification to theorem 8. The algorithm suggested by
theorem 10 below is more efficient than the one suggested by theorem 8, in terms of the

number of message communications required after termination. We will discuss this

after proving the theorem.

Theorem 10: Suppose in a sequence of V = |C| visits, the marker continuously finds
that RECP2, = 0 before each visit (except possibly the first visit in the sequence) and
SNTM2 — RECMS2 at the completion of the last visit of the sequence. Then at the end

of this sequence of visits it can be concluded that the underlying computation is

terminated.

Proof: Let T and T, respectively, be the times when the first and the last visits of the
sequence were completed. Let t, be the time when the marker completed its last visit at

process 1 up to (including) time T. From (10),
RECM2(T) = sum {RECM(e, T), over all primary lines e}

= sum {trec(e, tj), over all primary lines e = (i, j)} by (6).
= sum {trec(e, TO), over all primary lines e = (i, j)} since, obviously,

in the interval [TO, ti] process i did not receive any primary
messages.
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Similarly,

SNTM2(T) = sum {tsnt(e, t,), over all primary lines e = (i, j)} by (9) and (5)
= sum {tsni(e, T,), over e} + sum {r'(e), over e}

where 7’(e) = the number of primary messages sent on the line e = (i, j) during
the interval [T, t].

Since SNTM2(T) = RECMZT), using (2) we get tsnt(e, T,) = trec(e, T,) and
r’(¢) = O for every primary line e. This is the same as conditions (B) and (C) in the
proof of theorem 3. The rest of the proof is the same as the proof of theorem 3 after
observation (C). (Alternatively, for any primary line e = (i, j), tsnt(e, t,) - trec(e, tj)
= tsnt(e, T,) + r'(e) - trec(e, Ty) = 0. Hence by (8), SNTM(e, T) = RECM(e, T).
The result follows from theorem 4.)

Il

Now we show that theorem 10 suggests a more efficient algorithm than theorem 8.
Obviously, if the hypothesis of theorem 8 holds at a point in computation, then the
hypothesis of theorem 10 holds as well. Example 2 below shows that the converse is not
true. (However, for a given network topology, the worst case number of message

communications after occurrence of termination is the same in both cases.)

Example 2: Consider the network of example 1 with the same initial conditions, except
that the marker is initially at process 9. As before , processes 1-4 and 6-9 always

remain idle. Consider the following sequence of events at processes 5 and 10:

1. 5 sends a message to 10, 10 receives it. At this point both processes are idle.

2. The marker arrives at process 10.

In the algorithm given by theorem 10, the marker will visit processes 10, 1, ..., 9 and
then declare termination. Using the algorithm given by theorem 8, the marker will visit

processes 10, ..., 5, ..., 10, ..., 4 and then declare termination.
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One may be tempted to consider the following variation of theorem 10 — replace the

requirement RECPZ, = 0 by SNTP2 = O. Example 3 below shows that this won't

work.

Example 3: Consider the network of example 1 with the same initial conditions and
the same behavior of processes 1-4 and 6-9. Consider the following sequence of events

on processes 5 and 10:

1. 5 sends a primary message to 10 and becomes idle. (10 has not received it
vet.)

2. Marker visits 5. It "restarts" a new sequence since SNTP5 £ 0 at the start
of the visit.

3. Marker visits 10 and departs.

4. 10 receives the primary message sent by 5. It sends a primary message to 5
and remains active. 5 receives this message and remains idle.

5. Marker visits 5 and declares termination.

But process 10 is still active!

Since the above variation of theorem 10 doesn’t work, it follows that the following
variation will also not work — replace the requirement REC’PZi = 0 by (REC’P,?i =0
or SNTP2 == 0). (If this variation had worked, obviously it would have been more

efficient than theorem 10.)

We complete the algorithm-skeleton for class 2 by using theorem 10. Along the lines
of the proof of theorem 1, it can be shown that if the primary computation terminates,
say at time Tf, then the hypothesis of theorem 10 will become true within a finite time

after T. The correctness of the algorithm follows from this observation and theorem

10.
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Some Improvements and Details

1. As in class 1 (see "some improvements and details" in section 4), instead of
keeping the two wvariables SNTMZ2 and RECMZ2 in the marker, it is

sufficient to keep only a single wvariable SRMZ2 which would equal
SNTM?2 - RECM2. This has the same advantages as before.

2. Also, at a process i instead of keeping SNIPZ and RECPZ, one may keep a
variable SRPZ, which would equal SNTPZ. - RECPZ, and a boolean variable
to indicate if REC‘P@i = 0. This, of course, does not improve the efficiency

regarding message communications; it only reduces the processing time
involved in a visit.

3. Same as 3 in our discussion under "some improvements and details" for
class 1.

4. How does the marker detect that the first condition of theorem 10 holds for
the entire sequence? We roughly sketch a few possible ways of doing this:

a. Sequence Length Counter: The marker carries a counter for this
purpose. Initially this counter is 0. On visiting a process i, if RECPZ,
is zero at the start of the visit then the counter is incremented; else it

is reset to 1. After the visit if the counter is > |C|, then the condition
SNTM2 = RECMZ2 is checked.

What if the counter has become > |C| and the -condition
SNTM?2 = RECMZ2 is not met? If the counter keeps getting
incremented indefinitely, it may overflow. To avoid this, one may
reset the counter to 1 during a visit if it is > |C| at the start of the
visit. This raises the following issue: there seems to be a possibility
that termination may be detected after "too many" visits. For
example, what if the condition RECP2, = 0 is true before every visit,
but the condition SNTM2 = RECM?2 becomes true after |C|+1 visits
and the counter was reset to 1 (to avoid overflow) during the visit
|C|+1? It can be shown that such cases can not arise. In other words,
at the start of a visit if the counter is > |C|, then it can be reset to 1
without loss of efficiency. At any such point T it can be asserted that
the marker will definitely visit (either in future or in current visit) a
process i such that RECPZ, % 0 at the start of the visit. To prove

this, suppose this is not true. Then there are two possibilities: (i)
There is a finite sequence of visits made after time T such that
RECPZ = 0 before each such visit at the process i being visited and
SNTM2 = RECMZ2 at the completion of the last visit of the sequence.
(ii) There is an infinite sequence of visits made after time T such that
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RECPZ, =0 before each visit and SNTM2 £ RECM?2 after each visit.
Note that after time T, for any visit at a process i if RECPZ = O
before the visit then SNTP2 = 0 before the visit as well. Since
SNTMZT) # RECMZT), (i) above is impossible. In case (ii),
obviously we have primary messages in transit at time T. Within a
finite time one of these messages will be received at a process i, making
RECP2, nonzero. Hence (ii) above is impossible. This completes the
proof.

. Round Number: TFor simplicity, first let us assume that C is an
elementary cycle. The marker contains a round number. At the start
of a visit (say at process 1) if RECP2, 5 0 then a new round is started,
i.e., marker’s round number is incremented. During any visit at a
process 1, the marker’s round number is stored in a local variable at 1.
If at the start of a visit, the round number of the marker equals that
of the current process i, it means that the marker has previously made
a sequence of at least |C| visits such that before each visit (except
possibly the first one) RECPQJ. = 0 at the corresponding process j.
Therefore in this case if REC’PQi = 0 at the start of the visit, the

condition SNTM2 = RECM?2 is checked for termination after
completion of the visit. (Alternatively, the termination check could be
made at the start of a visit if the round numbers match.) At the start

of secondary computation, round numbers of the marker and the
processes are initialized to 1 and O respectively.

If the round number of the marker keeps getting incremented
indefinitely, it may overflow. To solve this problem one may
increment the round number as 1+ [(round number) mod |C|]. The
new round number generated would obviously be different from local
round numbers of all processes (except possibly the one being visited).

(As a side note, using this method the number of message
communications after occurrence of termination is increased by 1.)

If C is not an elementary cycle, a counter may be kept at each process

that counts the number of times the process has been visited in the
current round.

. Initial Process Id: Again let us first assume that C is an elementary
cycle. In this method the marker keeps a pointer that points to the
process id of the first process in the current sequence of visits such that
before each visit (except possibly the first one) RECP2 = 0. At the

start of a visit (say at process i) if RECP2, % 0 then this pointer is set




32

to i. If at the start of a visit, this pointer is pointing to the current
process i, this means that the marker has previously made a sequence
of at least |C| visits such that before each visit (except possibly the
first one) RECPZJ. = 0 at the corresponding process j. Therefore in
this case if RECPZ = 0 at the start of the visit, then the condition
SNTM2 = RECM?2 is checked for termination after completion of the
visit. Similar to our discussion in (a) above (using sequence length

counter), if the condition SNTM2 = RECM2 is false in this check, we
need not reset the pointer.

Obviously, there is no overflow problem in this approach. As in the
method using round numbers, the number of messages after
termination in this method is increased by 1. If C is not an elementary
cycle, one may keep local counters at the processes to count the

number of times the process currently pointed to by the marker has
been visited in the current sequence.

5. Suppose we designate a specific process where the decision regarding
termination would be taken. In this case the marker needs to carry only an
integer (the value of SNTM2 - RECMZ2) and a boolean (instead of an integer
as in 4 above) which remembers whether in the current round the first
condition of theorem 10 has been true so far. Since message length has
decreased, this improves the performance in the worst case. However, in the

average case the number of message communications after termination will
increase.

Performance of the Algorithm

The worst case occurs when the marker departs a process i and before it reaches the
next process, process i receives a primary message and the primary computation
terminates at this point. The number of secondary messages sent after the termination
of primary computation in this case is 2.|C| - 2. Each secondary message contains two
integers — one integer containing the value SNTMZ2 - RECM?2, and the other used to

check the first condition of theorem 10, as discussed in 4 above under "some

improvements and details".
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6. Class 3 of Algorithms: Using Multiple Markers

In classes 1 and 2 we have a single marker that sequentially traverses the system. In
this section we will use multiple markers to enhance performance. First we observe that
the sequential traversal of the system by a marker in the previous algorithms is not
essential. If several processes could be visited in parallel, even then these results will
hold. The following theorem is obtained from theorem 10 by an abstraction of the
proof of that theorem (i.e., by avoiding details regarding sequential nature of the

traversals). The proof of this theorem is essentially the same as that for theorem 10.

Theorem 11: Let [T,, T] be a time interval during which several visits have been

completed, possibly in parallel. Suppose these visits satisfy the following:

1. At least one visit is completed at each process during this interval (the start
times of these visits need not be in the interval).

2. At the start of each visit, say at process i, RECP2, = 0, and

3. At time T SNTM2 = RECMZ2.

Then, at time T the primary computation is terminated.

Notes:

1. The values of SNTM2 and RECM2 at time T are defined in the obvious
way — the results of various visits have to be accumulated.

9. Theorem 10 follows as a special case of theorem 11. On first sight this
might not be so obvious, since theorem 10 allows the value of RECPZ for

the first visit to be nonzero. However, after the very first visit in the

sequence, one may consider an imaginary visit to the same process —
theorem 10 would then readily follow from theorem 11.

Using theorem 11, one may devise schemes using several markers. The markers would
check the values of RECPZ, and accumulate values for SNTMZ2 and RECMZ in
different parts of the system (these parts need not be disjoint).
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A. Using Two Markers

Let us assume that we have two paths P, and P, from a given process I to a given
process J. Also assume that these paths together cover all the processes in the system.
Initially both markers are kept at process I. Then they traverse the two paths
respectively. After both have visited J, a check for termination is made as follows. The
values SNTM2 and RECM?2 are computed by adding the corresponding values in the
two markers. Each marker i also has a boolean variable NZREC, which is set to true if
at the start of some visit at a process j in the current traversal of the path, REC’P,?J. was
found to be nonzero. At J, if SNTM2 = RECMZ2 and both booleans are false then
termination is announced. Otherwise a new traversal is to be started. To start a new
traversal, both markers may be sent back to I via a line (J, 1I). Alternatively, the

markers may traverse the paths P, and P, in the reverse direction in which case the

next check for termination would be made at process I.

Now we make a simple modification to the above scheme that would lead to an
obvious generalization for the case of more than two markers. A new process, called a
central process (CP), is introduced in the system where the check for termination would
be made. (This process may be implemented as part of some existing process in the
system.) Paths Pl and P2 now need not share their initial and final processes. Initially
both markers are at the CP. A traversal of the system is started by the CP, by sending
the markers to the initial processes of the respective paths. After traversing the paths,

the markers arrive at the CP where the decision regarding termination is made in the

same way as before.

Now we consider an erroneous variation of this scheme which supposedly attempts to
improve its efficiency. Suppose a marker i has arrived at the CP after traversing its
path and NZREC), is true. Suppose the other marker has not yet arrived at the CP.
One might be tempted to consider the following. Since marker i knows that
termination can not be announced after this traversal, it doesn’t wait for the other
marker to arrive; instead it goes back to traverse P.. Equivalently, a marker i would

traverse its path P, repeatedly until the value of NZ'RECi is false at the end of a
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traversal, and then it would go to CP and wait for a termination check to be made.

The following simple example shows that this scheme won’t work:

Example 4: Let P1 and P2 consist of single processes, processes 1 and 2 respectively.

Initially process 2 is idle and process 1 is active. Consider the following sequence of

events:

1. Marker 2 visits process 2. It departs from process 2 (but hasn’t arrived at
the CP yet).

2. Process 1 sends a primary message to process 2. Process 2 receives this
message and sends another one to process 1. Process 1 receives it and
becomes idle. Process 2 remains active.

3. Marker 1 visits process 1. Since the value of NZREC is true after this visit,

it visits process 1 again (equivalently, after the first visit it goes to CP, then
goes back and visits process 1). Now it arrives at the CP.

4. Marker 2 arrives at CP. Obviously both booleans NZREC; are false and

SNTM2 = RECMZ2 at this point. Hence termination is declared. But
process 2 is still active!l

Performance of the Scheme

Let us assume that the length of each path P orP,is approximately N/2. For worst
case, consider the following scenario. Marker 1 visits and departs from the first process
(say i) on its path. Now process i receives a primary message and at this point the
primary computation is terminated. Obviously termination won’t be detected after the
current traversal. Again, it won’t be detected in the next traversal since RECPZ, would
be nonzero at the start of the next visit to 1 (let us assume that i appears only once on
Pl’ and doesn’t appear on Pz; otherwise this won’t be strictly true). So the number of

secondary message communications after termination is ~ 3N/2. Each such message

consists of an integer and a boolean.

B. Using More Markers
One may similarly use a CP, K paths, and K markers in general. Let L. be the length

of the longest of these paths. By considering a scenario similar to the above, we have

the worst case number of message communications = 3L + 4. If each path has N/K
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processes then this equals 3N/K + 1. Note that as K is increased, the scheme tends
to become more centralized. With K = N it is a purely centralized scheme (i.e., each
process interacts only with the central processor for termination detection) with worst

case number of message communications after termination = 4.

7. Conclusion

We have presented a class of efficient algorithms for termination detection in
distributed systems. Our assumptions regarding the underlying computation are simple.
In particular we do not require the FIFO property for the communication channels.
Also, the topological requirements about communication paths are simple and flexible,
both from the correctness and performance point of view. We discussed the correctness
and performance of our algorithms. Depending upon the application, the nature of the

chosen algorithm can be varied incrementally from a distributed one to a centralized

one.

We introduced message counting as an effective technique in designing termination
detection algorithms. We showed how one can avoid counting messages for each and
every line, normally resulting in better performance. Our presentation involves deriving
algorithms via a sequence of simple modifications. Several correct as well as incorrect
variations have been considered. We hope that this approach of presentation has

resulted in better understandability of the algorithms.
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