SUPPORT FOR VERSIONS OF
VLSI CAD OBJECTS

D. S. Batory & Won Kim
Department of Computer Sciences
University of Texas at Austin

Austin, Texas 78712

TR-85-18 September 1985

Support for Versions of VLSI CAD Objects

D.S. Batory
Dept. of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712

Won Kim
Microelectronics and Computer Technology Corporation
9480 Research Blvd.
Austin, Texas 78759

ABSTRACT

Version control is an essential requirement for VLSI CAD, and has at least
three important implications for support in database systems: (1) versions of
design objects are usually created from existing versions by making relatively
minor changes; thus the sets of records that define different versions are largely
redundant. Storage sharing among versions should be supported. (2) Several ver-
sions, not just the most recent one, will be accessed. All versions should have
uniformily low access times. (3) Changes made to versions may affect the vali-
dity of versions of other related design objects. Such changes must be monitored
and affected designs should be notified.

In this paper, we describe a storage technique that balances the require-
ments for reducing storage redundancy and fast access to different versions of the
same design object. We also identify specific problems of change monitoring and
notification, and propose solutions.

1. Introduction

Many researchers have addressed aspects of the problem of version control, both for CAD
applications and software development [KATZ82, KAIS82, McLE83, PLOU83, HAYNBS4,
DADAS84]. In spite of such efforts, many of the major issues are still not well-understood or
clearly defined. Indeed, it is not even clear from earlier work what is meant by version, and what

aspects of version control should be supported by database systems and what by users.

In a recent paper, we have proposed a framework for modeling VLSI CAD objects
[BATOS85]. Informally, versions of a design object share the same interface and ‘behavioral

characteristics, but differ in implementation details. Versions are usually created from existing

-2-

versions by making relatively minor changes. As a consequence, the sets of records that define

different versions are largely redundant. It is therefore important to have a storage structure that

promotes record sharing among versions.

At the same time, minimizing storage requirements should not incur a significant penalty for
access times to versions. Several versions of the same design object may be accessed with similar
frequency. For example, a designer may be interested in the most recent version of a design

object, while a‘tester may be validating an earlier version. Thus it is important that a storage

structure be used which allows efficient access to any specific version.

Monitoring changes in versions and notifying designers or affected designs (of possibly
different design objects) has long been an important issue in VLSI CAD. Certain types of changes
may be of interest only to some designers; other types of changes will affect the validity of ver-
sions that utilize the changed version as a component. However, the issues involved in change

monitoring and notification are still poorly understood and no comprehensive framework for iden-

tifying problems and their solutions exists as yet.

In this paper, we present a version storage structure and change monitoring and notification
mechanisms which address the above problems for VLSI CAD database systems. In Section 2 we
review concepts for modeling the structural properties of VLSI CAD objects and their versions.
Section 3 presents our version storage structure and z;ccess algorithms. Issues in change monitor-

ing and notification are examined and solutions are proposed in Section 4.

2. VLSI CAD Objects and Their Versions

A VLSI CAD object manifests itself in & number of representations: for example, register
transfer, Boolean, logic, circuit, layout, etc. [ULLM84]. Lower-level (more detailed) representa-
tions are usually derived from higher-level representations. For example, circuit representations
are generated from logic representations and layout representations are generated from circuit

representations. Designers often experiment with versions of a particular representation of a

-3-

design object. Fig. 1 shows three representations of a design object. Representation A has two
versions, B three versions, and C only one version. Versions v-1 and v-2 of B were derived from

version v-1 of A, while v-3 of B was derived from v-2 of A, as indicated by directed arcs.

design object

N T~

rep-A rep-B rep-C
-1 v-2 v-1 v-2 wv-3 v\-l

Fig. 1 Representations and their versions

The structural properties of a design object outlined below are applicable to any of the
representations. For concreteness, however, we will illustrate the concepts in the context of cir-
cuit representations. The description of a CAD object (circuit) consists of two parts: its interface
and implementation [EDIF84, McLE83]. The interface of a circuit contains inputs and outputs,
and specifies the function (behavioral characteristics) of the circuit. The implementation consists
of descriptions of less complex, component circuits, and their interconnections, where each com-
ponent ;:ircuit has its own interface and implementation. Thus circuit description, as well as the

design itself, is often hierarchical; it enables implementation details to be developed or revealed in

a progressive manner.

Consider a circuit for a 4-bit adder. Fig. 2 shows its interface specification: a pair of 4-bit
numbers (X,Y) are input and a 5-bit number representing their sum (Z) is output. Details about

the circuit’s internals are not shown, but are specified in the circuit’s implementation.

One possible implementation of an adder is shown in Fig. 3. It is realized as a ripple-carry
through four adder-slice circuits. According to its interface, an adder-slice takes a pair of 1-bit
numbers (X, , Yi) and the carry from a previous slice (Ci_l)and produces their 1-bit sum (Z;} and

earry (C,).

chy__
3o
e

x3 .-_oz1

4 O ..._.oz2

ADDER e 2

_—ozk

Ylo—— —-OZS
Y2¢>——
§3°_~
Y, O

SLICE

H
:
]
§
]
§
1]
1]
ADDER :
1
[}
1
§
§

ADDER Zy

i
SLICE _\:—o
2
Z

] 3
—0 7
ADDER ™04

SLICE

ADDER
SLICEA

(
]
1
8
]
§
i
9
3
L]
4
8
]

G an s e Cbe G CEe GRe GHbe G SDoGTD SNEe G S G GRS

Fig. 3 An Implementation of a 4-bit Adder
From our definition of a design object as consisting of an interface description and an imple-
mentation description, we define versions to be objects that share the same interface but have
different implementations. A term often mentioned in the context of version control is design
alternative [KATZ82]. Currently there appear to be at least two interpretations of this term.
One is to make no distinction; versions and design alternatives are merely diﬁ’erent; Hnames for

implementations of a design object. The other is to classify implementations of a design object

-5-

by implementation strategies, optimizing criteria (area, power consumption, speed, etc.), technol-
ogy (nMOS, ¢MOS, etc.), and so forth. Implementations within a single class are called versions,

and those in different classes are design alternatives.

For the purposes of this paper, it is not important which interpretation will eventually pre-
vail. This issue is orthogonal to the problems of storage structure and change notification in ver-

sion control, and for expository simplicity, we will make no distinction between versions and

design alternatives in this paper.

Versioned objects are said to be occurrences of a single design object (or object interface).
Fig. 4 illustrates the general relationship between an object and its versions. Three objects are
shown. Object A has three implementations (versions), object B has none (no implementation for

it has yet been specified), and object C has two.

SET OF

€ omiEcT TYPES

/
\— /]

SET OF

OBJECT VERSIONS

Fig. 4 Relationship Between Objects and Their Versions

The relationship between objects and their versions, called version generalization, has spe-
cial properties. First, there is the notion of attribute inheritance; all attributes of an object inter-
face are inherited by its versions. Second, objects have update restrictions. Modifying the inter-
face of an object results in a new object; the original object remains unchanged. In addition, ver-

sions of the original object are not considered versions of the new object.

Another concept which is essential for modeling objects is instantiation. Fig. 3 is an exam-
ple. An adder uses four copies, or énstances, of the adder-slice circuit. Each instance is distinct

(i.e., each has its own separate set of inputs, outputs, and coordinate positions on a circuit

-6-

diagram), yet each shares the same adder-slice features. Instantiation distinguishes an object or its

version from its copies. Copies are simply reproductions of a master; the copies themselves are

not versions.

Instantiation, like version generalization, involves attribute inheritance. An instance of an
object inherits all attributes of that object. Instances also have attributes that are not inherited
(e.g., coordinate position of the instance on a circuit diagram, input and output labels that are

specific to the instance). It is the non-inherited attributes which enable different instances to be

distinguished.

Instantiation is applicable to both object interfaces and versions. If an object interface is
instantiated, no implementation of the object is specified; only the interface is copied. If a ver-
sion is instantiated, both the interface and its implementation are copied. An instance of a ver-
sion inherits the attributes of both the object interface and its implementation; an instance of an
object interface just inherits the interface attributes of the object. Fig. 5 shows the attribute

inheritance graph relating object interfaces, versions, and their instances.

OBJECT
TYPE
\ :
means Y
22;5%}‘ inherits
¥ attributes
of X
TYPE VERSION
INSTANCE INSTANCE

Fig. 5 Attribute Inheritance Graph for Object Interfaces, Versions, and Instances

There is an important semantic difference between instances of object interface and
instances of versions. Let V be a version of an object T and let X be a version of some other
object. Whenever an instance of V is used in the implementation of X, V is an inherent or fixed
part of X’s design. However, when an instance of T is used instead, this creates a ‘;socket” or

“template” in X in which any version of T may be placed. This gives rise to the concept of

parameterized versions.

Parameterized versions can be understood as templates. Each socket can be plugged with
versions (parameterized or non-parameterized) of a specified object interface. Parameterization

naturally supports hierarchical relationships among version instances. Fig. 6 shows an instance of

object version A which has two parameters; one is filled with object version B (which itself is
parameterized) and the other contains object version C (which is not parameterized). B has three

parameters; the first two are filled with non-parameterized versions D and E, and the remaining
parameter is unplugged.

e
4 .

’

¢

.

.

*

[}
4 I
.
:
v
’
:

OBJECT B r-) \/
:
4
L]
3
’ \
' Ay

OBJECT C

.
¥
14

.

OBJECT D OBJECT E

Fig. 6 Hierarchical Relationship Among Object Instances

Consider a more concrete example. Fig. 3 shows an implementation of an adder interface

which utilizes four instances of an adder-slice. Let A (asl, as,, asy, as 4) denote this version,

where as, ... 85, are the parameters of type adder-slice. Suppose there are two unparameterized

versions of an adder-slice, S1 and S2. By plugging in S1 or S2 for each of the parameters of A,

we can define a spectrum of versions {A(S1,51,51,81) ... A(S2,52,52,52)} of an adder.

3. A Storage Structure for Versions
As mentioned in the Introduction, it is often the case that there is a substantial similarity
between a new version and an older version; many of the same records are shared. Other

researchers have recognized this {e.g., [KATZ82, HAYN84, DADA84]) and have proposed storage

-8

structures based on differential file techniques [SEVE76]. Records belonging to, for example, the
most recent version are stored in one file, while records of all other versions are maintained in
differential files. An important shortcoming of these techniques is that they support efficient

access to only one version, usually the most recent. Accessing other versions can be very slow and

complicated.

Adopting a storage structure that favors access to one version over all others is not neces-
sarily a good idea. For example, a designer may be interested in the most recent version of a
design, while a tester may be validating an earlier version. These considerations led to the propo-

sal in [PLOUB83]| not to support storage sharing among versions.

In the following sections, we describe a storage structure for versions which is based on
differential file techniques but is quite different from previous proposals. Our structure has the
following features: (1) It allows the creation of versions from any existing version with minimal

replication of records, thereby red%ucing storage redundancy. (2) It can provide nearly uniform

access times to any specific version.

3.1 The Basic Storage Structure

A version of a design object can be created in one of two basic ways. Either it is created

from scratch or by modifying an existing version of the same design‘c«bject,.:l

The history of version creations {or a design object can be captured in one or more directed
trees, which we will call version-derivation hierarchics. The root of a version-derivation hierarchy
(tree) is a version which was created from scratch; all other versions are descendants of the root
version. Fig. 7 illustrates a version-derivation hierarchy. Versions v-1, v-2 and v-3 were derived
from v-0; v-4 and v-5 from v-2, and so on. When a version v-j is derived from v-i, we say v-i is

the parent version of v-j, and v-j is a child version of v-i. The meaning of ancestor versions, des-

1 Two other ways are known, but they too can be cast into one of the above basic ways. The first additions!
way is to modify & version of g different design object. This can be treated as if the version was created from
scratch. The second way to create & version is by modifying two or more existing versions. In this case, only
one of the old versions is selected as the parent of the new version.

.‘g-

cendant versions, leaf versions, and non-leaf versions follows naturally.

/\

v-4 v-5

/\

v-6 v-7 v-8

Fig. 7 A version-derivation hierarchy

Version-derivation hierarchies are important because they suggest which versions are most
likely to share the greatest number of records. Intuitively, the chances are greater that two ver-
sions will share more records if one is a direct ancestor of the other than if they were not related

at all. Thus, version-derivation hierarchies provide an important clue to storage sharing among

versions.

Another clue to designing a version storage structure concerns the modifiability of versions.
Versions can be classified as either working or released. A released verston is not subject to
updates, while a working version may be updated at any time. Thus it is possible for a working
version to be updated before and after new versions have been generated from it.2 A version
storage structure, therefore, should allow both released and working versions to coexist in a single

hierarchy and should permit any working version to be modified.

The above clues suggest that a single storage structure be used to store the set of versions
that belong to a single version-derivation hierarchy. If multiple hierarchies describe the versions

of a design object, multiple instances of the storage structure would be used.

2 We are aware of unpublished suggestions by others that working versions should not be updated once mew
versions have been generated from them. This would result in creating & new version each time a change (how-

ever trivial) is made. Although we feel this spproach leads to undesirable consequences, we note that our
storage structure will support it.

-10 -

To understand how the storage structure would work, consider what happens when a new
version is created. All records that the new version shares with its parent would (obviously) be
already stored. The only records that need to be stored are those that are not present in the
parent version. We will say that the records that a child version shares with its parent are inher-
sted. A record that is not inherited is said to be owned by that version. With these ideas in mind,
the following is a list of rules that characterize the version storage structure:

1. All records of the root version are owned by the root version; some records of each non-root
version are owned by that version and others are inherited from ancestor versions.

2. When a record is inserted into a version v-i, the record is owned by v-i and the record is visible

to all versions that are subsequently derived (created) from v-i. The record is not visible to
any other versions.

3. When a record is deleted from a non-leaf version, the original record must continue to be visi-
ble to descendant versions that inherited it.

4. When a record is updated in a non-leal version, all descendant versions that inherited the
record must continue to see the original record.

5. All records owned by a version should be physically clustered so that they can be efficiently
accessed together.

6. The accessing of the records of version v-i is accomplished by reading the records owned by the
versions that appear along the chain from the root version to v-i in the version-derivation
hierarchy.

To support the above, every record of a version must be augmented with a bitmap and a
field that identifies which version owns the record.3 Each bit in the bitmap corresponds to a ver-
sion on the version-derivation hierarchy. The assignment of versions to bits will be called the bit~
map legend. A zero-bit means that the record is potentially visible to the corresi;onding version,
and a one-bit means that it is not. (As we will see shortly, it is possible for a record not to be
inherited by (i.e., visible to) version v-i yet its v-i bit is zero). For simplicity, we will assume that
the bitmap has a fixed size, which is equal to the maximum number of versions that can be on a
version~derivati6n hierarchy. (This is not a serious limitation; in Section 3.2 we will show how to

work around it).

3 The owner field is needed as it is pot always possible to determine the owner of & record simply by inspecting
the record’s bitmap.

-11-

v-0 v-n

/ v
{ record [TT7T .77 7]

bitmap owner-version

Fig. 8 An augmented record

Additional support is needed in the form of a version directory. This directory will encode
the parent-child relationships of each version-derivation hierarchy and will have an entry for
every version. Stored with each entry is a pointer to a chain of one or more storage blocks that
contain the records owned by that version. As these blocks are allocated when a version is
created, they can be assigned sequential locations. Subsequent record insertions and updates may
cause additional blocks to be allocated. The new blocks probably will not be physically contigu-

ous to the last of the sequential blocks.

Before presenting detailedﬂescriptions of our algorithms for retrieving and manipulating
records from a version, we will provide an intuitive description of them. Our algorithms are
based on two requirements. First, it is essential that when a new version is created, the records of
its ancestor versions should NOT be updated to reflect their visibility (invisibility) to that version.
That is, the inheritance (noninheritance) of records should be automatic. This means, for example,
that when a record is inserted into version v-i, its bitmap entries for all versions that don’t yet
exist must be set to 0 so that new versions can be presumed to inherit the record. (Note that the

bitmap entry for v-i is also set to 0 while entries for versions that already exist are set to 1).

The second requirement is that a version v-i inherits record r from ancestor version v-j only
if v-j owns r and no version salong the path from v-j to v-i deleted r. That is, the bits of the bit-
map of r that correspond to versions on the path starting with v-j and ending at v-i must be all

zero. We will refer to this as the clear path requirement.

Both requirements are needed for efficient performance; the first requirement is 6}5ﬁous, but
the second may not be. Suppose we dropped the need for a clear path. Assume for simplicity

that the maximum number of versions on a version-derivation hierarchy is 3. Suppose that there

-12-

is only one version, v-0, and a record r is inserted into it. The bitmap in the record is [0,0,0] for

versions v-0, v-1, and v-2, respectively, where v-1 and v-2 do not yet exist.

Now version v-1 is created from v-0, inheriting record r. Then version v-1 deletes record r.
The bitmap of r would contain [0,1,0]. Version v-2 is created from v-1. Since v-1 deleted r, the
record must not be visible to v-2. However, since a clear path from v-0 (the owner) to v-2 is not
required and that the bitmap entry of r corresponding to v-2 is 0, it is necessary for that bit to be
set to one. This violates our first requirement that the inheritance (or noninheritance) of records

be automatic and incur no overhead. Thus, clear paths are required.

Surprisingly, however, these simple requirements introduce some unpleasant complications
in the algorithms for the update and deletion of records. Consider a different example. Again
suppose v-0 has one record r. Its bitmap is [0,0,0]. Yersion v-1 is created from v-0, inheriting r,
and version v-2 is created from v-1, also inheriting r. Now v-1 deletes r. Record r must still be
visible to v-0 and v-2. Because of the clear path requirement, it is necessary to insert a copy of r
into v-2, with v-2 as the owner, while keeping the original record owned by v-0. The bitmap of
both copies of r is [0,1,0]. Record replication would have been required if v-1 instead updated r.
There would then be three instances of record r: two copies of the original (one owned by v-0, the

other by v-2), and the updated r (owned by v-1).

Clearly, replicating records compromises our objective of minimizing storage redundancy
among versions. However, we note that records need to be replicated only when they are deleted
or updated from a non-leaf version where one or more of its descendants inherited the records.
Further, when a potentially large number of records are to be deleted or updated from 2 non-leaf
version, the user can simply create a new version thereby avoiding record replication. Thus, we
believe that our approach will have only a negligible impact on minimizing storage sharing.

We now describe our algorithms for inserting, deleting, updating and retrieving records in a

version.

- 13-

Algorithm_Insert:

Assume that record r is to be inserted into version v-i.

1. [initialize bitmap] Set the bitmap entries for all versions on the version-derivation hierarchy
(except v-i) to 1. Bit v-i and all other bits (that do not correspond to existing versions) are 0.

2. [initialize owner] Set v-i as the owner of record r.

Note: Step 1 means that record r is visible only to v-i and to no other currently existing ver-
sions.

Step 2 ensures that record r is automatically inherited by versions that are subsequently
derived from v-i.

Algorithm_Delete:

Assume that record r is to be deleted from version v-i.

1. [logical deletion] Set bit v-i in the bitmap of r to 1.

2. [replication] Let D be the set of child versions of v-i that inherit r. Insert a copy of r (with the
bitmap as updated in Step 1) into each version in D, with that version as the owner.

3. [physical deletion]. If v-i is the owner of r, physically delete the record.

Note: Step 1 makes r invisible to v-i. By the clear path requirement, r is also made invisible
to the descendants of v-i.

Step 2 replicates r for each child version of v-i that inherited r from v-i. A copy of r will be
owned by each version in D. All instances (the original and its copies) will share the same

bitmap, and thus preserve the inheritance of r by descendant versions.

Step 3 physically deletes r if no version inherits r.

Algorithm_Update:

Assume that record r of version v-i is to be updated.

1. [replication] Let D be the set of child versions of v-i that inherited r. Insert a copy of r into
each version in D with that version as the owner. (The bitmaps of the copies should be

identical to the original to preserve inheritance information).

2. [physical update] If v-i is the owner of r, update r. Also, set to one the bits corresponding to
D, as defined in Step 1. Quit.

3. [logical update] Otherwise, set the bit for v-i to 1 in r. Insert, using Algorithm_Insert, the
updated copy of r into v-i with v-i as the owner. Quit. —

Note: Step 1 ensures that versions that inherited the record see its original state.

Step 2 physically updates r if r was not inherited from v-i’s ancestors. It also ensures the

-14 -

updated copy is not seen by versions that inherited the non-updated record.

Step 3 inserts an updated copy of r into v-i when the owner of r is an ancestor. Version v-i

no longer sees the original copy but does see the updated r. Ancestor versions continue to see
the original.

Algorithm_Retrieve:
Assume the records of version v-1 are to be retrieved.

1. [version scan] Let C be the set of versions that form a chain from the root version to v-i.
Using the version directory, scan the set of records owned by each version in C.

2. [qualification] A record r belongs to version v-i if:
1. the v-i bit in the bitmap of r is 0, and

2. if v-1 does not own the record, then the bits of the versions that form the path begin-

ning with the owner version to version v-i must be all O (i.e., the clear path require-
ment).

Note: Step 1 eliminates the examination of versions whose records v-i could not have inher-
ited.

Step 2 eliminates a record if it is known that an ancestor of v-i (and a descendant of the
owner version) deleted the record.

A proof of correctness for the above algorithms is given in the appendix.

We illustrate these algorithms below. Suppose that the maximum number of versions on a

version-derivation hierarchy is 4.

Version v-0 is the first version created, and it owns the three records shown in Fig. 8a; that
is, these records are inserted into v-0. Note that bitmap entries for each of these records are all

set to 0, indicating that versions to be derived from v-0 can inherit these records.

Next version v-1 is derived from v-0 by inheriting Record 1 and Record 2, and inserting a
pew record Record 4. This requires deletion of Record 3 with respect to version v-1, and insertion

of Record 4 into v-1. The resulting state of bitmaps in the 4 records is shown in Fig. 9b.

Then version v-0 inserts a2 new record Record 5. Since v-1 has already been derived from v-
0, the insertion of this new record should be transparent to v-1. However, versions yet to be

derived from v-0 should be able to inherit this record. Therefore, only the bit corresponding to

<15 -
v-1 is set to 1 in Record 5, as shown in Fig. 8¢.

Now the designer of v-0 deletes Record 2, which v-1 had inherited. The record should con-
tinue to be visible to v-1; however, it should not be visible to v-0. The resulting bitmap for
Record 2 is shown in Fig. 8d. Note that Record 2 was physically deleted and re-inserted with v-1

as its owner.

Next, a new version v-2 is derived from v-1. The records it inherits are Record 1, Record 2,
and Record 4. Now suppose Record 1 is deleted from v-1. Record 1 should now be visible to v-O
and v-2. Record 1 is now duplicated, as shown in Fig. 8¢. The bitmap in Record 1 indicates that
versions other than the current descendants of v-0 may inherit the record. Record 1’ (a copy of

Record 1) is owned by v-2, and versions to be derived from v-2 may inherit it.

a) d)
Record 1 |0|00j0] vO Record 1 |00]0]0] vO
Record 2 |ojo]0]0] vO Record 2 |1/0J0]0] v1
Record 3 {0/0|0|0] vO Record 3 |o]1/0]0] vO
Record 4 |1/0[0]0| v1
b) Record 5 [0[1]0]0] vO
Record 1 |0|0]0]O] vO ‘
Record 2 |0]0]0]0] vO
Record 3 |0]1]0[0] vO e)
Record 4 {1/0j0j0] v1 Record 1 |0]1]0[0] vO
Record 1’ {0[1[0]0] v2
Record 2 |1{0]0]0] v1
c) Record 3 |0[1]0]0] vO
Record 1 |0jo0]0j0] vO Record 4 |1{0]0]0] v1
Record 2 {0j0|0}0] vO Record 5 |0[1]0|0] vO

Record 3 |0[1]0]0] vO
Record 4 |1]0]0j0] v1
Record 5 |0]1{0]0] vO

Fig. 8 An example of insertion and deletion of records

The algorithms presented in this section are the building blocks for such-higher level version
operations as creation, deletion, and replacement of versions. To delete a leaf version, all the
records owned by the version are physically deleted. - For 2 non-leafl version, Algorith;xx_Delebe is
used to delete both the records the version owns and those it inherited. To create a new version,

Algorithm_]Insert is used to insert records the version will own and Algorithm_Delete to suppress

-16 -

the inheritance of selected records from the ancestor version. Replacing a leaf version can be cast
into deletion of the version followed by creation of a new version. To replace a non-leaf version,

Algorithm_Delete is used to delete records that the new version will not see, and Algorithm_Insert

to insert both updated records and new records.

To gain some insight into the performance of these algorithms, let n be the average number
of records in a version and let u be the average fraction of records in a child version that are not
inherited from the parent version. Suppose there are k versions. If k versions were stored
separately (as is done in [PLOUB83]), S(k) = k*n records are stored. If k versions are stored using
our structure, VS(k) = n + (k-1)*u*n records will be stored.. The ratio VS(k)/S(k) = 1 + (k-1)*n
would be the compression factor. It is believed that a typical;value of u is .2. That is, 80% of the
records of a child version are inherited from its parent. For k==5 the compression factor is .4 (i.e.,

a savings of 609). For larger k, the savings would be even greater.

An overhead of the version storage structure is that the retrieval of records belonging to a
specific version requires a traversal of all of its ancestors to find inherited records. Thus, the
farther a version is from the root, the greater the overhead. Suppose a version is at level m in the
version-derivation hierarchy (m==0 is the root). The average number of records that will be
retrieved in accessing the version is VA(m) = n + m*u*n. (n records for the root, u*n for the
level 1 descendant, u*n for the level 2 descendant, etc.). If versions were stored separately, the
number of records accessed would be A = n. The ratio VA(m)/A = 1 + m*u is the fraction over-
head. Again with u==_2 and taking m==4, the fraction overhead is 1.8, or less than twice the cost

of accessing a separately stored version.

We see from these simple calculations that the version storage structure is likely to save a
considerable amount of storage. However, for it to support quick access times, the version-
derivation hierarchies should be short in height, and preferably dense. In the case that hierarchies
become rather high, an alternative approach is needed. One such approach is the use of version

segments, discussed in Sestion 3.2. Another approach is discussed in Section 3.3.

-17 -
3.2 Version Segments

Thus far we have assumed, for simplicity, that all versions on a version-derivation hierarchy
inherit records from their ancestors. However, as the version-derivation hierarchy grows, it
becomes advantageous to partition it into a number of independent version-derivation hierarchies.
One reason, as discussed in the last section, is that the farther a version is from the root version
in a version-derivation hierarchy, the greater the overhead for accessing its records. This is com-
pounded by the reality that the greater the distance from the root, the fewer records the version

is expected to share with its ancestor versions closer to the root.

A second reason for partitioning a version-derivation hierarchy is to overcome the size limi-
tation in the bitmap within a record. That is, when there are more than N versions on a version-
derivation hierarchy, and the size of the bitmap is fixed at N, the version-derivation hierarchy will

have to be partitioned into more than one independent hierarchies.

It is with these observations that we introduce the notion of version segments. A version
segment is a connected subtree of versions on the version-derivation hierarchy. Fig. 10 shows ver-
sion segments VS-1, VS-2, and VS-3 defined on the version-derivation hierarchy of Fig. 7. VS-1
consists of versions v-0, v-1, v-2, and v-4; VS-2 has only v-3; and VS-3 contains v-5, v-6, v-7, and

v-8.

Although we recognize that it is conceivable for two version segments to share some ver-
sions, we will assume, for expository simplicity, that a version segment of a given version-
derivation hierarchy does not overlap with any other version segment. Further, we note that it
may be difficult and potentially expensive to have the database system determine an “optimal’®’

set of version segments from a given version-derivation hierarchy. As such, we expect that the

users will have to specify the formation of version segments.

Two algorithms are required to support version segments. Algorithm_Split is needed to split
off a version segment from an existing version segment; and Algorithm_Merge merges a version

segment back to the version segment from which it was split off. We assume that both the new

-18-

VS-1

Fig. 10 Version Segments

version segment and the version segment from which it is split off reside in the same physical area

(e.g., same disk volume). As before, we will assume the existence of a version directory for each

version segment.

Algorithm_Split:

Assume that a new version segment VS-new, with v-new as its root version, is to be split off an

existing version segment VS-current with v-current as its root. Assume that v-new is different
from v-current.

1. [version scan] Let C be the set of versions that form a chain from the root version to v-new,

but not tncluding v-new. Using the version directory, scan the set of records owned by each
version in C.

2. [qualification] A record r is inherited by version v-new if
1. the v-new bit in the bitmap of r is 0, and

2. the bits of the versions that form the path beginning with the owner version to version
v-new are all 0.

3. [insertion] For each record r that is inherited by v-new, insert r, using Algorithm_Insert, into
v-new with v-new as its owner.

4. [redefine legends] Optionally, construct a new assignment of the bitmap positions to versions
in VS-current and VS-new. Update the legends of the records in VS-current and VS-new by
scanning the records in each version segment and updating them.

Note: Steps 1 and 2 are almost identical to Algorithm_Retrieve, which identifies all records
inherited by v-new in VS-current.

Step 3 eliminates the need to examine ancestor versions of v-new to locate records of v-new.

Step 4 redefines the assignment of the bitmap positions to versions belonging to each version
segment. This may be necessary to accommodate many versions with a fixed-size bitmap.

-19 -
Algorithm_Merge:

Assume that a version segment, VS-old, with root v-old, is to be merged as a child of version v-
parent of version segment VS-current.

1. [augment legend] Augment the legend of VS-current by assigning bits for each of the versions
in VS-old.

2. [determine inheritance] Using Algorithm_Retrieve, retrieve the records that are visible to v-
parent. Let this set of records be P. Retrieve the set O of records that define v-old. Let I be
the set of records that v-old would inherit from v-parent; that is, I = P intersect O. Let NI
be the set of records that v-old would not inherit; that is, NI = P difference 1.

3. [physical delebion] Physically delete each record in I from version v-old, without replicating it
for child versions of v-old. Copy the inheritance mformat.xon in the bit maps of these records
to their corresponding records in VS-current.

4. [register noninheritance] For each record in NI, set the v-old bit to 1.

Note: Step 1 enlarges the legend of VS-current by the versions in VS-old.

Step 2 identifies the records that are not inherited by v-old from v-parent.

Step 3 removes records from v-old that will be inherited from v-parent in the new version
segment VS-current. To preserve the inheritance information of these records, the bitmaps of

the deleted records are recorded in their corresponding records of VS-current. In this way,

both the records and their inheritance information is preserved; only the owner information is
changed.

Step 4 makes selected v-parent records non-inheritable by by setting the inheritance bit of v-
old.

We have also developed variations of Algorithm_Split and Algorithm_Merge that assign &
different physical storage area for a version segment that are split off another version segment.

They are only slightly more complex than the above algorithms and will not be presented here.

3.3 Further Extensions

In earlier works ([KATZ82],[DADAB84]), the history of version creations was not modeled by
version-derivation hierarchies as we have done, but rather as a linear chain or time-series of ver-
sions. Although our approach generalizes these works, some of the concepts that they propose are

directly applicable to our version storage structure.

[DADAS84] provides a briel discussion of two basic ways of applying the principles of
differential file techniques to promote ’storage sharing in the context of supporting time-series ver-

sions. It explains these ways in terms of delta files, where a delta file D(V1,V2) contains the

-20-

differences between version V1 and V2, and ecomplete files, which contain all the records associ-
ated with a single version. One of the basic ways is the forward differential-file technigue, in
which the oldest version, v-0, is stored in a complete file and the sequence of subsequent versions
are stored in delta files. Version v-i is reconstructed by reading the complete file of v-0, and the
delta files D(v-0,v-1), D(v-1,v-2), ..., D(v-(i-1),v-i). The other way is the backward differential-file
technigue, in which the newest version, v-n, is maintained as a complete file and the sequence of
earlier versions are stored in delta files. Version v-i is reconstructed by reading the complete file

of v-n and the delta files D(v-n,v-(n-1)), ..., D(v-(i+1),v-i).

Both techniques have a common variation. For the forward technique, the delta files D(v-
0,v-j) for j==1..n are stored. Thus version v-i is reconstmcte'c} by reading the complete file of v-O
and the delta file D(v-0,v-i). For the backward technique, the delta files D(v-n,v-j) for j==0..n-1
are stored. From the perspective of access efficiency, this variation is better than the original
techniques. However, it is worth noting that the degree of storage sharing should decrease; the

similarity of versions v-i and v-(i+1) is likely to be greater than that between versions v-0 and v-i

or v-n and v-i.

Our storage structure is based on forward-differential file techniques. As mentioned earlier,
we noted that the farther a version is from the root of its version-derivation hierarchy, the greater
the overhead will be to access it. We introduced version segments as a way to minimize version

retrieval times. The variation of the forward-differential technique described above is another

way to improve access efficiency.

When this variation is applied to our storage structure, the semantics of the version-
derivation hierarchy changes slightly (i.e., a child version of the root need not have been derived
directly from the root). However, this does not affect the algorithms of Section 3.1; they will
work regardless of the true ancestry of versions. It is worth noting, however, that if version v-i
inherited that are not visible to v-a will need to be duplicated (and owned) by v-i. We emphasize

that, unlike the variation considered in [DADAB84], which implies that version v-i, being derived

-91-

from version v-k, must become a child of the root version v-0, we allow v-i to become a child of

any ancestor of v-k.

We conclude this section by noting that at first glance a version storage structure based on
backward-differential file techniques seems appealing in that the most recent versions are stored in
complete files. However, it does not appear possible to convert our storage structure and algo-
rithms so that they are based on a backward approach. The difficulty lies in supporting record
inheritance and maximizing storage efficiency. For example, suppose version v-0 is created. Ver-
sion v-1 is derived from v-0, and so too is v-2. All three versions contain the same set of records.
v-1 and v-2 will be stored in complete files; v-0 would be represented by an empty delta file.
Since the records in the v-1 and v-2 files are duplicated, it is not clear what is gained by this

approach. We note that there are additional difficulties which make the backward approach even

more unattractive than this example indicates.

4. Change Notification

In this section we first identify issues involved in supporting the automatic monitoring of
changes in a version and subsequent change notification to affected versions. We then propose

techniques for monitoring and notifying changes.

4.1 Issues in Change Notification

Broadly, there are two major issues. One is understanding the types of changes that need to

be monitored. Another is the notification mechanisms and timing (when to notify).

4.1.1. Types of Changes Monitored

There are three types of changes that need to be monitored. First, as discussed in Section 2,
a design object in general has multiple representations that are hierarchically related. For exam-—
ple, a logic representation tan have many circuit representations, a circuit..representation can
have many layout representations, etc. Usually, lower level représentations of design objects are

derived from their higher level representations, and thus changes made to one representation may

-22.

invalidate more detailed, lower level representations [WIED82]. For example, changing the logic
representation of a design object may invalidate its circuit representations. Therefore, changes in

a design object across multiple representations need to be monitored.

Second, as also shown in Section 2, a design object is constructed by instantiating (referenc-
ing) more primitive objects. Suppose object A is instantiated in the implementation of object B.
If A is changed, then its changes are automatically propagated to B. Object B is thus changed,
and objects that instantiated B in their implimentation are changed, and so on. Thié can lead to
a potentially messy situation where an exponential propagation of changes occurs [WIEDS82].

Therefore, changes to versions of a design object definitely need to be monitored.

Third, changes to a version may be of interest to versions derived from it along the same
version-derivation hierarchy. We note from our algorithms of the previous sections that changes
made to one version are localized in that they do not propagate or affect the validity of other ver-

sions. Nevertheless, changes to versions within version-derivation hierarchies should be moni-

tored.

It is worth noting that one type of change can give rise to other types of changes, thus com-
plicating the change monitor/notification process. For example, when a version v-i of design d-i is
changed, it may affect the validity of version v-j of another design d-j which instantiated it. This

can affect the validity of versions of different representations of v-i and v-j.

4.1.2. Notification Mechanisms and Timing

Two mechanisms can be used to notify changes to affected designs or interested designers.
One is the use of auxiliary directories, in which a summary of the changes may be posted. The
other is to use timestamps to indicate when a version was last modified and approved. For both
mechanisms, an active or passive notification strategy may be used. In the active approach, the
sion have been committed. In the passive approach, designers are expected to check the auxiliary

directories periodically for changes, or if timestamps are used, the system would notify the

-23.

designer of changes to a version when the version is accessed.

Both mechanisms and notification timing strategies are well suited for design systems that
are organized around a public/private distributed architecture [HASK82, KIM84]. In such archi-
tectures, multiple workstations are running single-user database systems which communicate with
a central host that manages the public database of stable design data and design control data.
Applications extract (take copies of) versions of design objects from either the public or private
database and insert them into the application work space. It is at this time that the system
would notify a designer of version modifications if timestamps with passive notification are used.
Once transferred, the versions can be updated or new versions created. Later they can be
checked-in (returned) to the central database for public examination. It is at this point when the

system would notify affected versions of design modifications if an active notification approach is

used.

In the following section, we will explain in more detail how the timestamp and directory

notification mechanisms work.

4.2 Change Notification Techniques

Although either of the notification mechanisms can be used for any of the three types of
changes, there is a preference for a particular type of change. We believe that the following is an
appropriate matching:

1. Timestamps:

a. changes in an object that was instantiated by another object, both objects residing in the
same private database.

b. changes in a representation of a design from which other representations were derived.
2. Auxiliary Directories:
a. changes in versions along a version-derivation hierarchy.

b. changes in an object that was instantiated by a design, which was checked out from the
public database into a private database.

¢. changes in an object residing in the public database from which a new representation or a
new version was derived in a private database.

- 24 -
A brief description of these mechanisms is given below.

4.2.1 Timestamp Mechanisms

From a research point of view, the more interesting notification mechanism is the use of
timestamps with versions. Each version will have two distinct timestamps. One timestamp,
called the change-notification time stamp (CN), indicates the last time the version was changed.
The other, called the change-approval timestamp (CA), indicates the last time at which the
designer of the version approved of the changes to the version. Let V.CA and V.CN denote the
change-approval and change-notification timestamps of version V. We say that version V is
tmplementation conststent if V.CA >== V.CN. An implcmcntat:'on tnconsistent version is one
whose implementation has been updated but not yet a.pproved. (We presume that versions stored
in the central database would always be implementation consistent, although it is quite possible

for versions to undergo a series of changes before being approved in a private database).

Let I be the set of versions that are instantiated in the implementation of version V. If no
version in I has a change-notification timestamp that exceeds the change-approval timestamp of V°
(i.e, for all X in I, X.ON <= V.CA), then we say that V is reference consistent. V is reference

inconsistent if there are one or more versions in I that have been updated, but the effects of these

updates on V have not been determined.

To make V reference consistent, the effects of the updated versions in I must be ack-
nowledged. This is done in one of two ways. Either the updates to 1 have no eflect on V, in
which case V.CA will be set to the current time, or the implementation of V will need to be
modified, in which case V.CN (and possibly V.CA if the changes are approved) will need to be set

to the current time. Until such actions are taken, V will remain reference inconsistent.

Timestamps can also be used to test for consistency across different representations of a ver-

sion. For example, if the logic representation of a version changes, then the circuit representa-

tions of the design, and so on. Let H be a version and L be version which defines a lower-level

-925.

representation of H. We say that L is representation consistent with Hif HCN <= L.CA. Lis
representation inconsistent if H has been modifed and the effects of these modifications have not

been determined on L. Acknowledgements of these changes are handled in the same way as that

for referential consistency.

The timestamping mechanism described above can result in a version that is seen as con-
sistent, while a related version (i.e., one that it instantiates or is a lower-level representation) is
inconsistent. For example, suppose version V is created by instantiating version A which is imple-
mentation and reference consistent. Now suppose A is made reference inconsistent by a
modification of a version that it instantiates. The implementation and reference consistency of V

is affected only if the indirect modifications to A cause A to be directly modified. Until this deter-

mination is made, V remains consistent.

Clearly there is a synchronization problem. We say that a version is totally consistent if it
and its instantiated versions are both implementation consistent and reference consistent. Total
consistency is required, for example, when a design object is to be released. In the release process,
a totally consistent version of the object for each representaﬁon is selected as the “final””
definition of that object in that representation. Furthermore, all selected versions be representa~—

tion consistent. Testing for total consistency using the above mechanism is straightforward and

will not be described in detail here.

We noted in Section 4.1.1 that changes can propagate up a design hierarchy, and there is
the possibility of an exponential explosion of notifications. In [WIED82], an algorithm for change
notification was proposed where a trivial change in a low-level design causes notifications to pro—
pagate to the highest-level designs. This is clearly undesirable. Our timestamping technique lim~
its the possibility of exponential notifications in a practical way. If a small change is made to ver—
sion A, version V (which instantiates A) will be notified. But if the changes to A cause no
modification of V, then all versions that instantiate V in their implementation need not be

notified. In this way, the propagation of change notifications is localized.

- 926 -

We envision that consistency tests will be performed at the specific request of users (e.g.,
procedures to test for a particular consistency can be called) and checks for reference and imple-

mentation consistency can be done when versions or their instantiations are read.

4.2.2 Auxiliary Directories

The use of directories to keep track of changes to a version along a version-derivation
hierarchy and the check-out/check-in status of versions of design objects that reside in the public

database is straightforward and obvious idea.

The only important observation that perhaps needs to be mentioned here is that the direc-
tories must be persistent, that is, they must persist (survive) across crashes of the public system,
and user sessions. As suggested in [KIM84], this can be very ’simply achieved by maintaining the
directories as part of the public database, taking advantage of the concurrency control and

recovery features of the public database system.

5. Concluding Remarks

We have presented results on two aspects of supporting version control in VLSI CAD. First,
we described a storage technique for versions that allows both the sharing of records that are com-
mon to related versions and also fast access to any version. This is a generalization and an
improvement over earlier proposals which supported storage sharing and fast access only to a sin-
gle (usually the most recent) version and much slower access to remaining versions. Also, our
structure allows the history of version derivations to be captured by a tree of parent-child rela~
tionships, rather than earlier methods of a linear chain of versions. Moreover, both working ver—
sionié and released versions can coexist in the same storage structure and working versions can be
updated at any time. The ability to access efficiently many versions, to derive several versions

from a single version, and to update working versions are definite requirements of VLSI CAID

databases.

Second, we identified issues in monitoring changes in versions and notifying affected designs.

A rather simple, but effective, techniqe using timestamps to flag inconsistencies was presented. Its

- 927 -

advantage over earlier proposals is that the affects of changes can be localized. That is, minor
changes which can be confined to lower-level designs should not cause higher-level designs to be
notified. The ability to selectively propagate changes and notifications is also a definite require-

ment of VLSI CAD databases.

Further work needs to be done on change propagation (i.e., the automatic propagation of
changes from one version to another) and a more detailed analysis of the performance of the ver-
sion storage structure. It is hoped that the analysis might lead to decision rules for automating

the creation of version segments.

Acknowledgements

We thank Drs. Terry Welch and Jay Banerjee of MCC for their helpful comments on an

earlier draft of this paper.

-28-

References

[BATO84] Batory, D. and A. Buchmann. ‘“Molecular Objects, Abstract Data Types, and Data

Models: A Framework,” in Proc. Intl. Conf. on Very Large Databases, August 1984,
pp. 172-184,

[BATO85] Batory, D. and W. Kim. “Modeling Concepts for VLSI CAD Objects,” ACM SIG-
MOD Intl Conf. on Management of Data, May 1985.

[DADA84] Dadam, P., V. Lum, and H. Werner. “Integration of Time Versions into a Rela-

tional Database System,” in Proc. Intl. Conf. on Very Large Databases, August 1984,
pp. 509-522.

[EDIF84] Electronic Design Interchange Format, preliminary specification, version 0.8

[HAYN84] Haynie, M. and C. Gohl. “Revision Relations: Maintaining Revision History Infor-
mation,” IEEE Database Engineering bulletin, vol. 7, no. 2, June 1984, pp. 26-33.

[KAIS82] Kaiser, G. and A. Habermann. “An Environment for System Version Control,” Tech
Report, Dept. of Computer Science, Carnegie-Mellon University, November 1982.

[KATZ82] Katz, R. and T. Lehman. “Storage Structures for Versions and Alternatives,”
Technical Report no. 479, Computer Sciences Dept., U. of Wisconsin, July 1982.

[KIM84] Kim, W., R. Lorie, D. McNabb, and W. Ploufle. ‘“A Transaction Mechanism for

Engineering Design Databases,” in Proc. Intl. Conf. on Very Large Data Bases,
August 1984. _

[McLE83] McLeod, D., K. Narayanaswamy, and K. Bapa Rao. “An Approach to Information
Management for CAD/VLSI Applications,” in Proc. Databases for Engineering Appli-
cations, Database Week 1983 (ACM), May 1983, pp. 39-50.

[PLOUS83] Plouffe, W., W. Kim, R. Lorie, and D. McNabb. ‘Versions in an Engineering Data-
base System,” IBM Research Report: RJ4085, IBM Research, Calif., October 1983.

[SEVE76] Severance, D. and G. Lohman. “Differential Files: Their Application to the Mainte-

nance of Large Databases,” ACM Trans. on Database Systems, vol. 1, no. 3 (Sept.
1976), pp. 256-267.

[ULLM84] Ullman, J. Computational Aspects of VLSI, Computer Science Press, 1984.
[WIEDS82] Wiederhold, G, A. Beetem, and G. Short. “A Database Approach to Communication

in VLSI Design,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, vol. CAD-1, no. 2, April 1982, pp. 57-83.

-929.

Appendix: Proof of Correctness of the Storage Structure Algorithms

Algorithms_Insert, Delete, and Update manipulate the bitmap entries to ensure that
Algorithm_Retrieve will retrieve only those records that properly belong to a version. And
Algorithm_Retrieve states that a record belongs to a version v-i if the bits in the bitmap
corresponding to the versions along the chain of ancestors from the owner of the record to version
v-i are all 0. Therefore, to prove correctness of Algorithms_Insert, Delete, and Update, we need

only show that the algorithms preserve the bitmap in the format that Algorithm_Retrieve
requires.

Algorithm_Insert is trivially correct. It inserts a new record into version v-i, establishes v-i
as the owner, and initializes the bitmap by setting the bits for v-i and all non-existing versions to
0. The consecutive 0 bits from v-i and its future descendant versions will enable
Algorithm_Retrieve to pick up the record.

Algorithm_Delete either results in a physical deletion of a record or a logical deletion and
replication of a record. The algorithm is trivially correct, with respect to the physical deletion,
since a physically deleted record cannot be incorrectly retrieved by Algorithm_Retrieve.

We only need to examine the logical deletion. Algorithm_Delete updates the bitmap in the
original record and inserts a copy of the record into each of the immediate child versions that
inherited the original record from v-i. The algorithm updates the bitmap in the original record
owned by an ancestor of v-i, by setting the bit for v-i to 1. This 1 bit breaks the string of 0 bits
between the owner of the record and v-i and any of its descendants, and thus prevents
Algorithm_Retrieve from seeing it. On the other hand, the algorithm inserts a copy of the origi-
nal record into each of the immediate child versions of v-i, with the child version as the owner.
The records thus inserted are visible to the new owner and all its descendant versions, trivially
conforming to the bitmap format that Algorithm_Retrieve requires.

Algorithm_Update is virtually identical to Algorithm_Delete, and arguments similar to those
given above can be used to show its correctness.

