LOGSPACE HIERARCHIES, POLYNOMIAL
TIME AND THE COMPLEXITY OF
FAIRNESS PROBLEMS CONCERNING
«~MACHINES

Louis E. Rosier and Hsu-Chun Yen

Department of Computer Sciences
University of Texas at Austin
Austin, TX 78712

TR-85-08 May 1985

Abstract

In this paper, we define a restricted logspace oracle hierarchy which turns out to be
equivalent to the logspace alternation hierarchy and thus is contained within the second
level of the logspace oracle hierarchy. We then examine problems concerning various
types of "fair" computations with respect to w-FSM’s, and w-1CM’s. For example, we
consider the emptiness problem for w-FSM’s and w-1CM’s where acceptance is defined in
the usual fashion, but with a fairness constraint imposed on accepting computations.
Our results yield problems that are complete not only for NLOGSPACE and PTIME
but the second and third level of the restricted logspace hierarchy as well. As far as we
know, these are the first natural problems shown to be complete for various levels of the
logspace alternation hierarchy. Furthermore, the results can be used to strengthen

known results concerning various related fairness problems that invelve logic and/or
networks of CFSM’s.

1. Introduction

One of the more fundamental tools used in categorizing the complexity of decision
problems is the notion of completeness. Most notable, of course, is the class of problems
which are NP-complete. See e.g. [7, 11, 19]. Other complexity classes for which
abundant numbers of complete problems are known include NLOGSPACE, PTIME,
and PSPACE. See e.g. [11, 16-18]. More recently certain natural problems have been
shown to be complete for certain complexity classes which are "between" NP and
PSPACE. Recent advances here include [1, 26, 27], which tend to consider problems
which are complete for various levels of the Polynomial-time Hierarchy [32]. One could
also consider the analogous complexity classes for space hierarchies which fall
"hetween" NLOGSPACE and PTIME. Appropriate consideration here then should
focus on the logspace oracle hierarchy, and the logspace alternation hierarchy (which is
contained in the second level of the logspace oracle hierarchy), which were introduced in
[3] and [30].1 Both of these hierarchies are contained in PTIME N DSPACE(logQH).
Other complexity classes "below" PTIME for which complete problems are known can
be found in [6].

In this paper, we define a restricted logspace oracle hierarchy (which as we shall
later see turns out to be essentially equivalent to the logspace alternation hierarchy of
[3]) which is also contained within the second level of the logspace oracle hierarchy.
Our restrictions have to do with fixing the number of oracle calls allowed during a
computation. We then examine problems concerning various types of "fair"
computations with respect to w-Finite State Machines (w-FSM's), w-One Counter
Machines (a-1CM’s), w-Blind Counter Machines (w-BCM’s) and networks of
Communicating Finite State Machines (CFSM’s). For example, we consider the
emptiness problem for w-FSM’s, w-1CM’s and w-BCM’s where acceptance is defined as in
[5, 21], but with a fairness constraint imposed on accepting computations. (For a
discussion about various types of fairness see e.g. [12, 22].) Our results yield problems
that are complete for the following classes:

¢ NLOGSPACE,
e the second level of the restricted logspace oracle hierarchy,

e the third level of the restricted logspace oracle hierarchy, and

¢ PTIME.

These results, we feel, are interesting for two reasons:

1These were referred to, in [30], as the log n space "oracle hierarchy" and log n space "alternation
hierarchy*®, respectively.

(8]

i. As far as we know, these are the first natural problems which have been
shown to be complete for various levels of the logspace alternation hierarchy

of [3].

ii. The results can also be used to show that the canonical form model checking
problem of [9] (see also [24]) is PTIME-complete; and that certain liveness
questions [4] concerning networks of CFSM’s are either PTIME-hard or
complete for the third level of the restricted logspace oracle hierarchy.

Related complexity results concerning questions about fair computations can be found
in [8-10, 24]; while completeness results concerning complexity classes "between"

DLOGSPACE and NLOGSPACE can be found in [23].

In what follows, we assume the reader is familiar with the basic tenets of automata
and complexity theory. Relevant sources would include [11, 16]. The basic
computational model used in this paper is the nondeterministic offline multitape
Turing machine (NTM). Since this paper concerns itself with many different problems
the relevant definitions are introduced in the text as they are needed. For brevity, we
sometimes use the terms DL and NL to denote the complexity classes DLOGSPACE and
NLOGSPACE, respectively. All completeness classes mentioned in this paper are with
respect to deterministic logspace (many-to-one) reductions.

The remainder of the paper is organized as follows. In section 2, we define the
restricted logspace oracle hierarchy and in section 3, we illustrate some useful graph
problems that are complete for certain levels within this hierarchy. Section 4 concerns
itself with the complexity of various problems with respect to w-FSM’s, w-1CM’s and
w-BCM’s. The last section seeks to apply our results to problems considered in [4] and

[9].
2. The restricted logspace oracle hierarchy

In [30], the logspace oracle hierarchy which fell between NSPACE(log n) and
PTIME N DSPACE(IOan) was defined. Our intention, in this section, is to see what
happens to this hierarchy when constraints are imposed on the OTM’s restricting the
number of allowable oracle calls made during the course of a computation. In
particular, we focus on the case where at most one oracle call is allowed during the
course of a computation. What happens is that we obtain a new hierarchy - which we
call the restricted logspace oracle hierarchy. We then show that the restricted logspace
oracle hierarchy coincides with the logspace alternation hierarchy [3], which was also
discussed in [30]. This characterization is potentially useful because when considering
problems related to this hierarchy it allows us to provide the analysis using either
computational model. Furthermore, this hierarchy has the following interesting
property:

e As pointed out in [30], the restricted logspace oracle hierarchy (or the
logspace alternation hierarchy), unlike its polynomial time analog, is clearly
contained within the second level of the logspace oracle hierarchy.

In subsequent sections, we show that some natural problems concerning the notion of
fair computations are complete for certain levels in this hierarchy. This study, we feel,
is of interest because it allows us to have more insight into the question whether the
inclusion in "NSPACE(log n) € PTIME" is proper. Results concerning relativized
logspace have received broad attention in recent years [20, 25, 30]. Unlike the case with
the polynomial-time hierarchy [1, 26], however, little has been done in actually
"pigeonholing™ natural problems into the logspace hierarchies. The main contribution
of this paper will be exactly that; and thus, in some sense, we examine this portion of
sublinear space from the problem-oriented point of view.

Informally, an oracle Turing machine (OTM, for short) M is a nondeterministic
offline multitape Turing machine with an additional write-only tape called a query tape
and three distinguished states called query, yes and no states. In addition, a set A,
called the oracle set is always related to the computation of the OTM M. For
convenience, we use L(MA) to denote the language accepted by the OTM M using A as
its oracle set (denoted by MA). The computation of an OTM is similar to that of an
ordinary NTM except when visiting the query states. When in a query state, if the
string on the query tape is in the oracle set, then the machine enters the yes state;
otherwise, it enters the no state. Moreover, the contents of the query tape will be
erased immediately upon entering the yes or no state. The machine can write a symbol
on the query tape in every state except the query state. In some sense, it is easier to
think of the computation of MA as follows. Let A’ be a machine that accepts the set
A. When M reaches a query state, it will "consult" the machine A’ (which will be
referred as a "query machine"), and A’ returns yes if the contents of the query tape is
accepted by A’, and returns no otherwise. Then M enters the yes or no state depending
on the value returned by A’. Note, however, that the complexity of the computation is
only concerned with those resources used by M and not the oracle. Using this concept,
one may easily generalize to the class of languages XY, where X and Y are complexity
classes. Formally, we define XY to be the complexity class such that for each language

Lin XY, L, can be recognized by an OTM M with oracle set A where M operates within
the complexity constraints of X and A is'in Y.

In order to study the space hierarchy below PTIME, it is natural to define classes
like DLNL, NLNL,..., ete. Unfortunately, this kind of definition does not seem to be of
great interest because when the OTM’s are defined as above one obtains
NLM—NLPL=NP. That is, the logspace hierarchy jumps into the polynomial-time
hierarchy on the second level. As pointed out in [20, 30], this phenomenon occurs
because nondeterminism when combined with the ability to write long strings on the
query tape, interacts in such a way that the machine’s power is boosted dramatically.

To limit the undesired boost in the power of the OTM’s, [30] required that only strings
of logarithmic length could be written on the query tape. However, the query machine
was also, in a sense, allowed read access to the input of the oracle machine. More
precisely, the string that appears on the query tape at any instance will be of the form
x#y, where x (which cannot be altered by the OTM) is a copy of the OTM’s input tape,
and [y| is O(log|x|). One may consider the string x# to always be on the query tape
(i.e. it will not be erased), and only the y part to be alterable during the course of a
computation. In this paper, we consider only OTM’s of this sort. Using such OTM’s, a
hierarchy, similar to the polynomial time hierarchy, was defined in [30] as follows:

5L — DL,

0

sk = NL

k+1

’

Al AL

DL

I

L
A+
The following theorem was also shown in [30].
Theorem 2.1: Ukl‘i C PTIME N DSPACE(log?n).

An interesting question now arises when one also restricts the number of oracle calls
allowed during the course of a computation. Intuitively, the power of an OTM seems to

be enhanced as it is allowed to make more oracle calls. We define the hierarchies Z‘Lk{d]
and A%[d} to be the classes where, in each level the OTM, during the course of its
computation, is allowed to consult the oracle at most d times. The next theorem shows
an interesting result concerning the class NLNL{d}, where d>1 is a fixed constant.

Theorem 2.2: Let d>1 be an integer constant and let A €NL. Furthermore, let M be
an OTM that during the course of any computation consults its oracle at most d times.
Then there exists an A’€NLL and an OTM M, that during the course of any

computation consults its oracle at most once such that:
1. LMY) = L(M,?), and

2. For Ml’ the last step of any computation is an oracle call and only when the
answer to this oracle call is "no" will the machine accept the input.

Proof. Let d>1 be an arbitrary fixed constant. Let M be an OTM that makes at most
d oracle calls during the course of any computation. Let T be an NTM which accepts A
and runs in O(log n) space. In what follows, we define A’ and show how to construct
an OTM M, to simulate the computation of M. M, will have one more work tape than
M which we shall refer as T,. (The additional worktape is not necessary but it allows a
much briefer description of Ml.) The basic idea of the simulation is that, M, will
simulate the computation of M by writing symbols (those that are supposed to be
written on M’s query tape) on T, until a query state is visited. At this time M,

"guesses" the oracle’s response. If M, guesses "yes" then it uses T to

nondeterministically verify the guess. If T is able to do so then the computation
continues; otherwise the input is rejected. If, on the other hand, M, guesses "no" then

the "query" string on T, is appended to M,’s actual query tape - the guess to be

verified later in the computation. The computation is then continued. Finally when an
accepting state is reached, the oracle will be consulted to determine whether the
previous "no guesses" were correct. Then M, accepts or rejects accordingly. More

precisely, in each query state M, will nondeterministically choose one of the following to
execute:

1. Call the subroutine T using T, as its input (along with a copy of M’s
original input). If T accepts, then M1 enters the yes state; otherwise the
input is immediately rejected.

2. Enter the no state and at the same time, append the contents of T, to the
end of M,’s query tape. (A separator "," is also added.)

Furthermore, each time M, enters yes or no state the string y on T, will be immediately

erased. Now define A’={(x1,x2,...,xm)[XiEZ*, 1<m<d, and 3i, 1<i<m, x;€A}. Note
that A (the empty string) is not in A’. Since A is in NL, clearly A’ is also in NL.
During the computation of M,, when the accepting state is reached, an oracle call, using
A’ as its oracle set, will be made. If the answer is "no", M, will then stop and accept
the input; otherwise, M, rejects the input. The simulation clearly works, since the

function of the oracle call is to verify whether the "no" guesses made during the
computation were correct. o

From this theorem we can immediately obtain the following:
Corollary 2.1: NLNLd — NLNLM, for any fixed constant d.

At this time, we do not know if the above corollary can be extended to higher
levels of the hierarchy.

In [3], the alternation logspace hierarchy was introduced based on the model of
alternating Turing machines (ATM’s). Basically the concept of alternation is a
generalization of nondeterminism in a way that allows existential and universal
quantifiers to alternate during the course of a computation. Four kinds of states exist
in an ATM; namely existential, universal, accepting and rejecting states. A universal
state can lead to acceptance iff all successors lead to acceptance. On the other hand, an
existential state leads to acceptance iff there exists a successor that leads to acceptance.
Details can be found in [3]. The complexity classes of languages accepted by time
(space) bounded ATM’s were also defined in [3]. In particular, AEIE was defined to be

the set of languages accepted by log n space-bounded ATM’s in which the starting state

was an existential state and the machine was constrainted to make at most k-1

alternations during the course of a computation. In what follows, we show that the
AE& hierarchy coincides with the restricted logspace hierarchy Zﬁm defined earlier.
This characterization proves useful in later sections as both computational models are

used in deriving completeness results for various levels of this hierarchy.
Lemma 2.1: A)Z‘Il; C E{(‘m

Proof. (By induction on k)
Induction base: When k==1, we easily see that AZJI“ENLEZJ{M.

Induction hypothesis: Assume that the assertion is true for k=n.

Induction step: Now consider the case when k=n+1. Let L be an arbitrary language

in AZZ&LI. Let M be an n+1-alternating ATM that accepts L. Let Uy, Ugy weey U be the

universal states in M. Let M, > Mu s eeey Mu be the n-alternating ATM’s constructed
2

1 m

from M in such a way that, each M, (0<i<m) is essentially the machine M except that
1

every universal (accepting) state is made existential (rejecting), and vice versa.

Furthermore, each Mu_ has u; as its initial state. Since now u; is an existential state for
1

the machine Mu‘, the language accepted by Mu’ is in AEE. Now define Ai to be
1 1
{(x,u;,p)| starting in state u; with its input head at the p-th position, M_ accepts x},

1
which is clearly in AELn, and hence according to the induction hypothesis, A, is also in

21:[1]. Let A=UA,, 1<i<m. Then A is in 2%[1] as well.

In what follows, we want to construct an oracle machine M’ to accept L. Basically,
M’ is going to simulate the computation of M on input x until the first universal state,
say u,, is reached. At this point, M’ writes down the current state and input head

position (of length O(log|x|)) on the query tape and then consults the oracle set A. If the
answer of the oracle call is "no", M’ enters the accepting state; otherwise M’ rejects the
input. See Figure 2.1. Clearly M’ accepts the language L. which in turn must therefore
be in Zﬂ}]l The lemma then follows. 0

Lemma 2.2: E{;m C AE{;
Proof. (By induction on k)
Induction base: When k=1, we easily see that ZJf[l}ENLEAZII‘{'.

Induction hypothesis: Assume that the assertion is true for k=n.
Induction step: Now consider the case when k=n+1. Let L be an arbitrary language
in Eﬁg]l Let AEZIIIM. Let M be an OTM that operates in O(log n) space such that

L(MA)zL. We may, as indicated earlier in this section, modify M in such a way that
the last step of any computation is the oracle call. According to the induction

\

‘No'

Query states

Oracle
A
u U
i 2

Acceptling siate

Figure 2.1 The machine M.

Figure 2.2 The msachine M.

hypothesis, the language (or set) A is in AZ‘II;, and therefore can be accepted by an n-
alternating ATM W. Let W’ be the machine W with universal (accepting) and
existential (rejecting) states interchanged. In this way, W’, with a universal initial
state, will accept the complement of A. Now, we want to construct an n+1-alternating
ATM M’ to accept L. Simply speaking, M’ will simulate the computation of M faithfully
except that, the string s that is to be written on the query tape by M, will be written on
its working tape instead. Therefore, the working tape of M’ will look like $s#... .
Now, when a query state is reached, M’ will simulate the oracle call by using the
mechanism described in Figure 2.2. More precisely, if both a "yes" or "no" response
causes M to accept then M’ simply accepts the input. If only a "yes" response causes M
to accept then control is passed to W which simply treats the $s# part as its input and
simulates the moves accordingly. If only a "no" response causes M to accept then
control is passed to W’ instead. Notice that the language accepted by M’ is L, which is
therefore in AEfl'Jrl. Hence the lemma follows. o

Consequently, we have the following theorem:
Theorem 2.3: 2112[1} == A)Z‘k

In [30], it has been shown that UkAZ;ll; C DLNL. Using Theorem 2.3, we then have

that the restricted logspace oracle hierarchy is contained in DL Let DL={L10L2 |

L eNL, L,eCo-NL}. This class is the space analog of the class DF defined in [27],
where, in the previous definition, the terms NL and Co-NL are replaced by the terms
NP and Co-INP, respectively. Since £ is in Co-NL (NL), we also have that NL (Co-NL)
- DL, since for any language L. € NL (Co-NL), LOZJ*=L. Furthermore, it should be
fairly easy to see that Dl - NLMLAL As a result, we now have the following theorem:
Theorem 2.4: DL C NL,Co-NL C D' < NLMU . pL™M ¢ NN .. C PTIME n
DSPACE(log?n).

3. Some complete problems

In this section, we introduce some easy graph problems that are complete for
NLNEAL These problems are useful, in the sense, that they will later be used in
Sections 4 and 5 as a vehicle to analyze the complexity of problems concerning
w-machines and networks of CFSM’s. In what follows, we define the notion of liveness
for a graph, and then we show that the problem to decide whether a node in a graph is

"not" live is complete for NLNL, First, however, the following definitions are
required.

An I-graph G (or simply a graph if the initial node is clear and understood) consists
of a directed graph G=(V,E), where V and E represent the sets of nodes and edges
respectively, and there is a unique distinguished node Vo€V called the initial node. For

two nodes p and q in V, q is said to be reachable from p (denoted by p *» q) iff there
exists a sequence of nodes Sg5pr++s5 such that s;=p, s,=4 and for each i, 0<i<k-1,

5;,€V and the edge (Si’ Si+1) is in E. We use p & q to denote the case when k # 0.
Similarly, an infinite path is an infinite sequence of nodes 8g»Sqr--sSyse-- such that So=Vo
(the initial node) and for every i, 5;€V and the edge (s, 5;1) is in E. An infinite path P
is said to be strongly fair iff for every node v that occurs infinitely often in P, it is the
case that all outgoing edges of v have been traversed infinitely often in P. A node u is
said to be weakly live iff on every strongly fair path, u occurs infinitely often. A

subgraph G'=(V",E’) of G is called an Isolated Reachable Component (IRC, for short),
if G’ satisfies the following conditions:

1. 3veV’, vi-vin G,
2.V v,weV’, vihw and wisv.

3.V veV’ and weV, v¥w in G implies weV’.

The first condition indicates that the IRC G’ is reachable from Vo The second

condition guarantees that G’ is strongly connected. The third condition indicates that
no node in V-V’ can be reached from any node in V’. (The reader can therefore think
of G’ as sort of a black hole.) The following lemma provides a way to test whether a

node in a graph is weakly live. The proof is quite easy and hence will be left to the
reader.

Lemma 3.1: Given an I-graph G and a node u, u is not weakly live iff there exists an
IRC G’ that does not contain u.

Theorem 3.1: The language L1={(G,u)IG is an I-graph, u is a node in G, and u is
not weakly live} is NLNLM-complete.

Proof. Let uy be the initial node of the I-graph G. First, we show that L, isin NLNL,

To do this, we construct a new graph G’ from G by adding an edge from every deadend
node (i.e. nodes without outgoing edges) to the node u, and an edge from u to the
initial node Uy of G. It should be reasonable easy to see that, every IRC not containing

u in G is also an IRC not containing u in G’. The converse may not be true. This will
be the case only if u is not reachable in G, and from u an IRC is reachable in G’ that
was not reachable in G. In either case, by Lemma 3.1 we have that u is not weakly live
in G iff there is an IRC C in G’ (which is also reachable in G) such that u is not in
C. Note that the transformation from G to G’ requires only deterministic logspace.

Since G’ has no deadend nodes, u is not weakly live in G iff the following things
are true:

1.3veG,uy,* vin G, and

2. (v % u)in G.

Let A={(G,u,v)| u,v are either not nodes in the graph G or v¥su in the graph G’},
where G’ is the graph obtained from G as indicated above. Clearly A is in NL. Then

we can construet an OTM M using A as its oracle set such that L(MA)le. Basically,
M nondeterministically chooses a node v in G and writes v on the query tape. M then
nondeterministically verifies that uO*—w in G. If M is unable to do so the input is

rejected; otherwise, M consults its oracle and accepts the input only if the response is
"no". Thus, an input (G,u) will be accepted iff 1 and 2 above are true. Hence, L, isin

NLNL[I]

In what follows, we show that L, is NLMU hard. Let M be an O(log n) space

bounded OTM that makes at most one oracle call during the course of any
computation. Let A be in NL. Without loss of generality, we assume that
A={(G,u,v)|u and v are nodes in G and u*»v in G} -- the directed graph reachability
problem. We also assume that M behaves in the canonical fashion described in
Theorem 2.2, i.e., the last step of any computation is the oracle call and M accepts its
input only when it receives a negative oracle response. We now show how to construct

an I-graph G containing a node u (depending on M, A, and x), in deterministic log
space, such that M accepts x iff u is not weakly live in G.

Let T be an NTM that accepts A and operates in O(log n) space. A configuration
of M (on input x), as defined in Section 2, is a 4-tuple c=(q,i,z,w), where q is the
current state of M, i is the input head position, and z and w are contents of the tape
and query tape respectively. (z includes the tape head position as well.) A
configuration of T (on some input y) is a 3-tuple (q,i,z), where each term is the same as
above. We construct a graph GM,x such that each node represents a configuration of M
on x, and each edge denotes the corresponding transition. Let the initial configuration
of M on x be the initial node of Gy, Similarly, we define GT to be the computation
graph of T on y. Note that since M operates in O(log n) space, the size of G M x is
polynomially related to the size x. Now, the graph G can be built as follows. G will
contain GM,x (as a subgraph) and a new node ¢. Furthermore, for each query
configuration c==(q,i,z,w), we add an edge from c to the initial node of GT ws n
addition, from every accepting node in GT}w we add an edge to the node ¢, and for
every non-accepting node we add an edge to the initial node of GT,w‘ Lastly, we add an

edge from every node of G, to ¢y—the initial node of Gy from cj to ¢’ and from ¢’

to ¢,. See Figure 3.1. Note that since the string w is alway,rs of length logarithmic in x
(the input of M), the size of each G Tw will be polynomially related to the size of x.

Therefore, the size of the whole graph G is polynomial in the size of x. This implies
that the above construction can be done in deterministic log space.

Now, we claim that M accepts x iff the node q’ is not weakly live. To see this, we
first note that M accepts x iff for some reachable query configuration (q,i,z,w) in G, an

Accepting

(Query configurations

configurations

: o
..,__){\‘/

Figure 3.1 The I-graph G.

10

accepting state is not reachable in Gp - This is true iff the node q’ is not reachable

from the initial node of GT W which in turn is true iff there exists some IRC in GTw

not containing q’. Thus, by Lemma 3.1 we have that L1 is NLNLH pard, o
Theorem 3.2: The language L,={G| G has an IRC} is complete for NLNL,
Proof. The fact that L, is in NLNL can be derived using a similar argument as was

used in the proof of Theorem 3.1. Here we only show that L, is NLM phard. To do
this, consider an instance of L, (G,u) where G=(V,E) is an I-graph and u is a node in

V. We construct a new graph G’=(V’,E’) by adding a new node u’ such that V’= V U
{v’} and E'= E U {(uw,u")}. In other words, G’ is constructed by connecting u to a

deadend node u’. In this way, u is not weakly live in G iff G’ has an IRC. The
theorem follows. o

4. w-machines with fairness constraints

Our main concern in this section is to define w-machines where acceptance is
defined as in [5, 21] but with the additional criteria that all accepting computations
satisfy some fairness constaint. Then we investigate the complexity of the
Non-Emptiness Problem (NEP) for such machines. It turns out that their complexities
fall into one of the following categories:

1. NLOGSPACE-complete,

2. NLNLm—complete (the second level of the restricted logspace oracle
hierarchy),

N[N . ,
3. NL -complete (the third level of the restricted logspace oracle
hierarchy),

4. PTIME-complete.

Using these results, we are able to derive some complexity bounds for liveness questions
concerning logic and systems of CFSM’s, which we present in the next section.

4.1 w-finite state machines

A nondetermainistic finite state machine (FSM) M is a 4-tuple (Q,Z,qo,é) where
Q is the finite set of states,

X is the finite set of input symbols,

q is the initial state, and

11

5Q X ¥ — 29 is the transition function.

Let =¥ denote the set of infinite strings over X. Let T=a,,8,.. be an infinite sequence

of input symbols, i.e. an element in . A run r on o in the state q is an infinite
sequence of states 4q>dgsee- such that q,=q and for every 1<i, qi+165(qi,ai). For a run
r==Q,,dgs..:y WE define Pr(i)zqi, i.e., the i-th state in the sequence. Let q be a state, we
use # (q) to denote the number of occurrences of q in the run r. Let #_(q)=0c0 iff q
occurs infinitely often in r. We also define Inf(r)={q | # (q)=occ}. In other words,
Inf(r) is the set of states that occur infinitely often in r. An «-FSM is a 5-tuple
M=(Q,E,q0,5,F) where M;=(Q,Z,q,,5) is a FSM and FC22 is called the set of
designated state sets. We now introduce the notion of "-acceptance”, where i=1, 1°, 2,

2’, or 3, as was defined in [21]. See also [5]. Given an input o, let r be any run on o in
the initial state q;. We say:

(1) o is I-accepted iff 3HEF, i, P (i)eH.
(2) o is 1™-accepted iff IHEF, Vi, P (i)eH.
(3) o is Z-accepted iff IHEF, Inf(r)NHs£g.
(4) o is 2™-accepted iff IHEF, Inf(r)CH.

(5) o is 3-accepted iff Inf(r)eF.

We define L.(M)={o| there is a run of M on o such that o is i-accepted} to be the

language accepted by M in i-acceptance mode. Informally speaking, o is 1-accepted if r
visits some state which belongs to some designated state set in F. ¢ is 1’-accepted if
there exists a set H in F such that, every state in r is also in H. ¢ is said to be 2-
accepted if the set of states that appear infinitely often in r contains some state from
some designated state set in F. o is 2’-accepted if the set of states that occur infinitely
often is a subset of some designated set in F. Finally, o is 3-accepted if the set of states
entered infinitely often in r coincides exactly with some designated state set in F.

The NEP for w-FSM’s is to, given an «-FSM M, decide whether M accepts any
input. The following theorem is easily shown:

Theorem 4.1: For all i-acceptance modes, the NEP is NLOGSPACE-complete.

In what follows, we introduce the notion of fair acceptance for «-FSM’s. Let
Mz(Q,E,qﬂ,é,F) be an w-FSM. Let r (=q,,q;,-..) be a run over the input o (=a0,al,...).
With respect to r and o, we can define an infinite sequence of transitions E: €gy€y»--- such
that, e, is the transition (qi,ai)~—>q1+1. The run r is said to be strongly fair iff for every

state q such that #r(q)zoo, every outgoing transition of q must occur infinitely often in

12

E. The run r is said to be fasr if for each e: (q,a)—q’, e occurs infinitely often in E, then
every transition (q,a)—q", where q"€§(q,a), must also occur infinitely often. Note that
with comparison to a strongly fair run, a fair run only requires that, those transitions
that have been "enabled" infinitely often must be executed infinitely often as well. We
then define the language of fair (strongly fair) i-acceptance by an «-FSM M to be
Lf(M):{a[there exists a fair run r on ¢ such that, ¢ is i-accepted} (LiSf(M)z{al there
exists a strongly fair run r on ¢ such that, o is i-accepted}). The fair (strongly fair)
NEP will be to, given an w-FSM M, determine whether Lf(M)#gb (Lff(M)#é)

Theorem 4.2: Given an «-FSM M, the fair (or strongly fair) NEP, i.e. "Is LgM)#qS
(or L;f(M)#qs)?", is NLOGSPACE-complete.

Proof sketch. We only show that the problem can be solved in NLOGSPACE. The
fact that the problem is NLOGSPACE-hard can be derived using a standard reduction
from the directed graph reachability problem [31]. We first consider the strong fairness
case. Consider an arbitrary w-FSM M=(M,,{H ,H,,...,H, }), where M, is a FSM and

{Hl""’Hk} is the set of designated state sets. M accepts some input iff there is a
strongly fair run r such that inf(r)=H,, for some i. We now describe an NTM W that

accepts M iff Lséf(M)ﬁ and runs in nondeterministic log space. First W guesses a value
for i, 1<i<k. Note that the set H, is part of the input tape; let $h1,h2,...,hm#
represent this part. To do the checking, two pointers Py and P2 are used. P1 is
associated with H; and indicates those states in H, that W currently recalls having
visited. Initially P, points to hl' The checking procedure basically consists of two
stages. In the first stage, P2 will be used as a pointer to traverse the state transition
graph of M, (initially P, points to the initial state of M,), while P, remains unchanged.

During the traversing, W nondeterministically "guesses" at some point that the current
state is in an IRC that contains exactly those states in H;; and then proceeds to the

second stage. In the second stage, assume that P, is currently pointing at hj, 1<j<m.
Similar to the first stage, P2 is used to traverse the graph. However, some extra

checking is needed at each step. When visiting a state, say p, W first tests whether
every adjacent state q of p (i.e., q€8(p,a) for some input symbol a) is in H.. If not, the

checking procedure terminates unsuccessfully; otherwise, one of the adjacent ¢’s, say ¢,
will be nondeterministically chosen to be visited next. Furthermore, if q’zhj_H, P, owill

be advanced to the next position. This procedure in stage 2 repeats until P, hits the
#. Then, the above traversing continues until the state h, is again visited. At this time

W accepts the input. It is now reasonably easy to see that W accepts such an input iff
there is a strongly fair run that visits exactly the states in Hi in this manner. Since the

space needed for the pointers is logarithmie, the strongly fair NEP can, therefore, be
solved in NLOGSPACE.

A similar argument can be applied for the fair case. The main modification will be

13

that, for each state, we only have to test those states with the same label (i.e., the input
symbol) to see if they are in H,. Further details are left to the reader. o

This theorem tells us that, type 3 acceptance is, in some sense, easier to analyze

than other types of acceptance. In the remainder of this section, we only consider type
1, 1, 2, and 2’-acceptance modes.

Lemma 4.1: Given an w-FSM M, the fair NEP, i.e. "Is LI(M)#, where i=1, 1’, 2, or
2'v . is PTIME-hard.

Proof. To show this, we reduce the path system problem, which is well-known to be
PTIME-complete [17], to the fair NEP for w-FSM’s. Recall that a Path System is a 4-
tuple P=(X,R,S,T) where X is a finite set of nodes, S (CX) is a set of starting nodes, T
(CX) is the set of terminal nodes, and R (CXXXXX) is the set of rules. A node x in
X is said to be admaissible iff either x€T or Jy,z€X such that (x,y,z)€R and both y and

z are admissible. The Path System P=(X,R,S,T) is said to have a solution iff there is
an admissible node in S.

Now, given the Path System P we want to, for each i=1, 1’, 2, or 2, construct an
w-FSM M, to, in some sense, "simulate" P such that Lif(Mi)gégB iff P has a solution. To
do this, we define Miz(Q,Z’,qO,(S,F) to be:

Q=XU{qy4’},
r={a,b},
8 (Let S———{sl,sg,...,sk}, T:{tl,tQ,...,th} and let a/b denote either a or b.)
(1) s,€8(qq,a/b),
(2) vV 1<i<k-1, s, ,€4(s;,a/b) and
5,€8(sy,a/b),
(8) v 1<i<h, q’€4(t,,a/b),
(4) ¥ x€(X-S-T), qy€8(x,a/b),
(5) ¥ xE(X-S-T), if (x,y,2)€R, yeo(x,a) and z€5(x,b).
F={X-T}.

See Figure 4.1. We claim that P has no solution iff M, has a fair run, i.e. Lf(Mi)#qs. To

show this, first assume that P has no solution. Let A and B the sets of nonadmissible
and admissible nodes, respectively. Clearly, SCA. According to the construction of M,
for every node x in A there exists at most one edge that connects x to some node in

14

B. (Otherwise, x would be admissible.) Furthermore, for each state in A (CX-T), there
are two edges back to qy- Consequently, there exists a fair run, say r, that only visits

states in A (CX-T). Since we chose F={X-T}, the input associated with r will be
accepted by Mi’ for i=1, 1’, 2, and 2’. On the other hand, consider the case when P has
a solution, i.e., some state, say s’, in S is admissible. Note that by construction a fair
run on M, must have all states in S appear infinitely often. Since s’ is admissible, there

must exist a rule (s’,x,y)€R where both x and y are admissible. Therefore, we can
conclude that either x or y must occur infinitely often in the run. Inductively then
there must exist a node t in T that also occurs infinitely often in the run. This implies
that the deadend state q" will occur infinitely often, which is certainly impossible. As a
result, no fair run exists for the case when P has a solution. M, (i=1, 1’, 2, or 27),

therefore, cannot fairly accept any input. Thus, we have Lf(Ml)ﬁ) iff P has no solution.
The lemma then follows. O

In Section 5, we will further see that the model of fair w-machies can be modelled
by using the so-called Fair Computation Tree Logic. Furthermore, the fair NEP will be
reduced to the canonical form model checking problem for that kind of logic, which is
known to be solvable in PTIME [9]. Consequently, we have the following result:

Corollary 4.1: The fair NEP for «-FSM’s (for acceptance modes 1, 1’, 2 and 2’) is
PTIME-complete.

Notice that the proof of the above lemma required that the constructed w-FSM
have two distinct input symbols. An interesting question arises if we restrict the
problem to w-FSM’s over a single letter input alphabet. In this case, it turns out that
the aforementional problems are NLNLM—complete.

Theorem 4.3: For w-FSM’s over a 1-letter alphabet, the fair (for acceptance modes 1,
1’ and 2’) NEP is NLNL[”-complete.

Proof. Notice that a fair run for an w-FSM over a 1-letter alphabet is a strongly fair
run, and vice versa. Based on this observation, we first show that the fair NEP is
NLMOLhard. To show this, we reduce the problem L, mentioned in Section 3 (the

problem, given an I-graph G=(V,E), to determine if G contains an IRC), to the fair
NEP for w-FSM’s. The reduction simply involves constructing an w-FSM M where the
states (transitions) of M correspond to the nodes (edges) of G, and F (the designated
state set) contains the set of all nodes in G. In this way, for all fair accepting modes (i.e.
1, 1’, 2, and 2’), M accepts some input iff G has an IRC.

Next, we show that the fair NEP is doable in NL™. Consider an «w-FSM
Mz(Q,{a},qo,ﬁ,{Hl,Hz,...,Hk}). We first construct M’ from M by adding a new state ¢’
and transitions from every deadend state (a state with no outgoing transitions) to .
(This is similar to the construction used in the proof of Theorem 3.1.) In the
subsequent discussion, we consider the FSM’s M and M’ as I-graphs with qy as the

15

initial node. The edges, of course, are defined by the transitions. In what follows, we
construct an OTM M and an oracle set Al, for each i, such that M' will accept exactly
those machines M where Lf(M)%qﬁ Each M' is similar to the OTM constructed in

Theorem 3.1. However, for different accepting modes, additional checking steps are
required. Let

Al={(M,i,u)| one of the following is true:
e M is not an w-FSM,
e i does not represent the index of one of M’s designated state sets,
e u is not a state in M, or

e u¥t>q’ in M’}

Let
A17=A2’:{(M,i,u)] one of the following is true:

¢ M is not an w-FSM,

* i does not represent the index of one of M’s designated state sets,
e u is not a state in M, or

e 3 wgH, u*>w in M’}

These sets can easily be seen to be in NL. Intuitively speaking, (M,i,u) is not in Alif u
can not reach the deadend node q in M’, and hence u can reach some IRC of

M. Similarly, (M,i,u) is not in AV (AQ’) if u can reach some IRC of M and the set of
states in that TRC is a subset of H.. Now, M" (n=1, 1’, 2’) on input M operates as
follows:

1. M" guesses a value i, 1<i<k.

2. M" nondeterministically traverses the state graph of M until some state say
u (chosen nondeterministically) is visited. If n=1 (1’) some (each) state
visited must be in Hi; if n=2" u must be in H..

3. M" then accepts iff (M,i,u)gA".

The reader can now verify that M™ accepts M iff Li(M)#gb Notice that each OTM

mentioned above requires only log space for its working tape, writes only strings of
logarithmic length on the query tape, and consults its oracle only once. The theorem
then follows. u]

16

Corollary 4.2: The strongly fair NEP for w-F'SM’s (for acceptance modes 1, 1’ and 2')
is NLNL[l]-Complete.

Proof. In a strongly fair run, it must be the case that for every state occurring
infinitely often that all of its outgoing transitions are traversed infinitely often. This is
essentially the same problem then as the fair NEP over a 1-letter alphabet, which has
just been shown to be NLNLm—complete. o

We do not know whether Theorem 4.3 (and Corollary 4.2) hold for 2-acceptance.
The hardness part holds as indicated in the proof above; however, the best upper bound

NL[1]

we can provide at this time is NLNL . (The upper bound follows from Lemma 4.3
in the following subsection.) Lastly, similar ideas as those used in Theorem 4.2 and [13]
can be combined to show that the w-1CM NEP for 3-acceptance is NLOGSPACE-
complete.

4.2 w~one counter machines

An «-1CM is a 7-tuple M:(Q,E,T,qo,é,ZO,F), where Q is the set of states, ¥ is the
input alphabet, 7={Z),B} is the stack alphabet, qo is the initial state, &

QXEX 7—2Q@X {1041} ig the transition function, Z, is the bottom-of-stack marker (Z,

can neither be written nor erased), and F (QQQ) is the set of designated state sets.
Roughly speaking, w-1CM’s operate in a similar way as conventional 1CM’s except that,
we are interested in those inputs over X, instead of 5. The actions of the w-1CM
depend on the current input symbol, the internal state of the machine, and the status of
the counter: positive or zero (i.e. whether there are zero or a positive number of B’s
currently on the stack). The definition of strongly fair i-acceptance for w-1CM'’s is
exactly the same as that for w-FSM’s. However, for the definition of fair acceptance,
the notion of when a transition is "enabled" is essential. We define a configuration of
an «-1CM to be a 3-tuple (q,i,h) where q is the current state of the machine, i is the
current input head position, and h is the value of the counter (i.e. the number of B’s

currently on the stack). Let ¢, and ¢y be two configurations. We use ¢,—¢, to denote

that ¢, can lead to Cq in one computational step. (The input is not important here, and
hence is not explicitly shown.) Let Cli—mQ represent the reflexive transitive closure of
the "—" relation. Let c;=(q,,0,0) denote the initial configuration. A transition is said
to be enabled in a configuration iff the move defined by the transition can be taken.
An infinite computation path (i.e. an infinite sequence of configurations beginning with
¢y such that each subsequent configuration follows from its predecessor) is said to be a
fair run iff every transition that is enabled infinitely often is executed infinitely often.

Based on this notion, fair i-acceptance can then be defined similarly to that for
w-FSM’s.

Since w-FSM’s are just special cases of w-1CM’s, the fair NEP for «-1CM’s is at

a,b

o s] owew sees owr smee awe wmn e e e e MR WS G aowe NS SRS wes mm meR bam o AW SRR

Figure 4.1 Th81ﬂ~FSP§ﬂ§.
v’'s successors

y's predecessor

.

d{=0,1,0or ~1): add d to the counter
={0: test for zero

Figure 4.2 A mechanism to enable one ond only one of
v's oulgoing edges.

17

least PTIME-hard. In what follows, we focus on those w~-1CM’s over 1-letter input
alphabets.

Lemma 4.2: Given an «-1CM M over a 1-letter alphabet, the fair (for acceptance
modes 1, 1’, 2 and 2’) NEP is PTIME-hard.

Proof sketch. For a state v, we introduce the mechanism (as shown in Figure 4.2} that
will allow the enabling of one (and only one) of a state’s outgoing edges. In this way,
we can think of the transition from v to v, to be the one which reads an input, say a;

while the other edge (the transition from v to v,) is the one that reads an input b.

Consequently, we can then emulate the proof for w-FSM’s over 2-letter alphabets, which
was shown to be PTIME-hard in Lemma 4.1. The lemma then follows. o

Lemma 4.3: For «-1CM'’s, the strongly fair (for acceptance modes 1, 1’ 2 and 2’) NEP
NL]1
is solvable in NLNL1 | }.

Proof. Let M be a 1CM. In what follows we show how to construct OTM’s M™ (that
make at most one oracle call during the course of a computation) and oracle sets A™ (in
NLNLM), n=1, ', 2, 2’, such that M" using the oracle A™ accepts M iff Lff(M)#qs.
First, we show how to determine if there is a strongly fair accepting run in M. In order

to show this, we first claim that there exists a strongly fair path in G iff the following
conditions are satisfied:

1. 3 ¢;=(v,i,h), where h is polynomial in |[M]| (the size of M), and ey, and

2. either

V state w in M, either

a. ~(v&w), or

b. there is a computation (v,,h)%(w,i’,)% (v,i*,h), for some 1’, i"
(i">1">1) and h’.

or

V state w in M, either

a. —(v¥&w), or

b. 3 h">h such that there is a computation (v,i,h)E (w1 h)E(v,iv h),
for some ¥, i", (i">1">1) h’, h" (h">h), where no transition requiring
a zero counter is used in the path.

Furthermore, using techniques from [13], it can be shown for any 1CM that, if there
exists a path satisfying either condition (b) above that there must also exist a short such
path whose length is less than a fixed polynomial P in IM|. Hence, the b part can be

verified in log space. Now, we want to show how the above procedure can be done in
NL{ VR :
NL . For n=1, 1’, 2, 2, define:

18

B={(M,v,i,h,m,t,w)| I {,i" (i">">i), h’, h"* (h">h)

such that either

t==1 and

(v,L,h)%>(w,i", 0)% (v,i",h)

(If n=1" or 2’, it is also required that every state visited on this path
be in H_.) or

t=2 and
(v,i,h)*(w,i",h") (v,i" h")
where no transition requiring a zero counter is used in the path.

(If n=1", or 2’, it is also required that every state visited on this path
be in Hm)}

From the above discussion we have that B" is in NL. Now, let
Al={(M,v,i,h,m,t)| 3 a state w in M such that
vE&w and (M,v,L,h,m,t,w)ZB"}

Using B™ as an oracle, A" can easily be recognized in NLNE, (This is done by writing
w on the query tape, and consulting the oracle B".) Now M" on input M operates as
follows:

1. M" guesses a value m, 1<m<k.

2. M" guesses a computation (step by step) of length less than P(]M|) ending in
say configuration (v,i,h). (If n=1 (1’), then one (each) state visited in the
above computation must be in H_.) M" also guesses a value of 1 or 2 for t.

3. M" accepts M if (M,v,i,h,m,t)gA" (If n=2 or 2’ also require v to be in H_.)

The reader can now verify that M" accepts the input M iff Lif(M)#ﬁ Notice that for
different accepting modes, different conditions are imposed on the checking procedures,
as was the case in the proof in Theorem 4.3. This proves the lemma. o

Lemma 4.4: For w-1CM’s over a 1-letter alphabet, the strongly fair (for acceptance
NL|1

modes 1, 1’ 2 and 2’) NEP is NLNL{L |]-hard.

Proof. As we know from Theorem 3.3, the restricted logspace oracle hierarchy is the
same as the logspace alternation hierarchy. In what follows, we show that the problem
is hard for AZ‘I?:, the class of logspace ATM’s using at most two alternations. Let M be
such a machine, and let x be the input string. Since M uses logarithmic space for its
working tape, the number of distinct configurations is polynomial in |x| (the length of

x). (A configuration contains the current state, the contents of the working tape, the
input head position, and the number of alternations made in the computation thus far

19

(<£2).) Let G be the graph representing the computation of M on x, where each node
represents a configuration and (¢ ,c,) is an edge iff the configuration ¢y is a successor of

the configuration ¢ Furthermore, without loss of generality, we may assume that G is

acyclic; otherwise, we could modify M in such a way that a counter is attached to the
machine that will be incremented by one each time a move is made. The new
configurations would then include the value of the counter and clearly, no two
configurations can have the same value if one is reachable from the other.

Our goal then is to construct an «-1CM W to simulate the computation of M on x
in such a way that, M accepts x iff W accepts some input. By definition, M accepts x
iff there is a path that for every existential (universal) state, some (all) of its successor
states will lead to accepting states. Let G=(V,E) be the I-graph representing the
computation of M on x. For every universal node (configuration) u in V, we define a
new l-graph G =(V,E), where V ={v | veV}U{s_}, u, is the initial node and
E ={(v, W)l (v,w)EE}. Let Vi (VL)’ 0<i<2, denote those nodes (configurations) in V
(Vu) where the number of alternations in the computation thus far is exactly i. Let
W=(Q,{a},{ZO,B},qO,é,ZO,F), where 45=c, (the initial configuration of M),
Q:VOUVlu[Uuevl V\l‘lUVIQl] and ¢ is defined as follows:

1. For every v,w € VOUV! we have (w,0)€8(v,a,Z,) whenever (v,w)€eE.

2. For every u€V! and every v,w GViUV?l we have (w,0)€§(v,2,Z,/B) whenever
(v,w)EE, .

3. For every u€V! we have (u,,0)€8(s 2,2)-
4. For every VEVi we have (u ,0)€6(v,a,Z).

5. For every VEVlll, WEV?1 where (v,w)EE_ we have (W,O)E(S(V,&,ZO/B) and
(w,+1)€é(v,a,Z,/B).

. . 9
6. For every rejecting node v in V; we have (SH,O)Eé(V,a,ZO/B).

7. For every accepting node v in Vﬁ we have (Su,-1)€5(v,a,B).

The state graph of W is pictorially described in Figure 4.3, where the label (a,7,i) on
edge (v,w) means that (w,i)€s(v,a,Z2). We now claim that M accepts x iff sz(W)#qs The
reason is that, the subportion of the state graph corresponding to G, contains an IRC
rooted at u; thus every reachable universal node in G, has to be visited infinitely often.

Let v, w be two nodes such that w follows v and v, w are universal, existential nodes
respectively. The fact that v occurs infinitely often implies that the transitions from v
to w labelled (a,Zy/B,0) and (a,Z,/B,+1) must also occur infinitely often. However,

(8,2/B,0)

\\iif?~1)

(8,2¢/B,0) | (2,2¢/B,0)
(3,2 OjB,O)
Rejecting }
stale
Accepting
state

Figure 4.3 The w - 1CM W,

20

once the counter becomes nonzero, the only way the edge from s to u can be traversed
later is by first traversing an edge from an accepting configuration to s. Thus, M
accepts x iff W has a strongly fair run. Since the number of possible configurations of

M on input x is polynomial in |x|, the above construction can be done in deterministic
logspace. This completes the proof. o

We then have the following theorem:
Theorem 4.4: The strongly fair (for acceptance modes 1, 1’, 2 and 2’) NEP for

. NL[l]NLm
w-1CM’s over 1-letter alphabet is NL -complete.

4.3 w~blind counter machines

An «-BCM with k counters («-BCM,) is a FSM with k counters attached to it. In
each step, the machine can increment or decrement each counter by one if the result is
nonnegative. However, the machine can not test any counter for zero. (So it is called
blind.) Essentially, a BCM with k counters [14] is a k-dimensional vector addition
system with states [15] which has been augmented by an input tape. A configuration is
a 3-tuple (p,i,x), where p is the current state, i is the input head position; and xeNK
represents the current contents of counters. Now similar ideas as those used in
Theorem 4.2 and [29] can be used to show that the «w-BCM, NEP for 3-acceptance is
NLOGSPACE-complete when k is a fixed constant. Although we are not explicit in

what follows, in the remainder of this subsection we only concern ourselves with 1, 1,2
and 2’ acceptance modes.

Lemma 4.5: The fair NEP for w-BCM, ’s, for a fixed constant k >2, is PTIME-hard.

Proof. Similar to the proof of Lemma 4.2. However, substitute Figure 4.4 in place of
Figure 4.2. o
Lemma 4.6: For an «-BCM, with n states, if there exists a computation c03‘-—>cli‘—>02,
where ¢ is the initial configuration, cl=(p,i,xl), c,=(p,i’;x,) and Xy>X,, then there is a

*k*log k
. . 9¢ Og
computation of the above form whose length is less than n .

Proof. Note that an n-state k-counter BCM can be simulated by a k-dimensional
Vector Addition System with n states. Therefore, similar arguments as those used in

[29] can be applied here. See also [2, 28]. o
Lemma 4.7: The strongly fair NEP for w-BCM, ’s over a 1-letter alphabet, where k is

NL{1
a fixed constant, can be solved in NLNLL [].

Proof. Similar to the proof of Lemma 4.2. (Lemma 4.5 will be used for part (b),
however.) o

Lemma 4.8: The strongly fair NEP for w-BCM, ’s over l-letter input alphabets is
NLI1
NLNL{] H—hard.

V'S successars
(1,0, (-1,0)

v's predecessor (0,-1)

O (0,0) (0,0) O ’
Y’ Y)

(-1,0)

(0,1, (0,-1)

Figure 4.4 A mechsnism to enable one and only of
v's outgoing edges.

Figure 4.5 An w- BCM 9

21

Proof. The proof is much the same as the one in Lemma 4.4 except that the graph in
Figure 4.5 will be used in place of the one in Figure 4.3. Note that we only require k
(the number of counters) to be two. o

Thus, we obtain:

Theorem 4.5: The strongly fair NEP for w-BCM,’s over I-letter input alphabets,

AR

where k is a fixed constant, is NLNE -complete.

5. Applications to related problems

In [4], liveness problems concerning networks of CFSM’s were considered. A CFSM
M is a directed labelled graph with two types of edges, namely sending and receiving
edges. A sending (receiving) edge is labelled send(y) (receive(y)), for some message g in
a finite set G of messages. One of the nodes in M is called the initial node. A network
of CFSM’s consists of two or more CFSM’s where each pair of machines communicate
by sending (or receiving) messages via one-directional, error-free, unbounded, FIFO
channels. Let M and N be two CFSM’s over the same message set G. We use (M,N) to
denote the network of M and N. A state of (M,N) is a 4-tuple [v,w,x,y] where v and w
are nodes in M and N respectively, and x and y are two strings over the message set
G. Informally, the state [v,w,x,y] means that the executions of M and N have reached
nodes v and w respectively, while the input channels of M and N contain the message
strings x and y respectively. We define the initial state of (M,N) to be [VorW oo BE],
where Vo and W, are initial nodes of M and N, respectively, and E is the null string.
See [4] for more detailed definitions.

A computation path (or path, for short) of (M,N) is an infinite sequence of states [
SgsSyse- Such that s, is the initial state of (M,N) and each Sii1 follows s, by executing
one move (i.e. traversing one edge) of M or N. (See [4] for the precise definition of
"follow".) A path [of a network (M,N) is called strongly fair iff, for any node u in M
or N, if u occurs infinitely often in / then all of its outgoing edges must be executed
infinitely often in I. A path [is called fair iff for any node u in M (or N) that occurs
infinitely often in [, the following two conditions are satisfied:

1. Each outgoing sending edge of u must be executed infinitely often in [.

2. If a state of the form [U,Wi,Xi,yi] ([Vi’u’xi’yi]) occurs infinitely often in [, and
g is the head message in x, (yi), and if u has an outgoing edge e with label
receive(g), then the edge e must be executed infinitely often in /.

A node u in M or N is said to be live (weakly live) iff u occurs infinitely often in every
fair (strongly fair) path of (M,N). Given a network (M,N) and a node u in M or N,
the liveness (weak liveness) problem is to determine if u is live (weakly live). For

22

certain restricted classes of CFSM networks, the liveness (weak liveness) problem
becomes decidable. Among them, the following two classes of networks:

1. 01: Networks of two CFSM’s whose communication is known to be bounded
by some constant k in one channel, and

2.0y Networks of two CFSM’s in which one machine sends only one type of
message,

were considered in [4]. There it was shown for both C, and C, that the problem of

deciding whether a node was not live (weakly live) is NLOGSPACE-hard. Also, weak
liveness was shown to be decidable in PTIME. In what follows, we derive some sh arper
results for these network classes. For example, we show:

Theorem 5.1: Given a network (M,N) in class C, (C,) and a node u in M or N, the
question "Is u not live?" is PTIME-hard.

Proof. The proof involves a reduction from the NEP for «-FSM’s. Given an «-FS™M W,
we show how to construct in deterministic logspace, a network (M,N) in C, (C 2) to

simulate the computation of W such that, a certain node in (M,N) is not live iff W
accepts some input. As shown in Lemma 4.1 the fair NEP for «-FSM’s is PTIME-
complete, hence we have that the liveness problem for C', (C}) is PTIME-hard.

Given an w-FSM W=(Q,Z,q0,5,{H1,...,Hk}), without loss of generality, we assume
that W is over a 2-letter alphabet, i.e., Y={a,b}. Furthermore, l-acceptance is
assumed. The network (M,N) is constructed as follows. The set of states in M comnsists
of the set Q and a new isolated state u (a state without incoming or outgoing edges).
The set of edges in M is constructed from those in W by replacing every read(a)
(read(b)) transition by a receive(a) (receive(b)) edge. In addition, a self-loop labelled
receive(#) is associated with each state in H;, 1<i<k. See Figure 5.1. Basically, the
machine M acts as a "simulator" that simulates the computation of W in such a way
that, each read(a) (read(b)) operation in W is simulated by a receive(a) (receive(b))
move in M. The machine N, on the other hand, is used to supply input symbols to M;
while the channel from N to M represents the input tape of W. If W accepts any input,
say [in {a,b}¥, then either:

1. [contains a finite number of b’s and an infinite number of a’s, or
2. [contains an infinite number of a’s and b’s, or

3. [contains a finite number of a’s and an infinite number of b’s.

Note that the nodes w,, w, and w, in N are used to simulate the above three cases,
respectively; while the node W, Is used to supply a finite prefix. According to the
construction of N, every fair path must include the states w, and W, and hence the

@ O-bounded

- send

+ . recejve

Figure 5.1 A network (M,N} in f.“} and {.“2 .

0~ bounded

Figure 5.2 A network (M,N)in 5‘? and £ _.

23

action send(#) must be executed. This implies that for every fair path, a receive(#)
must be executed in M as well. Correspondingly, some state in Hi’ for some i, must be
visited. It should then be clear that, W accepts an input iff the node u is not live in
(M,N). Since N’s input channel is always empty, the network in Figure 5.1 is clearly in

¢, and €, Hence, the liveness problem for such networks is PTIME-hard. o

Lemma 5.1: Given a network (M,N) in class C, (Cy) and a node u in M or N, the
. . . NL 1)L

question "Is u not weakly live?" is NL -hard.

Proof. Let W be an arbitrary 2-alternating ATM. Now given an input string x, we
show how to construct a network (M,N) in C, (C,) that will simulate the computation

of W in such a way that, W accepts x iff a node u in M is not weakly live. See Figure
5.2. Basically M has the same structure as the machine M used in the proof of LLemma
4.4. (See Figure 4.3.) Let v be an existential configuration which immediately follows
some universal configuration, say w. We add two edges from w to v; labelled "sennd(b)"
and "send(c)", respectively. In addition, for each accepting configuration y, we add the
edge from y to u labelled "send(c)"; while for each rejecting configuration z, we add the
edge from z to u labelled "send(b)". Now, once the send(c) at v is executed, another
send(c) must be executed later, which ensures that an accepting configuration is
subsequently reached. Otherwise, machine N will get blocked in state 3. The reader,
then, can easily see that u,, the initial state of M, is not weakly live iff W accepts x.
Furthermore, since M’s input channel is always empty, (M,N) is in both C,and C,
The lemma now follows. o

In what follows, without loss of generality, we assume that the channel from N to
M is either bounded by a fixed constant k (for C, networks) or contains a single type of
message (for C, networks). Let R’ be the set of all computations of (M,N) such that,
for every state [v,w,x,y] on the path, |y|<1. The notation cli‘—>02 will be used to
indicate that configuration ¢, is reachable from ¢, via a path in R’. The following two
lemmas concerning necessary and sufficient conditions for the existence of a strongly
fair path were given in [4]:
Lemma 5.2: For a network (M,N) in C, a node in M or N is weakly live iff it occurs
infinitely often in every strongly fair path in R’.
Lemma 5.3: For C, networks, if there exists a strongly fair path in R’ in which a
node u occurs at most finite number of times, there must exist another such path g such
that the sequence of moves (i.e. edges) in q is of the form t,(t5)*, where It,] and [t,| are

bounded by a polynomial in 2¥, [M| and IN|. (Note that 2K is a constant here.)

Using Lemmas 5.2 and 5.3, we can prove the following result:

Lemma 5.4: Given a network (M,N) in class ¢, (Cy) and a node u in M or N, the

. . . N[NE]
question "Is u not weakly live?" can be solved in NL .

24

Proof. Here we only consider networks in C,. The basic idea is to, as in the proof of

Lemma 4.3, find IRC’s in M and N that avoid the node u and check whether they can
be traversed infinitely often in some computation path. Note that since k is a fixed
constant, the number of distinct states of (M,N) in R’ is polynomial in terms of M|, |NJ,

and |G|. Let P be the polynomial mentioned in Lemma 5.3. According to Lemmas 5.2
and 5.3, u is not weakly live in (M,N) iff

1.3 v_and v in M and N, respectively, and strings x and y in G* (|x|<k and
ly|<1), such that [VO,WO,E,E]L[Vm,Vn,X,y],

2.V w and w_ in M and N respectively, either

a. ~(vpHw A v 5w) (w (w)is not reachable from v _ (v) on the

graph of M (N)), or
b. 3 strings r and s in G* |r|<k and |s|<1, such that
[V Vo X [W w o ses]® v v xgy].
Consider the language
AQ:__—{(M,Vm,wm,X,N,Vn,Wn,y)|

3 strings r and s, |r|<k and |s| <1, such that

Vo Vo Xy w ow s v voxy])

Clearly A? is in NLOGSPACE. Now consider
A1={(M,Vm,X,N,Vn,y)] condition (2) does not hold for [vm,vn,x,y]}.

Given a network state [v_,v ,x,y], condition (2) does not hold iff there exist states W
(reachable from v) and w_ (reachable from v) such that (b) is not true. Thus, using

A? as an NL oracle, we have that Al is in NLNH, Similarly, using Al as an oracle, we
have that the previous algorithm (composed of checking conditions 1 and 2 above) is

NL{1
doable in NLN] { }. Thus, the lemma is proved.

A similar argument can be used for the case of OQ networks. ul

The following theorem follows immediately from Lemmas 5.1 and 5.4:

Theorem 5.2: For classes ¢, and C, networks, given a node u to determine whether u

NL[1
is not weakly live is NLNE[] { }-complete.

The second part of this section is devoted to applying our previous results to the
Fair Model Checking Problem (FMCP) for Fair Computation Tree Logic (FCTL), which

25

was considered in [9]. In [9], the authors show that the FMCP is, in general, NP-
complete. But the canonical form FMCP is shown to be doable in PTIME (actually
linear time). However, no lower bound was given for this restricted class. In what
follows, we show that the canonical form FMCP is PTIME-hard, and thus P TIME-
complete. Before proceeding, some preliminaries are required. Further details can be
found in [9].

A structure M=(S,R,L) is a labelled transition graph where S is a finite set of
states, R (CSXS) is a binary relation representing the possible transitions between
states, and L is a labelling which assigns each state to a set of atomic transitions (i.e.
those propositions which are true at that state). A fairness constraint ®, is constructed

o0 o0
from the propositions F p ("infinitely often p") and Gp ("almost always p") using the
standard boolean operators. Here p can be any boolean formula constructed from the
atomic propositions. For a structure M and an infinite path x= Xy Xqyeery the |=

relation is defined inductively as follows: (Let Xizxi, Xi g

[a—Y

. M,x |= P iff the atomic proposition P is true at X

[]

- Mx |= =p iff not(M,x |= p).

W

- Myx |= pAqiff M)x |= p and M,x |= q.

N

>0 .
- Mjx |= F p iff there exists infinite many i>0 such that Mx' |= p.

5. Mx |= Gp iff 3i>0(Vi>i, My |= p).

Given a structure M=(S,R,L.) and a fairness constraint ®,, the Fair State Problem

(FSP) is to determine for each state s in S, whether there exists a path x (in M) starting
at s such that M,x |= ®,- Note that the FSP is a special case of the FMCP. In [9], it

has been shown that the FMCP can be efficiently reduced to the FSP. There it is also
shown that the FSP is, in general, NP-complete. However, when ®, is in the canonical

o0 O
form /\i‘z1 (Gp; VF q,), the FSP can be solved in linear time. In what follows, we show

that we can reduce the fair NEP for w-FSM’s under 2-acceptance to the canonical form
FSP. Since the former problem is known to be PTIME-complete, the canonical form
FSP is PTIME-hard (and hence so is the canonical form FMCP).

Lemma 5.5: The fair NEP for w-FSM’s under 2-acceptance can be reduced to the
canonical form FSP by a deterministic log space reduction.

Proof. The basic idea of the proof is that, given an «-FSM W, we construct a model
M=(S,R,L) and a fairness constraint ®, (of the form indicated) in deterministic log

space such that, W accepts some input iff the FSP has a solution with respect to M and
Pp-
0

26

Let W={Q,{a,b},q0,5,{H1,H2,...,Ht}}. Let Q={q,q;s---,q,}- We define S=Qu{ai,j|
qje(S(qi,a)}U{bi’jl qj€5(qi,a)}u{q’}. The relation R of M is constructed from the graph of
W by replacing each edge (qi,qj) labelled read(a) (read(b)) by two edges (qi’ai,j) and
(a‘i,j’qj) ((qi’bi,j) and (bi,j’qj))' In other words, the state B | (bi,j) is inserted between q
and 9 if 4= d;e In addition, for every state q in S—{qo}, the edges q—q’ and q'—q are
added. Finally, the edge q’—q, is added. Note that R is strongly connected. See
Figure 5.3. We define L as follows:

1. Qq, is true only at state q’.
2. Q, (0<i<r) is true at state 5, iff 5;=1;-

3. H is true at state 5 iff 5,€ Uit:1 H..
4 A (Bi,j) (0<i,j<r) is true at state s iff S4=3 ; (bi,j)‘

Now we define the fairness constraint to be the conjunct of the following:

>0 o0
(1) G(ﬂQq,) V F false
* This ensures the state q’ occurs only finitely often. *\

o0 o0
(2) GH vV F false

* This ensures that a state in some H;, 1<i<t, occurs infinitely often. *\

o0 o
(3) For every i, 0<i<r, G(=Q,) VF ((Vi_, A

=0 AV (Vio Biy))

* For each q;, either g, is visited only finitely often or one of its outgoing
edges must be traversed infinitely often. *\
o0 o0
(4) For every 1,j, 0<i,j<r, G(ﬂAi,j) v F (Akﬁ Ai,k)

* For each state, if one of its outgoing edges labelled "read(a)" occurs

infinitely often, then all of its outgoing edges with the same label must occur
infinitely often. *\

(5) Replace A with B in case (4).

Let ¢,=(1)A(2)A(B)A(4)A(5). Tt should be clear that W accepts something iff the FSP
with respect to M and ¢, has a solution. This completes the proof. W

Theorem 5.3: The canonical form FMCP is PTIME-complete.

In what follows, we generalize the result in lemma 5.5 to w-1CM’s. To show this,
we need the following easily seen facts: (Let (p,i)®*>(q,j) denote that in state p with

Figure 5.3 The construction of M from W.

27

counter value i, W can reach the state q with counter value j.) Now, there exists a
polynomial P such that for every «-1CM W, if there exists a fair run, then there exists a
path (q,0)%+(q,h)*>(q,h+d) such that

1. 0<h,d<P(|W]),
2. the length of the path is no more than 2*P(|W]), and

3. either d=0, or d>0 and no move in the path depends on the counter being
zZero.

The significance of this fact is that, we are able to capture the computations of some
infinite paths using finite models. Therefore, using similar methods as were used in the
proof of Lemma 5.5, we can derive the following result:

Lemma 5.6: The fair NEP for «-1CM'’s can be reduced to canonical form FSP.

Hence, we also have:

Theorem 5.4: The fair NEP (for acceptance modes 1, 1’, 2 and 2’) for w-1CM’s is
PTIME-complete.

References

[1] Bentley, J., Ottmann, T. and Widmayer, P., The complexity of
manipulating hierarchically defined sets of rectangles, Advances in
Computing Research, JAI Press Inc., Vol. 1, 1983, pp. 127-158.

[2] Borosh, I. and Treybis, L., Bounds on positive integral solutions of linear
Diophantine equations, Proc. AMS, Vol. 55, No. 2, March 1976, pp. 299-304.

[3] Chandra, A., Kozen, D. and Stockmeyer, L., Alternation, JACM, Vol. 28,
No. 1, January 1981, pp. 114-133.

[4] Chang, C., Gouda, M. and Rosier, L., Deciding liveness for special classes of
communicating finite state machines, Proc. of the 22nd Annual Allerton
Conf. on Communication, Control, and Computing, 1984, pp. 931-939.

[5] Cohen, R. and Gold, A., Theory of w-languages. I: Characterizations of
w-Context-Free languages, J. of Computer and System Sciences, 15, 1977,
pp. 169-184.

[6] Cook, S., The classification of problems which have fast parallel algorithms,
Fundamentals of Computation Theory, LNCS 158, 1983, pp. 78-93.

[7] Cook, S., The complexity of theorem proving procedures, Proc. of the 3rd

28

Annual ACM Symp. on Theory of Computing, 1971, pp. 151-158.

[8] Emerson, E. and Lei, C., Modalities for model checking: branching time
strikes back, Proc. of the 12th Annual ACM Symp. on Principles of
Programmang Languages, 1985, pp. 84-95.

[9] Emerson, E. and Lei, C., Temporal model checking under generalized
fairness constraints, Proc. of the 18th Annual Hawait Int. Conf. on System
Scrences, 1985, pp. 277-288.

[10] Fischer, M. and Paterson, M., Storage requirements for fair scheduling,
Information Processing Letters, 17, 1983, pp. 249-250.

[11] Garey, M. and Johnson, D., "Computers and Intractability: A Guide to the

Theory of NP-Completeness", W.H.Freeman and Company, San Francisco,
1979.

[12] Gouda, M. and Chang, C., A technique for proving liveness of
communicating finite state machines with examples, Proc. of the 3rd Annual
ACM Symp. on Principles of Distributed Computing, 1984, pp. 38-49.

[13] Gouda, M. and Rosier, L., On deciding progress for a class of communication
protocols, Proc. of the 18th Annual Conf. on Information Sciences and
Systems, Princeton Univ., 1984, pp. 663-667.

[14] Greibach, S., Remarks on blind and partially blind one-way multicounter
machines, Theoretical Computer Science, 7, 1978, pp. 311-324.

[15] Hoperoft, J. and Pansiot, J., On the reachability problem for 5-dimensional
vector addition systems, Theoretical Computer Science, 8, 1979, pp. 135-159.

[16] Hopcroft, J. and Ullman, J., "Introduction to Automata Theory, Languages,
and Computation", Addison-Wesley, Reading, Mass., 1979.

[17] Jones, N. and Laaser, W., Complete problems for deterministic polynomial
time, Theoretical Computer Science, 3, 1977, pp. 105-117.

[18] Jones, N., Lien, E. and Laaser, W., New problems complete for
nondeterministic log space, Mathematical Systems Theory, 10, 1976, pp.
1-17.

[19] Karp, R., Reducibility among combinatorial problems, in Complexity of
Computer Computations, edited by R. E. Miller and J. Thatcher, Plenum
Press, New York, 1972, pp. 85-104.

29

[20] Ladner, R. and Lynch, N., Relativization of questions about log space
computability, Mathematical Systems Theory, 10, 1976, pp. 19-32.

[21] Landweber, L., Decision Problems for w-automata, Mathematical Systems
Theory, 3, 1969, pp. 376-384.

[22] Lehmann, D., Pnueli, A and Stavi, J., Impartiality, justice and fairness: The

ethics of concurrent termination, Automata, Languages and Programming,
LNCS 115, 1981, pp. 264-277.

[23] Lewis, H. and Papadimitriou, C., Symmetric space-bounded computation,
Automata, Languages and Programming, LNCS 85, 1980, pp. 374-384.

[24] Lichtenstein, O. and Pnueli, A., Checking that finite state concurrent
programs satisfy their linear specification, Proc. of the 12th Annual ACM
Symp. on Principles of Programmaing Languages, 1985, pp. 97-107.

[25] Lynch, N., Log space machines with multiple oracle tapes, Theoretical
Computer Science, 6, 1978, pp. 25-39.

[26] Papadimitriou, C., On the complexity of unique solutions, JACM, Vol. 31,
No. 2, April 1984, pp. 392-400.

[27] Papadimitriou, C. and Yannakakis, M., The complexity of facets (and some
facets of complexity), Proc. of the 14th Annual ACM Symp. on Theory of
Computing, 1982, pp. 255-259.

[28] Rackoff, C., The covering and boundedness problems for vector addition
systems, Theoretical Computer Science, 6, 1978, pp. 223-231.

[29] Rosier, L. and Yen, H., A multiparameter analysis of the boundedness
problem for vector addition systems, Univ. of Texas at Austin, Dept. of
Computer Science, Tech. Report No. 85-03, 1985. (Also, to be presented at

the Fifth International Conference on the Fundamentals of Computation
Theory, September 1985.)

[30] Ruzzo, W., Simon, J. and Tompa, M., Space-bounded hierarchies and
probabilistic computations, Proc. of the 14th Annual ACM Symp. on
Theory of Computing, 1982, pp. 215-223.

[31] Savitch, W., Relationships between nondeterministic and deterministic tape
complexities, J. of Computer and System Sciences, Vol. 4, No. 2, 1970, pp.
177-192.

30

[32] Stockmeyer, L., The polynomial-time hierarchy, Theoretical Computer
Science, 3, 1977, pp. 1-22.

