LINEAR ALGORITHMS THAT ARE
EFFICIENTLY PARALLELIZED
TO TIME O(log n)

Ted Herman

Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712

TR-85-17 September 1985

Abstract

We consider programming problems characterized by O(n) execution time on sequential
machinery and O(log n) execution time on parallel machinery. We demonstrate, for
selected problems, efficient parallel algorithms that have O(log n) execution time using

O(n/log n) processors. Two specific results include: merging two n-item lists and adding
two n-bit numbers.

Key Words. Parallel algorithms, divide-and-conquer, associativity.

This work was supported by Air Force Grant AFOSR 81-0205.

1.0 Introduction

Parallel algorithms are interesting not only because they compute results faster, but also
because they offer new insights on the nature of the problems they solve. Many problems
do not have fast parallel algorithms while others have parallel algorithms requiring an un-
reasonable number of processors. The present investigation is a catalog of fast parallel al-
gorithms that employ a small number of processors. We have selected programming
problems that satisfy two criteria: They have sequential linear-time algorithms and there
are published parallel algorithms solve the same problems in time proportional to the loga-
rithm of the input size. Our algorithms also have the logarithmic time, but employ an

asymptotically optimum number of processors.

Associativity and the strategem of divide-and-conquer underly the development of the al-
gorithms. Two of our problems have associative functions as input parameters. These
problems are paradigms, representing classes of programming problems, and we provide
specific examples to demonstrate the forms. We use the divide-and-conquer method re-

peatedly to achieve O(log n) execution time; the property of associativity enables us to use

divide-and-conquer.

The topics of this chapter have the following organization: First, the computing model is
defined. A short review of complexity theory for the model follows, which leads to the
definition of efficiency. Then, after some notational remarks, the efficient paradigms appear

- with examples of application. We close with some speculative comments.

1.1 Computer Model

Two computer models are used in this paper, a sequential machine model and a parallel
machine model. The Random Access Ma;hine model (RAM) is suited to sequential analysis.
A RAM has a single processor which utilizes a simple instruction set. Each instruction exe-
cutes in a constant amount of time and operates on a constant number of memory elements.
A chief advantage of the RAM model is the close resemblance to existing computers. RAM

algorithms may be easily implemented.

A Parallel Random Access Machine model (PRAM) serves for parallel analysis. A PRAM
has many processors, each of which operates on instructions as does a RAM processor.
Together, the processors execute in synchrony: If a number of processors execute identical
instruction sequences, then they complete the sequences at the same time. Any number of
processors may simultaneously examine the same memory element, but no two processors
are allowed to simultaneously update a memory element. Algorithms designed for a PRAM
guarantee this last condition through timing dependencies, relying on synchrony. There are

no "locking” primitives.

The convenience of the PRAM model is its resemblance to traditional sequential models:
A PRAM constrained to a single processor is a RAM. Programming for a PRAM is facili-
tated by the rich inheritance from the RAM framework. The PRAM model, or closely re-
lated models, are the most comrﬁonly used for parallel complexity results found in the
literature. Unfortunately, the PRAM is not as realistic as the RAM model. The existing
parallel computers do not closely resemble a PRAM. The PRAM results may be simulated

by an appropriate parallel implementation, but the overhead of simulation overhead may

raise the time bound significantly.

In both RAM and PRAM models, processors may use address arithmetic in the course of
calculations. We assume that simple address computations execute in constant time with

respect to the input data size. Permitting address arithmetic raises some sensitive questions

in complexity theory [7] that are outside the scope of the present investigation.

The power of address arithmetic underlies many common sorting and searching algorithms.
If the input size for a binary search problem is n, an address to an element of the input is
represented with (Ig n) bits (the function (Ig n) is the base two logarithm of n). It is rea-
sonable to claim that adding two (Ig n) bit numbers requires time O(lg(lg n)); and in the
RAM model, we regard O(lg(lg n)) as a constant with respect to n. Similarly, for a PRAM
the O(lg(lg n)) factor is judged constant with respect to O(lg n) time. This last approxi-
mation, though a;ymptotically weaker, extends the usefulness of the paradigms in this pa-

per.

1.2 Complexity

Some terminology from complexity theory provides the basis for our definition of efficiency
of parallel algorithms. A main issue of complexity theory is the classification of program-
ming problems by their computational resource requirements. The typical measure for
classification is a bound on the running time for the fastest known algorithm to solve a
problem. The time bound is expressed as a function of the problem’s input size. When a
faster algorithm is discovered, then the problem is reclassified. Parallel machinery offers the

possibility of speeding up running time and consequently has a role in the classification

system.

In the analysis of a problem’s resource requirements, there are no input and output oper-
ations. The input data is given initially in memory, and the result of execution is in memory.
Although data structures are permitted in the computer models, the examples in this paper

do not resort to any special data structures.

The notation for RAM time complexity is P!, The fastest sequential algorithms for problems
in P! have time bound O(n'), where n is the problem’s input size. P! is the class of linear

algorithms.

The notation for PRAM time complexity is NC¥. The fastest PRAM algorithms for prob-
lems in NCF have time bound O((g n)k), where n is the problem’s input size. The number

of processors, not explicitly specified, is bounded by O) for some constant j. The classi-

fication of programming problems into classes NCF is an active field of study [1,6]. The
relationships between classes of P’ and NC* are not obvious. The;'e' are linear RAM algo-
rithms that do not have NCF classifications, whereas some problems in P? are also NC'. The
NC* classification of problems is interesting as a new measure of complexity, but it is

oblivious to processor requirement (within boundedness).

Problems in NCF can be further classified by a bound on the number of processors needed
to achieve the O((g)% time bound. In this paper we define NCX(g(n)) to be the subset of
NCF that reqﬁires O(g(n)) processors. For example, a PRAM restricted to one processor is
2 RAM, so NCX(1) denotes the class of RAM problems that have O(lg n) time bound; an

instance is binary search.

1.3 Simulation and Efficiency

PRAM algorithms may be simulated on a RAM machine. Consider B, a problem in
NC? (g(n)). The PRAM algorithm to solve B can be simulated on a RAM as follows: For
each step of the PRAM algorithm, the RAM machine executes the O(g(n)) instructions
corresponding to the PRAM instruction cycle. The single PRAM step takes constant fime
for O(g(n)) processors; the RAM simulation sequentially executes the corresponding in-
structions in time O(g(n)). The simulation is accurate because no two instructions in a single

PRAM step write the same unit of memory.

The RAM simulation of a problem in NCI(g(n)) takes O(g(n)(Ig n)) time. By simulation, it

follows that the RAM time complexity P¥ for the same problem satisfies
On)=O(gn)(lg n) (1.3.0)

When (1.3.0) is an equality then we say NCX(g(n)) efficiently parallelizes problem B.

For the remainder of the paper we consider problems known to be in the class P’aNC’.
Each of the problems studied are efficiently parallized, that is, the problems are in NC'(n/Ig
n). It may seem odd to the reader to specify computations that prescribe n/(lg n) processors;
however, these are asymptotic results. Therefore it is unimportant that (Ig n) or n/(lg n)
may not have integral values. In a detailed implementation discussion, floor and ceiling
functions would appear with constant factors. These adjustments do not improve the clarity
of ‘exposition, and the order of magnitude results are unaffected, so we omit some imple-
mentation details for the presentation. Such remarks will also be understood later, when

schemes are described that divide the input data into groups of size (Ig n) and so forth.

1.4 Notation

Our presentation of parallel algorithms uses conventions for defining atoms, sequences and
functions. Generally, capital letters are reserved for sequences and lowercase letters for at-

oms or functions.

Atoms. We regard atoms as indivisible units. Instances of atoms may be single bits in
memory, numbers, character strings or matrices, but from the point of view of our notation,
the internal structure of an atom is indescribable. In memory, we require that an atom be

represented with a constant number of bits.

The symbol for definition is “=" whereas =" expresses the comparison of two terms. An

atom may be defined directly with an expression, say x = 5-+2, or with a conditional ex-

pression with guarded clauses as in [10]. For example,
x = if y<0- 00 y=0-10y>0-2fi

defines x to have the value 0, 1, or 2 if y is negative, zero or positive (respectively).

Sequences. The notation for sequence construction uses square brackets. If x is an atom, then
[x] is a sequence with one element, x. Let x and y be atoms, and define C to the se-

quence [x vy x], asequence of four elements. C.i refers to the i-th element of C (we

start the indexing with zero). Thus C.0 and C.3 have the value x.

Let D be a sequence of n atoms. A notation for sequence D is ” [range: prototype ex-

pression] ,” exemplified as follows:

D= [o<i<n:D.i].

The prototype expression includes a dummy variable defined in the range. A sequence E

consisting of D’s elements of even index is:

E= [0gj<(n/2): D(2j) 1.

The following formula describes a sequence F that maps D’s negative elements to the value

zero.
F= [O<i<n: if D.i>0- D.i] D.ig0-> 0 fi].
A sequence is empty if it has no elements. Two examples of empty sequences are: [], and

[n<i<n: Gi].

Let |H| denote the number of elements in a sequence H; |H| = 0 for the empty sequence.

We shall not consider sequences whose elements are, in turn, sequences. The operation of

sequence construction is therefore idempotent: [[x]] = [x]. Consider the two

sequences A and B:
A= [Ogi<n: Ai],and B= [O<i<m:B.i].
Thenlet C= [AB]. An equivalent definition of C is:

C= [0<gi<(n+m): if i<n— A.ill i>n— B.(-n) fi].

Functions. A function is a value or a sequence defined by a formula that equates the name

of the function and bound variables with a constructor. Examples: bump is a function to

add one to its argument: bump.x = x + 1. Function vectorbump adds one to each item

in a sequence:
vectorbump X = [0<i<|X|: bump.(X.i) 1.
The greatest common divisor function is defined recursively:
gedab = if a=b- b [a<b— gcda(b-a) [a>b— ged.(a-b).b fi.

In this example, the name ged appears in two senses; the prototype is just left of the "="

and the recursive references to ged are in the expression to the right of "=."

Some especially useful functions for dealing with sequences are head, tail, and last.
head.D = if.]D{=O—v [1 0|D|>0~ D.ofi
tailD = [1<i<|D|: D.i].
lastD = if [D|=0~ [] [|D|>0- D.(D|-D) fi.

Inspection of the definitions shows that D = [head.D tailD].

In this paper the computation of a function has no side-effects. The result of function eval-
uation is an atom or a sequence that, for our purposes, is stored at some virgin location in
memory -- memory never used before the function evaluation. In contrast, a side-effect
computation (assignment statement) stores an atom in memory at an old location, one that
has previously been defined by a function or contains some initial input. It is more difficult
to show correctness of parallel computations with side-effects. With assignment statements

it is possible to design a program specifying simultaneous writes to one memory location;

9

it is vital that specifications of parallel assignments be pre-conditioned to avoid such vio-
lation of PRAM restrictions. In fact, we avoid the use of side-effects whenever possible.

The justification for side-effects is efficiency of implementation.

After circumspect isolation and demonstration of required side-effect computations, we shall
use an equivalent functional definition. Furthermore, we label the side-effect to attract the

reader’s attention:
Side-Effect Ci = x)

denotes the computation that dynamically changes the definition of element C.i in the se-
quence C. Suppose P is a permutation of the indices in the range O<i<n. A "function” to

invert P is given by

.InvertP = C,

Side-Effec [O<i<n: C(P.):=1i]).

The assignments may be parallel because all atoms in P are distinct and within the appro-

priate range.

Functionals. A function may have function names as arguments. Given functions f and g,
the expression f.g.x is to be interpreted as f with the arguments g and x. The expression

f.(g.x) refers to f with argument g.x. And (f.g).x is the function f.g with argument x.

Associativity. The symbol * is a binary function with domain and range in some set A. The

system (A, %) is a monoid [9], that is:-

(i) For all a,beA, x.abeA.

10

(i) For all a,b,ceA, *.(%x.ab).c = xalxb.o).
(iii) There is an identity element 9eA satisfying: For all aeA, {*x.a.9 = *x.9.a and *x.a.9 =

a}.

1.5 Parallel Paradigms

Each of the paradigms introduced in this section is associated with problem that is efficiently
parallelized. For each problem, there is a description of the problem’s classification in P’ and
NC’. Then we show the problem to be in the class NC'(n/lg n). Examples that fit the

paradigm are cited to show the generality of the paradigm.

For the paradigms that follow, let IN be the sequence of n>0 atoms that hold the input for

a programming problem: IN = [ogi<n: INJ J.

1.5.0 Eunction Distribution

We begin with a simple paradigm called function distribution, or apply. With this problem,
definitions and methods appear that will be useful in exposing the paradigms in later

sections. Let f be a function satisfying

(i) f maps atoms to atoms, and

(i) For each i, O<i<n, f.(IN.i) is computable in constant RAM time.

The problem is to compute, from the input sequence and function f, the output sequence

given by the function apply:

11

apply fIN = [0<i<n: f(INY)]. (1.5.0)

1.5.0.0 Problem (1.5.0) is in P'.

Demonstration. An alternative definition of apply has recursive form:

apply fA =if |[A|<I-> [] 1 |A|>0- [f(A0) applyf(tailA)] fi.

The equivalence of the recursive definition and (1.5.0) is easily shown by induction. It also
follows by induction, from this recursive definition, that a simple RAM iteration solves ap-

ply in time O(n).

1.5.0.1 Instead of showing (1.5.0) is in NC!, we have the result: Problem (1.5.0) is in
NC%n).

Demonstration. The definition (1.5.0) may be equivalently written

apply fIN = C,
Side-Effect([0<i<n: C.i:= fIN.)]).

By assigning n processors, on processor to each atom of IN, all computations finish in con-
stant time. The processors store results in parallel with no memory write conflicts, so the

time complexity is constant with O(n) processors. B

1.5.0.2 Problem (1.5.0) is in NC'(n/lg n).

Demonstration. Let group be a function of sequence D and integers p and k, such that

0<p<|D| and 0<k<|D|/p,

group.D.pk = [0O<i<p: D.(kxp+i)]

12

Informally, group divides D into (|D|/p) groups of equal size: group.D.p.k” refers to the

k-th group, a subsequence of p elements. If (|D| mod p)=0, then
D = [0<i<|D|/p: group.D.p.i].

Similarly, apply f.D may be written in the recursive form

applyfD = [0<i<|D|/p: apply.f.group.D.p.)] (1.5.0.2)

The formulation (1.5.0.2) expresses the divide-and-conquer strategem. Just as reworking the
definition of apply to the recursive form in 3.5.0.0 suggested the RAM program, this new
formulation will suggest a PRAM program. The computation of apply reduces to sub-
problems of apply, each of p elements. An instance of a subproblem
"apply f.(group.D.p.))" can be computed sequentially by a single processor, that is, in time
O(p) according to 1.5.0.0. With (|D|/p) processors, one processor dedicated to each subse-
quence, all subproblems are computed in time O(p). The choice p=(lg n) establishes the

efficient classification NC'(n/lg n).
1.5.1 Applications of Function Distribution

The vectorbump function defined in 1.4.1 can be written in terms of apply: vectorbump.X

—

= applybumpX. Therefore adding a constant to a vector (sequence of numbers) is an

NC'(n/lg n) operation.

Variations of apply fit other applications. For example, let apply2 be defined for two se-

quences A and B, |A|=|B| and |A|=n, and a binary function f,

apply2fAB = [O<i<n: f(A.i).(B.)].

i3

The same arguments that classified apply also place apply2 in P/, NC%n), and NC'(n/Ig

n.

Let plus be defined for two atoms: plus.x.y = x+y. The addition of two vectors A and B
is apply2.plus.A.B. Similarly apply2 can be used to compute the or, and, or xor (the
exclusive-or) of two bit strings. Some problems of data arrangement and selection fall in the

apply2 paradigm.

The variation apply3 also uses f as a function of two arguments.

apply3.fA = [O<i<n: if i=0- f.6.(AN) [i>0- fAG-1)(A0) fi],

where 6 is some special atom. Variants of the apply3 paradigm can be used to calculate

splines and other sequences that result from functions of adjacent atoms in A. B

1.5.2 Associative Reduction

Some of the earliest known possibilities for speedup by parallel processing were derived

from syntactic analysis of FORTRAN statements. A statement such as
PROD = BIK*DEG*B2+C

could be executed in parallel: The terms (BIK*DEG) and (B2+C) are computed simultane-
ously, and a final multiplication yields the result. The stategy behind the parallel evaluation

is essentially divide-and-conquer applied to the expression. However, the use of this tech-

nique is not applicable to

i4

DIV = BIK/DEG/B2/C
because division is not associative. The following paradigm generalizes the observation

about parallel evaluation of associative expressions.

Let (A, %) be a monoid as defined in section 1.4, for some set of atoms A, satisfying: For

all abeA, *.ab is computable in constant RAM time.
Associative reduction, which we abbreviate to reduce, is the problem of computing

reduce *.IN, where reduce has the definition

reduce.*.D = if [D|=0- 9 |

ID|>0~ *.(D.0).(reduce.*.(tail.D)) fi. (1.5.2)

An example of reduce is "reduce.plus.A” to compute the sum of the atoms in A.

1.5.2.0 Problem (1.5.2) is in P’.

Demonstration. A simple RAM iteration with an accumulator solves (1.5.2). The time

bound O(n) is easily shown by induction on |D|.

1.5.2.1 Problem (1.5.2) is in NC'(n).

Demonstration. The following decomposition of reduce is possible for |D|>0 and (|D| mod

2)=0:

reduce.x.D = reduce.x. [0<i<|D|/2: *.(D.(20)).(D.2i+)] (1.5.2.1)

In (1.5.2.1) the computation * for adjacent atoms in D precedes the application of reduce.

The sequence of * computations results in a sequence of |D|/2 atoms, and may be computed

15

in NC%n) according to 1.5.0.1 with an appropriate variant of apply. The validity of (1.5.2.1)
may be proved using the associativity of % and induction. We extend equation (1.5.2.1) to

the recursive definition

reduce.x.D = if |D|=2- %(D.0).(D.1) [

ID|>2- reducex. [0<i<|D|/2: *.(D.(20).(D.2i+1))] fi.

The recursive definition is equivalent to (1.5.2) provided that |D|=2F for some integer k>0.
Cases where n is not a power of 2 may be treated, for example, by padding the input to the
nearest power of two with *-identity elements, 9. By induction on k it follows that reduce

is computed in time O(k), since each recursive step is an NC%n) computation. The overall

bound is NC¥(n).

1.5.2.2 Problem (1.5.2) is in NC](n/lg n).
Demonstration. An early application of this result appears in [3] and the associative re-

duction paradigm was shown to be NC'(n/Ig n) in [4]. We assume n is a power of two

such that n is divisible by lg n. Then problem reduce.*.IN may be decomposed as follows:

reduce.* IN = reduce.x. [0<i<(n/lg n): reduce.*.(group.IN.(lg n).i].

The correctness of the decomposition follows from associativity of *. The outermost re-
duction has, for its argument, a sequence of (n/lg n) atoms. By 1.5.2.1 this outermost re-
duction can be computed in time O(lg(n/lg n)) using O(n/lg n) processors. The innermost
reduction is over a sequence of (Ig n) atoms; there are (n/lg n) cases of the inner reduction.
By 1.5.2.0, each of the inner reductions may be computed in time O(lg n) using one
processor. In parallel, all of the inner reductions may be computed in time O(lg n) using

Oln/lg n) processors. The overall classification is O(lg n) time using O(n/lg n) processors.

16

1.5.2.3 A pipeline construction in NC(n/lg n) solves problem (1.5.2).

Demonstration. We propose to arrange O(n/lg n) processors in a tree. The tree is a bal-
anced, regular binary tree with a processor at each vertex. The path length from root to leaf
is the same for any leaf of this tree. There are n/ (2#lg n) leaf processors, so the total number
processors in the tree is (n/lg n)-1. We add an additional processor called the accumulator,

which brings the total number processors to (n/lg n).

The operation of this network is most easily described in terms of synchronous time units,
called beats. Each beat is a constant amount of time in which a processor completes one
computation. During a beat, the function of a non-leaf processor is to compute *.a.b, where
2 and b are values calculated during the previous beat by the processor’s children in the tree;
for the initial beat (for which there is no previous beat), we assume the values of the children,

a and b, are 9, the identity element for *.

Also during a beat, leaf processors calculate * for two elements of IN. During beat i,
0<i<lg n, the leaf processors will use "group.IN.(n/(Ig n)).i" as input. At beat (Ig n), and
after, all leaf processors will calculate *.9.9. The function of the accumulator at each beat
is to compute %.a.b, where a is the value computed by the accumulator during the previous
beat (a=3 at beat zero), and b is the value computed at the tree’s root during the previous

beat.

At beat (Ig n), the sequence IN has been “fed into” the tree. After an additional Ig(n/(lg n))

beats, the result "reduce.*.IN” appears at the accumulator.

This scheme has a practical advantage: It is suited to a message based synchronous model
appropriate for VLSI design. The tree configuration can be considered as a systolic pipeline,

which is an architecture more easily implemented in hardware than a PRAM. B

17

1.5.2 Applications of Associntive Reduction

The sum of a sequence may be computed as “reduce.plusIN.” Other obvious choices for
% are minimum, maximum, multiply, and logical operations. Existential and universal
quantifiers are expressed with reduce. For example, the system (or,{true false}) is a monoid

with identity element “false.” The predicate

3i, 0<i<|D|, D.i=0

is equivalently stated in our notation as

reduce.or. [0<i<|D|: D.i=01] .
Such an application of reduce is useful for solving a problem that has existential quantifiers

in its specification.

Below, we show how the reduce paradigm also applies to some search problems and to

computing the solution to a linear recurrence.

Linear Recurrence

Consider a set of linear recurrences for i, 2<i<n, defining x;, given the values a; and b
X = 3% + bpxi,

and x, and x; are inputs. The problem is to compute the value of x,. The same recurrence

relation in matrix form, is

Xi1 1 0 Xi.2

18

which we capture as a vector recursion with the formula
vi= Cyir

where C; is a matrix containing a; and b; as above, and y; is the vector of x; and x; ;. In this
context we regard the vectors and matrices as atoms to be dealt with by the parallel re-
duction paradigm. Let “matmul” be a function multiplying two matrices (or a matrix and
a vector). Matrix multiplication associates, so associative reduction is possible. Solving for

the vector y,, that is, repeated substitution of the above formula, leads to the result

y, = matmulDy;, D= reduce.matmul. [n=iz2: C; 1.

The computation of y, (and therefore x,) is in NC'(n/Ig n).

Search

The following application illustrates associative reduction for a search problem. After de-
fining the problem, we use classical divide-and-conquer techniques to derive an associative

function, which establishes efficient parallelization.

IN for this problem is a sequence of bits. The problem is to determine the length of the

longest sequence of zero bits contained in IN. In general, important features of the

A I [e o
drvide-ana-conquet methudology are:

(i) A non-trivial problem is divided into smaller subproblems.
(i) The solution to a trivial subproblem may be computed in constant RAM time.

(ili) Merging two subproblem results takes constant RAM time.

19

Also typical of the methodology is some generalization of the original problem statement to

facilitate subdivision.

We reason as follows: Divide IN into halves L and R. It is the case that either the longest
zero sequence lies totally in L, totally in R, or spans L and R. The former cases submit to
recursion, while the latter means that the L partition terminates with a sequence of zeros and
the R partition begins with a sequence of zeros. To be able to merge the results of sub-
problems L and R, we propose the following generalization of the longest zero sequence
problem: Determine for a given sequence D of bits, the following three lengths: (1) The
longest zero sequence in D; (2) The longest zero sequence that is left-adjacent, that is, it be-
gins at the first bit in D; (3) The longest right adjacent zero sequence in D, that is, it termi-

nates at the last bit in D.

We call the new problem statement bigzero. The role of * for this application is to merge

solutions to subproblems. Thus the solution for sequence IN, having been divided into L and

R, is
bigzero.IN = x.(bigzero.L).(bigzero.R).

Below, we propose an implementation of bigzero and * that satisfy constant RAM time and
associativity constraints. Also, "bigzero.D” is trivial when |D|<1. To acheive the NC'(n/lg
n) classification, we first compute the sequence "apply.bigzero.IN” which is an NC'(n/lg n)

problem of computing the trivial bigzero values for all bits of IN. Then
bigzero.IN = reduce.*.(apply.bigzero.IN)

finishes efficient parallel paradigm.

Implementing Bigzero

20

For the paradigm, the * function maps pairs of atoms to atoms. To implement * and

bigzero, a design of the internal structure of an atom is appropriate.

For D, a sequence of bits, the function "bigzero.D" may be represented. as the 4-tuple

(Iength,left,right, longest), where “length.D” is |D|, “leftD” is the size of the longest

left-adjacent zero sequence in D; examples are: left. [00110001] =2; left. [10110001] =0.
right.D” is the size of the longest right-adjacent zero sequence in D. “longest.D" is the size

of the longest sequence of zeros in D.

The trivial cases of (length,left,right,longest) may be computed in constant RAM time.
The values are all zero for an empty sequence, and for example, if x is a single bit, then the

trivial definition of left is —x, that is,
leftx = if x=0- 1 [x=1- 0 fi.

A remaining detail is the computation of * in constant RAM time. Let A and B be two se-

quences of bits and let C = [AB]. Then
bigzero.C = *.(bigzero.A).(bigzero.B)

and * is composed of the following definitions:
length.C = length A + length.B

left.C = if (left.A)=(length.A)— left. A+left.B [

(left. A)s(length.A)— left.A fi.

right.C = if (right.B)=(length.B)~ right. A+right.B i

(right.B)#(length.B)~ right.B fi.

longest.C = max.(longest.A).(longest.B).(right. A +left.B).

21

Each of the components of * is a constant RAM time calculation, so * inherits the constant
RAM time bound. The definitions also satisfy the associativity of * and have empty se-

quence as identity element.

1.5.3 Associative Scan

The scan problem consists of computing a sequence of reductions. For example,
"reduce.plus. [0 T 2 3 4 5] " is an atom with value 15; "scanplus. [0 12 3 4 5] " is a the

sequence “ [0 13 6 10 15] " Each atom in the result of scan is a reduction of a subsequence

of the input. The reduce problem appears in the definition of the scan:

scan.x.IN = [O<i<n: reducex.[0<j<i: INj] 1] (1.5.3).

The last atom of the result of scan is a reduction over the input, that is,

last.(scan.*.IN) = reduce.*.IN.

1.5.3.0 Problem (1.5.3) is in P_.

Demonstration. An alternative definition of scan has recursive form:

scan.x.D = if |D|<1- D [|D|>1-» [E =.(last.E).(last.D) 1 £,

E = scan.*. [0<i<|D|-1: D.i 1.

By induction on n, the equivalence of this definition and (1.5.3) may be shown. The recursive
definition expresses the relationship between consecutive elements of the result. Informally,

an atom of the result sequence is the * calculated for the corresponding input atom and the

22

reduction of input atoms to its left. Induction on ID| proves the O(n) time bound for com-

puting scan.

1.5.3.1 Problem (1.5.3) is in NC”.
Demonstration. The definition (1.5.3) specifies n reductions, the largest of which is a se-
quence of n atoms. If all reductions are computed in parallel, then by 1.5.2.2 they can be

computed in O(lg n) time. The total processor requirement is O(n*(n/ lg n)).

15.3.2 Problem (1.5.3) is in NC'(n).

Demonstration. This was previously shown in [11]. Consider the recursive definition of

scan given by

scanx.D = if |D|g1I-D [
ID|>1- [0<i<|D}: if i=0- D.i
(i>0)A((i mod 2)=0)— *.(E((i/2)-1).(D.) [

(i>0)A((i mod 2)=1)— E((-1)/2) fi]

fi,
F = scan. [0<j<|D|/2: *.(D.2).D2i+1)].

As in the demonstration 1.5.2.1, which established NC!(n) for reduction, the recursive defi-
nition above is equivalent to (1.5.3) provided that]D[=2’c for some integer k>0; when [D|
is not a power of two, a padding step can precondition the input. The argument for cor-
rectness is inductive: If the computation of F contains results for all atoms of odd index, then
scan is correctly computed. To compute F, a sequence is generated by apply in NCn); there

remains a scan problem of half the input size, so the O(lg n) time bound follows inductively.

23

After computing F, the other calculations submit to apply and the NC%n) classification. The

overall time bound is O(lg n) using O(n) processors.

1.5.3.3 Problem (1.5.3) is in NC'(n/Ig n)

Demonstration. We assume n is divisible by (Ig n). The decomposition of scan is

scan.*.IN = [0O<i<n/lg n: scan.*.(group.P.(Ig n).)].

We intend the inner reference to scan, which has input size (g n), will be computed by 1.5.3.0
in time O(lg n) by a single processor. Together, all n/(lg n) cases of the inner scans may be

computed in O(lg n) time using O(n/lg n) processors. The sequence P has n atoms derived
from IN: P duplicates IN except that “P.(m.*(Ig n))” is a reduction over the sequence

" [0<i<(m#(lg n)): IN.i] . This property of P justifies the decomposition above. We now
show how P is computed in NC'(n/Ig n), in two steps. The first step initializes P to IN, which

is an NC'(n/lg n) computation by apply:
Side-Effect([0<i<n: Pj:=IN.i]).
The second step is

Side-Effect([0<i<n/(lg n): P.(i*(Ig n)) := *.(P.(i*(g n).F.(-1)) 1),

which is in NC'(n/lg n) if the computation of F is also NC'(n/Ig n). An element of F is a

reduction of a subsequence of IN:

F.m = reduce.x. [O<i<(m+ 1)*(Ig n): IN.i 1.

Our efficient definition of F is

F = scan.x. [O<i<n/lg n: reduce.*.(group.IN.(Ig n).i)].

24

The correctness of F may be established by induction. Each reduce computation can be
computed in O(lg n) time by one processor. All reductions can be computed in NC'(n/lg
n). The scan input for F has n/(Ig n) atoms, and by 1.5.3.2 may be computed in O(lg(n/lg

n)) time using O(n/lg n) processors. The overall bound for computing F is O(lg n) time with

O(n/lg n) processors.

1.5.2 Applications of Associative Scan

Many linear search and selection problems can be solved with the scan paradigm. We con-

sider two scan examples in this section, polynomial evaluation and binary addition.

Polynomial Evaluation

Let P.A.x be a polynomial of degree (n-1). Given a vector of coefficients A, and some value

x, the problem is to compute

P.Ax = reduce.plus. [0<i<n: times.(A.i).(reduce.times. [ogj<izx])].
Using the scan paradigm, the formulation is

P.Ax = reduce.plus.(apply2.times.A.manyx),

manyx = scan.times. [1 [o<gj<(n-1): x] 1.

The argument of scan, which is the value "1” followed by (n-1) “x” values, can be created
by apply. Computing “manyx” is then a problem in NC!(n/lg n). The apply2 and reduce

are also of this classification, so we have demonstrated efficient parallelization for polynomial

evaluation. B

25

Binary Addition
The inputs for this problem are A and B, both n-bit numbers. The problem is to compute C
= A + B. The representation we choose places the least significant bit first: - C.0 is the least

significant bit and C.(n-1) is the most significant bit. The bit C.0 is easy to calculate:
C.0 = xor.(A.0).(B.0),

xor being the exclusive-or function. Calculation of other bits of the result requires a carry-in

value:
C = [0si<n: xor.(xor.(A.0).(B.0)).(carry.i)],

where carry is recursively defined, for the range [0<j<n]:

carry. ABj = if j=0- 0 [

j#0—(A(-1)AB.-1)V(A.G-T)a(carry.A.B.(-1))v(B.(-1)a(carry.AB.(-1)) fi.

The carry function may be viewed as an n-bit vector. If the carry vector were calculated in

NC’(n/lg n) then result C will be computed in NC’(n/Ig n) by the apply paradigm. Therefore

we attend to the computation of carry.

From its definition, observe that for some cases, “carry.A.Bj” can be calculated regardless of

the value of “carry. A.B.(-1),” that is,

A(-1)AB.(-1) = carry.A.B,j, and

- A(-I)A=B.(-1) = —carry.ABj

hold for j in the range [1<j<n].

26

Let precarry be the n-bit vector

precarry. AB = [O<i<n: if
i=0-010
10~ if
—A(-1)A=B.G-1)=0 [
A(-T)AB.(G-1)= 1 [
A(-1)A=B.G-1)= 2 0

—A(G-1)AB.(-1)= 2 fi

fil.

The value “2” for an element of precarry represents an unresolved carry bit.

Let % be a function over the domain {0,1,2,9}. The definition of * is given by:
*ab=ifb=0-00b=1-10b=2-afi

The identity element, 9, plays no role in this algorithm; the value 2 is a right identity element

of *.

That * is associative is left to the reader. We also omit the proof of the fact that for

[o<j<n]:
carry.ABj = (scan.x.(precarry.A.B))j

Computing “precarry.AB” is in NC'(n/lg n) by apply. scan is in NC(n/lg n), which com-

putes carry efficiently in O(lg n) time.

1.5.6 Merging

27

In this section we consider the problem of merging sequences. The efficient parallel algo-
rithm is sophisticated and so it is exposed in refinements. Some simplifying assumptions also

improve the discussion: We are given two sequences A and B to be merged. A and B area

strictly ascending sequences of n atoms. Also, all atoms in the sequence [A B] have dis-
tinct values. For the exposition of merge, we use side-effects; the merge of A and B into C

starting at k is
Side-Effect(mergek.C.AB),

by which we intend that the subsequence

[k<i<k+2n: Ci]

will contain the merge of A and B.
9
It is well known that merge is in P’. Batcher’s merge [12] shows the problem to be

NC’. A simple demonstration follows.

1.5.6.0 The merge problem is in NC.

Demonstration. Let place be a function to determine where a specific atom would appear if

merged with a given ascending sequence:

place k. A.B = reduceplus. [0<i<|B|: if Ak>B.i» 1 [Ak<B.i-0fi].

Computing place is, in general, a problem in NC’(n/lg n). However, B is ascending, so place
may be computed by a binary search, which is NC'(1). "B.(place.k.A.B)” is, in general, the

smallest value in B larger than "A k" (the only exception is the case of "Ak” being larger than

all atoms in B).

28

merge k. C.AB = Side-Effect(

[0<i<n: C.(k+i+place.iAB):= A., C.(k+i+placeiB.A) := Bi .

The preconditions on A and B insure that no write conflict occurs if all assignments execute
in parallel. The computation of place, in parallel, for all 2n cases is a problem in NC'(n). The

assigning is in NC(n/lg n), so the overall classification is NCX(n).

1.5.6.1 Divide-and-Conquer

Merging is an associative operation, which has the null sequence as identity element. How-
ever, the merge function does not have a constant RAM time bound, so it differs from the
+ functions considered earlier. By careful division into subproblems, merge subproblems can
" be computed independently with no need to combine results. We illustrate with a simple

division.
Consider the four sequences LA, LB, RA and RB,
LA = [o0<i<n/2: Ail,
LB = [O<i<(place.(n/2).AB): B.i].
RA = [(n/2)si<n: Ai],
RB = [(place.(n/2).AB)<i<n: Bi].
With this division, the merge of A and B, may be written

mergek C.AB = [mergek CLALB merge.(k+|LA|+|LB)).CRARB 1.

To show the decomposition of merge is correct, there are three obligations:

29

(i) Each atom of the input is contained in the input to exactly one subproblem.

(ii) Any atom not contained in a subproblem is either smaller than or greater than every atom

in that subproblem.

(iii) The output of the merge subproblem will be stored at the proper location in C.

Condition (i) is trivially met by the definitions of LA, LB, RA and RB. Since all atoms in

[RA RB] are greater than atoms in [LA LB], condition (ii) is satisfied. The third obli-

gation is upheld because each subproblem stores its result in C starting at (k-+r), and r is the

number of atoms of [A B] smaller than the subproblem’s atoms.

We now generalize the division of A from two to (n/lg n) subproblems. The sequence A

will be divided into subsequences "group.k.(Ig n).A” each of (Ig n) atoms. Let corres define

a subsequence of B that corresponds to one group of A:

corresk. AB = [lcorr<i<rcorr: B.i],
lcorr = if k=0- 0 [k>0 place.(k*lg n).A B fi,
rcorr = if k2(n/lg n)- n [k<(n/lg n)— place.((k-+1)*lg n).A.B fi.

Elements of “corresk AB” are less than "A.((k+1)*lg n)” and larger than "A ((kxlg n)-1).”

Then merge is the concatenation of (n/lg n) merge subproblems:

mergekC.AB = [0<j<(n/lg n): merge.q.C.(group.(Ig n).A).(corresj.AB) 1,

q =k + j*(Ig n) + place.(*(Ig n)).A.B

30

This decomposition is correct because the three obligations for subproblems are fulfilled.
There is one scenario in which the formulation above can be computed in NC'(n/lg n). If the
size of each corres sequence is O(lg n), then each subproblem is NC!(1) by a sequential
merge computation. The computation of place is also NCX(1), thus all subproblems may be

computed in O(lg n) time using O(n/lg n) processors.

The remainder of the discussion is aimed at insuring that each subproblem merges sequences
of size‘O(lg n). To this point, we have only considered dividing B with respect to some at-
oms of A. If we apply the same procedure with roles of A and B interchanged, then we di-
vide B into regular, O(lg n) size intervals while A is divided into irregular sizes. If both
sequences A and B are partitioned in a way that accomodates both types of division, regular

and irregular, then each partition will contain at most (Ig n) atoms.

31

Figure 1 is an illustration of our plan. In the figure, atoms Ak and Bk, for k a multiple of (Ig
n), are marked with triangles. We call these atoms posts. Arrows are drawn from the posts
to where they fit in the opposite sequence: For instance from Ak to B.(placek. A.B). The
arrows are drawn from posts to post counterparts. By ascendency properties, these arrows
never cross. The subproblems are defined by a pair of arrows and similarly shaded boxes;
there are twelve subproblems in the figure. In the illustration, A.0 is smaller than B.0; the first
subsequence of A, labeled (1), merges with an empty counterpart from B. (1) terminates be-
fore "A.(place.0.B.A),” which is B’s first post counterpart. The subsequence that begins with
Allg n), labeled (2), also has a null counterpart, this time because of a conflict with subse-

quence (3). Subsequence (3) terminates where B’s second post has its counterpart.

Please see insert following page.

Figure 1. Subproblems for merge.

32

Sequence B

70000 R

IR R R D T WG HYLL A DO0E EE SRR

1.5.6.2 Merge is in NC'(n/Ig n).

Demonstration. Let slots be the function to compute place for all posts:

slots.A.B = [0<i<n/lg n: place.(i*lg n).AB].

Computing slots is a problem in NC'(n/lg n). Observe that slots is an ascending sequence,

though not strictly ascending.
Let uplim define the upper limit for one of the sequences in the merge subproblem:
uplimj.B.A = if x>n/(Ig n)= j+Ig n [x<n/(Ig n)- min.(+Ig n).(slots.A.B).x) fi,

x = reduce.plus. [0<i<n/(Ig n):

if j>(slots.A.B).i» 1 [l j<(slots.A.B).i=» O fi] .

The value x represents the number of A’s post counterparts that are smaller than Bj. If Bj
is smaller than some post counterpart of A, then “(slots.A.B).x" is the smallest post counter-
part of A that is larger than Bj. The computation of x is in NC'(1) by a binary search: Al-

though slots is not strictly ascending, the binary search is applicable in time O(lg(n/lg n)).

One half of the merge subproblem is given by the sequence primepart:
primepartj.B.A = [j<i<uplimj.B.A: B.i] .

This sequence begins at a post in B and continues until (I) the next post B or (2) a post
counterpart from A. The reader may verify that the definition of uplim insures that
primepart is neither an empty sequence nor a sequence with more that (Ig n) atoms. To

define the sequence that corresponds to primepart we first define its upper limit,

sCandcross:

33

scancross.kmB.A = if
(m mod (Ig n))=0- m [
(m mod (Ig n))#0— if
(k+lg n)zn~> scancross k.(m+1).B.A [
(k+1g n)<n— if
m=place.(k+Ig n)B.A-> m [
m#place.(k-&—lg n).B.A— scancross.k.(m+1).B.A fi
fi

fi.

Despite its complicated appearance, scancross is a simple search with some endpoint condi-
tions. Intially, scancross is invoked rscancross.kkB.A" Starting at Ak (which will turn out
to be a post counterpart of B), scancross searches sequentially through A for (1) a post in
A, (2) the end of A, or (3) the next post counterpart of B. This search is a search of at most

(Ig n) atoms, so its classification is NC(1).

Now secpart, which is the sequence corresponding to primepart is defined:

secpart.j.B.A = [place.B.Ai<scancrossjjB.A: Ail.

From the definition of scancross, the sequence secpart may be a null sequence, but may not

have more than (Ig n) atoms.

Merge is composed of the 2n/(Ig n) subproblems:

mergek C.AB = [[0<j<n/(lg n):
merge.(k+v).C.(primepart.(j*(lg n)).B.A).(secpart.(j*(lg n)).B.A)]
[0<j<n/(Ig n):

34

merge.(k+w).C.(primepart.(j*(Ig n)).A.B).(secpart.(i*(Ig n)).AB) 1],

v = (j*(Ig n)) + place.(j*(Ig n)).B.A

w = (j*(Ig n)) + place.(i*(Ig n)).A.B.

The functions v and w have been designed to satisfy correctness obligation (iii), which places
the output of each subproblem in the proper location. The definitions of primepart and

secpart satisfy obligations (i) and (ii).

Each subproblem is defined by primepart and secpart sequences, the limits of which can be
calculated in O(lg n) time with a single processor. It follows that all subproblem limits are
found in NC'(n/Ig n). The merge subproblems combine inputs each of size O(lg n), so each
subproblem is in NC'(1) by a sequential merge. All subproblems are computed in NC'(/1g

n).

1.6 Summary

We have demonstrated efficient parallel paradigms for classes of linear problems. The ex-
ample applications suggest the generality of the paradigms. Other evidence is found in the

study of programming languages. For example, a recent release of the APL programming

language [14] contains functionals that correspond to apply, reduce and scan. Program-
mers are encouraged to use these functionals because they are primitive features of the lan-

guage.

Most of the efficient parallel algorithms of this paper use bounded parallel sharing of mem-

ory. When the sharing is bounded, meaning that only a fixed number of processors simul-

35

taneously read a common unit of memory, 2 simpler model than the PRAM can be used by
interleaving the memory references. It may be possible for our results to be translated to
permutation networks or distributed systems. Only in the merge problem, which specifies

2n/(Ig n) parallel binary searches is the sharing unbounded.

In view of the results of the previous sections, an interesting question is:

P’ o NC! = NC'n/lg n) ?

All examples in this paper satisfy the conjecture. An open question, noted in [13], is the
problem of computing the median of n numbers. The classifications P’ and NC' are known,

but there is no apparent NC'(n/lg n) algorithm.

1.7 References

[1] S. A. Cook, The Classification of Problems which have Fast Parallel Algorithms, Tech-

nical Report No. 164/83, University of Toronto.

[3] D.s. Hirschbefg, A. K. Chandra and D. V. Sarwate, Computing Connected Components

on Parallel Computers, Comm. ACM 22 &(Aug 79), pp. 461-464.

[4] F.Y. Chin, J. Lam, and 1. Chen, Efficient Parallel Algorithms for Some Graph Problems,

Comm. ACM 25 9(Sep 82), pp. 659-665.

[6] D.S. Johnson, The NP-Completeness Column: An Ongoing Guide, J. Algorithms 4

1983, pp. 189-203.

[7] R. E. Tarjan, Complexity of Combinatorial Algorithms, SIAM Review 20 3(Jul 78), pp.

457-491.

36

[8] A. Aho, J. Hopcroft and J. Ullman, The Design and Analysis of Computer Algorithms,

1974, Addison-Wesley, Reading Massachusetts.
[9] C. L. Liu, Elements of Discrete Mathematics, 1977 McGraw-Hill, New York.
[10] E. W. Dijkstra, A Discipline of Programming, Prentice Hall, New York.

[11] J. T. Schwartz, Ultracomputers, ACM Transactions on Programming Languages and

Systems 2 4(Oct 80), pp. 484-521.

[12] K. E. Batcher, Sorting networks and their applications, Proc. 1968 JCC, AFIPS Press,

Arlington Virginia, pp. 307-314.

[13] S. G. Akl, An optimal algorithm for parallel selection, Information Processing Letters 19

(1984), pp. 47-50.

[14] APL2 Programming: Language Reference, 1984, IBM publication SH20-9227-0.

37

