EXPRESSING PROGRAMMING
LANGUAGE SYNTAX
USING TEMPLATES

Jeffrey A. Brumfield

Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712

TR-85-11 June 1985

Abstract

This paper proposes both a philosophy and a technique for specifying the syntax
of programming languages. Our approach is oriented toward the programmer and is in-
tended to compliment traditional methods such as Backus-Naur Form. Each language
construct is represented by a template, which is a visual presentation of how the con-

struct will appear in a program. The details of a language included in the templates
may differ from those specified in a BNF description.

1. INTRODUCTION

A clear description of the syntax of a programming language is an important tool
for anyone working with the language. Natural language descriptions of syntax can be
so lengthy and complex that their accuracy may be questionable. For this reason, for-
mal syntactic notations such as Backus-Naur Form (BNF) were developed. BNF or one

of its dialects has been used to define the syntax of most major programming languages

since Algol-60.

BNF has proved to be a concise way for a language designer to communicate syn-
tax specifications to other language designers and to compiler implementors. BNF
descriptions have also been provided to programmers as an absolute definition of syntax.

Unfortunately, many programmers find BNF difficult and time consuming to read.

Syntax charts were developed in the early 1970’s as an alternative to BNF. Syn-
tax charts use diagrams to eliminate much of the special notation in BNF. Although
less compact than BNF, syntax charts are more eagily understood. For this reason, they

have become the standard method for presenting language syntax to programmers.

To answer questions about syntax, many programmers prefer to study examples
first, and to consult syntax diagrams only as a last resort. This suggests that syntax
charts do not convey information in the most comprehensible way. Surprisingly, few

efforts have been made in the last ten years to improve or replace syntax diagrams.

This paper suggests that, with respect to specifications of syntax, the needs of the
programmer are different than those of the language designer and compiler implementor.
A new technique, called templates, for describing the syntax of programming languages
is presented. Templates can be used instead of syntax diagrams to communicate
language syntax to programmers; templates are not intended to compete with BNF in
terms of conciseness and compactness. The following section describes templates. Sec-

tions 3 and 4 discuss the design and organization of templates.

The details of a programming language that are included in its syntax
specifications are limited by the descriptive capabilities of the notation being used.
BNF, syntax diagrams, and templates all have the same descriptive power. However, to
make templates more meaningful to programmers, we propose that certain details be
omitted from templates and that other details not usually included in syntax

specifications be suggested by the templates. Section 5 presents these ideas in detail.

Throughout the paper, we illustrate our ideas using examples from the Modula-2
language. Modula-2 has a greater variety of featlires than Pascal and consequently a
more interesting syntax description. Because Modula-2 is simpler than languages such

as Ada, we can present enough examples that the reader should feel confident that he

could complete the syntax description.

2. TEMPLATES

A template describes a construct in a programming language. Figure 1 shows a
template for a program module in the Modula-2 language. A template consists of key-
words and symbols that are part of the language, references to other templates, and
indicators of optional and repeated items. A template may describe an infinite set of

things, such as all syntactically valid if statements, or a finite set of things, such as all

binary operators.

Every template has a name, which ié used to reference the template. To form a
syntactically valid construct, each template name appearing within a template must be
replaced by a sequence of characters that is described by the named template. Key-
words must be distinguishable from template names. All Modula-2 keywords are in cap-
ital letters, so template names can be in lower case letters. In languages without this
restriction, two different fonts can be used. For example, keywords can be boldface and

template names can be in Roman, or keywords can be in Roman and template names

ES

can be in italics.

Within a template, items that are optional appear in shaded rectangles. Normally,
if several items are enclosed within the same rectangle, then all of the items must be
present or they all must be omitted. This rule can be overridden by nesting a more
darkly shaded rectangle within the rectangle. If one shaded rectangle is nested within
another, then the items within the inner rectangle are optional even if items in the outer

rectangle are present. To indicate that the items within a shaded rectangle may be

MODULE name :

b

any number
in any order

END name .

Figure 1. A template for a Modula-2 program module.

repeated any number of times, an ellipsis (“...") is placed immediately after or below

the rectangle.

The template describing real numbers in Modula-2 illustrates optional and

repeated items:

digit

It is apparent that a real number must contain at least one digit followed by a decimal

point. If the number is written using scientific notation, then the letter “E” and at

least one digit are required.

Shading alone cannot conveniently describe language constructs that have several
distinet forms. One example of such a construct is the executable statement, whose
variants may include an assignment statement, repetitive statements, and conditional

statements. The syntax of each of these variants is totally different from the others.

A template for such a construct consists of a large opening brace (‘“{) that

e

encloses the variants. If possible each variant is described on 2 single line. Thus, a

Modula-2 statement is described by the template:

assignment statement
procedure call

return statement

if statement

case statement

< while statement
repeat statement

for statement

loop statement

exit statement

with statement

If multiple lines are needed for variants, then the variants can be separated by space or

by a broken line.

When there are a large number of variants, each of which is a single symbol or
keyword, the template may be presented more compactly without sacrificing clarity.

The template for the Modula-2 binary operator could include an explanation in italics:

one of the following words or symbols: *

+ - %=/ DIV MOD
AND & OR

In addition to specifying the syntax of constructs, templates also suggest proper

coding style. For example, the template for an if statement

IF boolean expression THEN

statement sequence

END

suggests that the keyword THEN should appear on the same line as the IF or ELSIF,

and that the statement sequences should be indented.

To suggest that each statement should begin on a new line, the template for a

statement sequence appears as

instead of

statement

Since many entities have more than one acceptable format, the templates necessarily

reflect the preference of their designer. There are certainly many stylistic issues that are

not addressed by templates. Examples include the ordering of declarations and the

choice of names. Additional coding guidelines can optionally be listed with each tem-

plate.

3. DESIGNING TEMPLATES

There are obviously many collections of templates for describing a given language.
Selecting the most useful set of templates is more of an art than a science. This section

presents several guidelines that may help in developing templates that will be meaning-

ful to the programmer.

Templates should correspond to the componehts of a program in terms of which a

programmer thinks. It is natural to have a template for each type of program unit,

declaration, statement, and literal.

Repetition of details within two or more templates is frequently necessary for each
template to convey a complete idea. A template should never be created solely to avoid
repetition. For example, in the Modula-2 1ang:1age main modules, implementation
modules, local modules, and procedures may include the same types of declarations (ie.,

constants, types, variables, procedures, and local modules). However, these different

types of declarations are shown in each of the templates for completeness.

The different parts of a template should usually be described at the same level of
detail. In particular, if a construct has several variants, each variant should include the

same amount of detail. Consider the template for a statement presented in the previous

10

section. While the assignment statement, procedure call, return statement, and exit
statement could easily be described in more detail on a single line, descriptions of the
other statements are more complex. Consequently, each type of statement is described

by a separate template. An additional benefit of doing this is that a descriptive name is

associated with each statement type.

Too much information should not be presented in a single template. Unfor-
tunately, there is not simple rule for deciding when a template has become too complex.
Nesting shaded rectangles to show optional items should be used conservatively; more

than two levels of shading is confusing and should be avoided.

Finally, the number of templates in the description of a language should be a

consequence of following the above guidelines. Placing an arbitrary limit on the number

of templates may lead to a poor design.

4. ORGANIZATION OF TEMPLATES

Once the individual templates for a language have been designed, they must be
organized in a way that encourages their use. This task is complicated by the diverse
needs of programmers. One programmer may want to casually examine the templates
for all executable statements; another may want to study in depth the syntax of a sin-
gle statement. To allow the templates to be accessed in several ways, we propose:

1) using a top-down organization,

11

2) grouping similar templates,
3) providing a table of contents, and

4) adding cross referencing information to the templates.

A top-down organization requires that the first templates describe a program (or
whatever the units of compilation might be). Templates describing lower level con-
structs such as names and literals appear last. The top-down approach gives the novice

some idea of the structure of a complete program; it can also motivate and organize an

examination of the other templates.

Similar templates should be grouped for easy access. Natural categories for tem-
plates include data types, statements, expressions, and literals. Appendix A shows one
way to group templates for the Modula-2 language. This list also serves as a table of
contents that helps the programmer to quickly locate a specific template. The more

complex the language, the more essential the table of contents is.

There may be a few templates that do not seem to belong to any category. Fre-

e

quently these templates are referenced only once and can be placed near the templates

that reference them.

Each template can be assigned a number of the form z.y, where z specifies the
group to which the template belongs and y is the number of the template within the
group. To facilitate locating other templates referenced within a template, their

numbers can appear in the right margin on the same line as the reference. If more than

one template is referenced on a line, the numbers appear in the same order as the tem-
plate names. If a template is referenced more than once on a line, only the first refer-

ence needs to have an entry in the list of numbers. Appendix B gives several templates

that use this cross referencing scheme.

5. THE CONTENT OF SYNTACTIC DESCRIPTIONS

Formal syntactic notations have the ability to specify only certain details of a pro-
gramming language. For ‘example, the notations described in this paper are powerful
enough to specify that parentheses in an expression must be balanced or that there must
be a corresponding END for each procedure heading. However, these notations are not
powerful enough to specify that a procedure caH must have the same number of parame-

ters as the procedure declaration or that the name following the procedure END must

be the same as the name in the procedure heading.

Language designers usually formulate their syntax descriptions to help the com-
piler implementor check for as many errors as possible during the p.arsing of a program.
Some details included in these descriptions are needlessly confusing to the programmer.
Other details usually omitted can convey important information to the programmer.

This section gives two examples of how the information in templates might differ from

that presented in traditional syntax descriptions.

13

One of the most confusing parts of the syntactic specification of many program-

ming languages is the description of an expression. The following are the Extended

BNF rules describing Modula-2 expressions:

expression = SimpleExpression | relation SimpleExpression | .
SimpleExpression = [“+”|*“-”] term { AddOperator term } .
term = factor { MulOperator factor } .
factor = number | string | set | designator [ActualParameters| |
“(expression ‘)’ | NOT factor .
relation = S | C>T | C="] e] =") Y] Y >=" | IN
AddOperator = “4” | “-” | OR .
MulOperator = “x" | “/” | DIV | MOD | AND | “&”

The complexity of these rules results from the desire to indicate operator precedence
and thereby make the specifications unambiguous. This is important to the compiler

implementor in guaranteeing a unique parse of every expression.

While operator precedence is also an important concern of the programmer, it can
easily be omitted from the syntactic specifications and described with the semantics.

The resulting templates convey the true simplicity of an expression:

operand

The unary operators are +, -, and NOT; the binary operators were listed in Section 2.

An operand is specified by the template

14

(expression)
function call
constant designator

variable designator

ﬁ integer literal
real literal
character litéral
string literal

set literal

Most programming languages use names (or identifiers) to reference objects such as
variables, types, and procedures. The syntax of names for all types of objects is usually
the same. For this reason, we often see the term name used throughout a syntactic

description with no indication of what objects the name can refer to.

Templates can be made more meaningful to the programmer if additional informa-

tion is specified for names. For example, the template for a Modula-2 import list

IMPORT nanie

shows that the name following the keyword FROM must be that of a module, but the

list of names can include names of any objects.

To avoid creating several identical templates, we allow a single template to have
several names. Thus, name, variable name, type name, procedure name, and module

name all reference the same template. There are two instances when we do not specify

15

the objects to which names refer. The first is when an object is being declared; the

second is when any object name may appear.

Data type compatibility is also not usually shown in syntactic specifications.
Except for the set of operators that is allowed, the syntax of all expressions is the same.
Nevertheless, when an expression must be of a certain type we show that fact in the

template name. For example, the terminating condition for while and repeat statements

is referred to as boolean expression instead of simply expression.

6. DISCUSSION

Templates are as powerful and precise a notation for épecifying syntax as BNF or

syntax diagrams. Unlike BNF, templates require no meta-notation that could be con-

fused with symbols in the language. The meta-notation used in templates consists of

shading, font changes, the large brace, and the ellipsis. Unlike syntax diagrams, tem-

plates show how constructs will appear in a program. In this way a template has many

advantages of an example, while still being as general as possible.

The use of shading makes the simplest form of each language construct easy to

discern. More complex forms are constructed by including items in shaded rectangles

and possibly repeating them.

16

While a template may show several variants of a construct, we have not proposed
notation that can be used to indicate alternatives within a template. The absence of
this capability has not proved to be an inconvenience. Although the resulting templates

are less compact, they are visually more meaningful.

Template names have not been restricted to single words. Therefore, two consecu-
tive template names must be separated by shading or white space. If the template

designer feels this can lead to confusion, template names can be hyphenated or changed

to compound words.

Templates could be used to convey the same information as BNF descriptions.
However, we believe the creation of syntax diagrams directly from BNF rules has
prevented them from being more useful to programmers. While BNF is still ideal for

language designers and compiler implementors, templates can convey slightly different

information to meet the needs of programmers.

The ideas proposed in this paper are intended to be flexible. We have used them
to describe the syntax of a few Pascal-like languages. The template designer is

encouraged to modify and extend our techniques if doing so will allow other languages

to be described clearly and simply.

APPENDIX A

Organization of Templates for the Modula-2 Language

Compilation Units

1.1
1.2
1.3
14

Declarations

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10

Data Types

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15

Statements

4.1
4.2
4.3

program module

definition module
procedure heading

implementation module

import list
export list
constant declarations
type declarations
definition module type declarations
variable declarations
procedure declaration
formal parameter list
formal parameters
local module declaration

type
enumerated type
subrange type
array type
index type
record type
field list sequence
field list
variant list
set type
base type
pointer type
procedure type
formal type list
formal type

statement sequence
statement
assignment statement

17

4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15

Expressions

Names

Literals

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

6.1
6.2
6.3
6.4
6.5
6.6

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10

procedure call
return statement
if statement
case statement
selector list
selector
while statement
repeat statement
for statement
loop statement
exit statement
with statement

expression list

expression, boolean expression
unary operator

binary operator

operand

function call

constant expression

constant operand

name list

name, module name, type name, field name
constant designator, type designator
variable designator, procedure designator
qualifier

alphanumeric

integer literal
real literal
character literal
string literal
set literal
element

digit

octal digit

hex digit

sign

18

APPENDIX B

Sample Templates for the Modula-2 Language

19

20

2.7 procedure declaration

PROCEDURE name {

6.2, 2.8, 6.3]
[2.3]
2.4]
any number
in any order
[2.6]
[2.7]
2.10]
.
[4.1]
END name ; 6.2]
2.8 formal parameter list
formal parameters [2.9]
2.9 formal parameters
name list type designator 6.1, 6.3]

3.6 record type

RECORD
field list sequence

END

3.7 field list sequence

3.8 field list
{ name list : type

variant list

3.9 variant list

type designator OF

CASE

selector list field list sequence

selector ls

END

3.7]

(6.1, 3.1]
3.9]

6.2, 6.3]
(4.8, 3.7]

[4.8, 3.7]

4.10 while statement

WHILE boolean expression DO
statement sequence

END

4.11 repeat statement

REPEAT
statement sequence
UNTIL boolean expression

4.12 for statement

FOR variable designator := expression TO expression

statement sequence

END

4.13 loop statement

LOOP

statement sequence

END .

4.14 exit statement

EXIT

4.15 with statement

WITH variable designator DO
statement sequence

END

22

DO
[6.4, 5.2, 5.7)
[4.1]

[4.1]

