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1. Introduction

The problem of Byzantine Agreement defined in [ 1] is as follows. There are N
processes any pair of which may communicate by messages. Any message sent is
received instantly and correctly by the recipient. It is given that exactly ¢ of the
processes are faulty and the rest, N-¢, are reliable. Each process is initially off or on.
The problem is to devise a scheme whereby all reliable processes agree eventually on a
common value, 0 or 1. Furthermore, the common value is 0(1) if all reliable processes
are initially off(on). Difficulty arises due to the nature of faulty processes: they may

provide conflicting information in a concerted manner to thwart agreement by reliable
processes.

We discuss an ingenious algorithm for this problem appearing in literature [ 2 ]-
This note is intended as a different, and hopefully simpler, exposition of this algorithm
and its proof. We believe that simplification is achieved by removing explicit message
communication from the algorithm description. It should be easy to see how our
scheme may be implemented using synchronous message communications. Our proof
uses the major ideas from [ 2 ] though the restructuring results in some simplification.

It is known that solutions for this problem exist only if NV > 3t 4 1. We assume
that N=3t+1 and ¢ > 0. Let low=1t+ 1 and high = 2t + 1; therefore high is the
number of reliable processes. Observe that every subset of low processes has at least

one reliable process and every subset of high processes has at least low reliable
processes.

2. Algorithm
We represent states of processes and their communication histories by a colored
directed graph. Every vertex corresponds to a distinct process and a vertex state is

off/on denoting the current state of the process. An edge (¢,7) is directed from process
¢ to 7, and has a color, black or white; we allow edges of the form (,7).

Initially, there are no edges in the graph and a vertex state is the corresponding
process state. The algorithm proceeds in rounds where during the first part of a round
processes note the states of all other processes and edges that are present in the graph.
Upon completion of these observations, processes recompute their states and may
add/color their own outgoing edges. Note that states and outgoing edges of faulty
processes may not be observed consistently by different reliable processes; this is the
Byzantine aspect of the problem. However, we have:

Axiom:: states and outgoing edges of reliable processes are observed exactly
by all processes.

We assume that some unspecified mechanism coordinates the observations and



computations such that all observations precede all computations in a round. Processes
cannot observe changes in the graph or process states during the computation phase of

a round. In particular, a process observes changes in its own state in the round follow-
ing the change.

Reliable processes use the following rules to add outgoing edges, color their out-
going edges and change their own states. In the following, p,q are reliable processes and
J is an arbitrary process. p,7 is the edge from p to 7, if it exists. Let tn(J) denote the
number of incoming edges to j, as observed by p during the round; white—out(p) is the
number of white outgoing edges of p.

We use the following actions with the given meanings in the algorithm.

o add black edge (p,j): this has no effect if edge (p,5) {of either color}
exists; otherwise a black edge (p,7) is created.

e Color (p,7) white: a white edge (p,7) exists, following this operation.

e p becomes on: p is on, following this operation.

Black Edge Rule::
p observed j is on or high > in(j) > low — add black edge (p,7)

White Edge Rule::
in(y) = high — color (p,j) white

State Change Rule::
{Let r be the round number}
white-out(p) > t+r/2 — p becomes on

Observation

1. No reliable process becomes off once it is on.

2. No edge is ever deleted by a reliable process. No white outgoing edge of a
reliable process ever becomes black.

3. A reliable process creates a black edge (p,7) only if 7 is observed on by some
reliable process, possibly p. edge (p,j) is white only if there are at least low
reliable processes with edges to 7 and hence these edges are observed in all
subsequent rounds by all reliable processes.



3. Proofs

We have not yet specified the conditions under which processes commit to dif-
ferent values. These conditions become apparent from the results proven below. In the
following p,q denote reliable processes and 7 an arbitrary process. We use "at round "
to mean upon completions of computations of round r and "in round " to mean prior
to computations of that round. "At round 0" will refer to initial conditions.

Lemma 1:

Edge (p,q) is white at round (r + 2) iff ¢ is on at round r.
Proof:

If g is on at round r, it is observed on in round (r + 1) by all reliable processes and
hence in(q) > high at (r+1). Then every reliable process, including p, has a white
edge to g at round (r+2). Conversely, if g is off at round r, it is off at all previous
rounds and it is observed off in round (r 4 1). Hence ¢n(q) < low at (r+ 1) and there-
fore no reliable process has a white edge to ¢ at (r + 2). O

We show in the following lemma that if any reliable process changes state then
every reliable process is on two rounds later; furthermore a state change is possible only
if at least /2 reliable processes are on two rounds earlier. Let np(r) denote the number
of reliable processes which are on at round r. We note that np(r) is monotone non-
decreasing in r.

Lemma 2:

For all r > 2:

[np(0) = np(r)] or [np(r + 2) = high and np(r—2) > (r—1)/2]
Proof:

Consider the smallest r, if any, for which np(0) £ np(r). If no such r exists, the
lemma holds. Otherwise, some reliable process p applies the state change rule at round
r. For p, white—out(p) > ¢+ r/2 in round r; hence p has white edges to at least r/2
reliable processes and, from lemma 1, all these are on at round (r—2), ie.
np(r—2) > r/2. Also np(r) > np(r—2) and hence np(r) > r/2 + 1.

Next we show that every reliable process is on at round (r +2). We only need to
prove this for reliable processes which are off at round r; let ¢ be one such process. We
first show that if (p,7) is white at round r then (g,5) is white at round (r+ 2): for (p,5)
to be white, in(j) > high in some round before or in round r, as observed by p; hence
at least low reliable processes have edges to j in round r; then every reliable process has
at least a black edge to 7 at (r+ 1) and white edge at (r+2). Also, edge (g,p) is white



at round (r + 2), from lemma 1. Also, from lemma 1, p has no white edge to ¢ at round
r. Therefore, white-out(q) at round (r42) > 1+ white-out(p) at round
r 2 t+(r+2)/2; hence ¢ is on at (r + 2).

Consider any round r/, 7! > 2. For r! < r, np(r') = np(0) and hence the lemma
holds.

For r' > r, np(r'+ 2) = high.

Forr'=r+1, np(r'—2) > np(r—2) > r/2=(r'—1)/2.
Forr'=r+2,or r'=r+3,np(r'—2) > np(r) = (r+2)/2 > (r'—1)/2.
For all larger values r/, np(r' — 2) = high > (r'— 1)/2.

Theorem:

Let R = 2t + 2.
1.np(0) = 0= np(R) = 0

2. np (0) = high = np (R) = high

3.np(R) < low or np(R) = high
Proof:

1. Suppose np(0)=0. Observe that np(1)=0. We prove that np(r) =0,
r 2 2, by induction on r. From inductive hypothesis, for r > 2,
np(r—2)=0 < (r—1)/2. Hence from lemma 2, np(r) = np(0) = 0.

2. Follows from the monotonicity of np.

3. Let np(0) > low. From lemma 1, every reliable process p is on at round 2
because white-out(p) > low=1+r/2, at r=2. Hence np(2) = high .
Therefore, assume that np (0) < low. If np (R) = np(0), then the result
follows. Hence, consider np(0) # np (R). From lemma 2,
np (R—2) > (R—1)/2 > (2t+1)/2. Hence np (R—2) > low. Therefore,
np (0) 5% np(R—2). From lemma 2, np (R) = high.

Commit Rule:: At round R + 2,

white—out(p) > high — commit to 1
white—out(p) < high — commit to O

Theorem:

All reliable processes commit to the same value. If they are initially off/on they
commit to O(1).



Proof:

From the theorem, np(R) < low or np(R)= high. If np(R) < low then, from
lemma 1, for any reliable process p, white—out(p) < high at round R. If np(R) = high
then, again from lemma 1, white—out(p) > high. Hence all reliable processes commit
to the same value. Other parts follow trivially from the theorem.

Observation

A decision to commit can be made at round R+ 1. If out(p) denotes the number
of outgoing edges of p at round R+ 1 then, out(p) > high = np (R) = high. Hence
p commits to 1 if out(p) > high and to O otherwise.

4. Discussion

Observations in a round can be implemented by message communications: p ob-
serves edge (¢,7) in a round only if ¢ sends a message to p informing p of the existence of
the edge. Note that colors of edges need not be communicated. Furthermore, since
edges are never deleted, only information about newly created edges need be sent.
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