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ABSTRACT

Two classes of performance bounds for separable queueing networks are
presented, one for single-chain networks and one for multichain networks. Unlike
most bounds for single-chain networks, our bounds are not based upon the con-
sideration of balanced networks. Further, they are proved to be tighter than the
balanced job bounds of Zahorjan et al. and tighter than the balanced bounds of
Kriz; these comparisons are between bounds with comparable amounts of compu-
tational effort. We also present generalized bounds that are calculated using
sequences of population sizes; our method extends that of Eager and Sevcik.
These generalized bounds are shown to have a nested property. The optimal
population sequence, over all sequences of the same length, for getting the tight-
est bounds is also shown. The other emphasis of this paper is on performance
bounds for networks with many closed chains and many service centers. Bound-
ing techniques are especially important for multichain networks since the compu-
tation time and space requirements are often so large that an exact solution is
not feasible. Models of communication networks typically have many routing
chains which are characterized by a sparseness property. In the computation of
our performance bounds for multichain networks, we improve their accuracy by
making use of routing information and exploiting the sparseness property.






1. Introduction

Separable queueing networks have been widely used as models for predicting
the performance of multiprogramming systems as well as packet communication
networks. The solution of separable networks requires substantially less compu-
tation than does the solution of nonseparable networks. Yet the computation
time required by the best algorithms available is nevertheless proportional to the
number of customers for single-chain networks and exponential in the number of
routing chains for multichain networks. Such computational requirements are
very high for many models of realistic networks and systems. (This is especially
true for communication networks with many routing chains.) Since the separable
queueing networks are themselves approximate models of real systems and net-
works, an exact solution of their performance measures is not always warranted.
This is often true in the early stages of system design.

1.1. Previous work on bounding techniques

Let us first consider networks with a single routing chain. Techniques for
deriving upper and lower bounds of the mean delays and throughputs of separ-
able queueing networks have been presented by several authors. The asymptotic
bounds of Muntz and Wong [Munt74] are actually applicable to a larger class of
queueing networks than the class of separable networks. They also have the
advantages of being simple and easy to compute. However, asymptotic bounds
are in general very loose and do not provide adequate information to achieve
most system design objectives. The work of Zahorjan et al. [Zaho82] was prob-
ably the first development of bounds that are restricted to the class of separable
queueing networks. Their balanced job bounds (BJBs) were derived by consider-
ing related networks whose servers have identical loads and whose performance
measures bound those of the original network. Separable networks with fixed-rate
service centers but without delay service centers were considered. (Delay service

centers are sometimes referred to in the literature as infinite-server service
centers.)

Extensions of BJBs for separable networks with both fixed-rate and delay
service centers were developed by Eager and Sevcik [Eage83] and by Kriz
[Kriz84]. In addition, Eager and Sevcik presented hierarchies of upper and lower
bounds. Each hierarchy is a sequence of successively more accurate upper (or
lower) bounds with the BJB bound as the first element in the sequence and the
exact solution as its limit. Kriz also presented hierarchies of upper and lower
bounds, called balanced bounds, with his extensions of BJBs at the first levels of
the hierarchies. Methods for obtaining hierarchies of bounds were also developed
by Suri [Suri83] and by Stephens and Dowdy [Step84]. Like the method of
Eager and Sevcik and the method of Kriz, Suri’s method is based upon the MV A
recursion equations. On the other hand, the method of Stephens and Dowdy is
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based upon the convolution algorithm recursion. In each method, a sequence (or
hierarchy) of bounds is generated by an iterative procedure which allows one to
trade computation time for accuracy. It is interesting to note that BJBs or
extensions of BJBs were used as the first-level bounds in all of the methods for
generating increasingly more accurate bounds. Only Kriz presented bounds in
[Kriz84] that are not based upon the consideration of balanced networks. How-

ever, these bounds appear to be better than his balanced bounds only for some
networks.

Very little work has been done to develop bounds for multichain networks.
BJBs were proposed by Zahorjan et al. [Zaho82] and were extended by Kriz
[Kriz84] to multichain networks with both fixed-rate and delay service centers.

These bounds are very loose, in particular for networks with many chains and
many service centers.

1.2. Overview of our work

We have developed two classes of performance bounds, one for single-chain
networks and one for multichain networks. Like BJBs, our first-level bounds are
derived from the MVA recursion. But unlike BJBs, our first-level bounds are not
based upon the consideration of balanced networks. Instead, our bounds are
obtained by assuming that mean queue lengths are proportional to the loads of
the corresponding servers. Hence, these bounds are called proportional bounds.
For networks with no delay servers, proportional bounds are proved to be tighter
than the balanced job bounds of Zahorjan et al. For networks with both fixed-
rate and delay servers, proportional bounds are proved to be tighter than the bal-
anced bounds of Kriz. (As we shall see, these comparisons are between bounds
with comparable amounts of computational effort.) We shall also present a
method for computing generalized bounds given sequences of population sizes.
Our method can be viewed as an extension of the Eager-Seveik approach for
trading computation time for accuracy. We prove that the generalized bounds
have a nested property. We also present the optimal population sequence, over
all sequences of the same length, for getting the tightest bounds.

Another emphasis of this report is a class of performance bounds for net-
works with many chains and many service centers. Bounding techniques are
especially important for multichain networks for which the computation time and
space of an exact solution may be too large to be feasible.

In recent years, several authors, including us, have argued for the use of
closed multichain queueing networks to predict the performance of store-and-
forward communication networks and to solve network design problems such as
the optimal selection of routes and channel capacities [Lam82]. A recent experi-
mental study of ours [Lam85] further illustrated the inadequacy of the open
queueing network model and the desirability of the closed network model. The
obstacle that currently prevents the closed network model from being widely used



by network designers and analysts is the large computational time and space
required to calculate performance measures. Models of realistic communication
networks should have tens of closed chains or more, each modeling a flow-
controlled virtual channel. Such models cannot be solved by the conventional
convolution and MVA algorithms [Buze73,Chan75,Reis75,Reis80]. Lam and Lien
observed in [Lam83] that models of communication networks have routes that are
often characterized by sparseness and locality properties. They developed the
tree convolution algorithm that exploits routing information and can solve net-
works with tens of closed chains. Tree MVA algorithms were subsequently

developed independently by Tucci and Sauer [Tucc82] and by Hoyme et al.
[Hoym82].

Tree algorithms are too expensive to be used in network design algorithms
which need to evaluate very efficiently a network’s performance given certain
design perturbations or parameter changes. Reasonably tight performance
bounds are very useful for speeding up heuristic search procedures based upon
the branch-and-bound technique. Another place where we have found a useful
application of performance bounds of closed multichain networks is in the imple-
mentation of dynamic scaling in convolution algorithms [Lam82] to prevent the
occurrences of floating point underflows and overflows. (We employ the tree con-
volution algorithm and its associated tree of arrays whenever an exact solution is

called for in our network design techniques [Lam85].) In this role, the bounds can
be very loose but must be efficient to compute.

We have developed two algorithms for computing performance bounds for
closed multichain networks. Like the tree convolution algorithm, routing infor-
mation is exploited in the computation of these performance bounds. The first
algorithm is based upon the BJB idea. The second algorithm further exploits
routing information to improve the bounds obtained by the first algorithm. T he

accuracy of these bounds is much better than BJBs for networks with mamny
sparse routing chains.

In Section 2, we present proportional bounds for closed single-chain net-
works. In Section 3, we present hierarchies of nested proportional bounds. In
Section 4, our performance bounds for closed multichain networks are presented.
Throughout this paper the networks considered are BCMP networks with fixed-

rate (F) servers and delay (D) service centers [Bask75]. M denotes the total
number of service centers.

2. Proportional Bounds

To derive proportional bounds for closed single-chain networks, we consider
formulas in the MVA recursion. The mean delay D,, (n) of center m in a queue-
ing network with n customers is



T (144, (n 1)) if m is a fixed-rate server
Dy (n )= (1)

Tm if m is a delay server

where 7,, is the mean service time at center m and g, (n-1) is the mean queue
length at service center m in a network with n -1 customers [Sevc79,Reis80].

From Little’s formula [Litt61] , the throughput T(n) and mean queue
length ¢, (n ) are

T (0 )= g 2)
% D (n)
and
4 (n)=T (n)Dp (n). (3)

Equations (1), (2) and (3) form the main recursion of the MVA method
[Reis80]. Starting from these equations, we present several lemmas which lead to
the proportional bounds. Proofs of lemmas, theorems and corollaries stated
below can be found in the appendix.

Without loss of generality, assume that the fixed-rate service centers are
labeled 1,2,....Mp, and the remaining Mp centers are delay centers, where
Mp >0, My >0 and Mp +Mp =M We further assume that 7, <7< * -+ STag,.

Mr M
Define Lp= Y, T, Lp= 3, 7Tm and L=Lp+Lp.

m =1 m=Mp+1

Lemma 1: The mean queue lengths of any two fixed-rate service centers satisfy
the following inequality

g; (n) T; ..
L<— fori<y. 4
qj(n) Ty ()

r. Mg
Lemma 2: If ¢;(n )S-ZZ-— 3 4, (n), 7 <Mp then
F m==1



g;(n)<=—3 g.(n)  forall isuch that 1<i <j. (5)

7‘.
Lemma 3: If ¢;(n)>—=—— 3 gn(n), ¢<Mp then

g;(n)> i gn(n) forall j suchthat: < 7 < Mp. (B)

Lemma 4: The mean queue lengths of the first and the last fixed-rate service
centers satisfy the following inequalities

r, Mr
WS- D n(n) (7)

and

N
| I, (n 2_ (8)

Theorem 1: The network delay D (n ) and network throughput T (n ) satisfy the
following inequalities

Mp 2

D(m)2L+ 3 - [n =L X T (n -1)] (9)
and

T (n)< L (10)

%_ —Eé- [ -1-Lp XT(n_—l)}

Corollary 1: For a network with no delay servers, the network throughput
T (n) is bounded above by

Mp T
L+ Y, = [n~1]
m—1LF
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which is smaller than (or equal to) the folloﬁling balanced job bound in [Zaho82]

n

=[]
L+—A7.f;- n-1

For networks with one or more delay servers, the RHSs of Egs. (9) and (10)

in Theorem 1 are functions of T (n-1). Sequences of bounds for D (n ) and T (n )
can be obtained as follows.

Define T (n,0)=min(n /L, 1/r)y, ) and D (n,0)=max(L, nTM) for all n .
These are the asymptotic bounds. Next, define

D(n,)=max|nry,, L+ gf -%2—- [ n-1-Lp xT(n-l,i-1)” (11)
=1 ~F
and
T(n,)=n/D(n) (12)
for 1<i<n.
Theorem 2:
D(n)zD(n,i+1)2D(n ) (13)
and
T)ST (n,i+1)<T (n,i) (14)
for 0<i <n-1.

Corollary 2: For each ¢, the proportional throughput upper bound in Eq. (12) is
smaller than (or equal to) the corresponding balanced bound in [Kriz84]. .

The counterparts of Lemmas 1-4 for a proportional throughput lower bound
are given below and the bound itself is presented in Theorem 3.

Lemma 5: The mean queue lengths of any two fixed-rate service centers ¢ and
g with ¢ <7 satisfy the following inequality



T:
>(—)" for all n >1. (15)

Mg
We next define L= Y] 7.

m==1
T" Mp
Lemma 6: If ¢;(n) 3 g (n) 1<j<Mp, then
F m=1
g;(n)> Z gn(n) foralli suchthatl < ¢ < 7. (16)
LF m==1
n Mg
Lemma 7: If ¢;(n) 3 @n(n), + < Mp then
LF m==1
q;(n L (n) forall j suchthat: < j < Mp. (17)
F m=1

Lemma 8: The mean queue lengths of the first and the last fixed-rate service
centers satisfy the following inequalities

" MF )
g1(n)= T Y dm(n) (18)
F m==1
and
iy (M) % (19)

Theorem 3: The network delay D (n) and network throughput T (n) satisfy
the following inequalities

n

Lp
D ()<L + oo [n A-Lp X T (n _1)] (20)

and



T(n)2—— L (21)
F
L+L [n——l——LD XT(n—l)]

n—1

Corollary 3: For a network with no delay servers, the network throughput
T (n ) is bounded below by

which is larger than (or equal to) the following balanced job bound in [Zaho82]

n
L +1y, [n-1]"

For networks with delay servers, the RHSs of Egs. (20) and (21) in Theorem
3 are functions of T (n-1). Sequences of bounds for D(n) and T(n) can be
obtained as follows. '

Define T (n ,0)==0 for all n. Let

- Lp
D(n ,z’)-=L+LnF_1 [n-l-LD xz(n—l,i—l)] (22)
F
and
. n
)=t 23
(i )= (23)
for1<i<n.

Theorem 4:
D(n)<D(n,i+1)<D(n,) 1<i<n-1
and

T(n)>I(n,i+1)2T(n,s) O0<i<n-l
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Corollary 4: For each 1, the proportional throughput lower bound in Eq. (23)
is larger than (or equal to) the corresponding balanced bound in [Kriz84].

Observation: When n —oo the LHS of Eq. (21) converges to the RHS. The pro-
portional bounds given in Theorem 4 (as well as the corresponding balanced
bounds) are asymptotically exact.

The following examples are taken from [Kriz84] to illustrate the accuracy of
proportional bounds and of balanced bounds.

Example 1: The network has only fixed-rate service centers and is almost bal-
anced. 7,=0.08, 7,=0.09 and 73=7,=0.1. The balanced job
bounds, and the proportional bounds are given in Table 1 below.

Population Throughput bounds
size X T exact T X

2 4.255 | 4.317 | 4.317 4.317 4.324
5 6.494 | 6.660 | 6.715 6.729 6.757
10 7.874 | 8.022 | 8.206 8.27 8.316
20 8.811 8'.867 9.168 9.338 | 9.401
30 9.174 | 9.194 | 9.499 9.759 9.828
40 ' 9.368 | 9.375 | 9.654 9.984 10

60 9.569 | 9.570 | 9.792 | 10 10

80 9.674 | 9.674 | 9.853 | 10 10

where X is the balanced job lower bound
X is the balanced job upper bound

T is the proportional lower bound

and T is the proportional upper bound.

Table 1. Throughput bounds for an almost-balanced network with no delay server.

Notice that although the network is almost balanced, the proportional
bounds are better than the balanced bounds. Also notice that the proportional
bounds give the exact throughput when the population size is 2.

Example 2: The network of Example 1 is extended by a delay server with
mean service time 7=1. The first- and second-level balanced
bounds of Kriz and proportional bounds are shown in Table 2.
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Throughput bounds

Population
size Y, Y, T, T, exact T, T, Y o Y,

2 1.361 1.432 1.367 1.434 1.434 1.434 1.434 1.434 1.434
5 2.825 3.267 2.856 3.284  3.364 3.367 3.400 3.369 3.402
10 4.405 5.390 4.451 5427 5.872 5.970 6.263 5.980 8.270
20 6.116 7.489 6.143 7.517 8.375 8.679 9.053 8.716 9.081
30 7.027 8393 7.037 8405 9.186 9.413 9.549 9.468 9.592
40 7.590 8.858 7.595 8.863 9.502 - 9.773 9.818 9.836 9.870
60 8.253 9.306 8.254 9.307 9.740 10 10 10 10

80 8.630 9.514 °8.630 9.514 9.828 10 10 10 10

where T denotes proportional bounds and Y denotes Kriz’s bounds.

Table 2. Throughput bounds for an almost-balanced network with one delay server.

Example 3: The network is unbalanced with no delay server. The mean ser-
vice times at the four service centers are 7,=0.04, 7,==0.05, and

T3=74==0.1.
Population Throughput bounds
size X T exact T X.

2 5.128 | 5.360 | 5.360 5.360 5.517
5 7.246 | 7.341 | 7.803 8.033 8.621
10 8.403 | 8.407 | 8.930 9.635 10

15 8.876 | 8.876 | 9.302 | 10 10

20 9.132 | 9.132 | 9.483 | 10 10

30 9.404 | 9.404 | 9.659 | 10 10

40 9.547 | 9.547 | 9.746 | 10 10

60 9.693 | 9.693 | 9.831 | 10 10

80 9.768 | 9.768 | 9.874 | 10 10

Table 3. Throughput bounds for an unbalanced network with no delay server.

Example 4: The network of Example 3 is extended by a delay server with
mean service time 7=1.
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Population 'I:‘hroughput bounds
size XY, Y, T, T, exact T, T, Y, Y,
2 1.439 1.524 1.457 1.528 1.528 1.528 1.528 1.531 1.531
5 2.959 3.476 2.974 3.484 3.628 3.635 3.664 3.667 3.690
10 4.556 5.684 4.567 5.685 6.422 6.586 6.858 6.743 6.960
15 5576 6.978 5.576 6.979  8.133 8.836 9.245 9.139 9.494
20 6.270 7.767 6.270 7.767 8.945 9.703 9.814 10 10
30 7.160 8.618 7.160 8.618 9.483 10 10 10 10
40 7.707 9.042 7.707 9.042 9.659 10 10 10 10
60 8.345 9.437 8.345 9.437 9.797 10 “10 10 10
80 8705 9.614 8.705 9.614 9.856 10 10 10 10

Table 4. Throughput bounds for an unbalanced network with one delay server.

3. Generalized Proportional Bounds

‘We next present algorithms which permit us to trade computation time for
improved accuracy. Consider a single-chain network with M fixed-rate service

centers, population size N, and a population sequence of S

integers,

nyng, ..., Ng, Where 1<n;<n,< - <ng=N. Algorithm 1'computes a
generalized throughput upper bound for each population in the sequence.

Algorithm 1 generalized_upper_bound;
begin
max_throughput := 1 / load[M];
total_load :== 0;
for m := 1 to M do total_load := total_load + load[m];
for m := 1 to M do ratio[m] := load[m] / total_load;
fori: = 1to S do
begin
total_delay := 0;
form :=1toMdo
begin
delay[m] := load[m] * ( 1 + ratio[m] * (nli] - 1));
total_delay := total_delay + delay[m];
end;
throughput_upper := n[i] / total_delay;
if throughput_upper > max_throughput
then throughput_upper := max_throughput;
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for m := 1 to M do ratio[m] := delay[m] / total_delay;
end;
end;

Before presenting several theorems stating some properties of the algorithm,
we give three lemmas (Lemmas 9-11) that form the basis of our algorithm. The
lemmas, their proofs as well as proofs of the theorems can be found in the appen-
dix. We shall use r;(n;) to denote the value of ratio[j] when the population size
is n; during the execution of Algorithm 1.

For simplicity, these lemmas and theorems are stated and proved for net-
works with fixed-rate service centers only. Extension of our results to networks
including delay service centers is straightforward. As in Section 2, the mean ser-
vice times for the service centers have the following relation: 1, <7, < - - - <7y

Theorem 5: Forall 1,1<:1<S

Mz

M .
Y Tm [140m (n-1)]2

m==1

ITm [1+Tm (ni~1)x(ni "1)] (24)

where ny=1 and r,, (1)=7, /L for m =1,2,...M.

Eq. (24)'in Theorem 5 assures that Algorithm 1 computes lower bounds on
delay and upper bounds on throughput.

Corollary 5: If the population sequence is 2,...,/N then the algorithm computes
the exact network throughput.

In the next two theorems we present properties of the generalized propor-
tional throughput upper bounds. Given a population sequence n,n,, . .., ng of

S elements, a subsequence is said to be valid if it includes the population size
ng (=N ).

Applying Algorithm 1 to different population sequences yields different
throughput upper bounds. These throughput upper bounds are said to be nested
if the throughput upper bound computed from a population sequence is smaller

than or equal to the throughput upper bound computed from any of the valid
subsequences. :

Theorem 6: The generalized proportional throughput upper bounds are nested.

Theorem 7: Optimal population sequence. Given an integer S<N-1, the
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population sequence of length S that yields the smallest throughout upper bound
is the sequence N -S +1,N-S +2,...,.N.

We calculated generalized proportional throughput upper bounds for the
network considered earlier in Example 1. The results are plotted in Figures 1
and 2. Figure 1 illustrates the nested property. Figure 2 illustrates the optimal
population sequence of length 7.

A slightly modified algorithm which can handle delay servers is presented in
Algorithm 2 below. Service centers 1 to MF are fixed-rate servers and service
centers MF+1 to M are delay servers. For convenience, n[0] is set to 1.

Algorithm 2 generalized_upper_bound_delay_server;
begin
max_throughput := 1 / load[M]; -
throughput_upper := max_throughput;
load_fixed := 0;
for m := 1 to MF do load_fixed := load_fixed + load|m];
for m := 1 to MF do ratio[m] := load[m] / load_fixed;
fori:=1to S do
begin
total_delay := 0;
queue_F := nfi] - 1;
form := MF + 1toM do
begin )
total_delay := total_delay + load[m];
queue_F := queue_F - load[m]| * throughput_upper * (n[i]-1) / n[i-1];

end;
for m := 1 to M do
begin
delay[m] := load[m] * ( 1 + ratio[m] * queue_F );
total_delay := total_delay + delay[m];
end;

throughput_upper := n[i] / total_delay;
if throughput_upper > max_throughput
then throughput_upper := max_throughput;
for m := 1 to M do ratio[m] = delay[m| / total_delay;
end;
end;

Next, we consider lower bounds. Consider a single-chain network with A4
fixed-rate service centers, population size N, and a population sequence of S
integers, ny,ng, . .., ng, Where n;>ny,> - -+ >ng=N and N >3. The fol-
lowing algorithm computes a generalized throughput lower bound for each
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population in the sequence.

Algorithm 3 generalized_lower_bound;

begin
sum :== 0;
form := 1 to M do
begin
ratio[m] := load[m] ** (n[1] - 1);
sum := sum + ratio[m];
end;
for m := 1 to M do ratio[m] := ratio[m| / sum;
fori:= 1 to Sdo
begin

total_delay = 0;
for m ;=1 to M do
begin
delay[m] := load[m] * ( 1 + ratio[m] * (n[i] - 1));
total_delay := total_delay + delay[m];
end;
throughput_lower := n[i] / total_delay;
for m := 1 to M do ratio[m] := delay[m] / total_delay;
end;
end;

In what follows, r,, (n;) denotes the value of ratiolm| when the population
size is n; during the executiog of Algorithm 3.

Theorem 8: For all +,1<1<S,

Tm [1+9m (n:' —1)]_.<.

. Tm [1+7'm (ni-—l)x(ni‘l)] (25)

1

3
NES
3
1 Mz

where ny=n -1 and r,, (n o)=Tn?/Lp°

Theorem 8 assures that Algorithm 3 computes upper bounds on delay and
lower bounds on throughput. These bounds also have properties similar to those
shown earlier for generalized throughput lower bounds.

Consider a population sequence n,n,, ..., ng=N. For the purpose of
computing generalized throughput lower bounds, a subsequence is sald to be valid
if it contains both n, and ng. Generalized throughput lower bounds are said to
be nested if the throughput lower bound computed from a population sequence is
larger than or equal to the throughput lower bound computed from any of the
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valid population subsequences.
Theorem 9: The generalized proportional throughput lower bounds are nested.

Theorem 10: Optimal population sequence. Given an integer S, the population
sequence that yields the largest throughout lower bound among all population
sequences of length S is N,NV,...,N.

We calculated generalized proportional throughput lower bounds for the net-
work considered earlier in Example 1. Figure 3 illustrates the nested property.
Figure 4 illustrates the optimal population sequence of length 7.

A slightly modified algorithm which can handle delay servers is presented in
Algorithm 4 below. For convenience, n[0] is set to 1.

Algorithm 4 generalized_lower_bound. delay_server;
begin

sum ;== 0;

throughput_lower := 0;

for m := 1 to MF do

begin :
ratio[m] := load[m] ** (n[1] - 1);
sum :== sum + ratio[m];

end;

for m := 1 to MF do ratio[m] := ratio[m] / sum;
fori:=1to S do
begin
total_delay := O;
for m := MF + 1 to M do

begin
total_delay := total_delay + load[m];
queue_F := queue_F - load[m] * throughput_lower * (n[i]-1) / n[i-1];
end;
for m := 1 to MF do
begin

delay[m] := load[m] * ( 1 + ratio[m]| * queue_F);
total_delay := total_delay + delay[m];
end;
throughput_lower := n[i] / total_delay;
for m := 1 to M do ratio[m] := delay[m] / total_delay;
end;
end;
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Our generalized proportional throughput bounds are especially useful if the
throughput bounds for many different population sizes are required.

4. Bounds for Closed Multichain Networks

In this section we present throughput bounds for multichain queueing net-
works with fixed-rate and delay service centers. The meaning of each variable is
the same as its corresponding one in single-chain networks except that an addi-
tional subscript, 2 or k, is used to denote a specific chain. Proofs of Theorem 11
and Corollary 6 are given in the appendix.

Theorem 11: The mean delay D, (z) of chain k customers satisfies the follow-
ing inequalities

Dy (2)<D;(n)<Dy ()
where
My K
Di(z)=Li+ Y Tm by Tma L (2 =1k )
==] h=1
m i::n chain k chatn h visits m
+Tmin & [nk ~1-Lp Ty (n=L¢ -Lp ¢ T (14 )] (26)
and
- Mg K
Dy(n)=L;+ > Tmk 2. T Ly (2 =1 )
=] h =1
m z';tn chain k chain h visits m
K
+ hz Tmaz b Lk [nh ‘"Lh -Ih (E ‘_lk )}"’Tmaz Kk (27)
=1
chain A
intersects chain k
where

Tmaz h k 15 the maximum mean service time among the fixed-rate service
centers traversed by both chain A and chain & customers,

Tmin ¢ 15 the minimum mean service time among the fixed-rate service
centers traversed by chain k£ customers,
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T, (n-1;) is a lower bound of T (n -1k ),
and
T, (n-1; ) is an upper bound of T (n-L; ).

Chain h is said to intersect chain k if it visits a fixed-rate service center that is
also visited by chain k.

Corollary 6: The throughput T} (z) of chain & satisfies the following inequali-
ties

T (0)< Ty (2)< Tk (2) (28)
where
and
Ty (n)= Q:& ) (30)

4.1. Algorithms

The procedure to compute throughput bounds involves the following steps:

i. Find fast lower bounds of T, (n-1;) for all &,k=1,2,..,K and fast upper
bounds of T} (n-1;) for all k=1,2,....K.

ii. Plug the fast upper bounds of T} (n-1l;) into Eq. (26) and the fast lower
bounds of Ty (n-1,) and T,(zn-1l;) into Egs. (26) and (27) to calculate

bounds of mean delay. Apply Egs. (29) and (30) to obtain throughput
bounds.

Some of the variables used in the algorithms are defined in the following.
The meaning of other variables is self-explanatory.

load_total[k] = sum of mean service times of chain k at fixed-rate and
delay service centers

load_max[h,k] = the largest mean service time among all fixed-rate
service centers visited by both chain h and chain k

visit_common_queuefh,i] = True if chain h and chain i visit at least one
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common fixed-rate service center
load[k,m] = mean service time of chain k at service center m
load_D[k] = sum of mean service times at delay centers for chain k
load_F[k] = sum of mean service times at fixed-rate centers for chain k
load_min[k] == the smallest mean service time among fixed-rate service
centers visited by chain k
visit[h,m] == True if service center m is visited by chain h

Algorithm 5, given below, finds a fast lower bound of T} (n~1;). It utilizes
some routing information.

Algorithm 5 fast_throughput_lower_bounds;
begin
for k := 1 to num_chains do
begin
population[k]| :== population[k] - 1; -
for h := 1 to num_chains do
if population[h] > 0
then
begin
delay := (population[h] - 1) * load_max[h,h];
for i := 1 to num_chains do
if visit_common_queue[h,i] and (h 5 i)
then delay := delay + population[i] * load_max[h,i;
delay := delay + load_total[h];
throughput_lower[h,k] := population[h]/delay;
end
else throughput_lower[hk] := 0;
end;
end;

The above procedure is actually a special case of Algorithm 6 below. Its
throughput bound of T, (n -1, ) is obtained by replacing all throughput lower
bounds in Eq. (27) with zero.

Algorithm 5 calculates throughput lower bounds only. There are two
methods to obtain fast throughput upper bounds of T (n-1; ). First, we can use
BJB upper bounds for a multichain network [Zaho82]. Second, we can consider a
network in which all chains, except chain &k, are removed and use the propor-
tional upper bound for such a single-chain network.

The second procedure, to be given next, uses the fast bounds described
above to calculate improved bounds for mean delays. It then applies Little’s for-
mula to obtain bounds for T, (n ), for all k=1,2,...,K. The computation
sequence follows Egs. (26) and (27) exactly.
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Algorithm 6 multichain_throughput_bounds;

begin
for k := 1 to num_chains do
begin
population[k] := population[k] - 1; /* remove one chain k customer */

min_delay := load_total[k];
delay_others = 0;

for m := 1 to num_queues do
if visit[k,m)]
then
begin
queue :== 0;
for h := 1 to num_chains do if visit|h,m]

then queue := queue + load[h,m] * throughput_lower[h,k];
min_delay := min_delay + load[k,m] * queue;
end;
for h := 1 to num_chains do
if visit_common_queue(h,k]
then
begin ‘
queue_others :== population|h] - load_total[h] * throughput_lower[h,k];
delay_others := delay_others + load_max[h,k| * queue_others;
end;
population[k] := population[k] + 1;
queue_others := population[k] - load_D[k] * throughput_upper[k]|
- load_F[k] * throughput_lower[k k]|;
delay_lower := min_delay + load_min[k] * queue_others;
delay_upper := min_delay + delay_others;
final_throughput_upper[k] := population[k]|/delay_lower;
bottleneck := max(1/load_max[k,k|, population[k]/load_total[k]);
if final_throughput_upper[k] > bottleneck
then final_throughput_upper[k] := bottleneck;
final_throughput_lower[k] := population[k]/delay_upper;
end;
end;

4.2. Numerical examples

The first network used is a 26-node network with 32 full-duplex communica-
tion links and 32 virtual channels. The window size (chain population size) is 2
for each virtual channel. Because we assume full-duplex virtual channels with
symmetric traffic, the network reduces to a queueing network model with 32
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fixed-rate service centers and 16 closed chains. Additionally, we employ 16
fixed-rate servers, one for each closed chain, to model the external sources of vir-
tual channels. The mean service time for each service center is 0.1 sec and is the
same for all virtual channels. The mean service time at the source servers is 1.0
sec. Table 5 below shows the routes for the 16 virtual channels. The calculated
throughput bounds are shown in Figure 5. The maximum, minimum, and aver-
age utilizations of the 31 fixed-rate service centers actually used in the network
are 0.272, 0.0895, and 0.193 respectively. (One service center has zero utilization
and was excluded.) In this case, the network is lightly loaded.

VC  route (in node sequence)
1 1617 18194 5
2 123171819
3 6 25 22 23 24 26
4 24 1011 12 13
9 131234
8 173456
7 123456789
8 11312
9 910 24
10 21 20 25
11 1516 17
12 2324
13 212225678
14 23 22 21 20
15 211514131211 109

16 1131415212225

Table 5. Routes of virtual channels.

In Figure 6, for the same network, the mean service time at each source
server is set to 0.1 sec. The maximum, minimum, and average utilizations of the
31 communication channels are 0.753, 0.212, and 0.519 respectively. This
represents a fairly heavily loaded network.

The second network used in our numerical study is a randomly generated
network with 12 nodes, 30 virtual channels and 34 communication channels. The
communication channels and their mean service times are shown in Table 6. The
notation (i,j) in Table 6 denotes a communication channel from node i to node j.
The route, window size, and mean service time of the source server for each vir-
tual channel are given in Table 7. The maximum, minimum, and average utiliza-
tions of the 32 communication channels with nonzero utilizations are 0.998, 0.101,
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and 0.517 respectively. Because of symmetric traffic, only the results of 15 vir-
tual channels are shown in Figure 7.

Communication  Mean service

channel time (sec)
(9 ,4) 0.200
2 ,7) 0.200
(3 ,11) 0.200
(5 ,12) 0.050
(6 ,10) 0.025
(9 ,7) 0.200
1,92 0.050
3 ,1) 0.050
(5 ,11) 0.200
(6 ,8) 0.200
(9 ,2) 0.100
(10, 8) 0.100
(12, 3) 0.050
4,7 0.025
(5 ,9) 0.200
(6 ,12) 0.200
(10, 7) 0.100
(4,9 0.200
(7 ,2) - 0.200
(11, 3) 0.200
(12, 5) 0.050
(10, 6) 0.025
(7 ,9) 0.200
2 ,1) 0.050
1,3 0.050
(11, 5) 0.200
8 ,6) | 0.200
2 ,9) 0.100
(8 ,10) 0.100
(3 ,12) 0.050
(7 ,4) 0.025
(9 ,5) 0.200
(12, 8) 0.200
(7 ,10) 0.100

Table 6. Mean service times of communication channels in example 2.



28

Virtual . window mean service time
Route (in node sequence) .
channel size of source server (sec)
1 115 2 0.10
2 274 2 0.20
3 86 2 0.10
4 1131294 3 0.30
S5 106 12 2 0.30
6 6 108 3 0.20
7 9274 2 0.30
8 810794 2 0.10
9 479213 2 0.10
10 512312794 2 0.20
11 29 2 0.30
12 3115 2 0.30
13 3125 2 0.30
14 72 2 0.10
15 1079 2 0.10
16 511 2 0.10
17 472 2 0.20
18 68 2 0.10
19 4921311 3 0.30
20 126 10 2 0.30
21 8106 3 0.20
22 4729 2 0.30
23 497108 2 0.10
24 312974 2 0.10
25 497213125 2 0.20
26 g2 2 0.30
27 5113 2 0.30
28 5123 2 0.30
29 27 2 0.10
30 9710 2 0.10

Table 7. Routes, window sizes and mean service time of source servers for
virtual channels in example 2.

From Figure 7 and the table on routes, we observe that if a virtual channel
does not interact much with other virtual channels, then its throughput bounds
are tight and the exact value is close to the upper bound. On the other hand, if
a virtual channel interacts significantly with many other virtual channels then its
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throughput bounds are not so tight and the exact throughput is closer to the
lower bound than the upper bound. Notice that virtual channel 3 does not inter-
sect any other virtual channel; both its upper bound and its lower bound
obtained are equal to the exact throughput. Thus the tightness of the
throughput bounds presented in this section is affected by the degree of sparse-
ness of routes in a network.

Appendix. Proofs of lemmas, theorems and corollaries.

Proof of Lemma 1:

By induction.
(1) Base case: g;(1)/¢;(1)=r; /[7;. Therefore it is true for n =1.

(k) 7
(2) Induction step: Assume it is true for n =k, i.e., —g—(—-)—s-——-
q; (k) T]
From MVA formula,
g; (k+1) _D; (k+1)T (k+1) _ D (k+1)
g;(k+1)  D;(k+1)T(k+1) D;(k+1)
7 (1+¢; ()
i (14q; (k)
Ti
<— (because ¢; (k)< q;(F))

Therefore it is also true for n =k +1. Q.E.D.

Proof of Lemma 2:

If g;(n )<-L—-- 2 qm ), then from Lemma 1, for any ¢+ <7j
F

()< =g, (n)
J

T

';_— Z Qm(

J



Ti My
F m =

Proof of Lemma 3: Similar to the proof of Lemma 2.

Proof of Lemma 4:

r
From Lemma 3, ¢, (n )Z—;mé-q W(n) for m =1,...Mp. We then have,
1

MF MF Tm LF
Y @n(n)2 Y —qi(n)=—0qy(n).
Hence, we have

T M
1)< 7= 3 4 (n).
F m=1

. . ™, Mr 4
Similarly, gy, (n)=>—=—— 3] ¢, (n). Q.E.D.

Proof of Theorem 1:

From Eq. (1), we have

M
D(n)= 3. Dn(n)

m==1
M M
= ) Tmt+ X Tm(l+dgn(n-1))
m=My +1 m=1
M My My
= 3 Tt Y Tmt Y Than(n-1)
m==Mp +1 m==1 M=1

N A
= 2 T H(q1(n-1)+7q2(n-1)+ -+ +74, qar, (n 1))

m==1
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2 2 r2

71 To F
=L+||—+—+" "+ X (n-1-Lp X T (n-1)) [+A

Lp Lp Lp

where

A=1, [q (n —1)—-%- (n-1-Lp X T (n-1)) }

4 [%(n-n*{;i— (n-1-Lp XT (n-1) }

T Mp
Lp

4Ty {m;(n -1} (n-1-Lp X T (n-1)) ]

From Lemmas 2, 3 and 4, there exists an m, 1<m <My such that

o T.
q,-(n-—l)S-f—-(n-&—LD X T (n-1)) forall 1<: <m
F

and

T.
6;(n-1)2 7= (n-1-Lp XT(n-1))  forall m <i <Mp.
F

Therefore, we have A=A,~A, where

f=m-+1

Ms .
A= Y, 1 [‘Is‘("“l)“z—;’f("“l“LD XT(n-—l)) }

and

T

Ag== g 7; {-Z;- (n-1-Lp X T (n-1)) -g; (n —-1)}

My
Replacing (n —1-Lp X T (n-1)) with 3] ¢;(n-1), we have

=1
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A= Z T; [q,(n 1)-——Zq](n 1)}

t=m+1 F j=1

m+1[ > g(n-1)- Z ——qu(n 1)} (A1)

§=m 4] z-—-m—t—lLF J=1

and

m T, Mr
8=3r, {z" > g (n-1)g, (n-l)}

i=1 F j=1

J i=1

m 71, Mr m
<t {277' % 0;n-1- 5 q,-(n—l)}. (a2)

The expressions inside the brackets of the right-hand sides of Egs. (A1) and
(A2) are equal because

m Mr

glq.-(n-})#__z 1q;(n~1)

| m 1; Mp |

=E—-Z i(n-1)+ Z -L—-Zf!](" 1)——2%(%—1)
i=1“F j=1 i=m+1“F j=1 i=1

Hence, A;>A,. Therefore

My
D(n)>L+ 3 72 [n—l——LD XT(n-l)]/LF'
m==1

Proof of Theorem 2:

When n =1 it is clearly true. Therefore we only have to prove the theorem
for n >1. The proof can be divided into two parts.

(1) D(n)=>D(n,)and T(n)<T(n,)for 0<i <n-1. This can be proved by
induction on ¢+ and by using Theorem 1.

(2) D(n,i+1)=D(n,i)and T(n,i+1)<T(n,i) for 0<i <n-1. This is proved
by induction as follows:

(i) When i=1, D(n,1)>D (n,0) and T (n,1)<T(n,0) from Egs. (11) and (12).
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(ii) Assume that it is true for ¢+ =k then from Theorem 1 it is also true for
i=k+1. Q.ED.

Proof of Corollaries 1 and 2:

Compare the balanced delay bound of Kriz (which generalizes the balanced
job bound)

Lp = :
L +— [n -1-Lp X T (n-1,d -1)]
My

with the corresponding proportional bound

My 12 —
L+ Y, — [n—l—-LD xT(n-l,z’—l)],
m==1 LF

For the proportional bound to be tighter, it is sufficient to show

My 12 L
m F
e

m =1 Lp — MF

which is true by virtue of the Chebyshev Inequality [Abra72], and then apply
inductionon ¢:. Q.E.D.-

Proof of Lemma 5:

By induction.
(1) Base case: ¢;(1)/g¢; (1)=r; /r;. Therefore it is true for n =1.
. oy o . q; (k) T3 k
(2) Induction step: Assume it is true for n =k, L.e., ——>(—)".
. g; (k) =" 7;
From MVA formula, '
q; (k+1) _ D, (k+1)T (k+1) . D;(k+1)
g;(k+1)  D;(k+1)T(k+1) D;(k+1)

_ ni(i+g;(k))
(v a; (F))

' k
l[&@)

> T
Tj

(because ¢; (k)<gq;(k))
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( 7 )k+1
;

Therefore it is also true for n =k +1. Q.E.D.

Proofs of Lemmas 6-8 and Theorems 3-4 are similar to those of Lemmas 2-4 and
Theorems 1-2 and are omitted.

Proof of Corollaries 3 and 4:

Compare the balanced delay upper bound of Kriz (which generalizes the balanced
job bound)

L+, [n -1-Lp XTI (n-1, -1)]

with the corresponding proportional bound

n

L+ n-1

[n -1-Lp XTI (n ——l,i—l)] .
Ly

For the proportional bound to be tighter, it is sufficient to show that

which is true by the fact that 7; <7y, forall y <Mp. Q.ED.
The following lemma is from [Eage83].
Lemma 9: Forany 7, 1<:<S,and all 7,1<7<M if

ri(ni1) >_ 9 (ni-1)

M - M
Z ™m (ni-—l) Z _Qm (n:’ "'1)
m==j

m==j

then

M M
Z 9m (ni"l)Z(ni"l) 2 Tm (T -1);

m=j m=j
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M ‘ M
Z T™m 9m (ni "1) Tm Tm (ni~1)
m==j > m==J
M - M ’
Y Om(ni-1) Y Tm(mi)
m=j m==j

and
ri(n;) > q;(n;)

Tm (n;) > Im (n;)
j =]

ﬁt’)s

Proof: The proof is similar to the proof of the corresponding lemmas in [Eage83]
and is omitted.

- Lemma 10: For two arrays whose elements are ratios of mean queue lengths
m(11) s T (82), m=1,2,..,M and ¢; ,>0, if

r;(i1) < ri (12)

M - M
S 3 (i)

m=j m=7j

for 1<; <M

then

i [1+r; (31)X 4] <_Ti (1474 (19)X 1]
M —
Z Tm [1+rm (i l)xlll

m==7

3
TANSES

T (L7 (12)X o]
J

for all nonnegative integers [, and {, such that [, >/, and 1<j57 <M.
Proof: Similar to part of the proof of Lemma 9.

Lemma 11:
Tj(ni—l) > ”j("z‘)

M - M
2 'm (ni—l) Z .rm (nx)

m==J m==]

(A3)

for all + and 7 such that 1<7 <M and 1< <S-1.

Proof: By induction on 7.
(i) When ¢==1,
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ri (1) ~ ri(ny)

M M
YXrm@) X ralny)

m=j m=j

j 7 (L +7; X 1)

M
Z Tm (L +Tm XnO)
m==7j

M
T Y, Tm
m==}

M
(L 41, Xng)=1;(L+7;Xng) 3, 7

m==7

Z Z m(L+T X"o)

=] =]

M M

T Tm =T X Tm T

m ==} m=]

- >0.
Z

(L +7, Xng)

oX
M
R
- This establishes the induction base

(ii) Assume that it is true for i =k. From Lemma 10, it is also true for ¢ =k +1
Q.E.D.

Notice that Lemmas 9, 10 and 11 are also true for exact mean queue lengths
4, (*), m =1,2,....M since they correspond to the special case in which the popu-
lation sequence is 2,3,...,N

Proof of Theorem 5: We only have to prove that

M’j("f-x) > qu(ni"l) ™
2 Tm (i) Z_ 9m (1;-1)

= j
foralli,1<:<S and all j,1<7 <M
The proof is by induction on ¢

(i) When i=1, r;(1)=¢,; (1) for 1<j <M. Eq. (A4) is clearly true
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(i) Assume that it is true for ¢ =k. From Lemma 9 it follows that

”j("k) > Qj(nk)

7 2= . (A5)
Z _rm (nk ) Z ‘Qm (nk )
m==2 m==]
From Lemma 11, we have
Anp -1 (n
q]( k +1 ) < q}( k) (AG)

M - M ’
Z 9m (nk +1"1) Z _qm (nk )
==1

m=7j

From Egs. (A5) and (A6), it is also true for ¢t =k +1. From Lemma 9, we know
that Eq. (24) is true.  Q.E.D.

Proof of Corollary 5: We only have to prove that

M
Tm (ni——l) Z 9 (nz’ "'1)

J m ==

Jn)  gp(n-1)

r
M
2

m ==

forall +,1<:<S and all j,1<7 <M. The proof is similar to that of Theorem
5. '

Proof of Theorem 6: We only have to prove that the upper bound obtained
from population sequence 1<n;<n,<...<ng=N is smaller than that obtained
from population sequence m ;,m,, . . ., mg_;, where m; =n; for 1 =1,2,...,l -1,
and m;=n; , for 1 =[,l+1,...,,S -1, where | is an integer such that 1</ <§-1.
It is equivalent to showing that

r.{n.: T" m,;_

MJ( i) < MJ (m; 1) for 1<7<M and 1< <S§-~1.
orm(n:) Y ra (mily)
m=7j m==j

where 7} (m; ) denotes the value of ratiofj] in Algorithm 1 when the sequence
my,My, ..., mg_; is used.

The proof is by induection on 7.
(i) When ¢ =1, from Lemma 11
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ri(ny) g i (mo)

M - M M
Z m (n 1) Z Tm (nO) Z rn; (mO)

m==j m==j m=j

forall 1<7<M

where r;(no) and r} (m ) denote the initial values of ratio[j] in Algorithm 1
when the corresponding sequences n ,n,, . . ., ng and m,m,, . . ., mg_; are
used. This establishes the base of the induction.

(ii) Suppose that it is true for ¢ =k, i.e.,

. In
i) (e forall 1<5 <M
Z T () Z T (Mg _1) -
m ==

. m = j

from Lemma 10 and the fact that n, >m;_; it is also true for s =k +1. Q.E.D.
Proof of Theorem 7: Immediate from Lemmas 9 and 10.

The following lemma, which is similar to Lemma 9, is used in the proofs of
Theorems 8, 9 and 10. Its proof is similar to that of Lemma 9 and is omitted.

Lemma 12: For any 1, 1<: <S5, and all 7,1<7 <M if

ri(ni_) <Y (n;-1)

M - M
Z Tm (ni—-l) Z Im (ni "1)

m==j m==j
then
M M
Z adm (ni "1)_<_(nz' "1) Z L (ni—l)r
m==7j m=j
M M
Z 'Tm Im (n:’ "1) .Tm "m (ni—l)
m == ] < m ==}
M - M !
> O (ni-1) > T (1)
m=j m=j
and

Tj(“;) < Qj(ni)

M - M :
Z .Tm (nz) Z ’Qm (nx)
m==j

m=7
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Proof of Theorem 8: We only have to prove that

"j("z‘-l) < q; (n;-1)

7 S5 (A7)
S rn(miy) 3 (m-1)
foralli,1<i<S and all 7,1<57<M.
The proof is by induction on ¢.
(i) When 7 ==1, from Lemma 5
r:(n (n
il 0)____ (o) forall 1< <m <M.
™m (10) ™ 4m (no)
Therefore Eq. (A7) is true.
(ii) Assume that it is true for 4 =k . From Lemma 12 it follows that
rji(ng) q;(n )
7 < . (A8)
X)X am(ny)
m==f m==j
Because n; ;<n,, from Lemma 11, we have
(ng -1 n
Gj(mesl) o 9i(m) (A9)

M - M ’
Z 'Qm (nk +1“1) Z am (nk )
m==j

m==]

From Egs. (A8) and (A9), it is also true for ¢ =k +1. From Lemma 12, we know
that Eq. (25) is true.  Q.E.D.

In Lemma 13, to be given in the following, r;(n;) denotes the value of ratio(j]
when the population size is n; during the execution of Algorithm 3. This lemma
is used in the proof of Theorem 9.

Lemma 13:
Tj("o) < Tj(nl)

M - M
E rm(nO) Z Tm (nl)

m==j m==j
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for all 7 such that 1<j7 <M.

Proof: It is sufficient to prove

ri(ng) _ri(ny)
ri(ng) — ri(ny)

for1<j <t <M.

For the sake of clarity, we shall replace n, with n for the balance of this proof.
We then have r; (no)=7"and r; (n,)=r;(1+n X7*/L") for 1<: <M.

Thus

T (1+n Xr}‘/L ™) _ Th

T (l+n xtPLM) (410)
Multiply Eq. (A10) by L" 7/ +1(-l-i-n X18/L™)/7;. We obtain
L™ Y 1+n X7}/L™) - L7} 71140 X7/L™)
=L F-rP Y —nrplrt - 1) (A11)

We shall prove that Eq. (A11) is greater than or equal to zero by induction on
M.

() Case of M =2 (i.e., there are only two fixed-rate service centers): We shall
prove this base case by induction on n.

(a) When n =2 (i.e., n,==3), we have
Lr;-r; ynriri (=15 )=(ri=7;) {r,- 247 227, ] =(r; =1, ) X(1;=7; ¥>0

where L 2=r; 2+Tj 2, This establishes the induction base for n.

(b) Assume that Eq. (A11) is true for n =k . After factorizing Eq. (A11) and
eliminating (r;-7; ), the induction hypothesis becomes
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L*(r;® 241, "“3Tj FoetTi TS "’3+TJ- k= _ ko, "‘11']- k-1>0 (A12)
Multiply Eq. (A12) by 7;7;, we get
7; L (B ler K2 %r; ESprir; Y YA k
=r7; L L (LA i et TS "”2+Tj k"l)—(k +1)r; * T} k
~(r; KLk r* T; ky>o. (A13)
When n =k +1, the LHS of Eq. (A12) becomes the following’
L+ r Bl K2 gy 7 k-2, -1 _ (k+1)r; T k
>7; L (L PR T e S k-2 k-1 _ (b +1)r; T k>o0. (A14)

Eq. (A14) is true because (7; kLk_rk T; ¥) in Eq. (A13) is nonnegative and 7, is
smaller than 7;. We have thus proved the base case for M.

(ii) Assume that Eq. (All)is true for M=, ie.,

l
l' Z T#z }(Tin ~1”'Tjﬂ —1) -n T:'n —lTjn -I(Ti -T; )_>_O
m=1

-

7'j(”o) ”j(nl)
ri(ng) ~ ri(ny)

It is clear that

-+
o

n :} (7Pt ) -l el (r;—1;)>0.
1

I

Therefore

for 1<j<i<M. Q.ED.

Proof of Theorem 9: We only have to prove that the lower bound obtained
from population sequence n y,n,, . . ., ng==N Iis larger than that obtained from
population sequence m j,mo, . . ., Mg_y, where m; =n; for 1 =1,2,...,[-1, and
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m; =n; ., for +=I,l+1,...,5-1, where [ is an integer such that 1</ <S-1. It is
equivalent to showing that

r. n. T’. m._
M’( i) > M’( i) for 1<j <M and 1<i <§-1

rm(ni) X rm (misg)

m==7j m==j

where r (m; ) denotes the value of ratio[j] in Algorithm 3 when the sequence
my,mg, . .., Mg_; is used.

The proof is by induction on ¢.
(i) When ¢=1, from Lemma 13

ri(ny) ri(no) r; (mo) :
M] 1 > MJ o MJ 0 forall 1<;<M
Z T (ny) > m (ng) 3 _Trr" (mo)

where r;(no) and r} (m ) denote the initial values of ratio[j] in Algorithm 3
when the corresponding sequences n ,n,, . .., ng and m{,mo, . .., mg_; are
used. This establishes the base of the induction.

(i) Suppose that it is true for ¢ =k, i.e.,

r:(n r' (m
5 () > 7 (me 1) forall 1<j<M

M ]
X () 20t (M)

m==j m==j

from Lemma 10 and the fact that n, <m,_, it is also true for 7 =k +1. Q.E.D.

Proof of Theorem 10: We only have to prove that the lower bound obtained
from population sequence n{>no,> - - - 2>ng=N is larger than that obtained
from population sequence m,>m,> - - - >mg=N, where m; >n; for

i =1,2,...,.5-1. It is equivalent to showing that

) ot (miy)

M M
Z .Tm (ni~1) Z rrri (mi—l)
m=]

m==j

for 1<7<M and 1<¢ <8S.

where 7% (m; ) denotes the value of ratioj] in Algorithm 3 when the sequence
miMme, . . ., mg_y is used. Let ng=n;~1 and my=m -1.
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The proof is by induction on ¢.

(i) When 1 =1, we have ng<mg, and

n

m 7
ri(ng) 7% _71;° ri(mg) .
= > =— forall 1<7<m<M.
m (no) Tr:o Tm’"o Tm (mo)
Therefore
ri(no) ri (mo) .
= T forall 1<j <M.
3 tmlng) X rm (mo)
m==J m=7j .

This establishes the base of the induction.
(ii) Suppose that it is true for ¢ =k, i.e.,

rilm) ot (me)
Mj k > J k

=~ M
Y tm(ng) 3 m (my)

m==j m==j

forall 1<j; <M.

from Lemma 10 and the fact that ny <m, it is also true for i =k +1. Q.E.D.

Proof of Theorein 11:

From MVA, we have

M K K
Di(n)=Y T [H— > G (-1, )} (if m is a delay service center then ) ¢, (-1 )==0)
=1 h=1 h=1

M My K
= 3 Tmkt+ O Tmk O, Imn (2-1k)
m =1 m==1 h=1

Mg K
=L+ X Tm > Qmn (2 -1k )
m==1 h==1
m in chain k chain h visits m
My K
=L+ Y, Tm > Tmh L (2 -1 )+
m==1 h =1

m in chain k chain h visits m
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My K
where =} Ty > [th (=Lg i Ly (-1 )] :
=] h =1
m irrzn chain k chain h visits m
We then have
K My
a< Z Tmaz bk Z [th (-7-7'- -1k )’Tmh T, (ﬂ -1 )]
h =1 =1
chain h m in r::zhains h .,k

intersects chatn k

K My ‘
< > Tmaz b,k | —Lp 3 Th (B -L;) - > T L (214 )
h =1 ) m==1
chain A i m in chain A
intersects chain k m not tn chain k
Mr
- 2. Tt Lh (B =1k ) | ~Tmaz k &
m==]

m in_chains h k

K Mg
= > Tmaz h k |M—Lp a Th(2-Le) = Y Taw Lh(2-1t) |~Tmaz k&
h=1 =1
chain h m irrtn chain A

intersects chain k

K

= > Tmaz b k [nh ~Lp 2 Ih(n-1p) -Lp ), T (-1, )jl”Tmaz,k,lc
h=1
chain h
intersects chain k

K
= > Tmaz b [nh"LhIh (n-14 }"Tmaz,k,k

h=1
chain h
intersects chain k

On the other hand, we have

Mp
aZ Y Tmink [ka (2 Lk 7ok I (214 )]

m==]1
m in chain k
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Mp MF
=Tmin k Y tma-Li)> Y tmeLe(n-li)
| m irrxn chain k m in chain k

> Tmin & | M ~1-Lp § Tp (0L =L x Ty (2 -1, )] Q.E.D.

Vv

Proof of Corollary 6: Immediate from Theorem 11.
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