ON THE COMPLEXITY OF DECIDING
FAIR TERMINATION OF PROBABILISTIC
CONCURRENT FINITE-STATE
PROGRAMS

Louis E. Rosier and Hsu-Chun Yen
Department of Computer Sciences
University of Texas at Austin

Austin, Texas 78712

TR-85-22 October 1985

On The Complexity of Deciding Fair Termination of

Probabilistic Concurrent Finite-State Programs
Louis E. Rosler and Hsu-Chun Yen

Department of Computer Sciences
University of Texas at Austin
Austin, TX 78712

Abstract

In this paper, we consider the fair termination problem for probabilistic concurrent finite-state
programs. We analyse the complexity of deciding, given a system of probabilistic concurrent finite-state
programs, whether the system will terminate (with probability 1) under five different fairness
assumptions. It turns out that these problems are either complete for PTIME, or the second or third
levels of the alternating logspace hierarchy, even when the number of programs is fixed. However, when a
more succinct representation of the inputs is allowed, the problems become either EXPTIME or PSPACE
complete. In particular, for those instances of size n with k concurrent programs, we show lower bounds
of Q(n(k'ﬁ)/gs) deterministic time and (k-11)/4*log n 1-alternating ATM space ((k-17)/6*log n 2-
alternating ATM space) {with a binary tape alphabet). Corresponding upper bounds of O(nd*k)
deterministic time and d*k*log n 1(2)-alternating ATM space (for some positive constant d) are also
shown. It has been conjectured that there are problems solvable by nondeterministic TM’s in k*log n
space (and binary tape alphabet) that require Q(nk) deterministic time. Now these problems are in
PTIME for every fixed value of k; but if we accept the conjecture then the order of the polynomial, in
each case, grows linearly with the value of k. Hence, the same must be true of problems requiring k*log n

1(or 2)-alternating ATM space (with a binary tape alphabet).

1. Introduction

The use of randomization (or probabilities) seems to be a recent trend in the design of concurrent
algorithms. In comparison to their non-probabilistic counterparts, probabilistic programs often enjoy the
merit of being simplier and easier to design. They also often require less shared memory. (c.f. [13, 16,
17].) Perhaps more importantly, sometimes they can produce solutions, under certain constraints, that
can not be achieved without using randomization. For example, in [13] it was shown that, there is no

deterministic, deadlock-free, symmetric and truly distributed solution for the dining philosophers

problem. But, if randomization is allowed it becomes possible to design a relatively simple algorithm that
meets these specifications. Unfortunately, probabilistic programs suffer the drawback that few
verification techniques are well developed. Recently, however, the termination problem (i.e., the problem
of deciding, given a system of concurrent programs, whether the system will with probability 1 terminate)
has received some attention. In particular, people are interested in the fair termination problem; i.e., does
the system terminate (with probability 1) providing the scheduling of programs is, in some sense, fair 4,
5, 12, 15, 21]. So far the research in this area seems to emphasize two directions. The first concentrates
on designing inference rules that can serve as a mathematical foundation for proving fair termination.
(c.f. [12, 15].) The second, on the other hand, concerns itself with algorithmically solving special cases -
such as the case where the programs are finite-state. Consequently for such cases, the space and/or time
complexity for determining fair termination becomes an issue. (See e.g. [4], [5] and more recently [21].)
So far, however, no attempt has been made to compare the complexity results under different fairness
constraints. Neither has any result appeared on studying the complexity of the problem in terms of the

number of concurrent programs (i.e., the degree of concurrency).

Therefore, the main contribution of this paper is that, we give a comprehensive analysis of the fair
termination problem for probabilistic concurrent finite-state programs under 5 types of fairness
constraints. It turns out that the problems are either complete for PTIME or AZ’IZJ or AZJ?:, even when the
number of programs is a fixed constant. (AZ’I?‘ (AZ’;’) denotes the second (third) level of the alternating
logspace hierarchy [2].) Here it is assumed that the inputs are essentially provided in the form of the
global state graph - in a manner consistent with the definitions given in [4]. However, when a more
succinct representation of the inputs is allowed (one in which each program is described only in terms of
the memory to which it has access), the problems become either EXPTIME or PSPACE complete. In
particular, for those instances of size n with k concurrent programs, we show lower bounds of Q(n(k'ﬁ)/ gs)
deterministic time and (k-11)/4*log n 1-alternating ATM space ((k-17)/6*log n 2-alternating ATM space)
(with a binary tape alphabet)[2]. In the latter case, this means that the problems are hard for the class of
problems solvable by k*log n space bounded ATM’s which use a binary tape alphabet and make at most
one (two) alternation(s) during the course of a computation. Upper bounds of O(nd*k) deterministic time
(for some positive contant d) are also shown. It has been conjectured that there are problems solvable by
nondeterministic TM’s in k*log n space (and binary tape alphabet) that require Q(nk) deterministic time.
So while the problems we consider are in PTIME for every fixed value of k, the order of the polynomial
(for sure in some cases - more than likely in the others) grows linearly with the value of k - and thus the

problems are, in some sense, gradually intractable.

Problems requiring .Q(nk) deterministic time were previously shown in [1]; while problems requiring
k*log n nondeterministic TM space (with a binary tape alphabet) were considered in [9]. See also [7, 18].

The fact that the problems become more difficult, with our more concise representation of the instances,

is not really surprising. For example, [11] showed earlier that the lockout problem for similarly expressed
instances of (non-probabilistic) concurrent systems was EXPTIME complete. The important contribution
here is that we explain the role played by the degree of concurrency in determining the problem’s
complexity. We have also considered five different types of fairness and shown that the problem
complexity depends on the type of fairness involved. Lastly, one should note that not many problems
have appeared in the literature which are proven complete for various classes of alternating space or

which are gradually intractable in the manner described here.

The remainder of this paper is organized as follows. In section 2, we define the model of probabilistic
concurrent finite-state programs used in [4] as well as five types of fairness criteria (taken from [12, 15]).
Based on this model, we show that the fair termination problem depends only on the topological structure
of the program’s transitions, and not on the particular values of the nonzero transition probabilities.
This constitutes a generalization of a result shown in [4]. Therefore, we are able to use a graph-
theoretical approach to determine whether programs will terminate with probability 1 under each of the
fairness constraints. In section 3, we investigate upper and lower complexity bounds for the problems
defined in section 2. In section 4, we consider the case when a more succinct representation of the inputs

is allowed.

2. The model

Informally, a system of probabilistic concurrent programs consists of several programs running in
parallel. In addition, probabilistic moves are allowed in each program; i.e., the next move to be executed
in each program is chosen in a probabilistic manner among those executable moves. (One might imagine
this as flipping a perhaps biased die to decide the next move when several moves are available.) On the
top of the system, a scheduler is involved to determine which program to execute {or schedule) next. As
we shall see later, our model is essentially that of [4] although our notations are somewhat different. (See
[4] for a detailed comparison.) Based on this model, our goal is to determine, given a system of
probabilistic concurrent programs, whether the system will terminate properly (i.e., with probability 1)

under a given fairness criteria.

First, we define our model of probabilistic concurrent programs. Formally, a system of k
probabilistic concurrent finite-state programs (denoted by FPC‘Pk, or FPCP if the parameter k is not
important) is a 4-tuple (S,so,é,X) where:

S is a finite set of states,

s, (€ S) is the initial state,

X (C 8) is the set of termination states, and

6={51,...,6k} is the set of transition functions which satisfies:

oV 1<i<k, 6: S — 25X

e (Let Piq’r be the number t (0‘,<_t_<_ 1) such that (r,t)€6(q).) V s€S, if (s”,t)€f(s) for some
s*€S and t>0, then X, P’ ==1.

$’€S s,8°
Let the classes of such systems be denoted by 7PCPk and FPCPF, respectively. We assume that X is a
“sink", i.e., if a state in X is reached, with probability 1 the system will stay in X. Intuitively, P;’r, with
its value ranging between 0 and 1, stands for the probability of reaching state r from state q by executing
an atomic step of program i. Note that, unlike the definition in [4], here a program i can be “undefined"
in some state g; i.e., Z'r eSP;,r:;O' The notion of "enabledness® can, therefore, be introduced. Program i
is said to be enabled in state g iff P;,r # 0 for some state r in S; otherwise, we say it is désabled. Hence,
our problems are somewhat more general than those in [4], where each program is considered to be
enabled in every state. As we will see later, this kind of generalization allows us to distinguish several
fairness notions that are identical for the problem instances considered in [4]. A schedule of Pis a partial
mapping:
o: Un ({sp} xSM)—{1,2,... .k}

Given a schedule o, the corresponding computaiion tree {or computation) is a tree with S, as its root and

for every n, (80’51""’8:1) is a path in the tree iff for every j, 1<j<n, there exists a program ij (ISijSk)

such that U(so,sl,‘..,sj_ly——ij and P;jj-l’sj>0. The reader should note that, in each state the program to be
scheduled next depends not only on the current state, but also on the sequence of states (history) that
have been visited thus far. Furthermore, since o is a single-valued function, this method of scheduling is
deterministic. Note that given a schedule, the corresponding computation tree is uniquely decided, and
vice versa. Therefore, in the remainder of this paper, the words *schedule® and "computation tree® will
be used interchangeably. A computation path (or path) e over a schedule o is a sequence

1 1

e 8, 8, S, > ... S
0 1 2 m

i.

where s is the initial state, for each j, 1<j<m, 5; isin S, 1§ij§k, Si+1=U(SO""’Si) and stj-1’3j>0' (We
also consider infinite computation paths. In this case m==00.) We define ae(j)zij, i.e., the j-th program
scheduled in e. Let A be the set of all infinite sequences of states of S. Let
A(SO,...,sn)z{wEA{W=s0,sl,...,sn,..‘}, i.e., the subset of A such that each element has s,...,;s as its prefix.
Given a schedule o, the probability measure B, is defined by

i1 * i2 % % in
#(Asg,..8))=P_ *P°_*.*P

g o®1 5152 ®n-1°n

where ij__"a(so""’sj-l)’ i=1,...,n. Consider an arbitrary set of infinite paths L. in o. If, for some h, L=
Ul cich A(SO""’Sdi) U L, where A(so,...,sdi) N A(SO’”"Sd,) = ¢ for i# and L’ does not contain A(SO,...,S)

]
for any s,...,s, we define p(L)= I iy M (A(sq--8,); otherwise, u (L)=0. (See [10] for a formal
- 1

definition of the probability measure concerning Markov chains.)

We now consider the following types of fairness. They were first defined and studied in [12]. (The

1 1

names in parentheses refer to those used in [12].) Given a system FPCP, and a path e: 5 Ls sy >

0 1
—s —.., Wesay e 1s:

L. 1_ fair (impartial) iff for every program i there are infinitely many j’s such that o (j)=i.
(Le., every program is scheduled infinitely often in e.)

2. 2_ fair (just) iff for every program i if there exists a number t such that i is enabled for every
state s; (j>1t), then there are infinitely many I’s such that oe(l)zi. (I.e., every program that is
enabled continuously is scheduled infinitely often in e.)

3. 8__ fair {fair) iff for every program i if there are infinitely many j’s such that i is enabled in
s then there must be infinitely many I’s such that ae(l)zi‘ (L.e., every program that is

enabled infinitely often is scheduled infinitely often in e.)
The reader should realize, at this point, that every 1_ fair path is 3_ fair, and every 3 _ fair path is
2 _fair. (Now [4] considers only systems where each program is enabled in every state. In such a context,
the above three types of fairmess are identical.) These types of fairness serve in many cases as an
appropriate notion of what it means for a computation to be “"fair®. See e.g. [4, 12]. There are
situations, however, for which they are not deemed powerful enough. (See [15].) As a result, the concept
of state-fairness was introduced [15]. A path is said to be state-fair if it is the case that, whenever a
program is enabled in some state that occurs infinitely often, then that program must be scheduled
infinitely many times in that state. Compared to fairness types 1-3 defined previously, state fairness is
defined on the transition level; and hence is a more severe constraint. {Note that fairness types 1-3 are
defined on the process level.) An interesting question, therefore, arises. What happens if one imposes
state fairness in conjunction with each of the earlier types of fairness. One can readily see that, a state
fair path is also 2 and 3_fair. The combination of fairness types 1-3 and state fairness ends up defining

two additional notions of fairness: a computation path e is

4. 4__ fair iff it is state-fair.

5. 5__ fair iff it is state-fair and 1_ fair.

Given an FPCP P (==(8,s,,6,X)) and a schedule o, let L® be the set of t__fair paths of 0. o is said to
be t__ fair (t==1, 2, 3, 4 or 5) iff uU(Lt)zl. Our main concern is to determine whether there exists a fair
schedule such that P does not terminate with probability 1. More precisely, let fgg)(a) be the probability

of either:
1. reaching a state in X for the first time using exactly n moves under schedule o, or
2. entering a state s {in n steps) in which no program is scheduled next.

Let f;zZ’iz Gfg)(a). We further define hZ’Xzinf{f;(a): o is a t_ fair schedule starting at s}. (h‘;X is

abbreviated as hg(if s is the initial state.) The non-termination problem (NTP) is to decide, given an
FPCP, whether h§(<1 for t==1, 2, 3, 4 or 5. The termination problem (TP) is the complement of the
NTP. The NTP has been studied to some degree in [4, 5, 21]. In [4], it is shown that for FPCP’s the
NTP under 1 __fairness depends only on the topological structure of the transition functions, and not on
the particular probabilistic transition assignments. In other words, [4] showed that it was possible to use
a purely combinatorial approach to solve the NTP. (See also [21].) In the remainder of this section, we

generalize the results in [4] to deal with fairness types 2-5.

Given an FPCP P=(S,so,5,X), we define its corresponding execution graph (herealter, graph)
(denoted by G P) to be a directed labelled graph (V,E) where V=S and an edge (q,r)i (i is the label of the
edge) is in E iff Pg,r#o (i.e., there is a nonzero probability for program i to reach state r from q in one
step providing program i is scheduled). The node So is called the initial node. A subgraph G’ of G » is
said to be a reachable subgraph iff some node in G” is reachable from So- Given a set of nodes V’, the
restricted graph over V* is a subgraph G*==(V’,E*) of G such that an edge (q,r), of E is in E* iff both
q and r are in V* and there is no r’ in V-V’ such that (q,r’)i € E. A reachable strongly connected
component G*=(V",E*) of G, (=(V,E)) is called a blackhole iff G~ satisfies:

1. G’ is the restricted graph over V|

2. V'NX==¢, and

A program i is sald to be active in a blackhole G*=(V*,E’) i{f there are states q and r in V"~ such that
(gr), isin E”. A blackhole G~ (of G) is said to be of
1. type 1 iff every program i is active in G”.

2. type 2 iff, if i is a program such that V s€V’ 3 s €V such that (s,s’)i is in E, then program i1
must be active in G°.

3. type 8 iff, whenever i is a program such that (q,r), is in E for some q in V* and r in V-V~
then program i must be active in G~.

4. type 4 iff for every q in V7, there is no v’ in V-V~ and no j, 1<j<k, such that (q,r’)j isin E.

5. type 5 iff it is type 1 and type 4.

In what follows, we show that for any FPCP, the particular nonzero transition probabilities have no
effect on whether the FPCP will (fairly) terminate or not with probability 1. Based on this fact, we are
then able to give a combinatorial solution of the NTP for each type of fairness. In order to show this, the
following lemmas are required. They are, basically, extensions of the results given in [4], where only the

1_ fairness was considered.

Lemma 2.1: Given an FPCP P=(S;5,6,X), min{ th | s€S } is either O or 1, where f =1, 2, 3, 4 or 5.

Proof. Since the proof of the same theorem (also called Zero-One Law) for type 1 fairness, given in [4],

does not depend on any particular type of fairness, this lemma then follows. o

A slight modification of Theorem 2.1 in [4] yields:

Lemma 2.2: Let P=(S,SO,§,X) be an FPCP. If there exists some t_type blackhole in G » then there is a

t_fair schedule o that satisfies the following conditions:
*
1. £ (0)<1,

2. with probability 1, every "active® program is scheduled infinitely often in every path.

Lemma 2.8: Let P=(S,s0,5,X) be an FPCP. If there exists a t__fair {t==1, 2, 3, 4 or 5) schedule & such
that f;((a)<1, there must exist a t_ type blackhole G’ ==(V°E*} in GP such that the set of states

occurring infinitely often in o exactly coincides with V~.

Proof. Assume that o is a t__fair schedule. According to Lemma 2.1, f;(a)<1 implies that there exists a
state s such that, hg,X:o and s occurs in o with non-zero probability. Consider the subtree of ¢ starting
at s. Note that each path of the subtree is infinite; otherwise, h;X>O. Let s, be a state that occurs
infinitely often in this subtree. Let V' and E° be the sets of states and edges reachable from s,
respectively. It is reasonably easy to see that G =(V’ E’) is a blackhole, otherwise, we have h2X>0’
which is a contradiction. Furthermore, we can also claim that G is a t_ type blackhole. If this ,is not
the case, let s;,...,s; be the finite path that leads to the blackhole G’ in o. We immediately have
”o(SO"“’Sl)>O' Let L denote the set of all t__fair paths in o. Clearly, ”a(L)<1’ which implies that o is

not t__fair - a contradiction. The lemma then follows. o

Using the above lemmas, we can immediately derive necessary and sufficient conditions for an FPCP

to (fairly) terminate with probability 1. We have:

Theorem 2.1: Given an FPCP P, let G P denote its graph representation. /P will not terminate with
probability 1 under t__fairness (t=1, 2, 3, 4 or 5) iff, there exists a type t blackhole in G >

3. The complexity measured as a function of the size of the state space

In this section, we derive the complexity of the NTP (TP) for FPCP’s under fairness types 1-5. We
assume that an instance P=(S,so,5,X), as described in the previous section, is encoded in the usual manner
for labelled state graphs. Note that this representation amounts to expressing a system of concurrent
programs in terms of its global state space. One should note that there are instances where this encoding

scheme is quite verbose. In the next section, we explore a more succinct representation (one in which each

program is described only in terms of the memory to which it has access) and see how the complexity is

altered.

Before proceeding, we first define some complexity classes that will be used throughout the rest of
this paper. An alternating Turing machine (ATM) is a Turing machine with four kinds of states:
namely, existential, universal, accepting and rejecting states. A universal state leads to acceptance iff all
successors lead to acceptance; while an existential state leads to acceptance iff there exists a successor that
leads to acceptance. Detailed definitions can be found in |[2]. The classes of languages accepted by time
(space) bounded ATM’s were also defined in [2]. In particular, AZ‘}; refers to the set of languages accepted
by O(log n) space-bounded ATM’s in which the initial state is existential and the ATM is restricted to
make at most k-1 alternations during the course of a computation. We refer to such ATM’s as O(log n)
space bounded (k-1)-alternating ATM’s. AU%(’ (:::co-Ale;) is the class of languages accepted by O(log n)
space bounded (k-1)-alternating ATM’s whose initial states are universal. Unless otherwise specified the
reader may assume that all ATM’s discussed in this paper have initial states which are existential. Note
that Ale‘zNLOGSPACE (or NL, for short) and that the entire hierarchy is contained in PTIME, i.e.,
UEO:I AEI]; C PTIME [2]. Other properties of this hierarchy as well as some complete problems for AZIZJ
(and AZ’X:;) can be found in [19, 20].

We summarize the results of this section in Table 2.1, where PTIME-C, AZI‘,;C and AZ‘I:;—C stand for
PTIME-complete and complete for the class of O(log n) space bounded I1-alternating and 2-alternating
ATM’s, respectively. Since the TP is the complement of the NTP, the complexity results for TP can be
displayed simply by replacing AZ'IQ‘-C with A]—IIQ‘-C and AE%’-C with AH;‘-C. We give the complexity of
the problem for the case when the degree of concurrency is a fixed constant and when it is a problem

parameter. (Actually it is an internal parameter since it is defined implicitly within 7.)

Uy J’PCPk fPCPk, k>2 ;’U’CP1
type 1 PTIME-C PTIME-C AZ:-C
type 2 PTIME-C PTIME-C AZL-C
type 3 PTIME-C PTIME-C AZb-C
type 4 ASL-C ASL-C ASL-C
type 5 ASL-C ASL-C ASL-C

Table 3.1: The complexity of the fair NTP.

In [4], an algorithm was presented to check the termination (with probability 1) of FPCP’s under
1_fairness. Using Theorem 2.1, one can easily extend their procedure for other types of fairness. Hence,

we have:
Lemma 3.1: The fair NTP for #PCPis solvable in PTIME for fairness types 1-5.

Proof. The following algorithm is a slight modification of the one given in [4]. Let P be an instance of

the problem with k processes. Let n denote the size of P (i.e., the number of bits in the representation).

Note that k<n.
Algorithm:
1. Construet G =(V,E).

2. Let Q=X. Delete from G all nodes in Q and delete all edges e——~(q,r).l such that
a. q€V-Q and reQ, or

b. q,reV-Q and for some s in Q, (q,5),€E.
Let G’ be the resulting graph.

3. Partition G’ into strongly connected components. Let B be one component. Check to see if B
is a t__type blackhole. If so, the algorithm terminates with the conclusion that P will not
terminate with probability 1 under some type t fair schedule; otherwise, let Q=QU{uju is a
node in B} and repeat steps 2 and 3.

4. If no such t__type blackhole exists, the algorithm concludes that P will always terminate with
probability 1.

To determine the complexity of the above algorithm, first note that at most n iterations are needed.
(Since the resulting subgraph G~ in step 2 is proper.) As far as each step is concerned, steps 1 and 2
require time polynomial in n. Step 3 requires time polynomial in n for type 2-4 blackholes and time
polynomial in n and k for type 1 and 5 blackholes. (Note that k appears when checking type 1 and 5
blackholes because, by definition, every program must be scheduled for fairness types 1 and 5.) The

lemma then follows. o

Theorem 3.1: The NTP for 7PC P, under fairness types 1-3, is PTIME-complete. The result also holds
for 7PC Pk’ when k is a fixed constant greater than 1.

Proof. The fact that the problem is in PTIME follows directly from Lemma 3.1. In what follows, we
show that it is also PTIME-hard. To show this, we reduce the path system problem, which is well-known
to be PTIME-complete (8], to the NTP for FPCP’s.

Recall that a path system is a 4-tuple PS==(X R,S,T) where X is a finite set of nodes, S (CX) is a set
of starting nodes, T {CX) is the set of terminal nodes, and R (CX XX XX) is the set of rules. A node x
in X is admaissible iff either x€T or Jy,z€X such that (x,y,z)€R and both y and z are admissible. PS is

said to have a solution iff there is an admissible node in S.

Now given a path system PS=(XR,S,T), we show how to construct an FPCP, P=(S’,so,5,X’) such
that, PS has no solution iff h;,<1 for t =1, 2 or 3. P will have the property that both processes are
enabled in each state. Since for such instances I, 2 and 3_ fairness are the same, we only consider
1 _ fairness in the remainder of the proof. Let R:{rl,...,rd}, S={sl,sz,...,sm} and T=={t

1,t2,...,tn}. For

convenience, we first construct the graph G P:(V’E) as follows:
V:XU{SO}U{XI,...,xd[v x€X-T},

E= the collection of edges added by 1-5 below:
(1) add (sy8,), for i==1 and 2,

(2)vj, 1<j<m, add (Sj’s(j+1 Ln_g(im))i for i==1 and 2,

(3) vj, 1<j<n, add (tj’t(j+1 mod n))i for i==1 and 2,

(4) v x€X-T-8, add (x,sy), for i=1 and 2,

(5) v x€X-T, v 1<j<d-1, add (x,xl) (xj,xj+1) and (xd,x) for i==1 and 2,

0
(6) vj if rjz(x,y,z) isin R, add (xj,y)1 and (xj,z)z.

See Figure 3.1. The FPCP P is constructed from G » by assigning probabilities uniformly to each choice
of move, i.e., for each node, every outgoing transition concerning the same process i will be assigned the
same probability. Furthermore, let X* (the set of termination states) equal T. We claim that PS has no
solution iff 7 has a type 1 blackhole containing the node So- To show this, first assume that PS has no
solution. Let A and B be the sets of nonadmissible and admissible nodes, respectively. Let
A’:{SO}U{a,al,...,ad[aEA}. Let B’={b,b1,...,bd|b€B}. According to the construction, it is reasonably
easy to see that each node in A’ connects to at most one node in B’. Furthermore, the subgraph
containing A’ is a strongly connected component. Since we chose X’==T, such a strongly connected

component is obviously a type 1 blackhole. The only if part is proved.

Now, consider the case where h§(’<1' By Theorem 2.1 there must exist a type 1 blackhole. By
construction then such a blackhole must contain every node in S. In other words, every node in S must
occur infinitely often in every 1_ fair schedule. If some node, say s, in S is admissible, there must exist a
rule (s,x,y) such that both x and y are admissible. Furthermore, either x or y must occur infinitely often
in the 1_ fair schedule. Inductively some node in T must be in the 1__fair schedule, which obviously, is a

contradiction. The if part is therefore proved.
Consequently, there exists a type 1 fair schedule o iff h%,zO. The theorem then follows. m]

Note that two programs are required in the PTIME hardness proof of Theorem 3.1. If we restrict
ourselves to the case where only one program is involved, a somewhat lower complexity result can be
obtained. Before showing this, we need the following easy lemma:

Lemma 3.2: For an FPCP P‘z(S,so,b‘,X) of one program, h§(=1 (b==1, 2, 3, 4 or 5) iff there is no
blackhole in G >

Proof. The lemma is trivial since, in such cases, all blackholes are of type 1, 2, 3, 4 and 5. O

10

With this lemma, we can immediately derive:

Theorem 8.2: The fair NTP for 77°C Pl’ under fairness types 1-5, is AZ’Iz‘-complete.

Proof. First, we derive the upper bound. According to Lemma 3.2, an FPCP1 P will not terminate
properly iff there is a blackhole in G, We show how to construct an O{log n) space bounded ATM M
that accepts a given F‘PCP1 Piff G » has this property. We now sketch the operation of M on an instance
P=(8,8,,6,X) in FPCP,. Let |A=n. Note that G, is obtainable from 7in deterministic logspace.

A computation of M has two phases - first the existential phase and then the universal phase. In the
first phase, M (nondeterministically) traverses a path in G, (of length at most n) and
(nondeterministically) chooses a state, say q, of G p at which to stop and enter the second phase. In the
second phase M traverses all paths (of length n) in G P that emanate from q. If during one of these
traversals M encounters a state of X or a deadend state it immediately rejects; otherwise it accepts. One
can easily see that, M accepts G » iff there exists a reachable node q such that q can not reach a deadend
state or a state in X; i.e., it can reach a blackhole. Furthermore, during the course of any computation
the work space needed is logarithmic in n and the number of alternations required is one. The details of

M’s construction will be left to the reader.

Now, we show the lower bound. Let M be an O(log n) space bounded 1-alternating ATM. Given an
input string x, we show how to construct an FPCP1 P in such a way that, M accepts x iff 7 will not
properly terminate. Let |x| denote the length of x. A configuration of M is a 3-tuple (p,i,s), where p is
the current state, i is the input head position, and s is the contents of the work tape (including the head
position). Since M uses only O(log |x|) space, the number of distinct configurations is polynomial in |x|.
A configuration (p,i,s) is called a universal (existential, accepting, rejecting) configuration iff p is a
universal (existential, accepting, rejecting) state. Let V be the set of all configurations of M on x. For a
configuration c¢, let #c be the number of outgoing transitions of ¢. Now P=(S,SO,5,X) is constructed as

follows.

1.S=VU(VXV),
2.8y = ¢y where ¢, is the initial configuration,

0

3. 6

(q,1/ #p)e&(p), where p is an existential configuration and p can reach g in one step,

([r,r],1)€8(r) for every universal configuration r,

vV rev ([q,r},l/#p)é(?([p,r]), where p is a universal configuration and p can reach q in one
step,

v r€V ([r,r],1)€8([v,r]) if v is an accepting configuration,

11

4. X == {|w,r] | [w,r]€S and w is a rejecting configuration}.

See Figure 3.2. Clearly, M accepts x iff there is a blackhole in G > Furthermore, the above construction

can easily be carried out in deterministic logspace. This completes the proof, n

Now, for solving the fair NTP, for fairness type 4, it suffices to find a type 4 blackhole, which is
essentially the same as determining the fair NTP for ?PCPI. Hence, the same proof as was used in

Theorem 3.2 can be applied here. We immediately have:

Theorem 3.3: The fair NTP for 7PCP and 7PC ’Dk’ under 4 _fairness, is Ale’-complete.

Lastly, we consider the fair NTP for FPCP’s under 5 __fairness. From Theorem 2.1, we have that an
FPCP P does not terminate properly under 5_ fairness iff there exists a type 4 blackhole in which every
program is scheduled. In the 4_ fairness case the algorithm only had to find a type 4 blackhole; but in
this case it must also check that every program is scheduled in the blackhole. As we will see in the

following theorem, this extra checking step "increases" the problem complexity.

Theorem 38.4: The fair NTP for FPCP and 7PCPk, k>2, under 5__ fairness, is AZ';Lcomplete‘

Proof. First we show the upper bound. To prove this, we construct an O(log n) space bounded 2-
alternating ATM M that accepts a given FPCP P iff P has the properties mentioned above. We now
sketch the operation of M on an instance P:(S,so,cS,X) with k concurrent processes. Let |P=n and note

that k>n. Recall that G is obtainable from P in deterministic logspace.

Now a computation of M consists of four phases, A, B, C and D which run in sequence. The states
entered in phases A, B and D (C) will be existential (universal). In phase A, M (nondeterministically)
traverses a path in G, (of length at most n) and (nondeterministically) chooses a state, say q, of G p ab
which to stop and enter phase B. In phase B, M (nondeterministically) traverses a path in G » (of length at
most k*n) that begins at q and which passes through at least one move of each of P’s k processes before
ending in the same state q. (If M traverses k*n steps in G » which fail to meet these requirements, then M
immediately rejects the input.) In phase C, M generates a configuration for each state reachable in G »
from q. The depth of the tree created in this phase need be no greater than n. In phase D, M, from each
of the configurations (states) generated in phase C, (nondeterministically) traverses a path in G, (of
length at most n). If during this traversal M encounters a state in X or a deadend state it immediately
rejects; otherwise it accepts. Clearly the computation described only requires O(log n) space and can be
carried out by a 2-alternating ATM. Furthermore, such a machine can easily be constructed from P in
deterministic logspace. The fact that M accepts P iff it has the correct properties follows from the
observation that the state q, found in phase A, is in a type 5 blackhole iff phase B can succeed and each

state of G » found in phase C cannot reach a deadend state or a state in X.

12

Now, we show the lower bound. Here, we reduce an arbitrary problem in AE:IS‘ to the NTP. Let M
be an Oflog n) space bounded 2-alternating ATM. Given an input string x, we show how to construct an
FPCP2 P with the property that, M accepts x iff P will not properly terminate under type 5 fairness. Let
|x] (=n) denote the length of x. A configuration of M is a 3-tuple (p,i,s), where p is the current state, i is
the input head position, and s is the content of the work tape (including the head position). Let N be the
initial configuration. Since M uses only O(log |x|) space, the number of distinct configurations is therefore
polynomial in [x|. A configuration (p,i,s) is called a universal (existential, accepting, rejecting)
configuration iff p is a universal (existential, accepting, rejecting) state. Let V (E, U) be the set of
(existential, universal) configurations of M on x. Let #c denote the number of outgoing transitions of a

configuration ¢. Now P————(S,so,é,X), with two programs A and B, is constructed as follows.

1. S = VU (VXV) U (VXVXV) U {[8,r]|reU},

2. So = €

3. 6: For each configuration p, g€V, v€U and t€E, we have:
a. cSA:

(q,l/#p)€5A(p) if p can reach q in one step,
([r,r],1)ed, (r),
([q,r},l/#p)eéA([p,r]) if p can reach q in one step,
([6,tr], 1)€8,([t.1]),
([q,t,r],1/#p)€5A([p,t,r]) if p can reach q in one step,
([t,t,r],l)Ez?A([v,t,r}) if v is a rejecting configuration,

([6,r],1)€6,([v,t,r]) if v is an accepting configuration,

([r;r], 1), ([6,r]).

b. 85 ([0.1],1)€65([0,r]), if reU.

4. X = ¢.
See Figure 3.3. We can now argue that M accepts x iff there exists a type 5 blackhole in G > The crucial
point is that in order for B to be scheduled infinitely often (which is required in a type 5 blackhole), some
state of the form [f,r] must occur infinitely often. In other words, each time A reaches a state of the form
[s,t,r], A must be able to visit at a later time some state [v,t,r], where v is an accepting configuration.
(Otherwise, A will get stuck without being able to visit some state [f,r] ever again.) Hence, M accepts x
iff there exists a type 5 blackhole. Since the above construction can easily be carried out in deterministic

logspace, this completes the proof. o

13

4. The complexity when a more succinct representation of the input is
assumed
In this section, we investigate the complexity of the fair NTP (TP) for FPCP's over a different
representational scheme. For this scheme, the NTP for fairness types 1-3 is shown to require .Q(n(k's)/ 96)
deterministic time; while for fairness type 4(5) k*log n 1(2)-alternating ATM space is required.

Corresponding upper bounds are also derived. The results are illustrated in the following table.

Lower bound Upper bound
type 1 279 get. time 0(n®*) det. time
type 2 2@* /98 g0t time 0(%**) det. time
type 3 Q¥ ®/%)det. time 0(¥*) det. time
type 4 (k-11)/4*1log n 1-alt. space O(k*log n) 1-alt. space
type 5 (k-17)/6%1log n 2-alt. space O(k¥log n) 2-alt. space

Table 4.1: The complexity of the fair NTP for 7PC Pk'

Here, d denotes a positive constant.

We now describe the representation of FPCP’s assumed in this section. First some additional
notation is in order. Let V be a finite set of memory bit locations. Let A(V) be the set of configuations

or states that V can be in. (Note, of course, that |ﬂ(V)§:21V|.) Now an FPCP, Pis a 4-tuple (8,5,,6X)

where:

® S:{Sijlsij’ 1<i,j<k, is the finite set of memory locations shared between process i and
process j (each memory location denotes a single bit). Sii’ 1<i<k, denotes the local memory
of process i; i.e., the memory which is not shared.},

o5, € A(Ulgi,jgksi') is the initial system state,

i)

® X:(Xl, e Xk)’ where each Xi, a subset of ﬂ(ulgjgksij)’ is the set of termination states for
each process i, and

® 5:{51,...,6k} is the set of transition functions satisfying: Vi, 1<i<k, 6 ﬂ(ulﬁjﬁksij)

2 AU <y <x S X101

Again, we assume that X is a sink; i.e., if the system reaches a state in which each process i, 1<i<k, is in

a state in Xi then the system will remain in X.

Let Siz U;;l Sij’ 1<i<k. Then in this representation a state of process i is a configuration of Si’
which is exactly the memory to which process i has access. The size of Pis polynomial in 2?=1|’4(Si)1’ the
sum of the number of configurations attainable in the memory accessible to each process. The size of P
represented in the manner described in section 2 depends on M(uf:lsi)}, the number of global memory
configurations which can be exponential in the former measure. Let |F denote the size of P as described
in this section. Then the size of P as described in the previous section is bounded by a polynomial in \Pik

Thus, according to Theorem 3.1, the NTP for fairness types 1-3 is solvable in O(nd*k) deterministic time

14

(for some positive constant d). Also, according to Theorems 3.3 and 3.4, the NTP under 4(5)__ fairness is
solvable in O(k*log n) space by an ATM which makes at most one (two) alternations; i.e., in AZS (k*log n),
Since it was shown in [2] that for any fixed r, AZ'I:*log " C DSPACE((k*log n)?), we have:

Theorem 4.1:
1. The NTP under fairness types 1-3 is in EXPTIME.

2. The NTP under fairness types 4-5 is in PSPACE.

Let C{nk) to be the restricted class of FPCP’s with k programs such that each program has at most n
states. It is precisely this subclass for which we derive our lower bounds. Note that for Pin C(n,k), | A is
bounded by a polynomial in n and k. For n>2, the size of P € C{n,k) as measured in the previous section
18 O(nc*k) for some positive constant c¢. Hence, for some positive constant d, the NTP for C(n,k) under
1-3 (4, or 5) fairness is solvable in O(nd*k) deterministic time (O{k*log n) 1 or 2-alternating ATM space).

Now, we derive the lower bounds. Before doing this, the following definitions are required.

Let 2={0,1}. A mapping g: 5" — £ is said to be computable in S(n) space (T(n) time) iff there
exists a deterministic Turing machine M such that, given an input XEZ’*, M will output g(x) using at
most S(|x|) space (T(|x|) time). Now, consider two problems L and L’ over 5", L is said to be
(S(n),(;}(n))space ((T(n),Q(n))y;,,)-reducible to L’ iff, there exists a mapping g computable in S(n) space
(T(n) time) such that:

1. xe€L iff g(x)€L’, and

2. vxeX", |g(x)| <Q(x))

Let C be a class of problems over Y. L is said to be C-hard with respect to (S,Q)Space—reducibility
((T,Q)time-reduablhty) if for every L’ in C, there exists a constant ¢ such that, L’ is (S(n),c Q(n))spzwe

((T(n),c*Q(n)),;,,,) Teducible to L. (See [9].) The following results were given in [9] (or, can be obtained

by a straightforward generalization of those given in [9]). See also [7].

Lemma 4.1: If a function {: 55 computable by an S(n) space bounded TM M with tape symbols
{0,1,#} such that at any time the work contains at most k #’s, then f is computable in S(n) + (k+2)*log
S(n) space by a TM M’ with tape symbols {0,1}.

Lemma 4.2: Let L (C Z]*) be C-hard with respect to (S,Q)_ -reducibility.

spa

(1) If L is solvable in T(n) deterministic time, then for any problem L’ in C, there are constants ¢,

and ¢, such that L’ is solvable in T(c1*Q(n))+c2*n*8(n)*2s(n) deterministic time.

(2) If L is solvable in S’(n) 1(2)-alternating ATM space, then for any problem L’ in C, there are
constants ¢, and ¢, such that L’ is solvable in S* (n) + cylog S*(n) 1(2)-alternating ATM space,

where $*(n)=S"(c,*Q(n))+2*log(c,*Q(n))-+S(n).
In the remainder of this section we will be describing systems of probabilistic concurrent programs. For

ease of expression, we describe each program via a flowchart. The building blocks of our flowcharts are

15

illustrated in Figures 4.1(a)-4.1(c). Here a circle represents a state of the flowchart. Two states, called
the ¢nitial and terminal states, are distinguished from the rest. (In what follows, the reader should not
confuse the state of the flowchart with the state of the program which it describes.) Initially, a token is
placed on the initial flowchart state. The semantics of these flowchart programs is as follows. Each time
the program is scheduled the token will move along the flowchart, according to the following rules, until
the next state (i.e., circle) is reached. (The move is considered to be atomic.)

1. (Assignment block)

See Figure 4.1(a). Assume that state s contains the token. Once the program is scheduled,
with probability p, (1<i<t and OSpiSI) the sequence of instructions {;,...,[in A, will be
executed. The token then moves to s’,.

2. (Waiting block)

See Figure 4.1(b). Here P represents a predicate. Assume that s contains the token. Now,
when the program is scheduled and P is "true® {"false"), the token moves to s’ (s). Note that
as long as P is "false" we have busy waiting.

3. (Conditional block)
See Figure 4.1(c), where each dashed line is labelled with a predicate P, (1<i<t). The

semantics of this block is that, if one and only one of the predicates, say Pi’ is true, then Ai 1s

executed before the token is moved to s’i; otherwise, the token is moved back to s directly.

In what follows, we derive a lower bound for the fair NTP under fairness types 1-5.

Theorem 4.2: The NTP for C(nk) under fairness types 1-5 is AZ,’(Zk'l)*log “_hard with respect to
((2+€)log n,n4loggn)8pace-reducibility.

Proof. Let M be an arbitrary k*log n space bounded 1-alternating ATM. Assume that the set of tape
symbols of M is {0,1}. Consider an arbitrary input string x. (Let n=|x|.) In what follows, we show how
to construct a P=(8,s,,6,X) in ¢(O(n*1og’n) k+1) to simulate the computation of M on x in such a way
that, M accepts x iff P will not terminate with probability 1 under fairness types 1-5.

The structure of P is shown in Figure 4.2, where circles and boxes are used to represent programs and
shared variables, respectively. Before describing each entity of P in detail, we briefly address the general
idea of the simulaton. The simulation is, in some sense, similar to the one used in proving the lower
bound of Theorem 3.2. (Note, however, that a log n space bounded 1-alternating ATM was considered
there.) Recall there that the proof involved constructing a system P* consisting of a single program (say
P) to simulate M on x. P’s progress was divided into two phases - the existential phase and the universal
phase. First P simulated, in a nondeterministic fashion, the existential moves of M on x until a universal
configuration was reached. If the configuration of M, at this point, was ¢, P stored the configuration ¢ in
its local memory and entered the second phase. In the universal phase, P simulated universal moves of M

(at each step P followed the computation of M by choosing just one of the possible successor

16

configurations - each successor configuration had equal probability of being chosen) until either a rejecting
or an accepting configuration was reached. In the former case, P entered a terminal state and the
simulation stopped; however, in the latter case the simulation began anew from the stored configuration
c. By definition, M accepted x iff there existed some reachable configuration ¢ such that from ¢, no
rejecting configuration could be reached. Hence, in G, (the graph of P") the configuration ¢ was in a
type 1-5 blackhole. We then concluded that M accepted x iff P* would not terminate with probability 1
under type 1-5 fairness. See Theorem 3.2. The reader should realize that the ability to restart the
simulation at the stored configuration was crucial. Now, the same simulation for an O(k*log n) space
bounded ATM would be more complicated. In general, the program would require O(nk) states, which
will not work for our purposes here since we require the FPCP to be in C(O(n°),0(k)), for some fixed

constant c.

In order to overcome this difficulty, the system P constructed here consists of k+1 programs, A, Li
(1<i<k), where each program is of size O(n4*loggn). First, M’s k*log n bit work tape is partitioned into
k blocks of length log n each. Program A will simulate the computation described above; while Li’
1<i<k, acts as a storage vehicle for the i-th block of the work tape of M (and the i-th block of the work
tape for the stored configuration). Now, A will not store the contents of M’s work tape but will store the
positions of both tape heads (and the positions of the tape heads for the stored configuration). In order to
simulate a move, A must retrieve and update (from the appropriate Li) the current bit being scanned on
M’s work tape. This is carried out by sending (and later receiving) “messages" through the chain
L,...Ly. The program A (Lyby respectively) communicates with L, (L,,...L,, #, respectively) by
using the shared memory denoted by WO (Wl"”’wk’ respectively) as a communication media. Fach
message sent through the chain has (3 + log k + log log n + 1) bits and consists of the following
information:

a__ field (3 bits):

== (: no-op mode,

|

: retrieving mode,

I

: updating mode,

I

: phase _ change mode,
== 4: reset mode,
== 5: terminating mode.
b_field (log k bits): block number.

¢__field (log log n bits): displacement within a block.

17

d_ field (1 bit): data.

Let Wlh (h==a, b, ¢, d, ab, ac,..., etc.) denote the value of the h__field(s) of W, 1<i<k. (Let W, be short
for W?de.) The value of W?‘, for values 1, 2, 3, 4 or 5 indicate whether A is (1) retrieving a bit of the
work tape, (2) updating a bit of the work tape, (3) storing the work tape contents (of the stored

configuration), (4) resetting the work tape contents, or (5) causing the system to terminate.

In what follows, we describe the programs Li’ 1<i<k, and A via flowcharts. The flowcharts are not
actually part of the description of P but they readily illustrate the structure of the system and the ease
with which the actual déscription of P can be produced by a transducer. We first describe the memory to
which programs Li’ 1<i<k, and A have access. The memory, in each case, is referenced (in the
flowcharts) by variable names in order to make the description of the flowcharts easier to understand.

Let [M| denote the number of states in M.

Program Li’ 1<i<k

local variables:

Y (log n bits): used to store the i-th block of the current work tape.

Y’ (log n bits): used to store the i-th block of the work tape when the simulation
switches from its existential phase to its universal phase.

shared variables: Wi—l and Wi

Program A

local variables:

ST (log |M]| bits): used to represent the current state.
ST’ (log |M]| bits): used to store the state at the phase change.
TP (log k + log log n bits): used to represent the current work tape head position.

TP’ (log k + log log n bits): used to store the work tape head position at the phase
change.

IP (log n bits): used to indicate the input head position of the input tape.
IP’ (log n bits): used to store the input head position at the phase change.

shared variables: WO and Wk'

Now, the program Li’ 1<i<k, is described by the flowchart in Figure 4.3. To construct A, let U, E, A
and R denote the set of universal, existential, accepting and rejecting states of M, respectively. A
transition of M, [== [(p,a,b)—%(ql,bl,dl,d’l),...,(qt,bt,dt,d’t)], implies that if M is in state p and a (b,

respectively) is the current input (work tape, respectively) symbol then M can enter state q, (qQ,...,qt,

18

respectively), change the tape symbol to b1 (b2"“’bt’ respectively), move its input and work head in
directions d; (d2"”’dt’ respectively) and d’ (d’2,...,d’t, respectively), respectively. Let #{l)==t. Let w be a
set of M’s transitions where len. (Note, that any two distinct transitions begin with a unique triple.)
Figure 4.4 shows how the transition ! can be simulated. Note that the predicate on each dashed line
matches the current state, input symbol and tape symbol with the corresponding transition. The
predicates on the other dashed lines correspond to other transitions. Let B denote such a flowchart
segment where all the transitions in 7 are represented. Now, we define ﬂuz{ul,...,uf} (ﬂez{el,...,eg}) to
be the set of transitions defined on universal (existential) states of M, respectively. The program A is

shown in Figure 4.5.

Let P=(S,s,,6,X) be as described above where each X, (and X) = {the unique program state where
the flowchart token is on © and all variables are set to 0}, 1<i<k, and So 18 the system state where all
variables are set to zero except for ST (which is set to the initial state of M) and each respective flowchart
token resides in its respective initial state. Now, consider the size of . For each Li’ 1<i<k, it is easy to
see that S, (the local and shared memory of program L,) contains some constant plus 2*(log n)+2*(log log
n) bits. Hence, the number of possible transitions of L, is O(n4*10g4n). S, contains some constant plus
2*(log n)+4*(log log n) bits. Thus, the number of possible transitions of A is O(n**log®n). Since each
transition can be represented in O(log n) bits, the length of P is O(n**logn).

Now, we describe the Turing machine transducer T that when given x constructs P. Clearly the only
hard part is the construction of 6. To construct 5i {for Li)’ 1<i<k, the work tape of T is of the form
#i#j#, where i, of length 2*(log n + log log n) bits, is to keep track of the variables, and j, of length log
log n bits, is a pointer for scanning the work tape. (Three more #’s are used to separate variables in the
i part.) Similarly, to construct é, for 4, T’s work tape requires no more than 2*(log n)+4*(log log n) bits
with 7 #’s. Therefore, by Lemma 4.1, the construction can be carried out in deterministic space {2-¢)log

n for any €>0.

Now the system P behaves as described earlier. 4, using the Li’s to store the contents of the work
tape, moves through successive configurations of M on x in much the same fashion as was described in
Theorem 3.2. A terminates whenever it comes across a rejecting configuration. If A terminates it
subsequently causes the termination of each Li’ 1<i<k. A will process forever {with nonzero probability)
if it finds a universal configuration, following an existential configuration, for which each emanating path
results in an accepting state. Now the reader should be able to ascertain the following two facts

concerning the operation of A:

(1) Whenever A is at a conditional block in its flowchart one and only one predicate will be true.

(2) Whenever A is at a waiting block either the predicate is true or W;=O.

For a program P, we call a transition a no-op transition if it doesn’t change the configuration of P’s

19

accessible memory (this implicitly includes, of course, the position of the token in P’s flowchart). Now Li
(A), 1<i<k, can make no-op transitions iff Wil (W;) is zero. By construction all but exactly one of the
\/Via ’s, 1<i<k, will be zero at any given time. Hence, at any given time, exactly one of the programs will
be able to make a transition that is not a no-op. Now as long as A moves through configurations each L,
1<i<k, must subsequently be scheduled for a transition that is not a no-op. Also note that the L’s are
essentially deterministic. Since each Li’ 1 <1<k, must eventually execute a transition, A must continue
the simulation or terminate. As was the case in Theorem 3.2, the probabilities force the entire subtree of
the stored universal configuration to be explored. Hence either A terminates (with probability 1) or the

system enters a type 1-5 blackhole (with nonzero probability).

Thus, we have shown that for any k>0 and €>0, and any L in AZ’g*log U there is a constant ¢ such

that L is ((2-+€)log n, c*n4loggn)space—reducible to the fair NTP for C(n,k) under fairness types 1-5 O

Corollary 4.1: The NTP for C(n,k) under fairness types 1-5 requires (k-11)/4*log n 1-alternating ATM
space, for k>11.

Proof. Assume that the problem can be solved in (k-11-€¢)/4*log n 1-alternating ATM space for some
k>11 and e>0. From Theorem 4.2 we know that the NTP is Ang'l)*log "-hard with respect to
((2+cl)log n, n4loggn)space-—reducibility. Thus, according to Lemma 4.2 we have that any language in
AL’(zk'l)*log " can be solved in S(n)+c,*log S'(n) I-alternating ATM space, where S’(n)
:((k~11-6)/4)1og(cl*n4*loggn) + 2*log(c1*n4*log9n) + (2+¢,)log n, for some ¢, and c¢,. This amount is in

k-1-¢)log n l-alternating ATM space for some €,>0. Hence, we have a contradiction. O
3108 3

Corollary 4.2: The NTP for ((n,k) under fairness types 1-5 requires PSPACE if k is a problem

parameter.

Define ATIMEQ(nk) to be the set of languages accepted by O(nk) time bounded ATM’s that use at
most one alternation during the course of a computation. We have that
DTIME(n*) CNTIME(n¥) CATIME,(n*) and DSPACE(k*log n)CNSPACE(k*log n)CAZE 8 ™ In [9],
the following conjecture was used:

Conjecture: For any ¢>0, NSPACE(k*log n) £ DTINIE(nk'e)‘

Consequently, AZ’gﬂog " C DTH\/[E(nk'E), for any ¢>0. Hence, we have:

Corollary 4.3: Under the above conjecture, the NTP for C{n,k) under fairness types 1-5 requires
O(n(k'l)/ %) deterministic time, for k>13.

Proof. Assume that the NTP for C{nk) can be solved in n(&D/4€ geterministic time, for some ¢>0.
According to Lemma 4.2, we have that any language in AZ(Qk'l)*log " can be solved in

¢ *n¥logn) BN/ He e *p¥((24e *log n *9(2+e)*10g 1 Geterministic time, for some c, and c,. It can be
1 g 2 1 1 2
easily seen that, for k>13 the above term is in O(nk'1'€+€2), for any €y Choose €,<¢, we have that

20

AZ’(Qk'l) log 1 .an be solved in O(nk 1 €3), for some €,>0, which, obviously, contradicts the conjecture. o

As far as type 5 fairness is concerned, every program has to be scheduled infinitely often (this is not

required for type 4 fairness). Therefore, a bigger lower bound is expected for fairness types 1-3, 5. Asa

matter of fact, we are able to show that:

Theorem 4.3: The NTP for C{nk) under fairness type 1-3, 5 is Ang-?)*log "hard with respect to
((3+¢€)log n,n610g1ln)space~reducibility.

Proof. Let M be an arbitrary k*log n space bounded 2-alternating ATM. Assume that the set of tape
symbols of M is {0,1}. Consider an arbitrary input string x. (Let n==|x|.) In what follows, we show how
to construct a P=(S,s,,6,X) in C(O(n®log!n),k+1) to simulate the computation of M on x in such a way

that, M accepts x iff P will not terminate with probability 1 under fairness types 1-3, 5.

The basic idea of the simulation is very similar to the one in the previous theorem, where M’s k*log
n bit work tape was partitioned into k blocks. The essential difference is that the simulation follows the
one in the proof of Theorem 3.4 instead of Theorem 3.2. Hence, here we only describe the crucial points
that differ from those of Theorem 4.2. Figure 4.6 presents the overall structure of P. Programs A and B
here play the roles of A and B in Theorem 3.4; except that the L.’s store the contents of M’s work tape as
was the case in Theorem 4.2. Programs A, Li’ 1<i<k, play essentially the same roles they did in
Theorem 4.2; except that the Li’s must store three (instead of two) log n bit pieces of M’s work tape, since
the simulation described in Theorem 3.4 has two (instead of one) stored configurations at which the
simulation can be restarted. Now the memory shared by A and B is only the single bit d. Now B’s only
transition is to change d from 1 to 0; however B will only be enabled (by A setting d to 1) when A comes
across an accepting configuration of M. Each of the other programs will always be enabled. Hence,
blackholes of type 1-3, 5 are essentially the same. The remaining details of the simulation are left to the

reader.

Let P be (S,5,,6,X) be as described above where each X, (and X ,) = {the unique program state where
the flowchart token is on © and all variables are set to 0}, 1<i<k, and S is the system state where all
variables are set to zero except for ST (which is set to the initial state of M) and each respective flowchart
token resides in its respective initial state. Now, consider the size of /. For each L, 1<i<k, it is easy to
see that S, (the local and shared memory of program Li) contains some constant plus 3*(log n)+2*(log log
n) bits. Hence, the number of possible transitions of Li 18 O(n6*10g4n). S A contains some constant plus
3*(log n)+5*(log log n) bits. Thus, the number of possible transitions of A is O(0%*1og®n). The size of B

is a constant. Since each transition can be represented in O(log n) bits, the length of Pis O(ns*logun).

Now, we describe the Turing machine transducer T that when given x constructs 7. Again the only

hard part is to construct §. To construct 5i (for Li)’ 1<i<k, the work tape of T is of the form #i#j#,

21

where i, of length 3*log n + 2*(log log n) bits, is to keep track of the variables, and j, of length log log n
bits, is a pointer for scanning the work tape. (Four more #’s are used to separate variables in the i part.)
Similarly, to construct §, for A, T’s work tape requires no more than 3*(log n)+5*(log log n) bits with 9
#’s. Finally, 5}3 can be constructed in constant space. Therefore, by Lemma 4.1, the construction can be

carried out in deterministic space (3+¢)log n for any ¢>0.

0

Corollary 4.4: The NTP for C(nk) under fairness types 1-3, 5 requires (k-17)/6*log n 2-alternating
ATM space, for k>17.

Proof. Assume that the problem can be solved in (k-17-¢)/6*log n 2-alternating ATM space for some
k>17 and ¢>0. From Theorem 4.3 we know that the NTP is Ang°3)*log "hard with respect to
((3+¢,)log m, n610g11n)space-reducibility‘ Thus, according to Lemma 4.2 we have that any language in
AZ‘Q(‘Q)*lOg " can be solved in S’(n)+c,*log S’(n) 2-alternating ATM space, where S’(n)
:((k—17—6)/6)log(cl*n6*logun) + 2*log(c1*n6*logun) + (3+¢)log n, for some ¢, and c,. This amount is

in (k-2~63)log n 2-alternating ATM space for some €;>0. Hence, we have a contradiction. O

In what follows, we show that, given an FPCP in C(n,k), the NTP (TP) under fairness types 1-3
requires time .Q(n(k's)/ 96). To show this, we reduce the two-person pebble game problem (with k pebbles),
which is known to require Q(nO(k)) deterministic time [1], to the fair NTP.

A two-person pebble game G is a 4-tuple (N,R,S,T), where

N is a finite set of nodes,
R (C NXNXN) is the set of rules,
S (C N) is the set of initial nodes,

T (€ N) is the terminal node.

G is said to be an (nk)-pebble game iff [N|=n and |S|=k. Initially, pebbles are placed on initial nodes,
i.e., all nodes in S. The playing (pebble-moving) rule is that, whenever (x,y,2)ER and nodes x and y, but
not z, contain pebbles, a pebble can be moved from x to z. Two players, say A and B, take turns moving
the pebbles. Each player can make at most one move during his turn. A winning position (or win) for a
player is when he either moves a pebble to T, or he forces his opponent to be unable to move. At such a
time the game is over. The pebble game problem is to, given a pebble game, determine whether the first
player has a winning strategy, i.e., whether the first player can always manage to win regardless of his
opponent’s moves. As one can easily see, the pebble game problem possesses the characteristics similar to

that of the computation of an ATM. More precisely, the moves of the first player, when trying to obtain

22

a winning position (regardless of how his opponent moves), correspond to the existential branches in an
ATM; while the moves of the second player, when trying to prevent the first player from winning,
correspond to the universal branches in an ATM. Because of this alternating behavior, the pebble game
problem requires exponential execution time. In fact, the following result concerning the complexity of
pebble game problem was shown in [1]:

(k-

The (n,k)-pebble game problem requires (2(n 1/ 4‘6) deterministic time for any ¢>0 and

k>5 on multitape Turing machines.

Using this result, we are able to show:

Theorem 4.4: The (nk)-pebble game problem is (O(n'**log”n), n'?log n)
FPCP

reducible to NTP (TP) for

tim

! for fairness types 1-3.

Proof. Let G=(N,R,S,T) be an (n,k)-pebble game. Without loss of generality, we assume that the first
player cannot win in a single move. We show how to comstruct an FPCP P=(8,5,,6X) in
C(O(n'%log n),2*k+4) to simulate G in such a way that, P will not terminate with probability 1 for
fairness types 1-3 iff G has a winning strategy for the first player. Without loss of generality, we assume
that each node of G is labelled with a unique number i, 1<i<n. In this way, a node can be referenced
using a (log n)-bit array. Similarly, each pebble is assigned with a number ranging from 1 to k. For
brevity, let d, denote the node that contains the i-th pebble. Let d? indicate the initial position of the i-th
(1<i<k) pebble before the game starts.

The overall structure of the FPCP we constructed is depicted in Figure 4.7, where circles and boxes
denote programs and shared variables, respectively. Before describing each entity in detail, we first
present the general idea of how the simulation works. The idea will be for the game to be played over
and over again as long as A keeps winning. If B wins the system will terminate (providing the schedule is
fair). Basically, programs A and B are used to simulate the two players in the pebble game. A plays for
the first player. FEach program (A and B) contains in its finite-state control the description of
G. However, in order to keep the size of the program small, the dynamic information (i.e., the current
location of each pebble) is not kept in A (or B). Instead, k programs (Ll""’Lk) are used to store this
information. Each Li’ 1<i<k, contains log n bits of local memory to remember the current position of

the i-th pebble. The simulation then proceeds as follows.

For A to move it must play a rule (x,y,2)E€R, such that nodes x and y have pebbles but z does not. It
uses G ,...,G, to (nondeterministically) choose the pebbles which are on nodes x and y and then L,,....L
to supply the actual node values. It uses C, and G, to choose a rule (x,v,2)€ER with the correct first two
coordinates and Ll""’Lk to verify that z currently does not contain a pebble. (The particular

nondeterministic choices will be forced via the schedule.) If A finds that the chosen rule cannot be played

23

the process of selecting a rule begins anew; otherwise A plays the rule. If as a result A *"wins", A uses
Ll”"’Lk to restore the original position of each pebble so that the game can begin anew; otherwise A uses
Ll,...,Lk to update the position of the moved pebble and then activates B. {A now remains dormant until
B reactivates it.) B chooses what move to play in a probabilistic fashion (thus ensuring in a fair schedule
that all such choices are played infinitely often). It obtains and updates the information stored in
Ll"“’Lk in much the same fashion as A does. If it chooses a rule it cannot play, it returns to its initial
state and selects a new rule. If playing a rule places a pebble on T (i.e., B wins), B terminates and in
turn causes all other programs to terminate (providing the schedule is fair); otherwise B merely updates
the information in Ll,...,Lk and reactivates A. Until A again activates B the only move available to B is

that of termination. Now at each instant in which A is active all programs will be enabled (although

perhaps only for no-ops). A at times may be disabled but as long as the schedule is fair it will eventually

become enabled. Thus, for such a system fairness types 1-3 are equivalent.

Before describing the simulation in detail, we first look at the type of messages contained in each Wi’
Each Wi’ 1<i<k, is of length 3-+log k-+log n bits which contains the following types of information.
a_ field (3 bits):

== (): no-op mode,
== 1: retrieving mode,
== 2: updating mode,
== 3: reset mode,
= 4: matching mode,
== 5: matching _fail,
= 6: terminating mode,
b_field (log k bits): used to represent an index of a pebble,

¢__field (log n bits): used to denote the position of a pebble.

In the following, we first describe the variables used in each program:

Program Li’ 1<i<k

local variables: Y (log n bits) - used to store the position of the i-th pebble.

shared variables: W'i_1 and Wi'

Program Gi’ 1<i<k

local variables: none.

24

shared variables: W (2 bits) and W .

Program C, (Cz)

local variables: none.

shared variables: U (2 bits) and V (1 bit).

Program A

local variables:

I and J (log k bits each) - used to store the indices of two pebbles,

dI’ d 5 and dZ (log n bits each) - used to store the positions of pebbles,

CT (log n bits) - a counter.

shared variables: U, V, W, E, WO, and VVk.

Program B

local variables:

I (log k bits) - used to store the index of a pebble,

dj, dyand d, (log n bits each) - used to store the positions of pebbles,

shared variables: E, W0 and Wk'

The detailed description of each program is shown in Figures 4.8-4.12. At this point the intent
reader should study the flowcharts throughly. Note that the finite state control of A (and B) contains a
table recording the static structure of the pebble game. Basically this table is assumed to be organized in
such a way that, given two positions x and y, the set of nodes z for which (x,y,z)E€R, can be obtained in a
sequential manner. We use (x,y)i to denote the i-th such z. Furthermore, the number of such z’s {at most

n) (denoted by #(x,y)) is also kept in the table.

Now, we are able to argue that G has a win for the first player iff P will not terminate with

probability 1 under fairness types 1-3. To see this, first note that the only terminal state in B’s flowchart
is &. Moreover, B is able to enter & iff either

1. A is active, or

2. B moves a pebble to T.

Now whenever B terminates it forces every other program to follow suit (in a fair schedule).
Furthermore, if at some point the first player cannot move then A will never again activate B (or restart

the game). Since the only subsequent move available to B causes termination the system must terminate

25

if the schedule is fair. The ¢f part is, therefore, trivial. To prove the only ¢ f part, we have to show that

if the first player can manage to win no matter how the second player reacts to his moves, then we are

able to find a fair schedule o such that P will not terminate with probability 1 under o. The strategy for
constructing o is the following. The first player’s choices are determined (in some intelligent way) by
selecting the "correct” G.’s (1<i<k) and Cj’s (j=1 or 2) each time A is activated to proceed. Note that
letting the schedule perform this selection will ensure that the first player can always *manage to win®,
providing the pebble game problem has a solution. Now the game when A "wins" is replayed over and
over again. In each successive iteration the schedule is employed to force A to play within the strategy.
On the other hand, in order to ensure that "no matter how" the second player responds the first player
always wins, probabilities are used in program B each time when several moves are available. In this
way, in order to form a fair schedule B has to, in some sense, "try" every possible move eventually. The

only 1 f part is therefore proved.

It is worth mentioning here that the above schedule is not state-fair. This is because, only one G,
will be scheduled to proceed at a time even though all G/’s are enabled; and the correct schedule may not

require all Gi’s to be scheduled. In this case, the schedule will not be state-fair.

Let P=(S,so,5,X) be as described above. Now the single termination state for each program has the
flowchart token on €& and all variables set to zero. So is the system state in which the value of all
variables is zero except that Y in Li 1s set to d? and each respective flowchart token resides in its
respective initial state. Now consider the size of P. For each Li’ 1<i<k, it is easy to see that Si (the
local and shared memory of program L) contains some constant plus 3*(log n) bits. Hence, the number
of possible transitions of L, is O(n®). The size of G,, 1<i<k, is O@?%). s A contains some constant plus
6*(log n) bits. Thus, the size of A is O(n'?). Similarly, the size of B is O(n'?). Finally the sizes of C,
and 02 are constants. Since each transition can be represented in O(log n) bits, the length of P is
O(nm*log n). Furthermore, the construction can be carried out in O(nm*logzn) deterministic time. The

theorem then follows. o

Corollary 4.5: The NTP for FPCP in C(nk), under fairness types 1-3, requires .Q(n(k's)/% 9

deterministic time, for any €>0 and k> 1254, on multitape Turing machines.

' . ton o o (kB)/96 - ¢
Proof. First, note that for k>1254, there exists an ¢, >0 such that lim _ _ (n"**log"n)/(n

)
(k-6)/96 - €,
==0. Suppose that the NTP can be solved in n , for some ¢,>0. Since the (n,kj-pebble game

problem is (O(nlz*logzn),O(nlglog n))time reducible to the NTP for FPCP,,, ,, choose G:min{el,e2}. We
immediately have that the pebble game problem can be solved in O(n(k'l)/ 4) deterministic time, which is

a contradiction. n}

Corollary 4.6: The NTP (TP) for FPCP in C(n,k), under fairness types 1-3, requires exponential time

when the degree of concurrency, k, is a problem parameter.

26

References

[1] Adachi, A. and Iwata, S., Some combinatorial game problems require Q(nk) time, JACM, Vol.
31, No. 2, April 1984, pp. 361-376.

[2] Chandra, A., Kozen, D. and Stockmeyer, L., Alternation, JACM, Vol. 28, No. 1, January
1981, pp. 114-133.

[3] Garey, M. and Johnson, D., "Computers and Intractability: A Guide to the Theory of NP-
Completeness®, W.H.Freeman and Company, San Francisco, 1979.

[4] Hart, S., Sharir, M. and Pnueli, A., Termination of probabilistic concurrent programs, ACM
Trans. on Programming Languages and Systems, Vol. 5, No. 3, July 1983, pp. 356-380.

[5] Hart, S., Sharir, M. and Pnueli, A., Verification of probabilistic systems, SIAM J. of
Computing, 13, 1984, pp. 292-314.

[6] Hopcroft, J. and Ullman, J., "Introduction to Automata Theory, Languages, and
Computation”, Addison-Wesley, Reading, Mass., 1979.

[7] Iwata, S. and Kasai, T., Problem requiring k*log n deterministic space, Proc. 15th
Southeastern Conf. on Combinatorics, Graph Theory and Computing, Baton Rouge, 1984.

[8] Jones, N. and Laaser, W., Complete problems for deterministic polynomial time, Theoretical
Computer Sctence, 3, 1977, pp. 105-117.

[9] Kasai, T. and Iwata, S., Gradually intractable problems and nondeterministic log-space lower
bounds, to appear in Mathematical Systems Theory.

[10] Kemeny, J., Snell, J. and Knapp, A., "Denumerable Markov Chains", D. van Nostrad
Company, 1966.

[11] Ladner, R., The complexity of problems in systems of communicating sequential processes, J.
of Computer and System Seiences, 21, 1980, pp. 179-194.

[12] Lehmann, D., Pnueli, A and Stavi, J., Impartiality, justice and fairness: The ethics of

concurrent termination, Automata, Languages and Programming, LNCS 115, 1981, pp.
264-277.

[13] Lehmann, D. and Rabin, M., On the advantages of free choice: a symmetric and fully
distributed solution to the dining philosophers problem, Proe. of the 10th ACM Symp. on
Principles of Programmaing Languages, 1981, pp. 133-138.

[14] Lichtenstein, O. and Pnueli, A., Checking that finite state concurrent programs satisfy their
linear specification, Proc. of the 12th Annual ACM Symp. on Principles of Programming
Languages, 1985, pp. 97-107.

[15] Pnueli, A., On the extremely fair treatment of probabilistic algorithms, Froc. of the 15th
Annual ACM Symp. on Theory of Computing, 1983, pp. 278-290.

[16] Rabin, M., N-process synchronization by 4*Iog2N~valued shared variable, Proc. of the 21st
Annual Symp. on Foundations of Computer Science, 1980, pp. 407-410.

27

[17] Rabin, M., The choice coordination problem, Acta In formatica, 17, 1982, pp. 121-134.

[18] Rosier, L. and Yen, H., A multiparameter analysis of the boundedness problem for vector
addition systems, Fundamentals of Computation Theory, LNCS 199, 1985, pp. 361-370.

[19] Rosier, L. and Yen, H., Logspace hierarchies, polynomial time and the complexity of fairness
problems concerning w-machines, Univ. of Texas at Austin, Dept. of Computer Sciences, Tech.
Report No. 85-08, May 1985.

[20] Ruzzo, W., Simon, J. and Tompa, M., Space-bounded hierarchies and probabilistic
computations, J. of Computer and System Sciences, 28, 1984, pp. 216-230.

[21] Vardi, M., Automatic verification of probabilistic concurrent finite-state programs, Proc. of
the 26th Annual Symposium on Foundations of Computer Science, 1985.

"=, W arejecting

™/ v an accepting /
configuration

? cgﬁfigzsréi%@ﬁ/’

Figure 3.2 The single program system P constructed in Theorem 3.2,

|
\ van accepting

\\Csﬁﬁgaraiisﬂ

AN

- - f »

w 8 rejecting
configuration

Figure 3.3 The two program system P construcled in
Theorem 3.4. (All uniabellied edges cor-
respond to transitions of A; the edges
iabelled B correspond to transitions of B.)

. 1
% P)
P 1 P \”x
v : ™y
Fi¥ &3 ﬁsi
m
A Q
S5

Figure 4.1(a) An assignment block.

Figure 4.1 (b)
A waiting block.

A

A SN

P%/, o \fz
Ve i F}% AN
gjf i \3
“ 3 A,
R £
Sy (St

Figure 4.1 (c)

A conditionsal bBlock .

Figure 4.2 The system P constructed in Theorem 4.2,

{430 11Q [3y} sajouap {HYA) .J wolsboid o) jJeyamol) 3yl v aanbiyg
Uy

ﬂ\ /= 818UIWLIAY 1 Q % I [
8 'S0+ .A S0, 50 N Y
,,fk\,. pug AJoUWBW 8y} O «/ B . - T@g .
"
%.*%%Q mﬁwﬁ} ¢ wimx ¢ ¢ m
pasps 840158. ‘8401584 858Yd &/ S0+ MoASAD M
&»ﬁ, WS_.@} } ¢ w e,.w ¢ ¢ P
Jua4Ing 8aps ‘abusyd aseyd x/ 5.0 MoAS AL o M

/% Buoje afiessaw ay) ssed
TH001q 48410UB UL 81RPAN &/

/% A2010 . [S | L-t -1 L
srraena 150t M M UM A ygM 2 et
/% 42010 , L=t 1=l -1 S P . ;
Sty W saayal 7| SOt MU QMR g g g T i e LT
| Q w - @mﬂ} P / X\\
bBuoig s sed - - 7 4
EM%Q uois abesssw ayj s R R A T o
SAZOLG A8 0UR L0d) gagllyald *\, 2 wsw,?ffxw B wiw?_, p
' Q @ \m
‘uoljpdado ou & - M LT /
0=""n /

8
Wo + 1 g
. /* retrieve the T?{%ﬁ
;ﬁgig TP worktape bit */
.
AN
. AN
Cwl - 1> /% wait for the bit */
K
AN

§ ST = state p, the §
% 1PN position of
¥ = 8§ and w’f =D 5

(%3}

s

T+ g
PelP+dy
Wie 2
’%ﬁfgé by
whee TP
TP« TP + d;

By
B

f%sémzsisj the ith
{ransition|for{p,s,b)*/

&
RN
*"fj & \“x i .
{x%% =2 p /% wait for the Li's to
N~ update the worktape */
R

Figure 44 A flowchart segment to simulate 1the transitions of
T =Al.1. . I(p,ab) »(qy.by.dy.d3), (ay.by.dy.dpdl, 1.1}

]
éxﬁ%sﬁiiﬁisiai%

-
g “"5” ~ 1 /* similate an existential
| &g move of M */
| SR |
{
STeE 7 >~ STel
e ™~
il b
Wk + 0's ST « ST | /% store the current
. TP « TP configuration */
i 1P« IP
ST+ 0's Wy + 3
ST + U's
ben
TR0 | /%0 the
TP Us memory */
IP+0s 4
P + O's ,
Wi+ 0's g O
W, = 3> /% wait until each Li has
\/ compieted the storage */
/* wail Tor each Ly
to terminate */ (/{
[|
/* cause each Ly I Bg ! /* similate a universal
to terminate */ LYl moveofM*/
STeR S
e e o e o o e o e b e e e o i Wk + (O's
, STe A
ST « 57
TP« TP ; : :
/* restore saved /* wait until each Ly
‘ : P« IP .
configuration */ G has completed */
S‘E'?ig + 4
/
L Wi

Figure 45 The flowchart of program A,

:
e

Figure 4.6 The system P constructed in Theorem 4.3,

W, W,

N e

Figure 47 The system P constructed in Theorem 4.4

if wesboad Joy jJeyosmop) ayl g aanbig

/7N, /w 91BUlWIEY} pus

8
C Faowaw aul 0 x/

/% U013e20] Ut fApead|

aigged e 184y} Buoip ssed »/

/% Uo11830 uL fApeau|

alqaad Joj 1583 asnebau =/

/= U011800| U fipesJ(e

ajqgad 40j 1881 aalyisod */

. b=t -t t
S0+A SO+ M Mo M
g [ST {

8.0 <+ M T M

e S S w
S0 =+ M, Mo M

. -t !

5.0 = MG ,.@,_ﬁ

/% aniea |Builbiio 01

uoLieoo] ajqqad 18884 =/

/= uouigao} sajqqged

Jaylo awos ajepdn =/

/% U011B30| s.81gqa8d

StUl arepdn x/

/@ UOL1BI0] 5, 8|qqad

1810 UI0S BASLIE x/

/% U011B30]

.0 M Mo M

e Y b=t
S0+ MM e T u%¢>
wi.wp sﬁiw m
8.0 - M Mo M

g.alqgad Styl aasaldled 4/

m.Gawﬁ.

b !

-1 ¢] e 5 T :
‘E.}:*u?,; Mo+ M

uolnyedado ou

9= oM
T
= @3 /
P -1 -t \
A # Qz<@g o M
;;;;;;;;;;;; — N
bl i1
}H v o by \
anﬁ g M .
e T~
€= oM
L -1 _ -t
L # QE<@3 o M)
i.w%.w %.wim. ye
L= ﬁ3<ma g™
ssssssssss vy /s
e S
L # ﬁia_; o M
;;;;;;;;;;;; v
”awiz<wge;5
q o™ /
ssssssssss ix
{~1
0= M

N\ ame
JBLiuL

I i
i H
W=2 1 P W= P W=0
i !
a8
+ i
W+ 0 "o no -op
W+ 0
/* choose
pebbie i
for 4 */

/% terminate */

Figure 4.9 The flowchart for program ﬁi,

| - T
i
U=2Z 1 P U=t
‘t“
e+0 v © no -ap
U+Q

/Finforma
‘éﬁa’i{i?{aﬁ*!

8

/* terminate */

Figure 4 10 The Tlowcharts for programs C

i H ig ran ®/

- - - 7 - T
i i i
=2 1 P U= i =0
4
5
U+o0 el no -op
Ue0Q
E
EFinform A

/% terminate */

L

and §2.,

initial siste

Wimé - e, E=0

et o

\

Wiel
Wz

8 /% retrieve the first

ehble ition */
/*terminate Cland C2 */ P pos

/¥ retrieve the second
Wi:? pebble position */

c
éé‘?if?'k

/* k steps terminate

G 1cick* < é TlApap=0 o P00
OO
Ue2 /% the corresponding /®theruleis
rule is undefined- - defined- -
retry ®/ proceed */
f’f’f
NS U=0r

/# termination state */ 8

Figure 411 The Tlowchart of A

(2) 3
| d=T" X =T
: = PN
CT« #{dy,dy) < \g
E S
i G’ wee 3| (W3 2|/ undate the
i \ F :
v /*try next rule */ o b 1th pebble =/
f% % A i %if # E
S /* A wins -) 0
CT=1 7 "\ CT>0 issues 8 reseti / WS + dy
¢ b signal */ E
N
S {5
| a {
We=3y Y
% ™ f} .
§ x’fafﬁ 7\\
| & g.:T“‘i% {‘\g, %{32,}"’
i = \\\’ f/f
y AN
{u=0)
| , |
! %,
H H
H) 2 E & g
| V=0 . f
i 7 - * T #*
| < > /* activate B */
dz ¢ ég z /* choose one rule
* o ; .. . o %
nondeterministically O

by using the scheduler */

/* determine whether
d- already contains a
pebbie */

W+ 4
10
?@S“‘“ﬁz

" g

(1) ??x

U)

/* play the next maove */

/* d7 contains /* d, does

a pebble-
retry */

not contain
g pebble */

Figure 4.11 {(Continued)

,} initial siale
0

Wi+ O
Wi b [t -~

E=0 T E«0
X 17K+1 p
8
- 3>
W3 +

(Wi =
15%§§ﬁf{yffA? K41 FK+1 \\xj%f%8§i§f€§k s
’ 3

4 NP4
a [8 ™~
WS + | WQ + | \
.- e 8 o
wl e Wh e | bek Wo+ 3
Ie 1] I+ | I+ k
/
\"l)* /* retrieve the first
i pebble location --
. a ‘:\ which }:S;hgﬁs%n .
(®) W= probabilistically /% respt %/
/* termination state */
c
dp « Wy
i 1 /K+1
?fx.«/(;z’xn 17K+
WS e 1 /* retrieve the second
N I pebbie location --
Wo*+) which is also chosen

probabilistically */

/a
‘%}
)
ijgf’ WE:{

)

Figure 4.12 The flowchart of program B.

}isigz{;} is not in the table
@ - - - -0
 (dy,dp) is in the table

\\%xx
, W/#{d, d }\\\4
- 1~J .
. /* probabilistically
C%z e rle.s pick an v such that
iﬁg,ﬁs}f} e R *®/

8
/* check whether d; [Wo* 4
contains a pebble */ wg%%

:
/* d7 already contains @ (De _ﬁ%"ﬁ
pebble -- rechoose o

z
the move */ P We=4

/* dy does not contain a
pebble -- play the move */

QE:‘«E“K .~ izﬁ“?"

= - h e
a8 p
/* B wins */ wizé W2
wl e 1

c

/* ypdate the

i) 1t neppie =/
(ﬁ ‘““\\

%’%g:g

AN

C
— W0
termination stale EeO

/% activete A */

(0)

Figure 4.12 (Continued)

