MODALITIES FOR MODEL CHECKING:
BRANCHING TIME LOGIC STRIKES BACK

E. Allen Emerson and Chin-Laung Lei
Department of Computer Sciences
University of Texas at Austin

Austin, Texas 78712

TR-85-21 October 1985

MODALITIES
FOR MODEL CHECKING:
BRANCHING TIME LOGIC STRIKES BACK!

E. Allen EMERSON and Chin-Laung LEI

Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712

30 September 85 16:55

Abstract: We consider automatic verification of finite state concurrent programs. The global state
graph of such a program can be viewed as a finite (Kripke) structure, and a model checking algorithm can be
given for determining if a given structure is a model of a specification expressed in a propositional temporal
logic. In this paper, we present a unified approach for efficient model checking under a broad class of general-
ized fairness constraints in a branching time framework extending that of [CES83]. Our method applies to any
type of fairness expressed in a certain canonical form. Almost all “practical® types of fairness from the litera-
ture, including the fundamental notions of impartiality, weak fairness, and strong fairness, can be succinetly
written in our canonical form. Moreover, our branching time approach can easily be adapted to handle types
of fairness (such as fair reachability of a predicate) which cannot even be expressed in a linear temporal logic.
We go on to argue that branching time logic is always better than linear time logic for model checking. We
show that given any model checking algorithm for any system of linear time logic {in particular, for the usual
system of linear time logic) there is a model checking algorithm of the same order of complexity (in both the
structure and formula size) for the corresponding full branching time logic which trivially subsumes the linear
time logic in expressive power (in particular, for the system of full branching time logic CTL*). We also
consider an application of our work to the theory of finite automata on infinite strings.

1This work was supported in part by NSF Grant MCS8302878. Some of these results were presented at the
18th Annual Hawaii International Conference on Systems Sciences (under the title *Temporal Model Checking
under Generalized Fairness Constraints*, which won the Best Paper Award for the Software Track) and at the
12th Annual ACM Symposium on Principles of Programming Languages (under the title *Modalities for Model
Checking: Branching Time Strikes Back*).

1. Introduction

It is a point of continuing controversy in the concurrency community as to whether branching
time or linear time temporal logic is more appropriate for reasoning about concurrent programs (cf.
[LA80), [EH83], [PN85]). In linear time logic, temporal operators are provided for describing events
along a single future, although when a linear formula is used for program specification there is
usually an implicit universal quantification over all possible futures. Commonly used linear time
operators include Fp ("sometimes p"), Gp ("always p"), Xp("nexttime p"), and [p U g| (*p until g").
In contrast, in branching time logic the operators usually reflect the branching nature of time by al-
lowing explicit quantification over possible futures. The basic modalities of these logics are generally
of the form: either A ("for all futures") or E ("for some future") followed by a combination of the
usual linear time operators F, G, X, and U. One argument presented by the supporters of branching
time logic is that it offers the ability to reason about existential properties of concurrent programs
(e.g., potential for deadlock along some future) in addition to universal properties (e.g., inevitability
of service along all futures).

Another advantage cited for branching time logic over linear time logic concerns the complexity
of automatic verification for finite state concurrent programs. The global state graph of such a
program can be viewed as a finite (Kripke) structure, and a model checking algorithm can be given
for determining if a given structure is a model of a specification expressed in a propositional temporal
logic. Provided that the algorithm is efficient, this approach is potentially of wide applicability since
a large class of concurrent programming problems have finite state solutions, and the interesting
properties of many such systems can be specified in a propositional temporal logic. For example,
many network communication protocols (e.g., the Alternating Bit Protocol [BSW69]) can be modeled
at some level of abstraction by a finite state system.

For the branching time logic CTL (which has basic modalities of the form: A or E followed by
a single occurrence of F, G, X, or U), Clarke, Emerson, and Sistla [CES83] give an algorithm that
runs in time O(|M]-|p|) which is linear in both the size of the input structure M and the length of the
specification formula p; hence, this branching time approach is readily mechanizable. In contrast, the
model checking problem formulated for linear time logic is known ([SC85]) to be PSPACE-complete.

On the other hand, we are frequently interested only in correctness along fair computation se-
quences. Roughly speaking, a fairness condition asserts that an event (e.g., execution of a step of a

particular process) which is enabled wsufficiently often” will eventually be performed? Fairness has

20ur model of concurrency is the usual one where concurrent execution of a system of processes is modelled
as the nondeterministic interleaving of atomic steps of the individual processes.

been widely studied in the literature (see for example [PA80], (LASO], [LPS81], [AO82], [FK84]) be-
cause appropriate fairness assumptions are often crucial to establishing that a program meets a cer-
tain liveness property such as absence of starvation. Unfortunately, while fairness is readily handled
in linear temporal logic, it is known (cf. [LASO], [EH83]) that the branching time logic CTL used in
[CES83] does not permit reasoning under fairness assumptions. A partial remedy to this problem is
given in [CES83] by incorporating semantic restrictions on path quantification into the underlying
structure, but it does not handle, e.g., strong fairness.

In a recent paper, Lichtenstein and Pnueli [LP85] suggest that efficient - in practice - model
checking algorithms exist for linear time logic as well. By forming the cross product of the input
structure M with the tableau for testing satisfiability of the linear time formula p, they develop an
algorithm for model checking linear time specifications that rums in time O(|M]-exp(|p|)) which is
linear in the structure size but exponential in the formula length. They then claim that, in practice,
the specification 1s relatively small while the structure can be quite large. Thus, the argument goes, it
is the small polynomial complexity in the size of the structure which really matters. They conclude
that linear time logic is at least as good as branching time logic for model checking, and may be bet-
ter because of its superior expressiveness which, in particular, allows reasoning about types of fairness
not handled by [CES83].

In this paper, we present a model checking algorithm which permits efficient model checking in
a branching time framework under any one of a broad class of generalized fairness assumptions
(including, among others, strong fairness). In particular, we consider the Model Checking Problem
(FMCP) for Faur Computation Tree Logic (FCTL). An FCTL specification Py $,) consists of a
functional assertion pg and an underlying fairness assumption @ The functional assertion 150 is ex-
pressed in essentially CTL syntax with basic modalities of the form either A¢ ("for all fair paths"),
or Eg ("for some fair path ") followed by one of the linear time operators Fp (“sometimes p"), Gp
(valways p"), Xp ("nexttime p"), or [p U q] (*p holds until q becomes true"). All path quantifiers
are thus relativized to the underlying fairness assumptlon ?q specified by an arbitrary boolean com-
bination of the infinitary linear time temporal operators Fp ("infinitely often p' ') and Gp ("almost
everywhere p").

To develop our FMCP algorithm, we will first argue that FMCP can be reduced in time linear
in the length of the functional assertion Ipgl to the Fair State Problem (FSP): Starting from which
states does there exist some path along which & holds? Our reduction applies for any fairness
specification @ involving an arbitrary boolean combma,txon of the F G operators as above. We then

show that when &, is in the special canonical form V /\ (GpijVFqij)’ then FSP can be solved in
=] j=1

[

time O(|Ml~|¢>0]2) which is linear in the size of the input structure M and quadratic in the length of
the fairness specification @, While any ¢, can be translated into an equivalent 950’ in canonical
form, the translation can cause an exponential increase in length (resulting in an exponential time
solution to the original instance of FMCP). However, it turns out that almost all "practical" types
of fairness considered in the literature including literature including impartiality [LPS81], weak fair-
ness ([LA80]), strong fairness ([LA80]), fair reachability of predicates ([QS83]), state fairness ([PN83]),
as well as the technical notion of "limited looping" fairness (|[AB80]) can be directly specified using a
canonical 2y Hence, in practice the fairness specification & is in canonical form, and we can do
model checking for a corresponding FCTL specification (po,d>0) on structure M efficiently in time
O(}M}-|p01~ld5012), which is linear in the size of the input structure and functional assertion and
quadratic in the size of the fairness constraint. On the other hand, we are able to classify the com-
plexity of FSP and FMCP for an arbitrary @, they are NP-complete.

We believe that this work offers a convincing refutation to the (apparently) popular misconcep-
tion that fairness cannot be handled practically and efficiently in (a) branching time temporal logic
(cf. [LASO], [EHS83]). At least for the model checking problem, all the basic types of fairness
(impartiality, weak fairness, strong fairness) can be handled in branching temporal logic as readily as
in linear temporal logic. Moreover, we have presented a unified approach for handling a broad class
of general fairness constraints including more than just the three basic types of fairness above. Our
branching time approach can even be adapted to handle types of lairness (such as fair reachability of
a predicate) which cannot be handled at all in a linear temporal logic.

It is still true, however, that there are correctness properties not involving fairness which are
expressible in linear temporal logic, but not expressible in the FCTL formalism, so that one might
still think that linear time logic is preferable to branching time logic for some applications. Nonethe-
less, we can now argue that branching time logic is always better than linear time logic for model
checking. We show that given a model checking algorithm for a system of linear time logic (in par-
ticular, for the usual system of linear time logic over F, G, X, and U), there is a model checking algo-
rithm of the same order of complexity (in both the structure and formula size) for the corresponding
full branching time logic which trivially subsumes the linear time logic in expressive power (in par-
ticular, for the system of full branching time logic CTL* in which the basic modalities are of the
form: A or E followed by an unrestricted formula of linear time logic over F, G, X, and U). We
demonstrate that handling explicit path quantifiers and even nested path quantifiers costs
(essentially) nothing. Thus, there is no reason to restrict oneself to linear time logic. Use instead the

corresponding full branching time logic for the same cost.

We go on to show that the formalism of FCTL can be extended to a Generalized Fair Com-
putation Tree Logic (GFCTL). GFCTL is a branching time system which generalizes FCTL by al-
lowing each path quantifier to be relativized to its own (in general, distinct) fairness constraint &..
Its model checking problem is also efficiently decidable provided that each &, is in the canonical form.
Hence, reasoning under virtually any combination of different, practical fairness constraints is also
feasible.

Our results strongly suggest that the real issue involved for model checking is not whether to
use branching time or linear time logic, but simply: what are the basic modalities of my branching
time logic? Le., what linear time formulae can follow the path quantifiers? (Remark: In a basic
modality of a branching time logic, the linear time formula following the path quantifier is a "pure"
linear time formula involving no nested path quantifiers.) It turns out that the relationship between
the structural complexity of the basic modalities and the computational complexity of the assomated
model checking problem is a rather subtle one. ‘For example, the infinitary operators Fp and Gp
used in describing fairness properties, which are often thought of as causing all sorts of problems with
discontinuities and non-definability in first order arithmetic, ete. (cf. [ECS80], [HA84]), can actually
simplify the problem of model checking. These matters are discussed in greater detail in the conclu-
sion.

Finally, we consider an application of our algorithm for FSP to the theory of finite automata
on infinite strings (w-fa) ([RA70]) where acceptance is defined by a condition such as repeating a
designated set of states infinitely often. There has been a resurgence of interest lately in such
automata because of their intimate relationship to temporal logic. For example, in testing satis-
fiability of a formula pg of linear temporal logic a directed graph labelled with appropriate subfor-
mulae, known as a tableau, is constructed. This tableau may be viewed as defining an w-fa on infinite
strings over (sets of) atomic propositions which accepts an input string iff it defines a model of py.
The satisfiability problem for linear temporal logic is thus reduced to the emptiness problem for w-fa.
We will describe how the w-fa emptiness problem can be viewed as an instance of FSP. Moreover, for
all the common types of acceptance conditions, (e.g., Buchi acceptance, Rabin or Pairs acceptance,
etc.) the fairness condition &, for the corresponding instance of FSP can be succinectly expressed in
our canonical form, and the emptiness problem can therefore be solved in (small) polynomial time.

The remainder of the paper is organized as follows: The utilityVof the model checking approach
to verification is discussed in Section 2. Section 3 describes the syntax and semantics of our temporal
languages. Section 4 describes how to do efficient model checking in the branching time FCTL sys-

tem whenever the fairness constraint &, is in canonical form, and analyzes the complexity of the

general case where @, is arbitrary. In section 5 a variety of types of practical fairness are defined
and canonically specified, and an example application of FMCP to a concurrent programming
problem is given. Section 6 gives the reduction of the model checking problem for full branching
time logic to that for the corresponding linear time logic, while in section 7 we show how this reduc-
tion can be applied to extend the model checking algorithm for FCTL to GFCTL. Section 8
describes how one may apply the algorithm for FSP to testing nonemptiness of finite automata on

infinite strings. Finally, some concluding remarks are made in section 9.

2. Advantages of the Model Checking Approach to Verification
Numerous approaches to reasoning about correctness of concurrent programs have been

proposed in the literature. Most of these approaches can be partitioned into one of two categories:

1. Formal systems designed with mathematical elegance as the primary motivation. Unfor-
tunately, the designers of such systems usually pay little attention to pragmatic issues and the

resulting systems are often of little practical use in proving actual (or even toy) programs cor-
rect.

2. Systems (or methodologies) designed with practical utility as the primary motivation. Papers in
this category generally illustrate the proposed method by applying it to establish correctness for
a number of example programs in an effort to convince the reader of the usefulness of the ap-
proach. Unfortunately, such systems often lack the underlying mathematical framework neces-
sary to provide a clear-cut characterization of their range of applicability (i.e., to what class of
concurrent programs does the method apply). Moreover, in some of these systems even the un-
derlying specification language (or formalism) lacks a syntax and semantics that is mathemati-
cally well-defined. In such cases it is out of the question to consider formal justifications of the
methods’ adequacy and utility (e.g., soundness, deductive completeness, expressive complete-
ness, etc.).

We would argue that our model checking approach transcends this dichotomy, and enjoys many
of the best features of both categories. From a formal standpoint, the model checking approach ex-
hibits a certain elegance: the method is applicable to a well-defined class of concurrent programs, the
finite state programs. The specification language, (an appropriately chosen, particular system of)
propositional temporal logic has a precise syntax and rigorously well-defined semantics. Over finite
state concurrent programs, our model checking algorithm trivially ensures that the proof method is
sound and complete.

Empirical evidence demonstrates that model checking also has considerable potential as a prac-
tical verification tool. In particular, the model checking method as described in [CES83] has actually
been implemented. The implemented EMC (Extended Model Checker) system described there has
been used to mechanically verify the correctness of, e.g., the mutual exclusion example program

previously proved correct by hand in [OL82]. It has also been successfully applied to the verification

of VLSI circuits. In [CM83] it is described how the EMC system was used to detect an error in a
circuit from Mead and Conway’s VLSI text ([MC80]) and also to verify that an amended circuit was
correct. Finally, we point out that the large size of the state graph encountered in certain applica-
tions need not present an insurmountable obstacle. For example, methods based on graph rea-
chability analysis similar to our model checking algorithm have been successfully used to mechani-
cally wverify network protocols with large state spaces for European telecommunications companies
(|0J84]; cf. [AES3]). We believe that our model checking algorithm, because of its low complexity,

may also be suitable for similar applications.

3. Syntax and Semantics of Temporal Logics
We inductively define a class of state formulae (true of false of states) which intuitively cor-
respond to branching time logic and a class of path formulae (true or false of paths) which intuitively

correspond to linear time logic:

S1. Any atomic proposition P is a state formula.

S2. If p,q are state formulae then so are p A g, —p.
S3. If p is a path formula then Ep is a state formula.
P1. Any state formula p is a path formula.

P2. If p,q are path formulae then so are p A q, —p.
P3. If p,q are path formulae then so are Xp, (p U q).

Other connectives can be introduced as abbreviations in the usual way: p V q for =(=p A —q), p = ¢q
for =-p V q, p = q for (p = q) A (q = p), Ap for =E-p, Fp for true U p, Gp for -F-p, %Op for GFp,
and ap for -w%o—wp.

The length of a formula p, denoted |p|, is defined inductively as follows:

|P| = 0 for atomic proposition P

[p Aql =1+ |p| + |q| for state formulae (or path formulae) p,q
|-p| = 1 + |p| for state formula (or path formula) p

|Ep| = 1 + |p| for path formula p

|Xp| = 1 + |p| for path formula p

Ip Ugq| =1+ |p| + |q| for path formulae p,q

Thus, |p| corresponds to the number of internal nodes in the "syntax tree" for p. Note that, if ||p||
denotes the number of symbols in p considered as a string in the obvious way, we have that |p| =
Allpl)

The intuitive meanings of the formulae are as follows: p A g indicates the conjunction of p and
g, p V q indicates the disjunction of p with q, —p indicates the negation of p, p = q means p implies
q, p = q means p Is equivalent to q, Ep means for some fullpath p holds, Ap means for all fullpaths

p holds, Xp indicates nexttime p, p U q means q eventually holds and p holds continuously until

X0
then, Fp means p holds at some future time, Gp means that p always holds, Fp means that p is true
o0
infinitely often, and Gp means that p is true almost everywhere, i.e., at all but a finite number of
times.

We formally define the semantics of a formula with respect to a structure M = (S, R, L) where

S is a nonempty set of states,

R is a nonempty, total binary relation on S, and

L is a labelling which assigns to each state a set

of atomic propositions true in the state

The size of a structure M=(S, R, L), written [M|, is defined to be |S| + |R|, i.e., the sum of the
number of states in S and the number of transitions in R. A fullpath (81,82,53,..‘) is an infinite se-
quence of states such that (si’si—H) € R for all i. We write M;s ¥ p (M,x k p) to mean that state for-
mula p (path formula p) is true in structure M at state s (of path x, respectively). When M is under-
stood, we write simply s k¥ p (x k¥ p). We define k inductively using the convention that x =

i -
(50,51,52,‘..) denotes a path and x' denotes the suffix path (Si’si+1’si+2"")

S1.s e P iff P € L(s) for any atomic proposition P
S2.sepAqiff sepandsegq

s £ —p iff not (s k p)
S3. s e Ep iff for some fullpath x starting at's, x e p
Pl.x e p iff SoFP for any state formula p
P2.xepAqiff xepandxep

x k =p iff not (x k p)
P3.xo=Xpiffx1hp)

x k (p U q) iff for some i > 0, x' k q and

for all j > 0 [j < iimplies) ¥ p]

We say that state formula p is valid, and write k p, if for every structure M and every state s in
M, M,s £ p. We say that state formula p is satisfrable if for some structure M and some state s in M,
M,s k p. In this case we also say that M defines a model of p. We define validity and satisfiability
similarly for path (i.e., linear time) formulae.

The set of path formulae generated by rules S1,P1,P2, and P3 (the set of "pure" path formulae
which contain no path quantifiers A or E) forms the usual language of linear time logic. The set of
state formulae generated by all the above rules forms the language CTL*‘ The language CTL is the
subset of CTL* where only a single linear time operator (F,G,X, or U) can follow a path quantifier (A
or E). (cf. [EH82], [EH83])

We next define FCTL (Fair CTL). An FCTL specification (p,, @) consists of a functional

assertion py, which is a state formula, and an underlying fairness assumption &, which is a pure

path formula. The functional assertion pg 1s expressed in essentially CTL syntax with basic
modalities of the form either Ag ("for all fair paths") or Eq) ("for some fair path") followed by one
of the linear time operators F, G, X, or U. We subscript the path quantifiers with the symbol & to
emphasize that they range over paths meeting the fairness constraint &, and to syntactically distin-
guish FCTL from CTL. A fairness constraint &, is a boolean combination of the infinitary linear
time operators ?p (*infinitely often p") and ép ("almost always p"), applied to propositional ar-
gumen'ts. We can then view a subformula such as A FP of functional assertion p, as an abbrevia-
tion for the CTL* formula A, = Fp|. Similarly, E4GP abbreviates E[¢, A GP|. Note that all
path quantifiers in the functional assertion are relativized to the same (single) underlying faur-
ness constraint ¥, If we were to expand the abbreviations for Eq) and Ag in a functional assertion,
the resulting CTL* formula might be rather unwieldy due to the need to repeatedly write down mul-
tiple copies of the actual fairness formula & Thus, when we mention the length of p,, we refer to
the unexpanded formula.

Formally, we define the class of FCTL functional assertions as follows:

FA1l. Any atomic proposition P is a functional assertion.
FA2. If p, q are functional assertions then so are —p, and (p A q).
FA3.If p, q are functional assertions then so are E4Xp, Ed)[p U ql, and Ed){-«(p U q)].

A propositional formula is one formed by rules FA1, FA2 above. A fairness constraint is

then formed by the following rules:

oo
FC1. If p, q are propositional formulae then Fp is a fairness constraint.
FC2. If p, q are fairness constraints then so are —p, and (p A q).

We can then write A Xp for —E zX-p, EgFp for Egltrue U p), AgGp for "EgF-p, Agp Ud
for -xE(p[ﬂ(p U q)}, Aglp for Agltrue U p), and E4Gp for —AgF-p.

We now define the semantics of an FCTL specification (pg, <150)4 The fairness constraint & is a
CTL* path formula, in a restricted syntax specialized to describing fairness properties, so that M,x ¥
& is defined by the rules S1,P1,P2P3. The functional assertion p is an abbreviation for a CTL*

0
state formula pOt obtained by expanding the Eq&--- abbreviations as E{@O A ...]. Technically, the

]

translation (i.e., expansion) t is defined as follows:

P! — P for any atomic proposition P

(p A q)t — pt‘ A qt for functional assertions p, g

(--'p)t — —p" for functional assertion p

(};«jqb(g/(p,q)))t = E{@O A W(pt,qt)] where p,q are sub-functional assertions and ¥(p,q) denotes
one of Xp, (p Uq), or ~(p U q)

We write M;s b=¢ Po for Mjs e pO which means that functional assertion pg is true at state s of
structure M under falrness assumption . We say that fullpath x is a fair path in structure M un-
der fairness assumption ¥ ifM, x k&, holds. A state s is a fair state iff starting at s there is some
fair path. A directed cycle (SO’SI"“’Sk’SO) in structure M is a fair cycle if the fullpath
(s Sg:Spr-+ S0 ST SkeS0S1 sk,...) obtained by unwinding the cycle is a fair path. A substructure C
of M is called a fair component if C is a total, strongly connected component of M which contains
some fair path.

We can also define a Generalized Fair Computation Tree Logic (GFCTL) where each path
quantifier A or E is associated with a (possibly) different fairness specification &,. Moreover, the ar-
guments to the ?‘) and 0(3 operators can be generalized to be arbitrary GFCTL subformulae.

Formally, we define GFCTL as the set of state formulae generated by rules S1-S3 above
together with the set of path formulae generated by rules GF1-2, GP1 below:

GF1. If p is a state formula then Fp is a fairness formula
GF2.1f ¢,9, are fairness formulae then so are &; A P, and =%,

GP1.If &, is a fairness formula and p,q are state formula then each of (¢, A Xp], [&; A (p U a)l,
[@ A —(p U q)] is a path formula.

We can then write A[$, = Xp] for =E[#; A X-p], Alp, = (p U q)] for =E{¢; A =(p U q)), ete.

Since each GFCTL formula is also a CTL* formula, GFCTL inherits its semantics directly
from the rules for CTL*. As we shall see in Section 7, the model checking algorithm for FCTL can
be extended to GFCTL.

4. Model Checking for Fair Computation Tree Logic

The Model Checking Problem for FCTL (FMCP) is: Given a structure M=(S, R, L}, and an
FCTL specification (p, 20), determine for each state s€S whether M, s v=¢0p0. The Fair State
Problem (FSP) is: Given a structure M=(S, R, L), and a fairness constraint ¢, determine for each
state s€S whether there is a fullpath x in M starting at s such that M, xE <I>0.
4.1. Reduction of FMCP to FSP. Since the FSP condition is equivalent to M, s L2 Eq)Xtrue.
FSP may be viewed as a special case of FMCP. However, we can generalize a method in |CES83] to
reduce FMCP to FSP. The reduction yields an algorithm for FMCP that runs in time linear in the
size of the input functional assertion and the time to solve FSP. The reductlon exploits

00

Observation 4.1. Any fairness constraint &, built up from F or G is "oblivious" to the ad-

dition or deletion of finite prefixes, i.e. if x is a fullpath and y 1s a fullpath obtained by appending a

finite prefix to x or by deleting a finite prefix of x, then M, x k & ffM, v e ?y o
We thus get the following:
Proposition 4.2. Let M be a structure, <I>0 a fairness constraint, and pt denote the expansion

of functional assertion p by substituting E[®; A ...] for Eg4... as In the definition of FCTL. Then we

have the following equivalences:

(HM ;O "(I)o E Xp iff Msg ¥ EX(E®, A pt) iff 3s €8 (s9:S;) € R and M;s; .‘4)0 (p A EgXtrue)
(2) M,s,, o, Eglp Uq iff M,s = E[p* U (q" A Egy)]
iff 3k > 0 3 a finite path (s,...,s i) in M such that
M,s, I=¢ (a A E¢Xtrue) and Vi, if 0 < i < k then Ms. k¢ p
(3) Mis kg Egl~(p U q)] iff M,s '=¢ (Eg(~q U (=p A =) V EgG(—q)))

Proof. See Appendix. O

The reduction algorithm, AFMCP, is shown in Figure 1. The algorithm operates in stages, do-
ing stage 1, stage 2,... etc. In stage i, it computes the truth value at all states in M for subformulae
of length i using the truth values of shorter subformulae which which were computed in previous
stages. We assume that AFMCP calls AFSP which is an algorithm for FSP that runs in time
T,(M, %,).

Proposition 4.3. Algorithm AFMCP correctly solves FMCP by correctly labeling each state s
of the input structure M with the set of subformulae of pg true at s, and runs in time
Ollpg) mex(M] T, (M)

proof. To establish correctness, we argue by induction on i that by the end of stage i,

(*) VI € SF(py) Vse Sif If| < ithen (f € L(s) iff M,s t=¢ f).

The basis case i = 0 holds because the formulae of length 0 are the atomic propositions which
are already correctly labelled by the definition of a structure. We assume that (*) holds for all j < 1,
and argue that (*) holds for i as well. The argument proceeds in cases based on the structure of f.

For f = —p, by induction hypothesis we know that for each state s, L(s) contains p iff p is true
at s; hence, we add —p iff p is absent. Similarly, for f = p A q, we add p A q to the label exactly
when p and q are already present.

For [= EzXp, we add EsXp to L(s) iff there is an R-successor t of s with EgXtrue,p € L(t) as
required by equivalence (1) of Proposition 4.2 above.

For f = E¢,(p U q) we use equivalence (2) of Proposition 4.2. We first compute in EU the set of
all states already labelled with g and Eq)Xtrue. Each of these states satisfies g, by induction
hypothesis, and is the start state of a fair path. Each obviously satisfies Ed,(p U q) which is added to

10

the state’s label. We then use the while loop to compute the states to which the E¢(p U q) label
should be propagated. In general, EU = the set of states already labelled with E¢(p U q) for which
we have not yet propagated E¢(p U q) to its predecessors. We remove a state t from EU, and for
each R-predecessor s of t such that p € label(s), and E4(p U q) £ L(s) already, we add E4(p U q) to
L(s) and s to EU. Plainly, each state thus labelled with E4(p U q) satisfies Eg(p U q).

Conversely, if s, satisfies Egp U q) then there is a fullpath (50,31,52,...) and a least k > 0 such
that for each j, 0 < j < k, p holds of s; and q,E¢Xi(true) hold at s.. Thus s, will be put in EU
initially and labelled with E¢(p U q), and if k > 0, each of Sp.150 will be added to EU and
labelled with E(p(p U q) subsequently by the while loop.

For f = Eg[=(p U q)], the algorithm exploits equivalence (3) above: Egl=(p U q)] = Egl-q U
(=p A —q)] V Eq)(}(—iq). By induction hypothesis, the states are already labelled appropriately with p
and g. This labelling is extended to —p, =q, and =p A =q. Then we check for E¢[--q U (—=p A —q)!
using statement 3.5. To check for EzG(—q), we let M’ be the substructure of M obtained by deleting
all states where q holds . Then E(pG(-—wq) holds at a state s iff there is a finite path from s to a fair
state t in M’. Detection of fair states is done by the algorithm AFSP.

We now analyze the complexity of AFMCP. Step 1 takes time T ,(M,®,) while step 2 takes
time O(|M|). Now, step 3 is a for loop which is executed |SF(pg)| = O(|py|) times. Its body is a case
statement. It is easy to see that cases 3.1-3.4 use time O(|M]). Case 3.5 for { = Eg[p U q] also re-
quire time O(JM|). To see this, first observe that to initialize EU requires time O(|S[). The while loop
which propagates E¢[p U q] can be executed at most |S| times since a given state t can be removed
from EU at most once. The time to process t exclusive of the time to examine all of its R-
predecessors s is constant. Since each arc (s,t) is examined only once, the total time spent examining
predecessors s for all t is O(|R|), and the total time spent in the while loop is O(|S]) + O(IR[) =
O([M]). Finally, in case 3.6 for { = Ed)[-w(p U q)], checking for E¢[-ﬂq U (=p A —q)] requires time
O(IM|). To check for E;G—q, the call to AFSP requires time T,(M,8) < T,(M,8,). The total
time for case 3.6 is therefore O(|M|)+T,(M,®;), and the time for the case statement is
O(max(|M|, T ,(M,®,)). Thus step 3 requires time O(|pgl max(|M|, T s (M,#,)), as does the entire algo-
rithm. o
4.2. Efficient Algorithm for Fair State Problem. We will now develop an efficient algorithm
for FSP when & is in the (restricted) canonical form 450:_5‘1\ (%opi \Y Eqi). As shown in the next

j=
subsection this will actually yield an efficient algorithm for FSP (and hence FMCP) when $ is in the
(full) canonical form I\l/ I/l\1 (%opij\/éqij).

1=1 j=1
The first step is detection of fair components. Given a total, strongly connected structure

11

k o I~
C=(S, R, L), where S is finite, and a fairness constraint ;= A (Fp, vV Gq;), we check if C is fair
=1

w.rt. @, as follows: if there is a fullpath in C satisfying all the %‘opi then C is fair; otherwise, there is
some p; which is never true at any state in C. In this case C is fair iff the substructure obtained from

C by deleting all states which do not satisfy g contains a component that is fair w.r.t the fair-
ness cgnstraint resulting from deleting the jth conjunct of 2y The algorithm AFC described in
Figure 2 is a recursive implementation of this idea. (Note: The strongly connected components of a
directed graph can be found in time linear in the size (number of nodes + number of arcs) of the
graph. See [TA72].)

Proposition 4.4. Given a strongly connected structure C=(S, R, L) where S is finite, and a

k o o
fairness constraint ¢,= A (Fp; V Gq;), the algorithm AFC decides whether C is a fair component
1==1

w.r.t. @y in time O(|C|-|oy|%).

proof. We argue by induction on the number of the conjuncts k in 24 that C is a fair com-
ponent w. r. t. ¢, iff the recursive function AFC(C, @0) returns true.

Basis: k=0, Py=true, and the program AFC returns true immediately. Hence the hypothesis
holds. (Note that any total, strongly connected component is fair w.r.t. true.)

Induction step: We assume the induction hypothesis for k<'n, and prove 1t for k==n as follows:

[Only if part]: If AFC returns true, then it must do so either at statement (6) or statement (8).

Case 1: AFC returns true at statement (6). By induction hypothesis, at least one of the total,
strongly connected components in C’ is fair w.r.t.oosbo’, call it D. Since D is contained in C’ and every
state of C’ satisfies q;, every path in D satisfies qu. Hence D is also a fair component w.r.t. to Py
Hence C itself is a fair component w.r.t. to &..

Case 2: AFC returns true at statement (8). In this case, some state in C satisfies p, Vi€[1,n].
Hence any cycle in C which includes all states of C defines a fair path w.r.t. ¢, (because C is
strongly connected, there exists at least one such cycle). Let x be one such cycle; it’s obvious that M,
X kP Hence C is a fair component.

If part]: Assume that C is a fair component, we prove that AFC will return true either at
statement (6) or at statement (8). (The following argument is essentially the reverse of the previous
proof.)

Case 1: Vi€[L,n](3s€S(C, s k4 pj)). In this case the condition of statement (5) is always false.
Hence the program will terminate at statement (8).

Case 2: 3Jj€[1,n](Vs€S(not C, s kqbopj)). Let i be the smallest integer such that Vs€S{C, s »:450
—'pi). Since C is fair, C contains some fair cycle x w.r.t. &, Every state on x must satisfy q;- Hence
x must be included in some total, strongly connected component D of C’. By induction hypothesis,
AFC(D, ¢,’) will return true, and so will AFC(C, 2,).

12

To analyze the complexity, let T(m,n k) denote the complexity of AFC where m=|C]|, n:{qBO[)
and k= the number of of conjuncts of &,. Let X—-—-—{Dll, Dl} be the set of total, strongly con-
nected components of C. If we let d, denote |D,|, then ii?igl(}’lﬁm. Clearly, T(m,n,0)=0(1) since
the program AFC returns true immediately. Note that for any recursive call each statement in AFC
can be executed at most k times. Furthermore, the compound statement beginning at (5) can be ex-
ecuted’ at most once (because it always returns control to the caller). Hence we have the following

recurrence relation:

k 1
Tmak) < 2 O(mlp)) + £ T(d,[og1k1)
i=1 =1
< O(m-n) + T(m,n k-1)

< O(mn) + O(m-n) + T(m,n k-2)

< O(mn) 4+ O(mn) + ... + O(m-n) [k times]

< O(m-n-k)

Since k is O(n) we get that T(m,n k) = O(m-n2) a]

Proposition 4.5. The program AFSP(M, 450) of Figure 3 is an algorithm for FSP of time com-
plexity O(|M]-|#,/%)-

Proof. The program initially computes the fair (w.r.t. ¢O) components C of the input structure
M. By definition of fair component, each state t in such a C satisfies Equtrue and is added to S’
The program then determines which states s can reach a state t already satislying EzXtrue. Each of
these states s also satisfies E¢Xtrue and is added to S’. Thus every state placed in S’ satisfies
EQXtrue. Conversely, if state s satisfies EqbXtrue there exists some infinite fullpath x =
(SO"“’Sk’Sk+1"") such that every state s, i > k, appears infinitely often along x. Each of these
states s, lie in the same total strongly connected component of M which will be identified as a fair
component. Thus each 5; will be added to S’. Since, s; can reach s, the while loop will add sy to S
as well. Thus, the program returns exactly the set of states S’ that satisfy Eq)Xtrue.

The complexity bound follows from the complexity analysis of algorithm AFC. To see this, as-
sume that M=(S, R, L) contains I total, strongly connected components C;, Co, ... C,. Then each

step of the for-loop requires time]AFC(Ci,qu)HO(]Ci}) which is equal to O(ICil~|d>0}2). Hence the for-

13

loop requires time O(}M]~]§b012), The while loop requires only O(|M|) time, so the whole algorithm
takes only O(IMH¢0|2) time. .
4.3. The Full Canonical Form. Using the equivalence E(p V q) = Ep V Eq, we see that an ef-

ficient algorithm for FSP can also be given when the fairness specification is in the full canonical

o] oo
form, &, = V1 /\ (Gp \Y; Fq) Since E¢, = \/ E/\ (Gp-~ \Y; Fq..), to see if a state is fair
1= =1 j=1
w.r.t. &, it sufflces to check if it is fair w.r.t. one of the disjuncts of & We have thus established
n,
Theorem 4.8. FMCP for input specification (p,, ¢) with ¢, = \/ (Gp \/Fq) and for
AN

input structure M=(S, R, L), can be solved in time O({pol~}Ml-!¢O{).
Proof. By the preceding remark AFSP can be used to solve FSP for ¢, in full canonical form
in time T, = O([M|[8,/?). Then AFMCP solves FMCP in time O(lpy|-max(|M|T,)) =
2
O(IpglIMI-@|%)- o

Note that any arbitrary ¢, can be placed in canonical form by first putting it in Disjunctive

Normal Form (which can cause an exponential blowup) and then "paddmg" with Ffalse or Gfalse

n
as needed (which causes only a linear blowup): (/\ Fp A /\ Gq ;) Which is in DNF, i
1 =1
L. . [e o] o0 n. o©
changed, exploiting the equivalence Gp” A Gp" = G(p’ A p"), into V (/\1 Fp A Gq "), where
i=1 J“"l

n e8]
/\ qk This is padded to get V ((Fp \Y; Gfalse) A (F false v Gq.’)). However, many
=1 j==1
"practlcal" fairness specifications, as in the next section, can be massaged into canonical form with

1

only a linear blowup.
4.4. Complexity of The General Case. We show, in this subsection, that FSP (and hence
also FMCP) is NP-complete for general fairness specification Py

Theorem 4.7. FSP is NP-complete.

Proof. [NP-hardness:] We will reduce 3-SAT to FSP, with fairness constraint of the form
I/l\ (Eﬁp. V °(§—aq.). Given a formula g in 3-CNF with n variables and m factors, we show how to
1c_;nlstmct in polynomial time, a structure M=(S, R, L) with a designated state s€S, and a fairness
constraint & such that there is a path z in M starting from s and M, z ¥ & iff g1s S&tlelabl

Let x;, Xg, - X, and C;, C,, . . €, be the variables and factors of g (ie. g= /\10 .), where
Cizlil \Y% li‘z Vg for 1<i<m, and lij-—-xk or —x, for some ke€[1,n]. Take AP= {pl, Py, - Py 9

g - q,} as the underlying set of atomic propositions. Construct a structure M=(S, R, L) as shown

in Figure 4. Formally, we let
=(s,t} U {vij: 1<i<m, 1<j<m}
R—{(s,v,;) 1<i<3)

14

U {(Vitl, k) 1<i<m-1 and 1<}, k<3}
Ui{lvy t)~ 1<5<33 U (b 8);
) {pk} if lijzxk
”’{qk} if lij———-'ﬂxk
Ls)=L(t)= =
Let = /\ 1(G—vp \Y, G-wq)
It is quite clear lthat the above construction can be done in polynomial time. We claim that g is satis-
fiable iff there is some path z in M starting from s such that M, z ¥ &, Proof of the claim is given in
the appendix.
[Membership]: It has already been shown in [SC85] that the model checking problem for linear
time temporal logic with F, and G operators can be solved in NP time, Hence FSP is in NP. 0
Remark: In [SC85] it was shown that, in effect, FSP for &, any arbitrary linear time formula
over F, G is NP-complete. For FSP with %4 of the type we construct, membership in NP follows
since our language of fairness constra,mts may be viewed as a sublanguage of linear time logic by the
equivalences Fp = GFp and Gp FGp. But NP-hardness for &, of our type does not follow from
the proof in [SC85]. That proof involved a different reduction to a formula Fp A ... A Fp . Because
Fp is not expressible in our ¢, language, such an argument cannot be applied. Since our ¢, language
has more restricted syntax, lts decision problem might be easier. Our NP-hardness argument shows

that this is not the case.

Corollary 4.8. FMCP is NP-complete.
Proof. Since FSP is a special case of FMCP, NP-hardness follows directly from Theorem 4.7,

and NP-membership follows from Proposition 4.3 and Theorem 4.7. O

5. Applications
5.1. Fairness Notions. We can succinctly express the following fairness notions in our canonical
form (using a liberal interpretation of the meanings of atomic propositions):

1. Impartiality ([LPS81]): An infinite computation sequence is impartial iff every process is ex-
ecuted infinitely often during the computation. This notion can be expressed as (Fexecuted)
where ezecutedi is a proposition which asserts that process 1 is being executed. 1-1

2. Weak Fairness ([LA8O]) (also known as justice [LPS81]): An infinite computation sequence
is weakly fair iff every process enabled almost everywhere is executed infinitely often. The following
FCTL formulae express weak fairness: /\ (Genabled = Fezecuted) = I/l\ (F(—»enabled1 V
executed,)) = =

3. Strong Fairness (JLA8O]) (called simply fairness in [LPS81]): An infinite computation se-

15

quence is strongly fair iff every process enabled infinitely often is executed infinitely often. This no-
tionnof fgrness can be ;xpressed using the following FCTL formulae: 2_1 (%‘oenabled.l = ?e:recutedi)
= A (Genabled; V Fexecuted,)

l=411. Generalized Fairness ([FK84]): Note that we can replace the propositions executed, and
enabled‘. by any ordinary propositions so that we can reason not only about, say, strong fairness
w.r.t. process enabling and execution but also strong fairness w.r.t. the occurrence of any proposi-
tional properties. This is the idea behind generalized fairness. Let ¥ = ((P}, Q,), Py,Q5) -
(Pk,Qk)) be a finite list of pairs of propositions (where we think of each proposition as representing
an arbitrary state or transition property). Then we can express that a computation is
u;zconditigonally F-fair by ikgl Ioi‘oQi, weakly F-fair by iil (EPi = %oQi), and strongly #fair by izl
(FPi = FQi).

In the sequel, let M=(S,R)L) be a structure, s a state in S with successors t t_, and

P b
x=(so,sl,52,...) be a full computation path in M.

5. State Fairness ([PN83]) (also called fair choice from states [QS82]): We say that an infinite
computation x is state fair for state s provided that if s appears infinitely often along x, then every
transition (s,t) in M out of s also appears infinitely often along x. We say that x is state fair iff it is
state fair for all s in M. Using a suggestive interpretation of atomic propositions, we can express state
fairness in canonical form. Considering the structure M as finite state concurrent system, an arc (s,t)
along a computation x in M may be viewed as a computation step which takes the system from state
s to state t. Let at(s) denote that the system is at state s, and in(s,t) denote that the system is per-
forming a transition from state s to state t. Thus we can express state-fairness for s in M as
As yer(Fatls) = Fin(s,t)).

6. "Limited Looping” Fairness ([AB80]): We say that fullpath x is limited looping fair for
state s provided that if s occurs infinitely often along x then each state t accessible from s in M also
occurs infinitely often along x. We say that x is ltmauted looping farr iff x is limited looping fair for
all states s in M. Let r(s) denote the set of all states t reachable from s in M. Then a computation is
gmited looping fair for s iff /\ter(s)(%‘oat(s) = ?at(t)) holds along it. Similarly, /\(s)t)eR(;Sat(s) =
Fat(t))) means limited looping fair.

7. Fair reachability of predicate P ([QS82]): We say that a computation x is fair w.r.t rea-
chability of predicate P provided that if there are infinitely many states s occurring along x from

which a state satisfying proposition P is reachable, then there are infinitely many states t along x

16

which themselves satisfy P. This can be formulated as FEFP = %OP.3

It is worth pointing out that, despite the seeming complexity of the state fairness and limited
looping fairness specifications, they exhibit several nice properties which simplify our model checking
algorithm. In fact, we do not even have to explicitly express these fairness constraints, and can still
do model checking correctly and efficiently.

I;roposition 5.1. For any finite structure M==(S,R,L), and for all states s in S, there is a state
fair (limited looping fair) path starting from s.

Proof. From each state s there is a fullpath ending in a terminal strongly connected com-
ponent with all the arcs (states, resp.) of the strongly connected component appearing infinitely often
on the path. O

Due to proposition 5.1, FSP under the above two fairness notions becomes trivial. Furthermore,
the model checking procedure for formulae of the form AqbXp, E¢Xp, or Egb[pUq} reduce to exactly
the same as the corresponding CTL formulae. To see how to do model checking for A¢[pUq}, recall
that A 5[pUq] = —E4;G(=q) V -uE¢{(-\q)U(—rp/\~wq)}. Hence we only have to describe how to check
formulae of the form Equr. The key idea is that every state fair (limited looping fair) fullpath must
end in a terminal strongly connected component (of the structure in question), and every state in the
terminal component must occur infinitely often on the path. Therefore, a state s satisfies E¢Gr iff
there is a finite path starting from s leading to a terminal strongly connected component such that
all states involved satisfy proposition r. We thus have

Theorem 5.2. FMCP for input functional assertion p, with the fairness constraint &, cor-

responding to state fairness (or limited looping fairness) and input structure M, can be solved in time

O(lpg - IMJ)- o

We should also point out that our method can be used to perform model checking for the
probabilistic branching temporal logic PTLf of [HS84] interpreted over finite Markov chains. The
syntax of PTL; 1s very similar to FCTL but an assertion such as Aq)Fp means intuitively that p will
eventually hold with probability one. We can define a simple translation from PTLf into FCTL such
that a PTL, formula holds in a finite Markov chain iff the corresponding FCTL formula holds in the

3Here EFP is a formula of ordinary CTL. Technically speaking, it is not a propositional formula, but it is
straightforward to extend our method to allow it as a "primitive argument® in fairness specifications; simply
compute all states from which P is reachable and label them appropriately with EFP or —EFP, before apply-
ing the algorithm for FSP. Alternatively, this fairness specification can be directly expressed as a fairness for-
mula of GFCTL. See section 7.

17

chain viewed as a structure, provided that the underlying fairness assumption is state fairness.

Remark: There was a technical fine point glossed over in our rendering of the fairness

properties above. Whereas the enabling condition for performing a step of process 1 1s properly viewed
as a predicate on states (i.e. states), the actual execution of the step is more naturally modeled as a
transition (i.e. traversal of an arc). To allow a precise differentiation between execution of transition
actions and enabling of state conditions, we can extend the semantics of FCTL so that a structure
M=(S,A1,A2,...,AP,L) where each A, CSXS represents (the atomic actions of) process i, and where we
think of each each arc (SI’SQ)EA:AIU“'UAp as being labeled with the set {i: (s;,8,)€A,} of processes
which can cause a transition from state s; to state s,. We can now extend the fairness specifications
to allow atomic arc assertions: ezecuted; hold at (sy89) Uf (51,:50)€A;. The fairness specifications
such as %‘oenablediﬁ$executedi can be given a rigorous definition. It is straightforward to formalize
this approach and to extend our efficient model checking algorithm to the extended semantics, but
the details are tedious. Alternatively, we can encode the extended semantics with arc labels into the
original semantic framework of only having state labels through "duplication" of states as is done in
[PN77).
5.2. Example: Mutual Exclusion Problem. We illustrate our efficient model checking algorithm
by considering a solution to the mutual exclusion problem for two processes Pl and P2. In the solu-
tion each process is always in exactly one of the three code regions: Ni’ the Noncritical region, Ti’
the Trying region, and Ci’ the Critical region. A global state transition graph is given in Figure 5
(a). Note that we only record transitions between different regions of code; internal moves within the
same region are not considered.

To establish absence of starvation, we must show that Ti = AquCi for each process i. Note
that this solution is not starvation {ree under an unfair scheduler, nor is it starvation free under weak
fairness. For example, the infinite execution sequence X = (80,51,84,87,81,54,57...) is a weakly fair path
but along this path process 1 never enters its critical region even though it is almost always in its
trying region. However, we will show that the solution is indeed starvation free under the strong
fairness assumption ¢, = (?enabledl = %}efcecutedl) A (%OcnabledQ = ?emecutedz). Without loss of
generality, we only consider the starvation free property for process 1: pozAQG(-ﬁTIVA@FCI). The
states of the global transition graph will be labeled with subformulae of P during execution of model
checking algorithm. On termination every state will be labeled with -ﬂTlvA@FCl, as shown in
Figure 5 (b). Thus we can conclude that s, hd)opo. It follows that process 1 cannot be prevented from

entering its critical region once it has entered its trying region.

18

6. Model Checking for Full Branching Time Logic

The Branching Time Logic Model Checking Problem (BMCP) formulated for CTL* is: Given
a finite structure M = (S,R,L) and a CTL* formula p, determine for each state s in S whether M;s ¥ p
and, if so, label s with p. The Model Checking Problem for linear time logic (LMCP) can be
similarly formulated as follows (cf. [SC85]): We are given a finite structure M=(S, R, L) and a for-
mula p of ordinary linear temporal logic over F, G, X, and U. Formally, p is a path formula
generated by rules S1,P1,P2,P3 in the previous section (so that it contains no path quantifiers A or
E). Then determine for each state in S, whether there is a fullpath satisfying p starting at s, and, if
so, label s with Ep.

Remarks: (1) Note that the [LP85] algorithm can be trivially modified to do this.

(2) This definition of LMCP may not, at first glance, correspond to how one thinks it should be
formulated because most proponents of linear time logic observe the convention that linear time for-
mula p is true of a structure (representing a concurrent program) iff it is true of all paths in the
structure. Please note, however, that p is true of all paths in the structure iff Ap holds at all states
of the structure. Since Ap = —E-p, by solving our formulation of LMCP and then scanning all states
to check whether Ap holds, we get a solution to the "alternative" formulation.

(3) Also, observe that FSP may be viewed as a special case of LMCP, and FMCP as a special
case of BMCP.

Despite the superficially plausible intuition that handling, e.g., nested, alternating path quan-
tifiers would make BMCP more difficult than LMCP, that is not the case.
Definition 6.1. Let R denote the set of nonnegative real numbers. An n-ary function f: R™

iy o Xp) = fxg
xn), foralla, be R. fis superadditive if it is

— R is superadditive in its ;th argument provided that f(xl, o X a-+b, x.
X; 1 1 xn) + f(xp, o X B X
superadditive in all of its arguments.

a, X

Proposition 8.2. A differentiable function f : & — R is superadditive iff its derivative {" 1s
nondecreasing.

proof: If {’ is nondecreasing, then for all a, b in R we have: f(a + b) - [f(a) + f(b) =
f3+bf’)dx - fO x)dx - fO x)dx = fa+bf’ fof (x)dx = fO (x + a) - {’(x)]dx > 0. Hence, f is
superadditive.

Conversely, if [is superadditive, then f(x + ¢) > f(x) + f(¢) = {(x), for all ¢>0. By definition of
derivative, {’(x) = iim0+{f(x + ¢) - f(x)]/e > 0. Hence, {” is nondecreasing. 0

Corollary 6.3 Let f(xl, - xn) be differentiable with respect to x,. Then { is superadditive in

19

X; iff its partial derivative with respect to x, is nondecreasing. o

Remark: Intuitively, superadditivity of a complexity function requires that it take at least as
long as to solve a large problem as it takes to solve both of two subproblems obtained by decom-
posing the original problem. Observe that any sum of positive coefficient polynomials or exponential
functions is superadditive.

Theorem 6.4. Suppose we are given a model checking algorithm LMCA of superadditive
complexity f(|M,|py|) for the usual system of linear time logic. Then there is a model checking algo-
rithm BMCA of complexity O(f(|[M],|py|) for the corresponding full branching time logic CTL* which
trivially subsumes the linear time logic in expressive power.

proof. The key point is that we can actually use LMCA to evaluate Ep for an arbitrary path
formula p, in particular for one which contains nested path quantifiers. To model check an arbitrary
CTL* state formula Py We simply model check on each subformula by recursive descent based on
the inductive definition of CTL* state formulae using LMCA as a subroutine to evaluate Ep for-

mulae:

1. If p, is an atomic proposition P, then there is nothing to do since the structure is already
labelled correctly with the propositions true in each state.

2. 1If P is a conjunction p A q of two state formulae p,q then recursively model check for each of p
and q; then add py to the label of each state whose label contains both p and q.

3.1f pg is a negation —p of a state formula p, then recursively model check for p. Add —p to the
label of each state not containing p.

4. 1f p, is of the form Ep where p is a path formula, then let qu,...,Eqk be the list of all "top
level" proper E-subformulae of p (i.e., each Eqi is a subformula of Ep, but is not a subformula
of any subformula Er of Ep where Er is different from Ep and from Eqi.) If this list is empty
then p is a "pure” linear time formula with no nested path quantifiers so call the linear time
model checker LMCA for p. Otherwise, for each Eq; recursively call this state model checker.
When all recursive calls have returned, each state s will be labelled with Eq, as appropriate.
Introduce a list of new, "fresh" atomic propositions Ql""’Qk' Augment the labelling of each
state s in the structure for each i, with Qi iff Eqi holds at s. Let p’ be the path formula result-
ing from substituting each Q, for its corresponding Eq; in p. Call the linear model checker
LMCA for p’. When it returns exactly those states at which Ep’ holds will be labelled with
Ep’. Augment the labels of those states with Ep.

We claim that if LMCA is of time complexity bounded by superadditive function f({M].|pgl)
then the recursive descent algorithm BMCA is of complexity O(f(IMl,|pyl)- (In particular, the BMCP
algorithm for CTL* resulting from the [LP84] algorithm for LMCP for ordinary linear temporal logic
is of the same order of complexity.)

To establish this claim, first note that since f is superadditive in both arguments, we have that
¢,/ ma < f(m,n) for some ¢; > 0. In particular, ¢;'m < f(m,1). Also, note that (with appropriate

data structures) we can install a formula in the label of a state in constant time c,, for some ¢y > 0.

20

Hence, e.g., installing the —p formula in the label of each state already determined not to satis{y p
can be done in time < ¢y [M|. Take ¢ = (c; + cy)/cy + 1. Observe that co M| < ((e)+cg)/e) e M)
< ef(|M],1).

We will analyze the complexity of BMCA by charging the costs to two disjoint accounts. Let
f"(}M],lpol) be the cost of manipulating and installing the labels of the auxiliary propositions, and let
f’(]M[,[pol) be the cost exclusive of manipulating these propositions. Since there are only O(|p)
auxiliary propositions, {*(|M],|pyl) = O(IM}:|pyl) < c3-f(lMl,|poD for some constant cg > 0.

We will show, by induction on the structure of formula pg, '(IM],|pgl) < cf(|M},[pg):

If Py is an atomic proposition then clearly the hypothesis holds.

If py is —p then ’([M],|=p]) = the cost of a recursive call for p +
the cost of labelling with —p appropriately = P(|M|,|p|) + ¢4 M|
< cf(|M],|p]) + co'[M]| (by induction hypothesis)
< cf(M]lpl) + f(IM],1)
< cf(]M],|p|+1)) (by superadditivity)
= c{(|[M],|-p}).

If pyis p A q then ’(IM[,|p A q]) = the cost of recursive calls
for p,q + the cost of labelling with p A q appropriately = P(IM},Ipl) + P(IM],lal) + ¢y M|
< cf(IM],|p]) + c-f(|M},Ja]) + c|M| (using induction hypothesis and def. ¢)
< cf(Ml[p]) + ef(M],lal) + ef([M],1)
< cf(|M],|pl+]al+1) (by superadditivity)
< ef(Mlp A a])-
If p, is Ep then, if p is a pure linear time formula f’(|M|,|Ep|) = the
cost of calling LMCA for p’ = f(|M|,|p])
< f(/M],|Ep|)
< of(|M],|Ep);
Otherwise, Ep is of the form Ep’(qu,...,Eqk) as above. Then (|M|,|Ep|) = the cost
of recursive calls for the Eq; + the cost of LMCA for p’ + the cost of
labelling each state already labelled by Ep’ with Ep
— P(M1[Eqy)) + - + PML[Eq) + (OMLIP]) + cg M
< cf(M[,|Eq,]) + - + e f(IM],[Eqy]) + f(IM],[p’]) + ef([M]1)
(using induction hypothesis)
< c'f(}MI,lquH,..+lEqk[+|Ep’l) (by superadditivity)
< ef(IM], [Ep]).

Hence, we conclude that the total complexity of BMCA is £(IM[,Ipgl) + f*(IMllpol) <
cf(IM],Ipgl) + 5 T(IMl,[pgl) = O(f(IML,|pg])- o

Remark: In an actual implementation, there is no need to use the auxiliary propositions, since

the Ep subformula could themselves be viewed as "atomic." I.e., the labels of a state could be imple-

21

mented using bit vectors or pointers for linked lists. These could refer to an Ep formula, indeed any
state formula, as easily as to an atomic proposition.

It is also easy to see that this reduction will work for any linear temporal formalism (with any
any linear time operators, e.g., until operator, interval operators, precedence operators etc.) and its
corresponding full branching temporal logic. Formally, let L be a linear time logic generated by a set
of rules, PRULES. Then the corresponding full branching time logic for L is defined to be the set of
state formulae generated by S1, S2, 83, P1, and PRULES. We thus have the following general
theorem:

Theorem 6.5. Given any model checking algorithm LMCA for any system of linear time logic
there is a model checking algorithm BMCA of the same order of complexity (in both the structure
and formula size) for the corresponding full branching time logic which trivially subsumes the linear

time logic in expressive power. o

7. Model Checking for Generalized Fair Computation Tree Logic

In most cases, the formalism of FCTL should provide ample generality because we typically
reason about behaviors of concurrent systems under a single fairness assumption over the entire sys-
tem. In some applications, however, we might wish to reason about one portion of a system under
one type of fairness and about another portion under a different type of fairness. For example, we
might wish to reason about a CSP program where we assume that one type fairness is imposed on
the scheduling of enabled guarded commands while another type of fairness is assumed for the
scheduling of patrs of processes mutually able to rendezvous. This type of reasoning under a com-
bination of different fairness constraints is not accommodated by the FCTL formalism. However,
multiple fairness constraints are permitted in the Generalized Fair Computation Tree Logic
(GFCTL) where each path quantifier is associated with a (possibly) different fairness specification &,
and, the arguments to the %O and 8 operators are arbitrary GFCTL subformulae.

The results of section 4 show that we can do model checking on structure M for FCTL
specification (py,) in time O(IM}~{pO{-}§b0\2), provided ¢, is in canonical form. In particular, this
bound holds for each of the FCTL formulae EzXp, Eglp U q}, and Eg[=(p U q)l, where p,q are
propositional formulae. If we were to measure the complexity in terms of the expanded formulae p’
(Elpy A Xp|, E[¢g A (p U q)), or E[¢y A ~(p U q)], respectively), it would be O(‘MHp’IQ), Thus, we
have an algorithm for LMCP over the language of path formulae L = {(¢5 A Xp), (#5 A (p U q)).
(P25 A —=(p U q): &, is any FCTL fairness constraint in canonical form and p,q are propositional
formulae} of time complexity O(iM{-Ip"i?‘), where M is the input structure, and p" € L is the input

linear time formula. Since L is precisely the set of linear time formulae corresponding to the basic
modalities of GFCTL, applying Theorem 6.5 we have established
Theorem 7.1. BMCP for GFCTL with input structure M and input formula p’ can be solved

in time O(}Ml—lp’[2), provided that each fairness formula in p’ is in canonical form.

8. Finite Automata on Infinite Strings

There is an extensive literature for finite automata on infinite strings, and the reader is referred
to [MU63], [McN66], [RA69], [RA70], [HR74], [ST82], and [ES84] for detailed discussions. In order to
present our results regarding testing emptiness, we content ourselves with a brief review of the fol-
lowing definitions:

A finite automaton A on infinite strings consists of a tuple (S,S,é,so) - where X is the finite
input alphabet, S is the finite set of states, §: 5 X Z'--> PowerSet(S) is the transition function, and
sg € S is the start state - plus an acceptance condition as described subsequently. A run r of 4 on
infinite input string x = a ag8s... is an infinite sequence r = §,8,S,S5... of states such that Vi > 0
5(Si’ai+l) > {Si+l}' We let In r denote the set of states in S that appear infinitely often along r.
For a Buchi automaton acceptance is defined in terms of a distinguished set of states, GREEN: x is
accepted iff there exists a run r on x such that In r N GREEN 3£ @. Acceptance for a pairs
automaton is defined with respect to a finite hist ((REDl,GREENl) -, (REDy,GREEN, }) of pairs of
sets of states: x is accepted iff there exists a run r on x such for some pair i € [1:k} In r N RED, = §
and In r N GREENi %4 §. For a complemented pairs automaton acceptance is also defined using a
finite list of pairs ((REDl,GREENl) ey (REDk,GREENk)). However, it accepts input x iff there ex-
ists a run r on x such that the above pairs condition is false. Finally, for a designated subsets
automaton acceptance is defined in terms of a family ¥ = {S,,...,S,} C PowerSet(S) of subsets of
S. It accepts iff there exists a run r such that Inr € 7

All but the last acceptance condition can be readily visualized in terms of flashing lights con-
trolled by the automaton. If we think of a Buchi automaton flashing a green light upon entering any
state in GREEN, then it accepts iff there exists a run which causes the green light to flash infinitely
often. We can think of a pairs automaton as having pairs of colored lights where the red light of the
ith pair is flashed upon entering any state of set REDi, and the green light of the jth pair is flashed
upon entering any state of GREENi, etc.; then we see that it accepts iff there exists a run which
causes, for some pair i € [L:k] the RED, light to flash only finitely often and the GREEN, light to
flash infinitely often. Analogously, a complemented pairs automaton is seen to accept iff for all pairs

i € [1:k], there exist infinitely many flashes of the GREEN; light implies that there exist infinitely

23

many flashes of the REDi light.

In order to test emptiness of a finite automaton A = (Z,S,&,so), we note that its transition
diagram may be viewed as defining a finite structure M = (S,A,L). There is an arc (s,t) in A iff
there is an arc (s,t) in the transition diagram. (Note: because we are testing emptiness, we can ignore
the symbol labelling the arc (s,t) in A. All we care about is if there exists an accepted string, not
what string is accepted.) If A is a, say, pairs automaton with acceptance condition given by
((REDPGREENI) yeees (REDk,GREENk)), we let the underlying set of atomic propositions for M be
{P-RED, ,P-GREEN,, .. P-REDk,P-GREENk}. Then let P-RED; appear in L(s) for exactly those s €
RED; and similarly for P-GREEN;, € [1:k]. The runs r of £ thus correspond to paths in M starting
from s,. It is easy to see that for each i € [1:k], In r N GREEN, 5 8 iff M;r |= FP- GREEN, and In
r N RED, = g iff Mr |= G-nP RED;. Thus a runr of 4 is accepted by the pairs criterion rff the run
r viewed as a path in M (which starts at sO) satisfies the fairness constraint &, = VJE{I o G—-:P RED,
A FP-GREEI\Ai. So there is an accepting run of A on some input iff there is a path starting at s; in
M meeting the fairness constraint ¢,. Thus, emptiness of 4 may be tested by running the FSP algo-
rithm with input M and ¢, and then checking to see if s is fair with respect to ¢,. Similarly, for a
complemented pairs automaton with acceptance condltlon (RED,, GREEN 1) .., (RED,GREEN,)).
the corresponding fairness condition is A](FP -GREEN, = FP RED) And for a Buchi
automaton with acceptance condition GREEN the fairness condition is simply FP GREEN.

We can also handle a designated subsets automaton with acceptance condition = {S,,....S; }
where each S. = {s 81512 ,sm }. We et the underlying atomic propositions be
P-S,P-s;, P-s.o, .Ps 1€ [1:k], where P-S, appears in L(s) for exactly those s € S; and each P-s;;
appears only in L() xThen the correspondmg fairness specification ¢y = V, (FP -Si /\ FP -Siq
A FP- in, A G P- S) In each disjunct the F formulae ensure that S, € In r while the G formula en-
sures that Inr C S,

We leave it to the reader to check that each of these fairness specifications corresponding to an
automaton acceptance condition can be succinctly massaged into the canonical form thereby showing

that emptiness for any of these acceptance conditions can be tested in (small) polynomial time.

g. Conclusion

We have shown that model checking under fairness assumptions can be handled readily in the
framework of branching time. In particular, we have presented a unified approach for efficient model
checking under a broad class of generalized fairness constraints in a branching time temporal logic.

Our method applies to any type of fairness expressed in the canonical form P, =

\/ /\ (apv%oq) Since almost all "practical" types of fairness from the literature, including the
}:nld%;)tntal notions of impartiality, weak fairness, and strong fairness, can be succinctly written in
our canonical form, our approach is potentially of wide applicability. Moreover, our branching time
approach can easily be adapted to handle types of fairness (such as fair reachability of a predicate)
which cannot even be expressed in a linear temporal logic.

We then showed that the problem of model checking in a branching time logic can be efficiently
reduced to the problem of model checking in a linear temporal logic: given a model checking algo-
rithm for a system of linear time logic (in particular, for the usual system of linear time logic over F,
G, X, and U), there is a model checking algorithm of the same order of complexity (in both the struc-
ture and formula size) for the corresponding full branching time logic which trivially subsumes the
linear time logic in expressive power (in particular, for the system of full branching time logic CTL*
in which the basic modalities are of the form: A or E followed by an unrestricted formula of linear
time logic over F, G, X, and U). Thus, the real issue involved for model checking is not whether to
use branching time or linear time, but simply: what are the basic modalities of my branching time
logic? I.e., what linear time formulae can follow the path quantifiers? (Remark: In a basic modality
of a branching time logic, the linear time formula following the path quantifier is a “pure" linear
time formula involving no nested path quantifiers.) The results of [SC85] show that when an ar-
bitrary combination (i.e., allowing boolean connectives and nesting) of linear time operators is al-
lowed, the model checking problem is PSPACE-complete. And, as we should expect, for the algorithm
of [LP85] it is indeed the linear formula (following the implicit path quantifier) which causes the ex-
ponential blowup in the complexity of model checking for linear time logic (and for CTL*). At the
other extreme, as we might expect, [CES83] shows that model checking is easy for the simple
modalities of CTL where only a single linear time operator is allowed to follow a path quantifier.
When we consider modalities of intermediate structural complexity, the results of [SC85] show that
model checking is NP-hard even for linear time logic over just F and G. It is quite surprising,
however, to note that, while [SC85] shows that even for the simple modality E[FP, /\ - AFP_[the
modal checkmg problem is NP-hard, for the apparently closely related modalities E[FP A A FPnf
and E[GP A A GP] model checking can be done in linear time. (The first modahty is related to
the second because FP means “there exists at least one state satisfying P* while FP meaps * there
exist infinitely many states satisfying P"; the first modality is related to the third because GP 15
equivalent to FGP.)

Thus, the infinitary operators F and G used in describing fairness properties, which are often

thought of as causing all sorts of problems with discontinuities, non-definability in first order arith-

metic, etc. (cf. [ECSO] [HA84]), can actually simplify the problem of model checking. In trying to
account for why F and G seem easier to handle than expected, one notices that these modalities
satisfy the property of being oblivious to the addition to or deletion of finite prefixes of paths
(Observation 4.1). Indeed, this property was used in an essential way in our polynomial time model
checkers for FCTL and GFCTL. One is therefore tempted to attribute the nice behavior of these
modalities to the obliviousness property. However, one notices that any boolean combinations of %C
and 0(3 enjoys this obliviousness, and we have already exhibited (Theorem 4.7) a very simple boolean
combination (/\ (Ep \Y Eq)) which is NP-complete.

It thus applears that the relationship between the structural complexity of the basic modalities
and the computational complexity of the associated model checking problem is a rather subtle one.

We encourage additional research to enhance our understanding of this issue.

10. Appendix

proof of Proposition 4.2. For equivalence (1), M;sg k(p EgXp iff M,s) ¥ E[¢, A Xp'l (by
definition of t=¢) if Mysy = EX(¢y A pt)] (by observation 4.1) 1ff M,s, ® EXE($, A P Y (by CTL*
semantics) iff M sy ¥ EX(E®y A p %) (because p! is a state formula) iff 3(s sp:S;)ER and M, s, * Pt A
E¢] iff (s, s,)ER and M, s "qs p A EgXtrue].

For equivalence (2), M,s, b¢ Eglp U qf iff M;s; # E[#, A (p' U ¢*)] (by definition of k¢) iff
M,s, + E[p* U (" A @ o)l (by observa,mon 4.1) iff M;sy ® Ejp* U E(¢* A ® o) (by CTL* semantlcs) iff
Ms, ¥ E[p* U (Eq® A ®,)] (since q' is a state formula) iff 3 k > 0 3 a finite path (sg,...,s) in M such
that Vi, if 0 < i < k then M;s; ¥ p* and M, S e (q, A EQSO) iff 3 k > 0 3 a finite path (SO,...,sk) in M
such that Vi, if 0 < i < k then M;s, ky P and Ms h‘p (anE Xtrue)

Finally, for equivalence (3) we first note the hnear time equivalence M,x & =(p U q) iff M.x ¥ (—q
U (=p A =q)) V G—q. Plainly, the right hand side implies the left. To see the converse, if (p U q) is
false on x, then either q is always false - G—q - or there is a first time q is true, but prior to that
time, i.e., in an initial interval where q is false, p is false somewhere - (=q U (=p A —q)). Thus, M;s

"o Egl~(p U q)] iff M;s "o Eg([=q U (=p A =q)] V G—q) iff M,s "o Egl-q U (=p A =q)] V EgGa.

Proof of Theorem 4.7 continued. [only if part]: Assume that g is satisfiable. Since g is
satisfiable, there exists a truth assignment A such that g is true under 4, i.e. for any factor Ci’ there
is a literal lij in C; such that 1ij is true under this particular truth assignment. Now consider a cycle

z in M formed by states s, Vij.o o Vaj t, such that for all i, Vis is true under the assignment A£.
1 n i

oo o0
We will show that M, z ¥ &, by showing that G—p, V G—qy holds on z for every k€[l,n]. If

26

o0 co (e o]
G-py holds on z then G-p, V Gqy also holds on z. Hence, we only have to show that when c(g-ﬂpk

[¢ o] o¢ oo
does not hold on z, G-p, V Gqy still holds on z. Because G-p; does not hold on z, there must be

some state v in z such that pkEL(v). Note that L(s)=L(t)=#0. Hence v 1s Vii. for some i€[1,n]. By the
i
construction of the labeling function L, we conclude that lij.zxk' By the construction of z, li‘ 1s true,

1
i.e., the assignment £ assigns true to x; . Hence —x, is false under A. Clearly under 4, li’j. 7é—-.xk for
17

(=] o0 o0
any i€[1,n]. Again by the definition of L, qk#li’j. , 1.e., Gmgy holds on z. Hence G-p, V G—q; holds
l’
on z for any k€[1,n]. We conclude that & holds on z.

[if part]: Assume that there is a path z in M starting from s such that ¢, holds on z. Let z’ be a

n
suffix of z starting from state s such that A (G-p, V G—q,) holds on z’. Note that either p, or q

)=

does not appear on the label of any state on z’. Consider the truth assignment A: x; — {T, F} as

follows:

Alx)=T 3, kaL(vij)}

=F if 3i,j] quL(vij)}
It is quite easy to check that A is consistent in the sense that A assigns a unique value to each x.
Furthermore, the assignment caused by any L(Vij) will guarantee that Ci is true under the assignment

A. Hence g is satisfiable. This completes our proof. o

11. References

[AE83] Antila, M, Erikkson, H., Ikonen, J., Kujansuu, R., Ojala, L., Tuominen, H., Tools and
Studies of Formal Techniques - Petri Nets and Temporal Logie, Protocol Specification,
Testing, and Verification III, H. Rudin and C. West (editors), Elsevier North-Holland,
IFIP, 1983.

[AB80] Abrahamson, K., Decidability and Expressiveness of Logics of Processes, PhD Thesis,
University of Washington, 1980.

[BSW69] Bartlet, K., Scantlebury, R., and Wilkinson, P., A Note on Reliable Full-Duplex Transmis-
sion over Half-Duplex Links, Comm. of the ACM, vol. 12, no. 5, pp. 260-261, 1969.

[CE81] Clarke, E. M., Emerson, E.A., Design and Synthesis of Synchronization Skeletons Using
Branching Time Temporal Logic, IBM Logics of Programs Workshop, Springer LNCS
4131, pp. 52-71, May 1981.

[CES83] Clarke, E. M., Emerson, E. A, and Sistla, A. P, Automatic Verification of Finite State
Concurrent System Using Temporal Logic, 10th Annual ACM 10th Annual ACM Symp. on
Principles of Programming Languages, 1983.

[CM83] Clarke, E.M., Mishra, B., Automatic Verification of Asynchronous Circuits, CMU Logics of
Programs Workshop, Springer LNCS #164, pp. 101-115, May 1983.

[EC80] Emerson, E. A, and Clarke, E. M., Characterizing Correctness Properties of Parallel
Programs as Fixpoints. Proc. 7th Int. Colloquium on Automata, Languages, and Program-
ming, Lecture Notes in Computer Science #85, Springer-Verlag, 1981.

[EC82]
[EH82

[EHS3]

[ES84]:
[FL79]
[FK84]
[HAS4]
[HS84]
(KO83]
[LASO]
ILPS81]
ILP85)
[McN66]
[MCS0]
IMU63]

[0J84]
[OL82]

[PASO]
IPN77]
[PN83)
[PN8S)

[PR76)
[PRS1]
Qss3]

[RA69]

Emerson, E. A., and Clarke, E. M., Using Branching Time Temporal Logic to Synthesize
Synchronization Skeletons, Tech. Report TR-208, Univ. of Texas, 1982. ,

Emerson, E. A., and Halpern, J. Y., Decision Procedures and Expressiveness in the Tem-
poral Logic of Branching Time, 14th Annual ACM Symp. on Theory of Computing, 1982.
Emerson, E. A., and Halpern, J. Y., 'Sometimes’ and 'Not Never’ Revisited: On Branching
versus Linear Time 10th Annual ACM Symp. on Principles of Programming Languages,
January 1983.

Emerson, E. A., and Sistla, A. P., Deciding Full Branching Time Logic, 16 Annual ACM
Symp. on Theory of Computing, 1984.

Fischer, M. J., and Ladner, R. E, Propositional Dynamic Logic of Regular Programs, JCSS
vol. 18, pp. 194-211, 1979.

Francez, N., and Kozen, D., Generalized Fair Termination, 11th Annual ACM Symp. on
Principles of Programming Languages, 1984, pp. 46-53.

Harel, D., A General Result on Infinite Trees and Its Applications, 16th STOC, pp.
418-427, May 84.

Hart, S., and Sharir, M., Probabilistic Temporal Logics for Finite and Bounded Models,
16th STOC, pp. 1-13, 1984.

Kozen, D., Results on the Propositional Mu-calculus, Theoretical Computer Science, pp.
333-354, December 83.

Lamport, L., Sometimes is Sometimes "Not Never" - on the temporal logic of programs,
7th Annual ACM Symp. on Principles of Programming Languages, 1980, pp. 174-185.
Lehmann. D., Pnueli, A., and Stavi, J., Impartiality, Justice and Fairness: The Ethics of
Concurrent Termination, ICALP 1981, LNCS Vol. 115, pp 264-277.

Lichtenstein, O. and Pnueli, A., Checking that Finite State Concurrent Programs Satisly
their Linear Specification, POPL85, pp. 97-107, Jan. 85.

McNaughton, R., Testing and Generating Infinite Sequences by a Finite Automaton, Infor-
mation and Control, Vol. 9, 1966.

Mead, C. and Conway, L., Introduction to VLSI Systems, Addison-Wesley, Reading, Mass.,
1980.

Muller, D. E., Infinite Sequences and Finite Machines, 4th Ann. IEEE Symp. of Switching
Theory and Logical Design, pp. 3-16, 1963.

Ojala, Leo, Personal Communication at ICALP84, July 1984,

Owicki, S. S., and Lamport, L., Proving Liveness Properties of Concurrent Programs,
ACM Trans. on Programming Languages and Syst., Vol. 4, No. 3, July 1982, pp. 455-495.
Park, D., On The Semantics of Fair Parallelism, Abstract Software Specification, LNCS
Vol. 86, Springer Verlag, 1980, pp. 504-524.

Pnueli, A., The Temporal Logic of Programs, 19th annual Symp. on Foundations of Com-
puter Science, 1977.

Pnueli, A., On The Extremely Fair Termination of Probabilistic Algorithms, 15 Annual
ACM Symp. on Theory of Computing, 1983, 278-290.

Pnueli, A., Linear and Branching Structures in the Semantics and Logics of Reactive Sys-
tems, Proceedings of the 12th ICALP, pp. 15-32, 1985.

Pratt, V., Semantical Considerations on Floyd-Hoare Logic, 17th FOCS, pp. 109-121, 1976.
Pratt, V., A Decidable Mu-Calculus, 22nd FOCS, pp. 421-427, 1981.

Queille, J. P., and Sifakis, J., Fairness and Related Properties in Transition Systems, Acta
Informatica, vol. 19, pp. 195-220, 1983.

Rabin, M., Decidability of Second order Theories and Automata on Infinite Trees, Trans.

Amer. Math. Society, Vol. 141, pp. 1-35, 1969.

[RA70] Rabin, M., Automata on Infinite Trees and the Synthesis Problem, Hebrew Univ., Tech.
Report no. 37, 1970.

[SC85] Sistla, A. P., and Clarke, E. M., The Complexity of Propositional Linear Temporal Logic,
J. ACM, Vol. 32, No. 3, pp.733-749.

[ST82] Streett, R., Propositional Dynamic Logic of Looping and Converse, Information and Con-

trol 54, 121-141, 1982. (Full version: Propositional Dynamic Logic of Looping and Con-

verse, PhD Thesis, MIT Lab for Computer Science, 1981.)

[SE84] Streett, R., and Emerson, E. A., The Propositional Mu-Calculus is Elementary, ICALP84,
pp 465 -472, July 84.

[TA72] Tarjan, R. E,, Depth-First Search and Linear Graph Algorithms, SIAM J. Computing, v. 1,
pp. 146-160, 1972.

[VW84] Vardi, M. and Wolper, P., Automata Theoretic Techniques for Modal Logics of Programs,
pp. 446-455, STOCS84.

B

Acknowledgement. We would like to thank the referees for suggesting improvements to the

presentation of the previous version of the paper, and for catching an error in the original complexity

analysis of AFMCP.

29

Let AFSP(M, gbo) be an algorithm for solving FSP which returns the set of fair states of the input structure

M w.r.t. fairness constraint @0.

procedure AFMCP(M, (pg, ®,));
/* M=(S, R, L) is the input structure, and (pg Py) is the specification */

begin
1. . 8= AFSP(M, &) /* use algorithm AFSP to identify fair states in M */
2. for each s€S do if s€S’ then L(s) := L(s) U {E Xtrue};
3. for each formula f€SF(py) do /* Inductively, taking the shortest formula first. */
case f of the form
3.1 atomic formula: skip; /* nothing to do */
3.2 —p: for each s€S do if pgL(s) then L(s) := L(s) U {-p};
3.3 p A q: for each s€S do if p, gEL(s) then L(s) := L(s) U {p A a};
3.4 E Xp: for each s€S do if J(s, t)ERp, E¢Xtrue€L(t)] then L(s) := L(s) U {EXp};
3.5 E pU a):
EU := empty set;
for each s€S do
if q, EgXtrue€L(s) then begin L(s) := L(s) U {Eglp U al};
EU = EU U {s}
end;
while EU is not empty do
begin
remove an element t from EU;
;= {s€S: (s,t)€R and p€L(s) and E (p U q)¢L(s)};
for each s€D do L(s) := L(s) U {E4lp U al;
EU := EU U D,
end of while;
3.6 Eds{"'(p U q)l:

Label the states of M with =p, =g, =p A —q if appropriate according to 3.2 and 3.3.
Label the states of M with Eg)[—«q U (-p A —q)] if appropriate according to 3.5.
S? := {s€8: ~q€L(s)};
M = (5", R|S'XS", L|S");
/* X|Y denotes the mapping X restricted to domain Y */
FS’ := AFSP(M’, &);
for all s€FS’ do L(s) := L(s) U {E;G—a};
for all s€S do

if E4G-q€L(s) or Ej[(=q) U (=p A —q)J€L(s) then L(s) := L(s) U {E4[=(p U q)}}:

end of cases;
end of procedure;

Figure 1: Reduction Algorithm

__

Recursive Boolean Procedure AFC(C, &)
/* input: C==(S, R, L) is a strongly connected structure, and
k

begin
if k==0 then return(true);
for i:=1 to k do

[N

ot

return(true)
end;

o0 o0
@ = A (Fp, vV Gg)) is a fairness constraint

1==1

output: true - if C is a falr component
false - otherwise */

p_ occursli] ;= false;
for each s€S doif C, s |[=, p, then p__occurs|i] := true;
0

if p__occurs[ij=false then
begin

ikl o0 k oo oo
9, = A (Fp,vGag)A A (Fp Vv Gq);
=1 Y g=ier !

S = {s€S8: M, skq};

C’ = (S, R|S’xS’, L|S);

(:= {D: D is a total strongly connected component of C’};
for each DEX do if AFC(D, ®’)=true then return(true);
return(false)

Figure 2: Fair Component Detection Algorithm

procedure AFSP(M, ¢O);
/* input: M=(S, R, L) is a structure, and

n o0 o0
¢,=A (Fp; Vv Gg)
i=1

je==
output: S’ -- the set of fair states of structure M */

begin

end;

let X={C: C is a total strongly connected component of M};
for each CE€X do if AFC(C, @) then 8’ :== 8’ U {s s is a state of C};

/* calculate the set of states in S which can reach some state in $” */
CLOSE = S’
while CLOSE=40 do

remove an element ¢ from CLOSE;
D = {s: (s, t)ER A s¢S’};

S = S UD;

CLOSE = CLOSE U D

Figure 3: Algorithm for Calculating Fair States.

Figure 4 Structure M=(S, R, L.

(b) Global state graph after termination of model checking algorithm

Flones &

