AN ANALYSIS OF THE NONEMPTINESS
PROBLEM FOR CLASSES OF REVERSAL-
BOUNDED MULTICOUNTER MACHINES

Rodney R. Howell and Louis E. Rosier

Department of Computer Sciences
University of Texas at Austin
Austin, TX 78712

TR-85-16 September 1985

Abstract

In this paper, we present an efficient nondeterministic algorithm to decide nonemptiness
for reversal-bounded multicounter machines. This algorithm executes in time
polynomial in the size of the input and the number of reversals the counters are
allowed. Previously the best known upper bound required space logarithmic in the size
of the input and linear in the number of reversals. We argue that our algorithm is
optimal for many classes of these machines. Furthermore, we show that in most cases,
the complexity of the nonemptiness problem does not change significantly when the
reversal bound is dropped for one of the counters. In addition, we explore the changes
in the complexity of the nonemptiness problem for these classes as different parameters
are fixed or are given in either unary or binary. Our results vield as corollaries the
answers to several unanswered questions regarding the disjointness, equivalence, and
containment problems for reversal-bounded multicounter machines. Finally, we use our

results to solve several problems regarding deadlock detection and unboundedness
detection for systems of communicating finite-state machines.

1. Introduction

A comprehensive analysis of the decidable and undecidable properties of several classes
of reversal bounded multicounter machines was given in [13]. Problems considered

there include emptiness, disjointness, containment and equivalence. Some of the
respective complexity issues were subsequently considered in [11]. Let DCM(m,r)
(NCM(m,r)) be defined as the class of deterministic (nondeterministic) m-counter
machines whose counters are allowed no more than r reversals. In [11], the
nonemptiness problem was shown to have a lower bound of PSPACE for Up
DCM(m,r) and an upper bound of EXPSPACE for U, NCM(m,r), where r is expressed
in binary. In addition, several upper and lower bounds were given for the classes
derived by fixing m and/or r; however, the only completeness results given were for
DCM(m,r) and NCM(m,r), where m and r are fixed constants. Many of the results were

also extended for the disjointness, containment, and equivalence problems.

In this paper, we define the class of machines NCM+(m,r) (DCM+(m,r)) as the set of
machines in NCM(m,r) (DCM(m,r)} augmented with a single unrestricted counter.
(This class was also studied in [10].) We then give a new nondeterministic algorithm to
solve the nonemptiness problem for NCM-(m,r). [10] showed that if a machine in
“NCM-+(m,r) accepted some input then it had a "short" accepting computation. As a
result upper bounds for the nonemptiness problem, similar to those mentioned above for
NCM(m,r), followed. = We further show the existence of a "short" accepting
computation with additional properties that allow large portions of the computation to
be guessed very efficiently. The result is an algorithm that can detect, in time
polynomial in [M| and r, a computation whose length is potentially exponential in m
and r. We are able to show, using standard techniques, that this algorithm is optimal
for the classes U DCM(m,r), Upnr NCM(m,r), Unr DCM+(m,r), and U
NCM+(m,r) (i.e., we give completeness results for these classes). Furthermore, we are
able to show that, in most cases, the algorithm remains optimal regardless of whether m
and r are fixed or given as parameters, or whether r is given in unary or binary. Table

1-1 summarizes these results, most of which are improvements over those shown in
10, 11].

NCM (DCM) NCM+ (DCM+)
m r Lower! Upper! Lower! Upper!
fixed fixed LOGSPACE LOGSPACE? LOGSPACE LOGSPACE?
parameter fixed NP NP NP NP
1 unary ~ LOGSPACE LOGSPACE®* NP NP
fixed>1 unary NP NP NP NP
parameter unary NP NP NP NP
1 binary ~LOGSPACE LOGSPACE®* PSPACE 2°" time
2 binary PSPACE 2°" time 297 time 2°% time
fixed>2 binary odn yime 2" time 241 time 2°% time
parameter binary 297 time 2°% time 297 time 2°% time

For some fixed constants ¢ and d.
Using an algorithm from [11].
Using an algorithm from [10].
Using an algorithm from [19].

P

Table 1-1: Results concerning the nonemptiness problem for
reversal-bounded multicounter machines.
(All bounds are nondeterministic.)

Extensions of these results to the disjointness, containment, and equivalence problems
are also discussed. Using techniques from [11], our results are easily shown to extend to
the disjointness problem for NCM(m,r), DCM(m,r), and two-way reversal-bounded
multicounter machines, and to the equivalence and containment problems for
DCM(m,r). Although the equivalence (and, hence, containment) problem is undecidable
for NCM(1,1) [1, 9, 11}, and the disjointness and containment problems are undecidable
for DCM+(0,0) (i.e., deterministic one-counter automata) [7, 13], whether our results
extend to the equivalence problem for DCM-+(m,r) remains an open question. Finally,
we indicate that our results easily extend to the question of whether the number of

reversals can exceed a given r, but we show that by not specifying r, or by allowing for

arbitrarily succinet representations of r, we can make the nonemptiness problem as hard

as any decidable problem.

We then apply our results to questions regarding deadlock detection and
unboundedness detection for communicating f{inite-state machines (CFSM’s). Since the
nonemptiness problem for U NCM-+(m,1) provides an upper bound for the deadlock
detection problem (DDP) for systems of two CFSM’s in which one channel is bounded
over some given language of the form al* . e ak* [8], we are able to improve to NP the

upper bound of PSPACE given in [8]. In addition, we show a lower bound of NP for

this problem. Using similar techniques, we give other improvements and extensions to
the results in [8].

We assume the reader is familiar with the basic concepts of automata theory (see, e.g.,
[6, 12]). The model of computation we use is the nondeterministic Turing machine
(NTM). Unless otherwise noted, all completeness results in this paper are with respect

to PTIME many-one reductions. The logspace reductions used are DLOGSPACE many-

one reductions.

. The remainder of the paper is organized as follows. Section 2 contains definitions of
some of the terminology used in this paper. In Section 3, we present our algorithm for
solving the nonemptiness problem for the classes DCM(m,r), NCM(m,r), DCM+(m,r),
and NCM+(m,r), and give a careful analysis of the problem complexity, relating our

results to other problems. In Section 4, we give applications of our results to the area
of CFSM’s.

2. Preliminary Definitions

DCM(m,r) (NCM(m,r)) is defined in [11] as the class of deterministic
(nondeterministic) m-counter machines whose counters may make at most r reversals.
We define DCM+(m,r) (NCM+(m,r)) similarly with the addition to each machine of a
pushdown over a one-letter alphabet. This pushdown then behaves as a counter with
no reversal bound, but we refer to it as a pushdown to avoid confusion with the

reversal-bounded counters. [11] extends the definition of DCM(m,r) (NCM(m,r)) to the

class DCM(m,r,k) (NCM(n,r,k)) of two-way m-counter r-reversal machines whose input

head may cross any boundary between input symbols at most k times. We define

DCM-+(m,r,k) (NCM-+(m,r,k)) analogously.

The nonemptiness problem is the problem of deciding if a given machine M accepts
some input string. The disjoininess problem is the problem of deciding if the languages
accepted by two given machines M, and M, are disjoint. The equivalence problem is
the problem of deciding if the languages accepted by two given machines M, and M,
are equivalent. The containment problem is the problem of deciding if the language

accepted by one given machine M, is a subset of the language accepted by a second

given machine M,.

The description of a machine M will consist of a start state, a set of final states, 2
transition function, and an input alphabet. The length of this description will be
denoted by |M|. Besides machine descriptions, an algorithm to solve any of the above

problems must be given a value for r and, if applicable, a value for k. Therefore, we

have two natural ways of evaluating problem complexity: in terms of the total size of

the input, or in terms of M|, |M,}, r, and k. Unless otherwise noted, our complexity -

- measures will be in terms of the total size of the input.

Let M be in NCM-(m,r,k) for some m,r,k. A configuration of M is an (m--2)-tuple

(apsCqy - - - ,cm), where q is a state, p is the value of the pushdown, ¢, is the value of

the ¢th counter, 1 <i<m. The ¢nttial configuration of M is the configuration

(9g:0s - - - ,0) where g is the start state. A final configuration of M is a configuration

M can reach when it halts.

A computation o=w, ... W on M is a series of configurations w;, 1 <1< n, such
that w, is the initial configuration, w_is a final configuration, and w; can be reached
from Vi1 in one move, for 1<j<m. If o=w, ... W is a computation on M and
o=w, ... Wi 1<i<j<n,thendisa subcomputation on M. We sometimes refer to

o as a segment of o.

For any state q, a loop on ¢ is a subcomputation w, ... W such that
wi:(q’pi’ci,l’ e ,ci’m) and sz(%pj’cj,l’ . ’Cj,m) for some state ¢, pushdown values
P; and Py and counter values URTERE € Gt Cm A g-based loop is a loop ¢ on

q such that for any segment o of o, if ¢ contains s or more configurations, where s is

the number of states in M, then at least one configuration of ¢ contains state q.

If o is a subcomputation on M and ¢ is a transiton rule, then 7{o,t) is the number of

times t is taken in o.

In any computation ¢ on a multicounter machine M, each counter must be in one of

the following counter modes [11] at any given time:

e zero -- if its value is zero;
e increasing -- if its last change was an increment;

o decreasing - if it is nonzero and its last change was a decrement.

A counter-mode vector [11] is a vector containing the current counter modes of each of

the counters.

Communicating finite state machines (CFSM’s) are defined in detail in [8]. Briefly,
in a system of CFSM's, machines communicate exclusively by exchanging messages via
connecting channels. There are two one-directional FIFO channels between any two
machines in the system. Each machine has 2 finite number of states and transition
rules, and each transition rule is accompanied by either sending one message to one of

the machine’s output chanmnels or by receiving one message from one of the machine’s

input channels.

A CFSM is deadlocked if it is in a state in which all of the outgoing transition rules
require a message to be received, but none of these messages ever become available. A
system of CFSM’s is deadlocked if every machine in the system is simultaneously
deadlocked. The deadlock detection problem (DDP) is the problem of deciding if a given
system of CFSM’s can reach a deadlock. A channel in a system of CFSM’s is

unbounded if for any integer c, there exists a computation on the system which at some

time yields more than c¢ messages simultancously residing on that channel. The

unboundedness detection problem (UDP) is the problem of deciding if a given system of

CFSM’s has an unbounded channel.
3. The Nonemptiness Problem

3.1. The Algorithm

" Our strategy for deciding nonemptiness of a machine in NCM+(m,r) will be to guess
segments of a computation such that in each of these segments, each counter is moving
in only one direction. Hence, within each segment, the behavior of each counter is
nnice” enough that the exact order of the transitions in the computation is not
necessary to know. This is important, because from [11], the shortest accepting
computation of a machine in NCM(m,r) (and, hence, in NCM-+(m,r)) may have
exponential length. However, the pushdown causes\problems in that for a given
computation, there may be an exponential number of points at which the pushdown
must be checked for zero. In order to minimize the number of these points, we give the
following lemmas. We use one-counter machines (1CM's) with no input tape in the

lemmas because they capture precisely the characteristics that cause the problems.

Lemma 1: Let M be a 1CM with s states and no input tape. Let o be a
subcomputation on M. Then there exists a subcomputation o with the
following properties:

1. o’ has the same beginning and ending configurations as o;
2. r{o,t) = {o',t) for all transitions t;

3.6 can be divided into 252+3 or fewer segments that satisfly the
following properties:

a. all segments except possibly the first and last begin and end with
a counter value of s;

b. in each segment, the counter either never exceeds 2s* or never
goes below s.

Proof: We will generalize a technique found in [19]. We begin by dividing
o into as few segments as possible that satisfy the above conditions, except
that the number of segments might exceed 2s°+3. We will call the segments
in which the counter begins and ends with s and never exceeds 25t low
segments, and the segments in which the counter begins and ends with s and
never goes below s high segments. Note that by minimizing the number of
segments, we cause the high segments to alternate with the low segments (see
Figure 3-1). We will now show how the computation can be "rearranged" so
that the number of high segments is no more than s2.

First, we note that in any high segment, the counter must exceed 25t at
some point b; otherwise, it could have been included in an adjacent low
segment, thus reducing the number of segments chosen. (If there are no low
segments, o can be divided into 3 or fewer segments, thus satisfying the
conclusion.) Since the segment begins and ends with a counter value of s, the
counter must have a value of s* at some point before and at some point after
b. Let point a be the most recent time before b in which the counter value

was exactly 54, and let ¢ be the next time after b in which the counter value is
again s? (see Figure 3-1).

Define intervals (a;,b;), (b',¢;), 0 <1< s-1, where a; is the last time before b
that the counter value is s4+i*s, bi is the first time after a; that the counter
value is st4(i+1)s, b is the last time before ¢ that the counter value is

st4(i+1)s, and ¢, is the first time after b’ the the counter value is sti*s.
Now between times a, and b, (b, and ¢;), o must contain some loop on some

state q in which there was a gain (loss) in the counter value of between 1 and
s. This must be the case, since during the interval (a,i, bi)’ the counter gained
s in value and at least s steps were executed.

Now there are s°

such loops between points a and b. Hence, there must
exist a state q; such that there are at least s% loops on q,- Furthermore, there
must exist a k, 1 <k <s, such that there are at least s loops on q with a
gain in the counter contents of exactly k. Likewise there must exist a state g,
and a j, 1 <j <'s, such that there are at least s loops on g, with a loss in the

counter of exactly j. Let u, v be such that k*u = the lowest common
multiple of k and j = j*v (1 < u,v <s).

Now if there is another high segment that passes first through q;, then
through g, with counter value at least 2s at both states, we can "move” u of
the above loops on q; and v of the above loops on q, to this new segment

Counter Value

2s

4

Y

| || |

'S
L4

i

low segment i high segment | high segmeml

low segment

Number of Moves (time)

Figure 3-1 Division of a Subcomputation

without causing the counter to go below s in either segment if s>1. (If s=1,
the computation can clearly be arranged arbitrarily.) Therefore, our strategy
for rearranging the computation is as follows: starting with the second high
segment, move loops in the manner described above to some prior high
segment until it is no longer possible to do s0; then go on to the next high
segment. It will be impossible to move loops to a prior high segment only if
either no prior high segment passes through the two necessary states in the
proper order with the counter at least 2s, or the counter values for the current
segment have been brought to 95 or less. In the former case, we have a new
high segment passing through at least one pair of states which was not
available in any previous high segment. In the latter case, we have a new low
segment which can be merged with its neighboring low segment(s). Since
there are s® distinct ordered pairs of states in M, we can thus generate a
computation ¢ that satisfies all of the given conditions.

Our strategy of guessing a computation for a machine M in NCM+(m,r) will consist of
guessing high and low segments, where the pushdown in M corresponds to the 1CM
counter. Since the low segments have pushdown size bounded no greater than 2st, we
can translate them in PTIME into subcomputations on a machine in NCM(m,1). This
allows us to guess the computation without worrying about the pushdown. However,

more restrictions must be made to the high segments in order to allow us to guess them.

Lemma 2: Let M be a 1CM with s states and no input tape, and let o be a
subcomputation on M in which the counter does not go below s. Then there
exists a subcomputation ¢/ on M with the following properties:

1. ¢ has the same beginning and ending configurations as o}
2. {o,t) = (J',t) for all transitions t;
3. the counter stays strictly positive in o

4.0 can be divided into 4s-1 or fewer segments with the following
properties:

a. all segments with more than s transitions are g-based for some
state q;

b. at any point in o that forms a boundary between segments, the
counter has value at least s.

10

Proof: Pirst, we mark in o the first and last occurrences of each state. We
now look for a segment of ¢ having at least s transitions but containing no
marked points, except possibly at one endpoint. If no such segment exists,
then we can divide ¢ at each of the marked points and have at most 2s-1
segments each containing no more than s transitions. Otherwise, we have a
segment which must contain a g-based loop with no more than s transitions
for some state q. If the loop causes a nonnegative change in the counter
value, we can "move" it to the location immediately following the first
marked occurrence of q (see Figure 3-2). This will not affect the counter
value at any point following the original location of the loop or at any point
preceeding the new location. All of the other points except those in the loop
will have a nonnegative change in their counter values. Since the loop causes
o nonnegative change in the counter value, and since the marked point has
not changed value, both endpoints of the loop must retain a counter value of
at least s. Since the loop has s or fewer transitions, the counter value must
remain positive within the loop. Also note that no marked points have
decreased in counter value; i.e., they all remain at least s. A similar argument
may be given to allow a nonpositive g-based segment to be moved to the
location immediately preceeding the last marked occurrence of q.

Since the above procedure does not reduce the counter value of any marked
point, it may be repeated until no more loops can be moved. (To insure
termination of this process, we must stipulate that once a loop has been
moved, no transition within it may be moved again.) It should be clear that
this procedure yields a computation ¢ that satisfies the given conditions.

We now present our algorithm for deciding the nonemptiness problem in NCM+(m,r).

Theorem 3: The nonemptiness problem for NCM-+(m,r) is solvable in
nondeterministic time polynomial in the size of the machine description and r.
(L.e., there exists a positive constant ¢ such that, for inputs of size n (r given
in binary), the problem is solvable in 2 nondeterministic time.)

Proof: Let M be in NCM-+(m,r) for some m and r. Suppose there is an
accepting computation on M. From [1], there is a machine M, in

NCM-+(m[(r+1)/2],1) whose size is polynomial in r and |[M|, and which
accepts the same language in the same amount of time as M. From [10], M,
accepts some string if and only if it accepts a string in time [Mlicmr for some

fixed constant ¢. The computation of this string on M can be divided into at
most m(2r+1)+1 subcomputations, each having a distinct counter-mode

P35

L S

@G

prow—

<

3

[

(4]

[e3]

i

o

Y p.

o »

@ q§ (first occurrence)

> S

9,

‘ (1asl occurrence
Number of Moves (lime)
&
::-' ,o.)
: o
3
£2

[o:3]

-y

e 4

LY,

o

a

=

2 s

Number of Moves {time)

Figure 3-2 Effect of moving a q‘-based loop

. 4

12

vector. We can guess the configurations at the points at which the counter-
mode vector changes: each configuration consists of a state and m+1 counter
values, each of which can be stored in O(mr log(r|M])) bits.

Consider one of the m{(2r+1)+1 subcomputations. If the subcomputation is
rearranged such that the same number of each transition rule is used, the n
counters will yield the same result; we only need to be sure that the
rearrangement does not cause the pushdown to become zero at the wrong

time. To insure this, we will guess a computation that fits the conditions of
Lemma 1.

We must therefore divide a subcomputation into at most 25243 segments,
where s is the number of states in M. We f{irst consider the high segments.
We will guess a subcomputation that {its the conditions of Lemma 2. Since
we can clearly guess the segments that are no longer than s, we will explain
only how we guess the g-based segments.

We wish to guess a q,-based segment no longer than O((r[M])*™") starting in
1 g

configuration (ql,p,cl, e ,C) where p > s. We create a vector
O’O”"‘:(VO,P s Vg P 1 -+ ¢ 1C0,m)} where Vo1 is the number of "short" (i.e.,
s or fewer transitions) loops to be executed Vg1 e+ =0, pO——p, and

Coi=Cp 1 <i< m. Now, for each transition from q, ’chat satlsf'ies the current

counter-mode vector, we guess the number of loops which will have that
transition as their f'n’st move. We then create

z(vl TERRE RO SUSE TR) where v, is the number of loops
reachmg sta,te q; after their ﬁrst traﬁsxtlon, P, =Dyt the sum of the effects of
the guessed transitions on the pushdown, and ¢, =C0,; .+ the sum of the

effects of the guessed transitions on counter j (see Figure 3-3). We continue
constructing vectors in this manner according to the following rules:

1. transitions from q, are taken only on the first move;

9. the total number of transitions taken on move i from state g should
equalvi_ij, 1<i<s,2<j<s.

We stop after creating o If there exists v ;, 2 <i<s, such that v, £ 0, or
if p <s, the process fails.

‘We will now show that the above procedure can succeed if and only if there
exists 2 q;{-based segment satisfying Lemma 2, and that if the procedure
succeeds, there is such a segment yielding pushdown and counter values of

PeC 17 * » * Csm Assume the above procedure succeeds. This clearly implies
3 ?

we have the following mechine in NCM+(1,2). where ¢ p indicales a change to

the pushdown, and + c indicates
a change to the counter.

Beginning Configuretion:
(qi, 4, 0)
Ending Configuration:

(QI’S’ 11)

*P Trace of the Algorithm

Number of Loops Ending Number of Transitions Take;’z

After Move On Move
1 2 3 4 . 1 2 3 4
a, |1 1V 6 7 13 g,.q,,p | ' 0 0 O
f% a, 8 4 6 q,.09,,-p | 8 0 0 O
t 2 O 6 0 2 0 9,05, 7P | 6 0 0 ©
a, 0 5 0 a.q,.* | 0 4 1 6
ol s 14 9 8 0 KA O
Aclive 0. 0,P | O 2 0 0
9. 0,.*¢ | 0 1 0 2
ag, 4.+ | 0 2 0 O
Afler Move Q5. 0, ~C | ----invalid---
0o 1 2 3 4 05, 0,*P | O 3 0 O
S Pushdown | 4 -11 -4 -1 S Qg 0y} O 0 3 0
7.}35 Counter | 0 © 3 9 11 G.05.%0 | O 0 2 0
Total 15 14 9 8

Figure 3-3 Trace of the Aigorithm

14

the existence of a collection of loops on ¢, each with at most s transitions,
and whose net effect on the pushdowns and counters is PPy C517Copr - v -
S m™C0,m’ We can arrange these loops so that the ones causing a net gain in
the pushdown are executed first, and the ones causing a net loss in the
pushdown are executed last. Since both Py and p, are at least s, the resulting
subcomputation causes the pushdown to stay strictly positive. Hence, we have
a subcomputation from (q,,pg:Cq - - ¢) O (ql,ps,csm oo ,cs,m) satisfying
the conditions of Lemma 2.

Now assume there exists a ql-based segment satisfying the conditions of
Lemma 2. This ql-based segment can be broken into loops on qy with at most
s transitions each. Our procedure can clearly guess these loops and succeed.

We now consider a subcomputation in which the pushdown does not exceed
2st, 'We construct a new machine M’ in NCM+(m,1) in which each state is a
pair (q,v), where q is a state of M and v is a value of the pushdown. Thus,
there are 2s° states in M. M’ will simulate a subcomputation on M without
using its pushdown; hence, we can assume the pushdown maintains a value of
s throughout the subcomputation. Clearly, M’ can be constructed in time
polynomial in |[M|. We can now use the above procedure to guess the
subcomputation. Therefore, we have a nondeterministic algorithm to

determine whether M accepts some string, and the algorithm runs in time
i

polynomial in [M| and r.
The above algorithm runs in NP if r is a fixed constant or is given in unary. If ris
given in binary, the algorithm is polynomial in [M| and 2tl; hence, it runs in 2 time,

where n is the total size of the input, and ¢ is some fixed constant.

3.2. Lower Bounds

The following theorem and its corollary show that our algorithm is optimal for certain

cases if EXPTIME £ NEXPTIME.

Theorem 4: There exists a positive constant d such that the nonemptiness
problem for U, DCM(3,r) requires at least 292 pondeterministic time for
infinitely many inputs, where n is the size of the input.

Proof: Let M be an NTM that operates in time 2" on input of size n. For
each input x we show how to construct in PTIME a machine M, in

DCM(B,QCIX}) for some constant ¢ such that M1 accepts some input if and only
if M can accept x. We first assign a fixed-length binary encoding to the
symbols in the input and tape alphabets of M. We now construct M1 to

operate in two phases. In the first phase, it will push on one counter the
unary equivalent of the binary encoding of x, where the least significant bit
appears in the first character of x. The binary encoding of x will be a part of
the finite-state control. A "0" will cause the number in the counter to be
doubled (using one of the other counters as a work stack), and a "1" will
double and add 1. Clearly, the size of this portion of M is polynomial in the
size of x.

In its second phase, M, will simulate M on x. M, will use one counter as the

portion of the tape to the left of the input head, one counter as the portion of
the tape to the right of the input head, and the other counter as a work stack.
Ml can always determine the least significant bit of one counter by dividing

by two, using the work stack to retain the quotient. A tape symbol can be
written to a counter in the manner outlined in phase 1. Thus, for each
transition in M, M1 makes at most some constant number of reversals. Since

M is nondeterministic and M, is deterministic, M, will use its input tape to

simulate the guesses of M. Hence, there is an input that M, accepts if and
only if M can accept x.

Since M operates in time Q!X}, M, will have no more than 2| reversals for

some constant c¢. Therefore, M, is in DCM(E,QCM), and the reduction is in
PTIME. Since M1 can be written in space proportional to |x|, we can show
that there is a positive constant d such that any NTM that solves the
nonemptiness problem for U, DCM(3,r) requires at least 292 time for infinitely
many inputs, where n is the size of the input.

Corollary 5: The nonemptiness problems for the following classes are
NEXPTIME-complete:

LUy, NCM(m,r) (Um,r DCM(m,r}));
2. Uy, - NCM+(m,r) (Um’r DCM+(m,r));

3. U, NCM(m,r) (U, DCM(m,r)) where m is a fixed constant greater than
25

4. U, NCM+(m,r) (U, DCM+(m,r)) where m is 2 fixed constant greater
than 1.

16

Corollary 5 is an improvement over [11], which shows the nonemptiness problem for
Unr DCM(m,r) is PSPACE-hard. [11] also shows that the nonemptiness problem for u.
DCM(2,r) is NP-hard. [4] shows how a 2-counter machine can simulate a 4-counter
machine. However, when the construction is applied to Theorem 4, the number of

reversals becomes too large to write down in PTIME. The best we are able to show is

the following theorem and its corollary.

Theorem 6: The nonemptiness problem for U, DCM(2,r) is PSPACE-hard.

Proof: Let M be a linear-bounded automaton (LBA), and let x be an input
to M. We can construct in PTIME, as in Theorem 4, 2 machine Ml in

DCM(B,QClXi) for some constant ¢ such that M, accepts some input if and only
if M accepts x. Furthermore, the counter values in M, will not exceed O(2ixi),
so M, operates in time 0(2¥!). We now use a technique from [4] to comstruct

a machine M, in DCM(Z,QC’ixi) for some constant ¢’ such that M, will simulate
Ml. M2 will use one counter to record the contents of the 3 counters in M,
and will use the other counter as a work stack. Suppose the counters of M1

have values i, j, and k, respectively. M2 represents these 3 numbers as 2'335%,
To increment i, j, or k by 1, M2 multiplies by 2, 3, or 5, respectively, using its
work stack. Conversely, to decrement, we divide by 2, 3, or 5. Thus, every
increment or decrement of M, requires a reversal in M,. Therefore, M2 is in

DCM(Q,QC'sXI), and the construction is in PTIME. Since LBA acceptance is
PSPACE-complete [16], the result follows. o

Corollary 7: The nonemptiness problems for U, NOCM(2,r), U, DCM-i (1,1},
and U, NCM+(1,r) are PSPACE-hard.

We now consider the case in which r is fixed or given in unary. [11] shows that the
nonemptiness problems for U~ DCM(m,1) and U DCM(2,r) are NP-hard. An
examination of the proof reveals that the result for the latter problem holds even if r is

expressed in unary. Therefore, from Theorem 3, we have the following corollary.

Corollary 8: The nonemptiness problems for the following classes are NP-
complete:

17

1.U, NCM(m,r) (U, DCM(m,r)), where r is expressed in unary;

m, »

2. U, NCM+(m,r) (U, , DCM+(m,r)), where r is expressed in unary;

m, ,

3. U, NCM(m,r) (U, DCM(m,r)), where m is a fixed constant greater than
1 and r is expressed in unary;

4. U, NCM+(m,r) (U, DCM+(m,r)), where m is a fixed positive constant
and r is expressed in unary;

5. U NCM(m,r) (U DCM(m,r)), where r is a fixed constant;

6. U, NCM+(m,r) (U DCM+(m,r)), where r is a fixed constant;

Note that the nonemptiness problem for U_ NCM+(m,1) is exactly the same as for -
CPM’s and U_ P(m,00) (defined in [8] and [10], respectively), where, in each class, the
pushdowns are over a one-letter alphabet. Hence, we have improved over results in

[8, 10], which gave an upper bound of PSPACE for this class.
Finally, we have the following theorem.

Theorem 9: The nonemptiness problems for the following classes are log-
< complete for NLOGSPACE:

1. NCM(m,r) (DCM(m,r)), where m and r are fixed constants [11];
2. NCM+(m,r) (DCM+(m,r)), where m and r are fixed constants;
3. U, NCM(1,r) (U, DCM(1,r)), where r is expressed in unary;

4. U, NCM(1,r) (U, DCM(1,r)), where r is expressed in binary;

Proof: [15] shows the nonemptiness problem for DFA’s to be
NLOGSPACE-complete, thus giving us our lower bound. [11] shows
NCM(m,r) to be in NLOGSPACE if m and r are fixed constants. It is a
straightforward task to extend this result to NCM+(m,r). Finally, [19] shows
the nonemptiness problem for deterministic 1CM’s to be in NLOGSPACE. It
is again easy to extend this result to nondeterministic 1CM’s. 0

18

3.3. Conclusions

We have now given extensive completeness results on the effects of fixing m, {ixing r,
and expressing r in unary as well as binary. I'rom these results, we can draw several
conclusions. First, nondeterminism does not change the complexity of these problems.
This is because the question, "Does there exist an accepted string?” is no different from
the question, "Does there exist an accepting computation?™ Second, in all cases except
possibly NCM(2,r), where r is in binary, the nonemptiness problem for NCM(m,r) has
the same completeness result as does NCM+(m-1,r), 1 < m, where NCM+(0,r) denotes
1CM’s. In other words, allowing one counter in a machine in NCM(m,r) to have no
reversal bound does not significantly change the complexity of the nonemptiness
problem. This is interesting, because allowing two counters to have no reversal bound

allows Turing machine power [17], thus rendering the nonemptiness problem
undecidable [18].

We also note, as noted in [11], that given two machines, M, and M,,, in NCM(m,r), we
can construct in PTIME a machine M in NCM(2m,r) that accepts the intersection of the
languages accepted by M1 and Mz; in fact, the construction can be done in
DLOGSPACE. Furthermore, given any machine M in NCM(m,r), we can construct, in

“DLOGSPACE, machines M, and M, in NCM(m,r) such that M accepts some string if
and only if there is 2 string accepted by both M, and M,; we merely let M,=M and M,
accept all strings. Therefore, we can extend our results to sharpen known bounds on
the complexity of the disjointness problem for NCM(m,r) (DCM(m,r)). Furthermore,
since it is trivial to construct a machine that accepts the complement of the language
accepted by a given machine M in DCM(m,r), we can extend these results to the
equivalence and containment problems for DCM(m,r) [11]. Many of our results can also

be extended to NCM(m,r,k) (DCM(m,r,k)) using techniques in [11].

Our results do not seem to extend to the containment or equivalence problems for
NCM(m,r) or to the containment, equivalence, or disjointness problems for NCM-+(im,r)
(DCM+(m,r)) or NCM-+(m,r,k) (DCM+(m,rk)). As is noted in[1,9, 11], the

equivalence problem (and, hence, the containment problem) for NCM(1,1) is

19

undecidable. Furthermore, the containment and disjointness problems for DCM+4(0,0)
(deterministic one-counter automata) are undecidable {7, 13]. Also, since the above
constructions double the counters, we end up with two pushdowns when attempting to
extend our results to the equivalence problem for DCM+(m,r), and the equivalence
problem is undecidable for 2CM’s [17, 18]. Whether we can improve upon this

construction is an open question. See [14], where related problems are considered.

Finally, we consider a couple of related questions. First, suppose we are given a
machine M and a reversal bound r. We might ask the question "Is there any
computation (accepting or not) that causes more than r reversals in a counter?™ It
sh%mld be clear that straightforward modifications to our proofs will extend our results
to this question. Also, we might consider the nonemptiness problem for reversal-
bounded multicounter machines in which the reversal bound is unknown. We can
reduce, in a manner similar to Theorem 4, any halting NTM to this problem. Hence,
even though this problem is decidable, it as hard as any decidable problem. Likewise, if

we allow for representations of r that are more succinct than binary (e.g., 2 number n
2

represents 2% , I 2's) we can make the problem arbitrarily hard.

"4. Applications to CFSM’s

We now turn to the problems of deadlock detection and unboundedness detection in
CFSM'’s. [8] shows how the DDP for systems of two CFSM’s in which one of the
channels is over a given language of the form al* e ak* can be reduced to the
nonemptiness problem for r-CPM's whose pushdowns are limited to one-letter
alphabets. It should be clear that a machine in NCM+(m,1) can be used instead of an
r-CPM. Hence, from Theorem 3, this problem is in NP. We now show that it is NP-

complete even if both channels are bounded over the given language.

Theorem 10: The DDP for a network of 2 CFSM’S is ’\IP~complete if one
or both channels are bounded over a language al cee By for some given

Byy v e 9B

20

Proof: We will use a technique found in [5, 11]. Let F=C/ A ... AC_ be
an instance of 3-SAT (see [3]) over the variables Xyy oo o oXpe We will
construct a network of 2 CFSM’s (MpMz) such that deadlock is possible in
(Ml,Mz) if and only if I is satisfiable. M, will merely echo its input on its

output channel. M, will guess a string 1'0 and send it to M,. M, can always
have access to the integer ! by simply sending to M, each bit it receives from

M;. Now let Py« -« 5Py be the first n prime numbers. M, checks whether
the formula I is satisfied by the assignment

x, =0 if { mod p, =0

1
= 1 otherwise,

where 1 <1< n. If the selection of I satisfies F', then M, enters an infinite
read loop; otherwise, it enters an infinite loop writing 0's. Hence, (M;,M,) can
enter a deadlocked configuration if and only if F is satisfiable. Since F
contains 3m literals, both channels are bounded over the language (1*0*)3‘“.

By the Prime Number Theorem, 2;;1 p; < n®. It follows that the size of
M, is polynomial in the size of the formula F, and hence the transformation is
in PTIME. Since 3-SAT is NP-complete [3], the result follows.

We now consider the UDP for the same class of CFSM’s. [8] shows this problem to be
in PSPACE. We improve upon this result in the following theorem.

AN

Theorem 11: The UDP for systems of two CFSM’s is NP-complete if one
* *
or both of the channels are over a language a;, ...a for some given

MeSSagES Ay, -+ .+ 5.

Proof: We first show the problem to be NP-hard. First, observe that in the
proof of Theorem 10, the system (M;,M,) will have an unbounded channel if
and only if the selection of [does not satisfy F. We can therefore modify the
construction so that (M;,M,) can have an unbounded channel if and only if F
is satisfiable.

We now show the problem to be in NP. Let (M;,M,) be a system of two

CFSM’s such that the channel from M, to M, is over some given language
#

a; ... ak*. Note that the finite-state control for M; (M,) can be divided into

k phases depending on which message it is currently sending (respectively,
receiving). By [8], we can assume the messages in the system are sent and

21

N . . * * . Lok . * . WK
received in some order (bl R, S,R,) S, (SQURQ) , where 5, and R, denote the

set of sending and receiving, respectively, transition rules of M, for i=1,2.

We can construct, as in [8], a machine M in NCM+(k+1,1) that simulates
(MI,M2). The states of M will be pairs, (qi,qg), where q, is a state in M, and

q, is a state in M. The message passing is simulated as {ollows:

1. Each receiving move of M, will be simulated simultaneously with a
sending move of Mz; hence, the message need not be recorded.

2. M, sending 2, is simulated as follows:

a. If M, is currently in phase i, increment the pushdown;
b. otherwise, increment counter c;.

3. M, receiving a; is simulated as follows:

a. M, can enter phase i from phase j, j<i, only if the pushdown and
counters cj, -+« 4C; 4 Are Zero.

b. If the pushdown is nonzero, decrement the pushdown.
c¢. If the pushdown is zero, decrement counter ¢;.

4. The number of messages sent after M, halts is recorded in counter

Crr1e (We allow the simulation to nondeterministically allow M, to
halt at any time.)

The above construction yields a machine M in NCM+(k+1,1). Clearly, this
construction is in PTIME, and (MI,MQ) contains an unbounded channel if M

contains an unbounded counter or pushdown. Furthermore, if the channel
from M1 to M2 is unbounded, M will contain an unbounded counter or

pushdown. It follows from [19] that if the channel from M, to M, is
unbounded, then M, can enter a loop consisting entirely of sends; therefore,
M, can halt, and the simulation will contain an unbounded counter. Thus,

(Ml,MQ) contains an unbounded channel if and only if M contains an
unbounded counter or pushdown.

Let s be the number of states in M, and suppose M has an unbounded
counter or pushdown. Clearly, there must be an infinite computation ¢ on
M. Since the counter mode vector can change at most some finite number of
times, there must be some infinite segment o' of ¢ in which the counter mode

AN

22

vector remains unchanged. Since the number of states is finite, o' must
contain some loop [in which some counter or the pushdown has a net gain, no
counter decreases, and the pushdown does not have a net loss. Without loss of
generality, we can assume [has s or fewer transitions.

Our algorithm is now as follows. We guess in NP a loop [satisfying the
above description. We then guess the status vector v for [and verify that it is
consistent with [. Next, we determine in PTIME the minimum pushdown
value p necessary for execution of ! (note p<s). We must now determine
whether the state q in which [begins can be reached with pushdown at least
p<s and status vector v. This problem can clearly be reduced in PTIME to
the nonemptiness problem. If q is reachable with pushdown at least p and

status vector v, then [can be pumped to yield an unbounded counter or
pushdown. We have therefore shown the UDP to be in NP.

Finally, we can extend two other results concerning the complexities of the DDP and
the UDP. [8] shows both problems to be PSPACE-complete for systems of two CFSM's
in which one channel is bounded by an integer h given in unary, and the DDP to be
PSPACE-complete for systems of any number of CFSM’s in which all channels are
bounded by h given in unary. It is natural to ask how the complexity changes if h is

given in binary. We give the following result.

Theorem 12: The following problems are EXPSPACE-complete:

1. the DDP for systems of two CFSM’s in which one channel is bounded
by an integer h given in binary;

2. the UDP for systems of two CFSM’s in which one channel is bounded
by an integer h given in binary;

3. the DDP for systems of CFSM’s in which all channels are bounded by
an integer h given in binary.

Proof: [2] gives a PTIME algorithm for constructing a system of 2 CFSM’s
to simulate an arbitrary NTM on a given input. In this construction, the
channels are used solely to store the NTM tape contents and head position.

C
Therefore, for any NTM M that operates in 2% space for some fixed constant
¢ on inputb of size n, and any input x, we can construct in PTIME a system of

2 CFSM’s (M;,M,) whose channels are bounded by O(Q“C), which can be

23

written in PTIME. Thus, we have our lower bound for 1 and 3. We can

clearly modify this construction to yield a systemn with an unbounded channel
if and only if M accepts x; therefore, we have our lower bound for 2. The

algorithms given in [8] clearly run in EXPSPACE when h is expressed in
binary.

24

References

Baker, B., and Book, R., Reversal-Bounded Multipushdown Machines, Journal
of Computer and System Sciences 8 (1974), 315-332.

Brand, D., and Zafiropulo, P., On Communicating Finite-State Machines,
Journal of the ACM 80, 2 (Apr 1983), 323-342.

Cook, S., The Complexity of Theorem-Proving Procedures, pp. 151-158,
Proceedings of the 3rd Annual ACM Symposium on Theory of Computing,
Association for Computing Machinery, (New York, 1971).

Fischer, P., Turing Machines with Restricted Memory Access, Information and
Control 9, 4 (1966), 364-379.

Galil, Z., Hierarchies of Complete Problems, Acta Informatica 6 (1978), 77-88.

Garey, M., and Johnson, D., Computers and Intractability: A Guide to the

Theory of NP-Completeness, (W. H. Freeman and Company, San Francisco,
1979).

Ginsburg, S., and Greibach, S., Deterministic Context-Free Languages,
In formation and Control 9 (1966), 620-648.

Gouda, M., Gurari, E., Lai, T., and Rosier, L., On Deadlock Detection in
Systems of Communicating Finite State Machines, Rep. TR-84-11, (University
of Texas at Austin, Austin, TX 78712, 1984). Revised Apr. 1985.

Griebach, S., An Infinite Hierarchy of Context-Free Languages, Journal of the
ACM 16 (1969), 91-106.

Gurari, E., Transducers with Decidable Equivalence Problem, Rep. TR-CS-79-4,
(University of Wisconsin-Milwaukee, 1979). Revised 1982.

Gurari, E., and Ibarra, O., The Complexity of Decision Problems for Finite-Turn

Multicounter Machines, Journal of Computer and System Sciences 22, 2 (Apr
1981), 220-2286.

Hopcroft, J. and Ullman, J., Introduction to Automata Theory, Languages, and
Computation, (Addison-Wesley, Reading, Mass., 1979).

Ibarra, O., Reversal-Bounded Multicounter Machines and their Decision
Problems, Journal of the ACM 25(1978), 116-133.

[14]
[15]

[16]

[17]

(18]

[19]

25

Ibarra, O., and Rosier, L., On the Decidability of Equivalence for Deterministic
Pushdown. Transducers, Information Processing Letlers 13, 3 (Dec 1981}, 89-93.

Jones, N., Space-Bounded Reducibility among Combinatorial Problems, Journal
of Computer and System Sciences 11 (1975), 68-85.

Karp, R., Reducibility among Combinatorial Problems, in: Miller, R., and

Thatcher, J., Ed., Complezity of Computer Computations, (Plenum Press, New
York, 1972), pp. 85-103.

Minsky, M., Recursive Unsolvability of Post’s Problem of ‘Tag’ and Other Topics

in the Theory of Turing Machines, Annals of Mathematics 74, 3 (1961),
437-455.

Rice, H., Classes of Recursively Enumerable Sets and their Decision Problems,
Transactions of the AMS 89 (1953), 25-59.

Rosier, L., and Gouda, M., Deciding Progress for a Class of Communicating
Finite State Machines, pp. 663-667, Proceedings of the Eighteenth Annual
Conference on Information Sciences and Systems, (Princeton, NJ, Mar 1984).

