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Abstract

Most communication protocol systems utilize timers to implement real-time constraints be-
tween event occurrences. Such systems are said to be t¢me-dependent if the real-time constraints
are crucial to their correct operation. We present a model for specifying and verifying time-
dependent distributed systems. We consider networks of processes that communicate with one
another by message-passing. Each process has a set of state variables and a set of events. An
event is described by a predicate that relates the values of the network’s state variables im-
mediately before to their values immediately after the event occurrence. The predicate embodies
specifications of both the event’s enabling condition and action. Inference rules for both safety
and liveness properties are presented. Real-time progress properties can be verified as safety
properties.

We illustrate with three sliding window data transfer protocols that use modulo-2 sequence
numbers. The first protocol operates over channels that only lose messages. It is a time-
independent protocol. The second and third protocols operate over channels that lose, reorder,
and duplicate messages. For their correct operation, it is necessary that messages in the chan-
nels have bounded lifetimes. They are time-dependent protocols.



1. INTRODUCTION

Our work has been motivated primarily by communication network protocols which are in-
variably time-dependent systems (3, 7, 8, 20, 22, 26]. Time-dependent behavior arises naturally
in communication networks because errors and failures that occur in one process of the network
are usually not communicated explicitly to other processes that may be affected by these errors

and failures; only by the use of timeouts can a process infer that certain failures or errors have
occurred and initiate recovery action.

We present in this paper an event-driven process model for specifying and verifying dis-
tributed systems, both time-dependent and time-independent. In this model, events are specified
by predicates; there is no algorithmic code. Event specifications can be directly substituted into
proofs of safety and liveness properties. Combining this feature with the event-driven structure
of the system model, we get simple inference rules for safety and liveness properties, including a
lexicographic induction rule for the temporal operator "leads-to" [2, 14, 22|. Using predicates to
specify events has been advocated by Lamport [14, 16] as well as by us [22].

To verify a desired safety property AO, we present a heuristic method to generate a se-
quence of assertions AO, Al’ . An which jointly satisfy the inference rules and imply AO. Asser-
tion Ai in the sequence is obtained by taking the precondition [4] of an assertion Aj’ 0<y5<q,
with respect to an event. Unlike the methods in {17, 18, 6], we do not require Ai to be syntac-

tically composed of assertions each of which depends on a single process. We find it more con-
venient to have events, rather than processes, as the units of composition. In this respect, our
approach is similar to the recent work of Lamport [13, 16] and Chandy and Misra [2].

Real time modeling

Processes use a special type of state variables, referred to as timers, to measure the pas-
sage of time since event occurrences in discrete ticks. The timers of a process can be started and
stopped by events of that process. Timers of different processes are uncoupled. By imposing
conditions, referred to as accuracy axioms, we ensure that the timers of a process tick at rates
that are within specified error bounds of a constant rate.

We say that a time constraint is implementable by a process if it can be enforced by that
process alone, without cooperation from the rest of the distributed system. An implementable
time constraint of a process of the form "event e will occur only if some elapsed times satisfy
certain bounds® is modeled by including timers in the enabling conditions of e. An implement-
able time constraint of the form "event e must occur within certain elapsed times® is modeled
by requiring that the desired time constraints are not violated by the ticking of timers. Note
that in our model, it is not required that an enabled event must occur. The idea of inhibiting
timers from ticking was proposed and investigated by us in [22] and was also suggested by Lam-
port recently [16].

— The implementable time constraints enforced within processes give rise to network-wide
time constraints which depend on interactions between processes. With timers, such time con-
straints can be specified and verified as safety assertions. We have found that such time con-
straints are very useful for describing progress in communication network protocols. Typically,



if a communication protocol does not achieve progress (transfer of data, establishment of a con-
nection, etc.) within a bounded time duration T, then the protocol resets or aborts [9]). Hence, a
liveness assertion stating progress within a finite but unbounded time duration is often in-
appropriate. More useful is the assertion of a time constraint such as "progress is achieved

within a time duration T provided that the channels have not lost more than n messages in that
time duration.*

The only time constraints allowed in the specification of a process are implementable ones.
Otherwise, a correct implementation of a process would not be possible from the specification of
that process alone. It is the task of the protocol designer or verifier, not the implementor, to
establish that these implementable time constraints do indeed give rise to the desired global
precedence relations.

A system with an explicit auxiliary variable indicating the current time was presented by
Francez and Pnueli [5]. However, their model was used for establishing liveness properties rather

than real-time properties. Subsequent work on liveness properties eschewed explicit modeling of
real time [2, 6, 14, 15, 19].

Sliding window protocol examples

The three sliding window protocols presented in this paper use modulo-2 sequence numbers
to achieve reliable data transfer between a source and a sink connected by unreliable channels.
The first protocol is time-independent and assumes that the channels can only lose messages.
This protocol is like the alternating bit protocol considered in [14]; it is slightly different from
the original alternating bit protocol [1, 6}, which assumes that the channels can corrupt (but not
lose) messages. This example illustrates the compactness of a verification in our model, and can
be compared with other verifications of the alternating bit protocol [6, 14, 17]. We note that
this protocol is a special case of data link protocols that use modulo-IN (N >2) sequence numbers
and assume that channels can only lose messages [8, 11, 21] (Reference [11] also covers the case
of channels that reorder messages to a limited extent).

The second and third protocols assume that the channels can lose and duplicate messages
as well as reorder messages arbitrarily. For correct operation, it is necessary that message
lifetimes have an upper bound. The source must then enforce certain implementable time con-
straints to achieve correct operation. The resulting protocols are novel. Our second protocol is
best compared with the simplified Stenning’s protocol |6, 17], which also allows channels to lose,
reorder, and duplicate messages. Both protocols maintain at most one outstanding data block at
the source, but the simplified Stenning’s protocol is a time-independent protocol that is forced to
use unbounded sequence numbers.

The original Stenning’s protocol [27] allowed arbitrary (but fixed) send and receive window
sizés. Based on a formal verification using unbounded sequence numbers, Stenning argued infor-
mally that correct operation would result with modulo-N sequence numbers if IV exceeded a cer-
tain bound in terms of channel message lifetimes, transmission rate, and window sizes. In [24,
25], we have extended the second protocol example by constructing several protocols that use
modulo-IN sequence numbers for arbitrary IN>2. In addition to the use of modulo-/N sequence
numbers, these protocols extend the original Stenning’s protocol in several other respects (e.g.,



variable windows for flow control, selective acks, etc.). It has been our experience that the use of
timers actually simplifies the verification and construction of communication protocols.

Organization of this report

In Section 2, we describe the predicate specification of events, the safety and liveness in-
ference rules, and the time-independent distributed system model. In Section 3, we present the
first protocol example and verify its safety and liveness properties. In Section 4, we describe our
modeling of timers and time constraints, and present our time-dependent distributed system
model. In Section 5, we present the second protocol example and verify its safety and liveness
properties. In Section 6, we refine the second protocol to offer real-time service; i.e., data trans-
fer within a specified time. This real-time service is verified. The refinements are introduced in
such a way that the safety and liveness properties of the second protocol continue to hold.

2. EVENT SPECIFICATIONS AND INFERENCE RULES

We use the term "predicate" to refer to a well-formed sentence of first-order predicate
logic augmented by appropriate mathematics for the variables of the predicate. We use and, or
and = to denote logical conjunction, disjunction and implication respectively. We use for all
and for some to denote universal and existential quantification respectively. Where ambiguity
may arise, the scope of the quantification is enclosed by square brackets. Throughout, we as-
sume that for every variable there is a specified domain of allowed values. We use = to denote
predicate definition. An example of a predicate definition is p = (for some zl)[x1=x2+1 and

:1:1-——:1:3], where Ty, To and T4 are integer-valued variables; the free variables of predicate p are T
and T5.

Given a predicate p and a set of variables x:(xl,:cZ,...,:cn), we say that p is a predicate in
x to indicate that the free variables of p are from x. We can also indicate this by the notation
p(x). This notation facilitates substituting expressions for free variables in p. In particular, for

any given value of x, we shall also use p(x) to denote the value that the predicate evaluates to.
Thus, in the above example, p(1,2) is True while p(1,1) is False.

2.1 Specifying an event-driven system

We model a general event-driven system by a set of state variables whose values indicate
the system state, a set of events that cause changes to their values, and a set of initial conditions
on the state variables.

Let v=('ul,v2,...,vn) denote the set of state variables of the system. v is also referred to as

the state vector. The domain of v is the system state space. The initial conditions are specified
by a predicate Initial(v). Any value of v that satisfies Initial(v) is an allowed initial state of
the system.

Let €4:€9:-1€pm be the set of events of the system. Each event e can occur only when the

state vector v has certain values. Its occurrence causes the state vector v to assume a new



value. We assume that each event occurrence is atomic; i.e., for the properties of interest, the
simultaneous occurrence of multiple events is equivalent to the occurrence of those events in any
order [2, 14, 16]. Instead of using algorithmic code, we specify the event ¢ by a predicate in v
and v/, where v denotes the value of the state vector immediately before the event occurrence,
and v' denotes the value of the state vector immediately after the event occurrence. Such predi-
cates are referred to as event predicates. For implementation purposes, the variables v and v/
can be treated respectively as input and output parameters of an algorithmic procedure. Notice
that we use the term "variable® in the mathematical sense, i.e., to denote some value from a
domain of values. We use the term "state variable* to refer to a variable in the programming

language sense, i.e., to denote both a location where a value may be stored, as well as the stored
value.

For example, consider the state vector v=(vl,v2), where v, and v, are integer-valued state
variables. The event e, = (v; <5 and v,'=v,+v, and vy/="1,) can be implemented by the al-
gorithmic code "if v; <5 then v :=v +v,y." The event e, = ((v,'=1 or v,'=2) and v,'=v,)
can be implemented by the algorithmic code "vi=1 O v =2," where O represents nondeter-

ministic choice [4]. For compactness in specifying events, we adopt the convention that any
variable ¥/ in v' that does not occur in an event predicate is not affected by the event occurrence;
i.e., the conjunct v'=v is implicit in the event predicate. Thus, the above two examples can be
written as e; = (v; <5 and v1'=v1+v2), and €, = (v,'=1 or v,'=2).

An event predicate e is said to be enabled for a given value of v if there is a value of v/
such that e evaluates to True for that value pair. The enabling condition of e, denoted by
enabled(e), is defined to be any predicate in v which is logically equivalent to the predicate (for
some v')[e]. It is very natural to have ¢ = (¢, and ¢,), where ¢, is a predicate inv, e, is a
predicate in vUv’, and €y is enabled for every value where € is True. In this case, € is the
enabling condition of event ¢ and €y specifies the "action" of event e.

In addition to state variables needed to model the system, v can contain auxiliary state
variables needed for verification purposes only [18]. Auxiliary variables record the occurrence of
events; they do not inhibit event occurrences nor do they affect the resulting values of non-
auxiliary variables. Formally, if v = uUw where u are auxiliary variables and w are not, then
the following holds for every event e: for any given value of w and W', the value of (for some
u')[e] is independent of the value of u.

2.2 Proving safety properties

A safety property of the event-driven system states relationships between the values of the
state variables. It can be represented by a predicate in the variables of the system state vector
v. An example of a safety property involving two integer state variables vy and Vg is
(v1_<_1)2§vl+1). A safety property A, holds for the system if it holds at every system state that

is_possibly reachable from an initial state. Such a property is said to be invariant. We now
present the inference rule for proving invariance.



With the execption of event predicates, every predicate that we specify is either entirely in
v or entirely in v/. Thus, we shall refer to a predicate A in v as simply A, and use A’ to denote

A(v"). Following convention, A= B holds iff it holds for all values of the free variables in A and
B.

Inference rule for safety. If [isinvariant and A satisfies

(i) Initial = A
(ii) for every event e: (I and A and ) = A’
(ifi) A = A,

then we infer that AO is invariant.

A, Tepresents a desired safety property and I can be any safety property whose invariance

has already been verified; I = True if no invariant property is known. A has to be generated
from AO and I, obviously this is a nontrivial task analogous to generating loop invariants in

program verification (see below). Note that the inference rule is quite simple because of our use
of predicates to define events.

The validity of the rule is obvious. Part (i) ensures that A holds initially. Because I is
invariant, every reachable state satisfies I. Thus, part (ii) ensures that A is preserved by any
event occurrence in a reachable system state. Thus A is invariant. Therefore, by part (iii), AO is

invariant. Because I is given to be invariant, we can replace I by (I and I) in part (ii) of the
above inference rule; this strengthening of the left hand side sometimes helps in deriving Al

A heuristic

We now describe a heuristic, based on preconditions [4], which can be used to generate A
from AO’ I, and the system specifications. The heuristic builds up iteratively a sequence of asser-

tions Ay, A;, ..., A,. At any time, let A= (AO and ... and An)‘ If the heuristic terminates
successfully, A will satisfy the safety inference rule.

Any predicate P that is logically equivalent to (for all v')[(A and ¢) = Ai'} is referred to as
a weakest precondition of A, with respect to e. P is a predicate in v that is False over only
those states in A where e is enabled and whose occurrence may violate A.. (P corresponds to the

weakest liberal precondition of Dijkstra [4].) An assertion that implies a weakest precondition is
referred to as a precondition.

In the heuristic, an event-assertion pair (e,Ai), 0<i<n, is marked when we ensure that
(Initial=A,) and ((A and e) = A/) hold; otherwise, it is unmarked.

_initially:
If we have an invariant assertion I at the beginning, then A consists of the two asser-
tions A, and Al__I, and n=1. For every event ¢, (e, AO) is unmarked and (e, 1) is
marked.



If we do not have a (nontrivial) invariant I at the beginning, then A consists of the single
assertion AO, and n=0.

while there is an unmarked (e,4,) do
generate a weakest precondition P of A, with respect to e;
if Initial = P does not hold then terminate the heuristic (4, not invariant)
else begin
mark (e, A.);
if Pis not identically True then let A ;=P and increment n by 1

end
enddo

result: If the heuristic terminates with all the (e,A;) pairs marked, then A satisfies the safety
inference rule and implies Ay

To avoid the expressions for Az., 0<i<n, from growing unmanageably, it is crucial to

simplify the expression for P as much as possible in each iteration. Insight is very important
here. First, the choice of the next unmarked (e,A,) pair is crucial. Second, rather than P being a

weakest precondition, it can be strengthened to a precondition. This technique can significantly
simplify the expression for P (see Section 5.1 for an example). However, care should be taken so
that P is not strengthened to the point where it is no longer invariant; if that happens, then the
heuristic may terminate by incorrectly declaring Ao to be not invariant. (As shown in [23], it is

possible to recover from such an error.)

2.3 Proving liveness properties

A liveness property of the system states relationships that values of the system variables
eventually satisfy; e.g., the value of state variable vy eventually exceeds n for some integer n. In

this paper, we shall consider liveness properties that are expressed using the leads-to operator 12,
14, 16, 22]. Throughout, we assume that system implementations meet the following fazrness
condition: any event that is enabled continuously will eventually occur.

Given predicates A and B in v, A leads-to B means that if the system is in a state that
satisfies A, then within a finite number of event occurrences it will be in a state that satisfies B.
The following rule is used for deriving leads-to statements from system specifications.

Inference rule for leads-to. If I is invariant and, for some event e, assertions A and B satisfy
the following:

(i) ( and A and not B) = (enabled(ey) and (for all v)ley=B)

ii) for every event e other than ey (I and A and not B and e) = (A’ or B)

then we infer that A leads-to B via €y



Part (i) of the rule ensures that at every reachable state where (A and not B) holds, event
€p is enabled and its occurrence takes the system to a state where B holds. Part (ii) ensures that

at every reachable state where (A and not B) holds, the occurrence of any other event will take
the system to a state where either A or B holds. Thus, in any fair implementation, the system
will eventually reach a state where B holds. A leads-to B via ¢, is a special case of A leads-to B,

and is similar to *A until B* [14]. As in the case of the inference rule for safety, we can replace
Iby (I and ) in parts (i) and (i) to facilitate the derivation of the right hand sides.

In addition to the above rule, we have the following (rather obvious) rules:
Leads-to rule 1. If (A = B) then (A leads-to B)

Leads-to rule 2. If (A leads-to (B or C)) and (C leads-to D), then (A leads-to (B or D))
Leads-to rule 3. If (A leads-to B) and (C leads-to D), then ((A or C) leads-to (B or D))

Finally, we present a rule that applies lexicographic induction [10] to leads-to statements.
Let u==(u, ug, .-, un) be an ordered set of integer-valued state variables from v; u is a subset

of v. Below, i ranges over all n-tuples of natural numbers, and the < relation is derived from
the lexicographic ordering of integer n-tuples.

Induction rule for leads-to. If assertions A and B satisfy

(for all i)[(A and u>i) leads-to (B or (A and u>i))]

then we can infer (for all i)[(A and u>0) leads-to (B or (A and u>i))]

The first leads-to statement in the induction rule is referred to as an inductive leads-to

statement. The induction rule merely applies mathematical induction to inductive leads-to
statements.

2.4 Distributed system model

In this section, we specialize the event-driven model described above to that of a network
of processes. We shall use terminology from the network protocols area because our examples
are from that area. Each process is either a protocol entity or a communication channel. The
distributed system is a network of protocol entities PI,P2,...,P I interconnected by one-way com-

munication channels 01’02""’CK'

For each protocol entity Pi’ let v, be the set of state variables of Pi' For each channel Ci’
let =z, be the sequence of messages in transit in the channel. The system state vector, also
referred to as the global state vector, is defined by v = (vl, Voy woos V) By, By oo zK). As be-
fore, the system initial conditions are specified by a predicate Initial(v).

—  Each process has a set of events. The events of entity P, involve only the state vector v,
and the state vectors of channels accessible from P There is one exception to this rule:

Auxiliary variables can be accessed by more than one entity. Entity events model message



receptions, message sends, and internal activities such as timeout handling. The events of chan-
nel C, involve only the state vector z. Channel events model channel errors such as loss,

duplication, and reordering of messages in transit (see Appendix A for their predicate
definitions).

Entity events access channel state variables only via send and recetve primitives. The
send primitive for channel C; is defined by Send (m) = (zi’z(zi,m)); i.e., append the message
value m to the tail of z;. We use a comma as the concatenation operator, and parentheses to
resolve ambiguities. The receive primitive for channel C, is defined by Rec(m) = ((m,z,)=2));
i.e., remove the message at the head of z; and assign it to m, provided that z, is not empty.
Note that Reci(m)zFalse if z; is empty. When these primitives are used in entity events, the

formal message parameter m is replaced by the actual message sent or received. The definition
of Sendi(m) above assumes that C, has unbounded message capacity; see Appendix A for the

bounded-capacity case.

To verify liveness properties of a distributed system, it is necessary to make an assumption
regarding the progress of messages within a channel [6, 14]. Consider a channel from Pz. to Pf

and a message m that can be sent by P, into the channel. Let Pj be always ready to accept

message m from the channel. The typical progress assumption is that if message m is sent
repeatedly into the channel by P, then it will be eventually delivered by the channel to Pj 6,

14]. To specify this assumption formally, define the send count of message m to be the number
of times that m has been sent into the channel by Pi since the last time that m was delivered by

the channel to Pj' or since system initialization. The send count of m is an auxiliary state vari-

able that is incremented by 1 whenever m is sent, set to O whenever m is delivered, and is in-
itially 0. We will assume that these updates are included in the send and receive primitives.
The following axiom specifies that the send count does not grow unboundedly:

Channel liveness axiom: For any send count a:
if (for all 7)[A leads-to (a>i or B)| holds, then we can infer (A leads-to B)

3. A TIME-INDEPENDENT PROTOCOL

We present a data transfer protocol that reliably transfers data blocks from entity I-"1 to
P, using channels C; and 02 (see Fig. 1), where each channel C; can lose messages in transit.
There is a source at P1 which produces new data blocks to be transferred to a destination at P2

which consumes them.

<y

]

- c,

Figure 1. Network configuration of protocol example.




Let DataSet be the set of data blocks that can be sent in this protocol. P, sends messages

of type (D,data,ns) where D identifies the type of message, data is a data block {rom DataSet,
and ns is a sequence number. P2 sends messages of type (ACK,nr) where nr is a sequence num-
ber. Here, ns and nr are restricted to the values 0 and 1.

Throughout this report, for any integer value n, we shall use n to denote n mod 2.

An informal description of the protocol follows. Let data block 0, data block 1, ..., data
block n, denote the sequence of data blocks produced by the source. Pl sends data block = ac-

companied by sequence number n. P2 accepts (and passes to the destination) received data
blocks with successively increasing sequence numbers. P, sends ACK messages with nr equal to
the next expected value of ns. P, considers data block n to be acknowledged when it receives an

(ACK,nr) message with nr equal to n+1. To achieve correct data transfer, it is necessary that
P1 has at most one unacknowledged data block at any time. Otherwise, if data blocks n-1 and n

are both outstanding and Pl receives an (ACK,n+1) message, then it has no way of knowing
whether the ACK message acknowledges data block n or data block n-2. We allow Pl to
retransmit an outstanding data block at any time, and P2 to send an ACK message at any time.

We next formally specify the variables and events of P1 and P2. For brevity in defining

event predicates, we shall use the guarded command [4] notation g(v)—h(v;v') to mean that the
action in h is done only if the guard g is true. Formally, if u’ C v’ is the set of primed variables
that occur in the body of h, then g—h = (g=+h) and (not g = u'=u).

Entity P1

Source : array|0..c0] of DataSet U {empty}; {History variable. Initially, Source[0..00]==em pty}
s : 0..00; {Source[0..s-1] is the sequence of data blocks generated by the source. Initially, s=0}

Acked : Boolean; {Acked=True iff all data blocks are acknowledged. Initially, Acked=True}

P1 has three events: accepting a data block from the local source, sending a D message,

and receiving an ACK message. (To keep the example small, we have assumed that Source[s-1]
is available to the implementation.)

AcceptData = Acked=True {if no unacknowledged data}
and Source[s| in DataSet {then accept data}
and s'=s+1 and Acked'=False {and update state}

Send_ D = Acked=False and Send, ((D,Source|s-1],5-1))

- Rec_ ACK = (for some nr)[Rec, ((ACK,nr)) and
((Acked=TFalse and s = nr) — Acked'=True)]
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Entity I"’2

Sink : array[0..00] of DataSet U {empty}; {History variable. Initially, Sink[0..co]=empty}

r : 0..00; {Sink[0..r-1] is the sequence of data blocks that have been passed on to the destination,
and data block 7 is the one next expected. Initially, r==0}

P2 has two events: sending an ACK message, and receiving a D message.

Rec_ D = (for some data, ns)[Rec,((D,data,ns)) and
(r = ns — (Sink[r]' = data and r' = r+1))]

Send_ACK = Send,((ACK,7))

3.1 Safety verification

We desire the following to be invariant:

Ay= r<sand (for all n in [0..r-1])[Sink[n] = Source|n]|
A, = Acked=True = r=s

Ay states that data blocks are delivered to the destination at P, in the same order as they were
accepted from the source at P,. A, states that if P, believes that a data block is acknowledged,
then indeed the data block has been delivered to the destination at P,

We shall use our heuristic (described in Section 2.2) to generate an assertion A that
satisfies the safety inference rule. Note that we do not have any known invariant for this ex-
ample; thus I=True.

The lossy nature of the channels simplifies the task of obtaining a weakest precondition of
A, wrt a receive event (wrt is abbreviation of "with respect to"). Every receive event has the

form Rec_ M = (for some f)[Rec]((M,f)) and (g—h)], where f denotes the fields of message type

M. If Rec__M occurs with g=False, then the only effect of the event occurrence is to delete mes-
sage (M,f) from z; Exactly the same effect is achieved by the loss event of Cf At some point in

the verification, Ai will be marked wrt this loss event. Consequently, when generating a weakest
precondition of A, wrt Rec_M, it is sufficient to consider only those occurrences of Rec M

where g holds. Therefore, the weakest precondition (for all v/)[(A and Rec_M) =+ A/) can be
strengthened to
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(for all v')(for some f){(A and 2= ((M,f),z}) and g and ) = A/| "

Further simplification occurs if A, does not involve Z Whenever a message (M,f) is in
transit in Cf it is possible via successive loss event occurrences for that message to reach the
head of z. If A, does not involve z ., then it is not affected by this sequence of message dele-
tions. Therefore, the weakest precondition (*) must be strengthened to

(for all v/)(for some f)[(A and (M,f) in 2 and g and k) = A/| (**)

We start the heuristic by considering the unmarked pair (Rec_ ACK,A;). From (**), we
have the following weakest precondition of A; wrt Rec__ACK:

(for all v')(for some nr)[(A and (ACK,nr) in z, and Acked=False and nr=s
and Acked'=True and r=r' and s=s') = A//]

(The conjuncts r=r' and s=s' are implicit in Rec_ ACK.) This predicate can be easily
simplified to

(A and (ACK,s) in z, and Acked=False) = r=s

which is equivalent to

Ay = (Acked=False and (ACK,s) in z,) = r=s

is clearly a precondition. To see its necessity, suppose that A, is False; i.e. Acked=False,
message (ACK,s) is in Zy, and r5s. Then the following can happen: due to message losses,
(ACK,s) comes to the head of z,; Rec_ ACK is now enabled and its occurrence invalidates A;.
Thus, A, is indeed a weakest precondition of A, wrt Rec_ ACK and the loss events.

We next obtain a weakest precondition of A, wrt Send _ACK. (Henceforth, we shall be
more brief in our derivations.) The weakest precondition (for all v')[(A and Send _ACK)=A,']
is easily shown to be equivalent to

(Acked=False and r = 5) = r=s

We next obtain a weakest precondition of this wrt Rec_D. Applying (**), and after a little
manipulation, we obtain

((for some data)|(D,data,r) in z,] and Acked=False and r£s) = r=s-1

A weakest precondition of this wrt Send D is easily obtained as
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(Acked=False and r7s) = r=s-1

Combining this with the first assertion in this paragraph, we have

Ay = Acked=False = (r==s or r==s-1)

We next obtain a weakest precondition of Ay wrt AcceptData. As usual, we start with the
weakest precondition (for all v/)[(A and AcceptData)=+A,'| and massage it into a simpler equiv-

alent expression. Assume that the antecedent (A and AcceptData) holds (otherwise the weakest
precondition holds trivially). Then, from AcceptData we derive Acked=True, Acked'=F alse,
s'=s+1, and r'=r. From the last two equalities and A,, we derive s'=r'+1, which invalidates

the consequent of A2’. Therefore, the weakest precondition requires that the antecedent of AQ'

be false; i.e., C, should not contain any (ACK,s') messages. Because s'==s+1, this can be stated
as follows:

Ay = Acked=True = 2, = (ACK,s)*

where m* denotes a sequence of zero or more m’s.

We next obtain a weakest precondition of A, wrt Rec_ ACK. Applying (*), we obtain the
weakest precondition

(for all v/)[(A and z,=((ACK,s),2},) and Acked=False
and Acked'=True and s'=s) = A /|

which is equivalent to
(for all v)[(A and z,=((ACK,s),z5) and Acked=False) = zi, = (ACK,s)*]
which is equivalent to
(A and z,=((ACK,3),z},) and Acked=False) = (ACK,s+1) not in zj
A weakest precondition of this wrt the loss event for C, is
(A and (ACK,s) in z, and Acked=False) = ((ACK,s),(ACK,s+1)) not a subsequence of z,

Note that if (m,m,) is a subsequence of z,, then m, is closer than m, to the head of z_; thus m,
would be deleted before m, can be at the head. This weakest precondition is equivalent to

- A = Acked=False = z, = ((ACK,s+1)*, (ACK,s)¥)
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A5 is obviously a weakest precondition. Its necessity becomes obvious when we assume its nega-
tion; then P, can receive the (ACK,s) and invalidate A,.

We next obtain a weakest precondition of AO 1,3 Wrt Rec_D. (The notation A, j denotes
A, and Af) Applying (**), we obtain
(D,data,r) in z; = (data=Source[r] and r=s-1)
We next obtain a weakest precondition of this wrt to Rec__D. Applying (*), we obtain
(for all v')[(z,=((D,data,,r),2}) and r'=r+1) =
((D,datay,r') in 2 = (data, =Source[r'] and r'=s-1))]
But r'=s-1=r+1 implies s=r+2, which violates Al 4. Therefore, z cannot contain (D,data,,r ",

or equivalently z, cannot contain the subsequence ((D Sourcelr],r),(D,data,r+1)). Therefore, z;

e D,data ,T 1 * D data * Incorporatlng this with the first assertion in this paragra h
1 2L paragraph,
We have

Ag = (for some data)(z,=(D,data,r+1)*|

or (for some data)(z, = ((D,data,r+1)* (D,Source|r],r)*) and s=r+1]

At this point, we have obtained the desired A; i.e., any further precondition that we obtain
will equal True. We can now complete the marking of all unmarked event-assertion pairs. We
say that an event e does not affect A if A does not contain any state variable changed by e;

clearly, such an (e,Ai) pair can be consuiered marked

AcceptData: It is already marked wrt A,. (A; and AcceptData) implies the following:
X = Acked'=False and Y = s-1=s=r=r". (A, and AcceptData and Y)= A Y=A,
X=4, (Yand A,) = A" (Yand Ag) =+ z,=(D,data,r+1 * = Agl

Send _D: Does not affect A, 0,1,2,3,4,5 Send D implies X = Acked'=Acked=False, and Y =

yey

s'=s and r'=r. (X and Y 'and A3) implies Z = s==r or s=7r+1. (Z and Ag) implies Ag '

Rec_ ACK: Already marked wrt A & Does not affect Aj ¢. We need only consider the case
when z,=((ACK,s),2 o), Acked= —False, nr=s, and Acked’—True thus, A, 5 holds
vacuous]y Otherwise, Rec_ ACK is not enabled or its effect is exactly that of C ’s loss
event, which is handled below; this is precisely the same argument used to derive (*)

Send _ACK: Already marked wrt A,. Does not affect Ay, 3¢ (A ; and Send;ACK) =
Al (,42’3’5 and Send _ACK) = A/

Rec_D: Already marked wrt A Does not affect A45 Need only consider when X =
r'=r+1 and z,=((D,Sourcelr ]z) z}) holds. (X and Ag) implies Acked=Acked'=F alse,

s=r+1, and z,=(D,Source[r],r)*. From these, we derive A1,2,3,6
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Channel loss events: We have (A; and message loss) = A/, for all A..

3.2 Liveness verification

We would like to prove that once a data block is accepted from the source at P,, then it
will be acknowledged eventually. More formally, we wish to prove

L, (Acked=False and s=n) leads-to (Acked=True and s=n)

We shall prove this property for a restricted version of the protocol in which P, sends an
ACK message only if it has received a D message since it last sent an ACK message. If L0 holds

for this restricted protocol, then clearly it holds for the original protocol as well. We shall intro-
duce the boolean state variable SendACK at P, include (SendACK'=True) as a conjunct in

Rec_ D, and include (SendACK=True and SendACK'=False) as a conjunct in Send  ACK.
SendACK is initially False. Note that any safety property verified earlier continues to hold be-
cause each event e_ in the modified protocol is a refinement of the corresponding event e in the

earlier protocol such that €=

We will prove the liveness property L0 assuming the channel liveness axiom (Section 2.4):

i.e., even though the channels are lossy, they will eventually deliver a message that is sent
repeatedly. Let a; and o, denote the send counts of (D,Source[n|,n) and (ACK,n-+1) respec-
tively. Let

B = Acked=False and s-1=r=n
C = Acked=False and s=r=n-+1
D = Acked=True and s=r=n-+1

We prove L in two stages. First, we prove that Source[n] will be received at Py; i.e., B leads-to
C. )

Proof of B leads-to C. Applying the leads-to inference rule with IEA1 3 We obtain
(B and o, >1) leads-to (B and a,>1+1) or C) via Send_ D

The details of the inference rule application are as follows: Send__D is enabled in (B and o, >7)
and leads-to (B and «;>i+1). The reception of (D,Source(n],n) in (B and a;>1) leads-to C.
Any other event occurrence in (B and a,>1¢) leads-to (B and a, >1).

Applying the induction rule to the above inductive leads-to statement, with u=a, and
noting that a, >0, we have (B leads-to ((B and ozl__>__i) or C). Applying the channel liveness
axiom to this, we have B leads-to C. End of proof

We next prove that once P, has received Source[n], then P, eventually receives the ac-
knowledgement (ACK,n+1); i.e., C leads-to D.
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Proof of C leads-to D. Applying the leads-to inference rule with I=A, 5, we obtain the fol-
lowing: ’

(C and o, >7and ay>j) leads-to
((Cand o) 21+1 and aQZJ) or (Cand ay2>7 and SendACK=True) or D) via Send __D

(C and o,>j and Send ACK="True) leads-to ((C and ay>j+1) or D) via Send _ ACK
Applying leads-to rule 2 to the above yields the following inductive leads-to statement:
(Cand a; 2>t and a22j) leads-to (D or (C and (ay2>j+1 or (ag>7 and aIZi—{—l))))

Applying the induction rule to this with u=(ay,@,;), we have (C leads-to ((C and (aQ,aI)Z(j,i))
or D). We can infer C leads-to D from the above and the channel liveness axiom, because
(az,al)Z(j,i) implies that either ay2>j or a; 2>t End of proof.

Applying leads-to rule 1 to Aj, we get (Acked=False and s-1=n) leads-to (B or C). Ap-
plying leads-to rules 2 and 3 to this, B leads-to C, and C leads-to D, we get LO'

4. REAL-TIME SYSTEM MODEL

In Section 4.1, we define timers and time events. In Section 4.2, we model implementable
time constraints that are enforced by individual processes of a distributed system. In Section
4.3, we model bounded-delay communication channels. In Section 4.4, we model time constraints
that are enforced due to the cooperation of the processes. The discussion in Sections 4.1 and 4.2

applies to both entity processes and channel processes. For the sake of brevity, we shall refer
only to entity processes.

4.1 Measures of Time

We use the term local timers for those timers that are implemented within individual en-
tities of a distributed system. In our model, local timers are discrete-valued state variables: the
interval between successive ticks of a local timer is not infinitesimally small. Local timers in dif-
ferent entities are not coupled: the ticks of one timer do not coincide in time with the ticks of
another timer. The ticking rate of local timers of entity Pi is not constant but can vary within a

specified error bound .. Typically, e, < 1; for a crystal oscillator driven system, ¢, ~ 1075,

A local timer can take values from the domain {Off,0,1,2,...}. For this domain, define the
successor function next as follows: nezt(Off)=Off and nezi(:)=1i+1 for i5£0ff. For convenience
in specifying timers with limited counting capacity, we also allow a timer v to have the domain
{Off,0,1,...,M} where M is some positive integer. In this case, next(M)=Off.

For each entity, there is a local fime event (corresponding to a clock tick) whose occur-
rence updates every local timer within that entity to its next value. No other timer is affected.
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In addition to being affected by its time event, a local timer can be reset to either 0 or Off
by an event of that entity. (Unless otherwise indicated, the term events will refer only to the
events of the entity other than the time event; i.e., the communication and internal events.)
Resetting to O is referred to as starting the timer, and resetting to Off is referred to as stopping
the timer. Thus, a local timer that is started by an event occurrence measures the time elapsed
(in number of occurrences of its local time event) since that event occurrence.

To keep the rates of time event occurrences in different entities within specified bounds, we
include in our model a hypothetical time event, referred to as the ideal time event, that is as-
sumed to occur at a constant rate. We allow the system model to have timers that are driven
by the ideal time event. These timers are referred to as ideal timers. Ideal timers are not avail-
able to the implementation. Rather they are auxiliary variables used to record the actual time
elapsed between event occurrences (not necessarily of the same process).

Given an ideal timer u and a local timer v of entity P, we say: (u,v) started-together to

mean that at some instant in the past u and v were simultaneously started, and after that in-
stant neither u nor v has been started or stopped. The accuracy of local timer v is modeled by
assuming that occurrences of the ideal time event and the local time event of P, preserve the

following condition, which we shall refer to as the accuracy aziom:
Accuracy Axiom. (u,v) started-together = |u-v] < max(1, eiu)

Note that the accuracy axiom would be enforced if the occurrence rate of the local time
event of entity Pi differs from the occurrence rate of the ideal time event by at most e.. The

dv
accuracy axiom is a discrete version of the condition | 1 - — | < ¢, used for continuous clocks

du
[12].

Proving safety assertions with started-together statements

Safety assertions can contain started-together statements; e.g., x>y = ((u,v) started-
together). We next present rules to be used when applying the safety inference rule to such
assertions. In part (i) of the safety inference rule, we can use the rule

(ST1) (u=0 and v==0) = ((u,v) started-together)

In part (ii) of the safety inference rule, we use the following two rules, if the event e being con-
sidered is not a time event:

(ST2) (v'=0 and v'=0) = ((v',) started-together)
(ST3) (uw'—u and v'=v and ((u,v) started-together)) = ((«',7') started-together)

A started-together statement is preserved by a time event occurrence, unless one of the timers is
a bounded capacity timer that is exceeding its capacity and is stopped by the time event occur-
rence. Thus, the following rule applies in part (ii) of the safety inference rule, if the event e be-
ing considered is a time event:

(ST4) ((u,v) started-together and next(u)7Off and nezt(v)z£Off) = ((v',v') started-together)
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4.2 Implementable Time Constraints

Implementable time constraints refer to time constraints that can be enforced by individual
entities without any cooperation from the rest of the distributed system. They are guaranteed
by the implementations of individual entities, and are not properties that have to be verified by
analyzing the interaction of processes.

Let € and € be two events of entity Pi’ and let v be a local timer in v, that is started by
€ and stopped by e,. Consider the following three time constraints:

(E1) e, will not occur within T time units of e,’s occurrence: This is modeled by adding
the conjunct v>T to € in other words, including v>T in the enabling condition of

62.

(E2) If €, occurs, then it occurs within 7 time units of e,’s occurrence: This is modeled by
including v<T'in the enabling condition of €y

E3) e.. must occur within T time units of e,’s occurrence: This is modeled by specifyin
9 1 pecifying

that the time events keep the condition v<T invariant. Note that this constraint
cannot be modeled by including v<<T in the enabling condition of € because in our

model an enabled event is not forced to occur.

El and E2 are examples of time constraints of the general form "event e will occur only 7 f the
elapsed times satisfy a condition 7C," where TC is a predicate in v . They are modeled by in-

cluding 7C in the enabling condition of event e. Such a time constraint is always implement-

able.

E3 is an example of time constraints of the general form “"event e must occur while the
elapsed times satisfy a condition TA." They are modeled by requiring that time events keep TA
invariant. We refer to such a TA as a tsmer axiom.

Not every predicate in v, can be a timer axiom. Consider the example E3 where ¢, and e,
are both events of Pz- but €y involves the reception of a message (we shall refer to this example as
E4). We do not allow E4 to be modeled by the timer axiom v<T because P, cannot by itself

enforce E4: the cooperation of other processes is needed to ensure that the required message is
present in the channel. Notice that without this cooperation the time events will eventually
deadlock; i.e. no time event will be able to occur without violating some timer axiom.

An event e of entity Pi is said to be controlled by P, if the enabling condition of e depends
only on the value of v i.e., e is an internal event or a message send into a nonblocking channel.
Let TA be the conjunction of all the timer axioms of entity Pi' We require TA to be a predi-
cate in v, that satisfies the following implementable conditions:

(IC1) TA holds initially.
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(IC2) For every value of v, where TA(v;)=True, there is no event of P, which sets v, to a
value such that TA(v )=False.

(IC3) TA cannot refer to both ideal and local timers.

(IC4) If TA refers to local (ideal) timers, then let next(v,) denote v, with every local
(ideal) timer updated to its next value. For every value of v, such that
TA(v,)=True and TA(neat (v ))=False, there is a sequence of enabled events

€1,€9:-1€, controlled by Pi whose occurrence will set v. to a value such that

TA(next (v,))=True. '

IC1 and IC2 ensure that events do not violate the invariance of the timer axioms. IC3 en-
sures that TA can not specify an accuracy for local timers higher than that specified by the ac-
curacy axiom. Indeed, without IC3 the accuracy axiom would be a special case of a timer axiom.
IC4 is the key condition; it ensures that P, can implement its timer axioms without cooperation

from the rest of the distributed system. In example E4, IC4 is violated because the receive event
€y is not controlled by process i. We have shown in [22] that if the timer axioms of each process

in a distributed system satisfy the implementable conditions, then the time events will never
deadlock. Thus, every running timer will be either reset by an event or incremented:

Theorem 1. Given a system with implementable timer axioms, the following holds for any
timer u: u=n leads-to (u=n+1 or u=0ff or u=0)

4.3 Modeling Real-Time Channels

In this section, we model a channel C; that displays a maximum message lifetime
MazDelay ; i.e., any message attempting to stay in channel Ci for longer than MaxDelayz. time

units is lost or removed by some intermediate network node. Such behavior is not only common

in communication networks, but is crucial for the correct operation of communication protocols
[20, 26).

With each message in transit we associate a timer age that indicates the age of the message
(time spent in the channel). For notational convenience, we assume that age is an ideal timer.
The state variable z, of Cz’ now denotes the sequence of < message,age>> value pairs in Ci. In-

itially, any age timer in z, has the value 0. The maximum message lifetime MazDelay, con-

straint is modeled by the timer axiom (for every <message,age> in zi)[O < age < Ma:z:Delayi].

The send and receive primitives are modified to the following: Send (m) =
(zgﬁ(zi,<m,0>)), i.e., append message m with an age of O to the tail of z. Reci(m) == (for
someAage)[(<m,age>,z;-)zzi}, i.e., receive the message m from the head of z; irrespective of its
age provided that z, is not empty.

In practice, the check that the above timer axiom is implementable amounts to ensuring
that at least one of the following conditions holds:
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() The channel can delete any message of age MazDelay,. (Typically, a channel will

have a loss event that can delete any <message,age>> pair including those of age
MazDelay;.)

(b) The entity that receives messages from C, is always enabled to receive the first mes-
sage (and hence by successive applications, any message) in Cz..

This guarantees IC4. IC1 is ensured since all age timers are initially zero. 102 is guaranteed
because neither the channel events nor the channel receive primitive reset age timers, and the
channel send primitive resets age timers to 0. 1C3 holds because z, has only ideal timers.

4.4 Derived Time Constraints

Derived time constraints are time constraints that hold for the distributed system as a
result of individual processes enforcing implementable time constraints. Derived time constraints
can be global time constraints on the elapsed times between events in different processes.
Derived time constraints can also be time constraints on events of the same process. An instance
of that is example E4 where €, is a receive event.

A derived time constraint of the form “system event e will occur only if the elapsed times
satisfy a condition B" is logically equivalent to the statement that B holds whenever ¢ is en-
abled. It is established by proving that the assertion enabled(e) = B is invariant.

Consider a derived time constraint of the form: system event e must occur while the
elapsed times satis{ly a condition B. This time constraint is logically equivalent to the staternent
that no time event occurrence violates B. It is established by proving that for every time event
e, that affects B, the assertion (for every v')[(B and et)==§B'1 is invariant. Typically, the timers

can be chosen such that B holds initially and is preserved by events other than the time events.

In this case, the time constraint corresponds to the requirement that B is invariant (e.g. property
Dy, in Section 6.1).

The problem of analyzing the relationships between time constraints enforced within
processes and the resulting system-wide time constraints may be handled in two phases: a global
analysis phase involving only ideal timers, followed by a local analysis phase during which imple-

mentable time constraints expressed with ideal timers are realized using local timers (see example
in Section 5.1).

5. A TIME-DEPENDENT PROTOCOL

We reconsider the data transfer protocol example of Section 3, where now each channel C;
can lose, duplicate and reorder messages in transit. Moreover, messages in channel C; have a
maximum lifetime of MaxDelayi, for 3=1 and 2. These maximum message lifetimes are neces-

s‘e;;y for correct operation; without them, it is always possible for an old data block with a cur-
rently active cyclic sequence number to be mistaken for a new data block.
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To achieve correct operation over these channels, it is sufficient that Pl sends a new data
block Source[n] only when the following two conditions hold: First, at least MazDelay, time
has elapsed since the last send of data block Source[n-1]. Second, at least MazDelay, time has
elapsed since P, first received the acknowledgement of Source[n-1]. These two time constraints

are in addition to the earlier requirement that Source[n] can be sent only after Source[n-1] has
been acknowledged. Informal justifications of the time constraints are given below. The
verification in Section 5.1 provides a formal proof that they ensure correct operation. (The

reader is referred to [24] for the general case of ns and nr taking values from {0,1,...,N-1} for
any N>2.)

The first time constraint ensures that there is no (D,Source[n-1],n-1) message in C; when
P, sends (D,Source[n],n). Otherwise, because C, can duplicate and reorder messages, the follow-
ing can happen: P, receives a (D,Source[n],n) message where r=n, followed by a

(D,Source[n-1],n-1) message. Because n-1 = n+1, P, would incorrectly interpret the second D
message as containing Source[n+1].

The second time constraint ensures that there are no (ACK,n-1) messages in C, when

(D,Source[n],n) is sent. The constraint achieves this because (ACK,n-1) is not sent after
Source[n-1] has been received at P,; this happens before acknowledgement of Source[n-1] is

received at P,. It is necessary that (ACK,n-1) not be present in C, because such an ACK mes-
sage if received by P1 would be incorrectly interpreted as an acknowledgement for Sourcen|
(recall n-1 = n+1).

Observe that neither of the above time constraints applies to the retransmission of an out-
standing data block. The time to wait before a retransmission can thus be chosen on the basis
of performance goals and the probability distributions of channel delays, channel loss, etc.
(further discussions in Section 6). Here we see a system with two different types of time con-
straints: one necessary for logical correctness and one concerned only with performance. In other
protocols, the separation is not always so clear.

We now specify the variables and events of Pl’ as well as the time events. The variables
Source, s and Acked of P, as well as the entire specification of P, are exactly the same as in the
earlier example in Section 3. Given an ideal timer u and local timer v of Pl which are started
together, from the accuracy axiom it is clear that u>T holds if v__>_1+(1+el)T holds, or equiv-
alently if v is a timer of capacity (1+¢;)T and is Off. With this motivation, we define MDelay,
= (1+¢,) MazDelay, for i=1 and 2.

Variables of P1

Source : array[0..00] of DataSet U {empty}; {History variable. Initially, Sourcel0..00]=empty}
sT0..00; {Initially, s==0}

Acked : Boolean; {Initially, Acked=True}
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DTimeG : ideal timer; {indicates the time elapsed since the last D message sent. Initially,
DTimeG=0If}

DTimer : local timer of capacity MDelayl; {started together with DTimeG. Initially,
DTimer=0ff}

ATimeG : ideal timer; {indicates the time elapsed since the reception of the first ACK mAessage
that acknowledged Source[s-1]. Initially, ATimeG=O0ff}

ATimer : local timer of capacity MDelay,; {started together with ATimeG. Initially,
ATimer=0ff}

Events of P1

AcceptData = Acked=True and {if no unacknowledged data}
DTimer=0ff and ATimer=0ff and {and time constraints met}
Source[s]' in DataSet and s'=s+1 and Acked'=False  {accept data}

Send D = Acked=False and Sendl((D,Source[s-l],g;l_)) {send outstanding data}
and DTimer'=0 and DTimeG'=0 {start DTimer}

Rec_ ACK == (for some nr)[RecQ((ACK,n'r))

and ((Acked=False and s = nr)
— (Acked'=True and ATimer'=0 and ATimeG'=0))|

Time events

The only timer axioms in this example are those for specifying the maximum message
lifetime property. Formally, for =1 and 2:

TA; = (for every <message,age> in zi)[() < age < MaxDelayi]

There are two time events: the ideal time event and P,’s local time event. They are

defined exactly as in Section 4.1 and 4.2. The ideal time event affects all ideal timers; it can be
formally specified by the predicate

z’lznext(zl) and zl,=nezt(z,)
and DTimeG'=next(DTimeG) and ATimeG'=next(ATimeG)

where next(zi) returns z, with every age variable in it incremented by 1.
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Pl’s local time event affects all local timers in vy it can be specified by the predicate

DTimer'=next(DTimer) and ATimer'=next(ATimer)

Note that these events will occur only if their occurrence preserves the invariance of every
time and accuracy axiom. In this respect, the above predicates specify just the actions of the
time events. Note also that the time event predicates are fully specified once all the timer
axioms, if any, are known. In future examples, we shall not write out explicitly the time event
predicates.

5.1 Safety verification

As in Section 3.1, we shall use our heuristic to generate an assertion A that establishes the
invariance of the following:

Ay= r<sand (forall nin [0..7-1])[Sink|n] = Source[n]]
A= Acked=True =% r=s

The following weakest precondition of Al wrt Rec__ ACK and 02 loss event is generated
exactly as in Section 3.1:

A, = (Acked=False and (ACK,s) in z,) = r=s

The following weakest precondition of A, wrt Send ACK, Rec_D, and Send __D 1is
generated exactly as in Section 3.1:

Ay = Acked=False = (r==s or r=s-1)

The following weakest precondition of A2 wrt AcceptData is generated exactly as in Sec-
tion 3.1:

A= (Acked=True and DTimer=O0Iff and ATimer=0If) = z, = (ACK,s)*

We now obtain a precondition of A4 wrt the local time event of Pl‘ The time event occur-
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rence will cause DTimer=ATimer=O0ff to become true if and only if the following held before
its occurrence:

X = (ATimer=MDelay, and DTimer==0ff)
or (ATimer=O0ff and DTimer=MDelay, )
or (ATimer=MDelay, and DTimer=MDelay,)

Thus, a weakest precondition would be (Acked=True and X) = 2y = (ACK,s)*. However,

from the informal justification of the second time constraint (fourth paragraph in Section 5
above), we know that DTivmer is not relevant to enforcing the right hand side of A,. Thus, we

can strengthen the above weakest precondition to the following precondition:
(Acked=True and ATimer=MDelay,) = 2o = (ACK,s)*

We also know that the right hand side is enforced by exploiting the maximum message lifetime
property of 02‘ Specifically, ATimeG maintains a lower bound on the ages of (ACK,s+1) mes-

sages in Zo, and ATimer is started together with ATimeG. This leads us to the following
precondition:

Ay = (Acked=True and <(ACK,s+1),age> in Z,)
= ((ATimer,ATimeG) started-together and ATimeG< age)

We now obtain a precondition of Ay wrt to Rec_ D. As noted in the informal justification
of the first time constraint (third paragraph in Section 5 above), because C; can reorder and
duplicate messages in transit, it is necessary that all D messages in zZ, have the same value of ns.

If that ns equals 7, then the data fields should all equal Source[r] and r must equal s-1 (to ensure
A, g after the reception).

Ag = (for some data)(z,=(D,data,r+1 *] or (zlz(D,Source[r],g*_)* and r=s-1)

A weakest precondition of Ag 5 Wrt to Send_D is

A, = Acked=False = (((for some data){zlz(D,data,z_—_t_l_)*] and r=s)
or (z1=(D,Source[r],_7;)* and r=s-1))

“We next obtain a weakest precondition of A, wrt to AcceptData. From AcceptData and

. we have r'=r=s=s"1 and Acked'=False. Thus, in order that A, hold, we require that

zlz(D,Source[r],z)* before AcceptData occurs. But (A; and r=s) = zl-—:(D,data,z'_:t_l._)*. The
only way that z; can satisly both requirements is if there are no D messages in z,.



24

Ag = (Acked=True and DTimer=O0ff and ATimer=0ff) = z, = null

We next obtain a precondition of A8 wrt time events. From the informal justification of
the first time constraint, it is obvious that the enforcement of Ag does not depend on ATimer or
on Acked. It does depend on the maximum message lifetime property of Cl. Specifically,
DTimeG maintains a lower-bound on the ages of D messages in z, and DTimer is started
together with DTtmeG. This leads us to the following:

Ag = <(D,data,ns),age> in zl)

= ((DTimer,DTimeG) started-together and DTimeG<age)

The assertions Ay g satisfy the safety inference rule, as shown below.

AcceptData:  AcceptData implies Acked’=False, which implies A, ¢ g (A; and
AcceptData) = A, 5+ (Henceforth, for brevity, we will omit listing the event name in the

antecedent of all implications in this proof; i.e., the last derivation would be stated as
' 1 '
A1=>A0,3 ) ,/¢l4=-—>A.2 . A8==>A6’7’9 .

Send_D: Ay;935 Is nOt affected. Send D implies DTimer'=0 which implies A, ¢
vacuously. A, DTimer'=0, and timer axiom for C; together imply Ag’. A=Ag 7

Rec_ACK: We only need consider the case when Acked=False, Acked'=True,
ATimer'=ATimeG'=0, zzz((ACK,g),z'z). A0,6,9 is not affected. A2’3,7’ holds vacuously.
A2==>A1’. Ay 8, holds vacuously because ATimer'=0. A5’ holds from Ay, ATimer'=0, and
timer axiom for C2.

Rec_D: A g is not affected. A9==>A9’. We only need consider the case of ns=r, r'=r+1,
. b 7,.—_— o o . P .
and Sink[r]'=data. From Ay, we have r=s-1. r=s-1 and AO,G imply A0,1,2,3' r=s-1
and Ag imply Ag 7’.

Ideal time event: We have A; o=Ag g from the started-together rules (Section 4.1). No other
A, ls affected.

Local time event of Plz Only A4,5,8,9 are affected. We first consider A4’5. We only need to
consider the case of Acked=True. If ATimer#MDelay, then A, is not affected and
A5==>A5’ from started-together rules. If ATimerzMDelay2 then from AS’ accuracy axiom,
and definition of MDelayz, we have (ACK,s+1) in z, = ATz’meG’>]\JaacDelay2 =
(ACK,s+1) not in z, (from the timer axiom for C,). Thus, z2=(ACK,§)* and then A
holds vacuously and A 4’ nonvacuously. A‘S,Ql is similarly derived from A&g.
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5.2 Liveness verification

The liveness verification of the earlier example (Section 3.2) serves as a verification for this
protocol too. Specifically, there are two types of leads-to statements in that verification. State-
ments of the first type have the form wY leads-to Y via event e," and were derived from the
system specifications by applying the leads-to inference rule. Statements of the second type have
the form "X leads-to Y," and were derived from the leads-to statements of the first type by ap-
plying the leads-to rules 1-3.

It is easy to check that the derivation of each leads-to statement of the first type continues
to be valid for this protocol example. Because these statements do not involve any timers, they
are not affected by the time events. The only safety property used in their derivation was Al 3

which also holds in this protocol example. The derivations of the second type of leads-to state-
ments continue to be valid, because these derivations require only the leads-to statements of the
first type; indeed, these derivations are independent of the system specifications.

6. A PROTOCOL WITH REAL-TIME PROGRESS

We now modify the time-dependent protocol in Section 5 so that unacknowledged data
blocks are acknowledged within a bounded response time T, provided that the channels do not
consistently perform badly. Such a real-time progress property is more realistic than the liveness
property LO shown in Sections 3.2 and 5.2. In practice, if progress is not achieved within time T,

then P1 aborts the connection with P2.

Let Delay, (< Ma:rDelayi) be the delay that a message is expected to encounter in channel
C; We say that a message m in C, is overdelayed if it is not received within Delay, time of its
send. (Delay, < MazDelay, for a realistic channel.) Note that if DelayizMa:z:Delayi then
overdelaying message m corresponds to losing m and any of its duplicates.

Entity P2 will now send an ACK message within a specified MaxResponseTime of receiv-
ing a D message.

Define RoundTripDelay = (Delay1 + Delay, + MazResponseTime). Define RTripDelay
= 1+ (1+el)><RoundTri'pDelay. P, transmits a data block as soon as it is accepted, and

retransmits it once every RTripDelay local time units until it is acknowledged. Separating suc-
cessive transmissions by RoundTripDelay time ensures that a separate acknowledgement is sent
for each new data block transmission that is received at P2. As a result, a single channel failure

affects at most one data block {ransmission.

‘We note that the proposed ISO transport protocol standard [9] includes exactly such real-
time behaviour and delay parameters.

Before stating the real-time progress property, we define the following auxiliary variables:
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OutTimeG : ideal timer; {If Acked=False then OutTimeG indicates the time elapsed since
Acked last became False. OutTimeG=Off initially and whenever Acked=True}

By integer; {If Acked=False then B, indicates the number of times that Cl has over-

delayed (D,Sourcels-1],5-1) since Acked last became False. ;=0 initially and when-
ever Acked=True}

By - integer; {If Acked=False then £, indicates the number of times that C2 has over-

delayed (ACK,s) since Acked last became False. f,=0 initially and whenever
Acked=True}

We assume that the channels satisfy the following axiom (analogous to the channel liveness
axiom in Section 2.4.):

Channel real-time progress axiom: g, + By < M for some M>1.

Given this axiom, we will verify that every data block is acknowledged within T =
MX RTDelay seconds of it being accepted, where RTDelay = 1 + (1/(1-¢)))X RTripDelay. This

worst-case progress property is formally expressed by the following safety property:

Dy= Acked=False = OutTimeG < MXRTDelay

6.1 Protocol specifications

We now refine the specifications of P, and P, in Section 5 to enforce the required real-time
behavior. The channel timer axioms TAI and TA2 continue to apply.

At Pz, there is now a local time event of accuracy e,, and the following variables:

ACKTimer : local timer; {indicates the time elapsed since the earliest D message reception
for which an ACK has not yet been sent. ACKTimer=O0ff initially and whenever

there is no unacknowledged D message}
ACKTimeG : ideal timer; {started together with ACKTimer. Initially, ACKTimeG=0ff}

Both ACKTimer and ACKTimeG are stopped in the Send _ACK event, and started, if they
were Off, in the Rec_ D event. ACKTimer is constrained by the timer axiom

TA, = (ACKTimers£0{f = ACKTimer < MResponseTime)

where MResponseTime == (l-eQ)XMaxResponseTime - 1. This timer axiom is implementable
because of the Send _ ACK event.
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We have the following additional variables at Py:
TryTimer : local timer; {If Acked=False then TryTimer indicates the time elapsed since the
last send of Source[s-1]. TryTimer=Off initially and whenever Acked=True}

TryTimeG : ideal timer; {started together with TryTimer. Initially, TryTimeGrzOff}

TryCount : integer; {Indicates the number of transmissions of Source|s-1] that have already
occurred. TryCount=0 initially and whenever Acked=True}

When Source[s-1] is transmitted, TryCount is incremented by 1 and TryTimer is reset to O.
This transmission occurs whenever TryTimer:—:RTripDelay. This time constraint is formally
specified by the following timer axiom:

TA, = (Acked=False and TryTimers£0ff) = TryTimer <RTripDelay

This timer axiom is implementable because of the Send __D event.

We now specifly auxiliary variables needed to update B, and B, In each D message, we

include an auxiliary tn field which indicates the value that TryCount had immediately after the
message transmission. A D message with tn equal to the current value of TryCount is referred

to as a current D message. An ACK message sent in response to a current D message is referred
to as a current ACK message.

TryRecd : boolean; {True iff Acked=False and a current D message has been received at P,. In-
itially, TryRecd=False}

TryAckedG : ideal timer; {If Acked=False and P, has sent current ACK messages, then

TryAckedG indicates the time elapsed since the first such ACK message was sent.
 TryAckedG=OIf otherwise and initially}

The events of this protocol are obtained by refining the corresponding events of the
protocol from Section 3.
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AcceptData is the conjunction of the previous AcceptData event and the following:
NEWTRY = (Send1((D,Source[s],§_,TryC’ount'))
and TryTimer'=TryTimeG'=0 and TryCount'=1
and OutTimeG'=0 and TryRecd'=False and TryAckedG'=0ff
and g,'=g,'=0)

Send _D is obtained by replacing Sendl((D,Source[s—l],gi)) with
RETRY = (Sendl((D,Source[s—1],§_-_1_,TryCount’)) and TryTimer=RTripDelay

and TryTimer'=TryTimeG'=0 and TryCount’=TryCount+1
and TryRecd'=False and TryAckedG'=0ff)

Rec__ ACK is obtained by including the following as a conjunct to Acked'=True:
ENDTRY = (TryTimer’zTryTz'meG’zOutTimeG’z—-—Off)

Rec__ D = (for some data, ns, tn)[Recl((D,data,ns,tn))
and (r = ns — (Sink[r)' = date and r' = r+1))
and (ACKTimers£Off — ACKTimer'=ACKTimeG'=0)
and ((Acked=False and tn=TryCount) — TryRecd'=True))

Send_ ACK = Send,((ACK,r)) and ACKTimer'=ACKTimeG'=0ff and

((Acked=False and TryRecd=True and r=s and TryAckedG=0ff)
— TryAckedG'=0)

There are now three time events: the ideal time event which affects all ideal timers, the
local time event of P1 which affects all local timers in Vi and the local time event of P2 which

affects all local timers in Vo Each time event occurrence preserves the accuracy axioms and the
four timer axioms TAI’ TA2, TA3, and TA4.

In addition to affecting the timers, the ideal time event has the following conjunct for up-
dating B, and By:

((Acked=False and TryTimeG=Delay, and TryRecD=False) — ,61’=ﬂ1+1)
and (Acked=False and TryAckedG=Delay,) — ,82’=ﬂ2+1)

Nofe that 4, actually indicates the overdelay count for current (ACK,s) messages, and not for all
(ACK,s) messages.
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6.2 Safety and liveness verification

Because each event in this protocol is a refinement of some event of the earlier protocol in
Section 5, the safety properties A1-9 continue to hold for this protocol.

Because all the timer axioms in this protocol are implementable, Theorem 1 implies that
every running timer increases until it is either stopped or restarted. This together with the live-
ness verification of the protocol in Section 5 provides a liveness verification of this protocol.

6.3 Real-time progress verification

The following is obviously invariant (proof in Appendix B):

D, = Acked=False = (OutTimeG < TryTimeG + (TryCount-1)X RTDelay
and (TryTimer, TryTimeG) started-together and TryCount>1)

Just after AcceptData occurs, we have TryCount=1 and ﬂ1+ﬂ2=—-0. In general, just after
a try, we expect TryCount=ﬂ1+62+l to hold, and we have TryTimeG=TryTimer=0. Let us

assume that Acked is still False when TryTimer attains RTripDelay. At this point TryTimeG
has exceeded RoundTripDelay and the next try will occur. We expect 8,+f, to be incremented

by 1 some time between the two tries. Specifically, at any instant between the two tries we ex-
pect either TryCount=p,+8, or one of the following to hold:

(1) TryTimeG < Delay, and the current D message has not yet been received at P2'

(2) P, received a current D message when TryTimeG had the value ¢, < Delayj, and P,
has not yet responded to it, and TryTimeG < t + MazxResponseTime.

(3) P, sent a current ACK when TryTimeG had the value
ty < Delay1+MaxRes'ponseTz'me, and TryTimeG < 1, + Delay,.

Formally, we have
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D, = Acked=False = (D, ; or D, 4 or D, 5 or D, ,)
where
D, = TryTimeG in [0..Delay1] and TryRecd=False and TryCount=ﬂ1+ﬂ2+1

D, , = (for some ¢, in [0..Delay, |)
[TryTimeG in [tl..t1+MaxResponseTz'me] and TryRecd=True and r==s
and ACKTimeG 2> TryTimeG-t,

and ((ACKTimeG, ACKTimer) started-together)
and TryCount=p,+8,+1]

D, 4 = (for some i, in [0..Delayl—t-Ma:cResponseTime])
[TryTimeG in [tg,.t2+Delay2} and TryAckedG = TryTimeG-i,

and TryCount=ﬁ1+ﬂ2+1]

D, , = TryTimeG 2> min(Delay,, Delayg) + 1 and TryCount=8,+8,

D, satisfies the safety inference rule with I = D, and A, (proof in Appendix B). D, implies
that (TryC’ount:ﬂ1+,82+l) is invariant. This and the channel real-time progress axiom imply
TryCount< M. The timer axiom for TryTimer and D, imply TryTimeG<RTDelay. D, follows

by plugging the last two inequalities into D, .
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Appendix A

Modeling a variety of channels

Recall that a channel C, with state variable z; has three predicates specifying it: Send (m),

Rec (m), and ChannelError.

Infinite-buffer, finite-buffer blocking, and finite-buffer loss channels can be modeled by ap-

propriate Send primitives.

1. Infinite-buffer channel. This is the one modeled in Section 2.4.
Send (m) = (z;/ = (z;m))

2. Finite-buffer blocking channel. Send is blocked if the channel is full.
Send (m) = (lz;] < Jand z] = (z;m)),
~where lzil denotes the length of z; and J denotes the channel capacity.

- 3. Finite-buffer loss channels. Sending of a message into a full channel causes a mes-
sage (either the new one or one already in the channel) to be lost.
Sendi(m) = (for some message sequences a,b,c)(for some message n)

[(a=(z;,m)) and (|la]| < J = z, = a)
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and (|a| = J+1 = (a=(b,n,c) and z = (b,e)))]

In the above, we have assumed 2z, is a sequence of messages. If z, is a sequence of
< message,age>> pairs, then m is replaced by <m,0> in the body of the send primitive.

Minimum delay channels can be modeled by an appropriate receive primitive. For channel
Cz., let state variable z, be the sequence of <message,age>> Ppairs. Then, a minimum delay of D

can be modeled by
Rec,(m) = (for some t){(zi=(<m,t>,zi’)) and t > D]

Recall that the internal behavior of channel Ci is specified by ChannelError. We formally

specify different types of channel errors below (a, b, ¢ are existentially quantified over sequences
of messages, while m is existentially quantified over messages).

Loss = (zi:—--(a,m,b) and z/=(a,b))

Duplicate = (z,=(a,m,b) and 2 = (a,m,m,b))

Reorder == ((zi—-:(a.,m,b,c) and zz.'::(a.,b,m,c)) or (z,=(a,b,m,c) and zz.':(a,m,b,c))
We can have combinations of the above; e.g.,

ChannelError = (Loss or Duplicate or Reorder)

Appendix B

Proof of Dl’s invariance

Initial = Acked=True = Dl‘
AcceptData: NEWTRY = Dl"

Send D: From Acked=False and D, we get the right hand side of Dl; from this, RETRY,
the accuracy axiom, and definition of RTDelay, we get Dl"

Rec_ ACK: We need only consider when Acked'=True which implies D,".
Any time event and D, implies Dl’.

No other event affects D;.
End of proof
Proof of D2’s invariance
. The proof uses the invariance of D1 and A..

Initial = Acked=True = D2.



34

Channel events do not affect D2. Local time events preserve the started-together statement in
D2 Y otherwise, they do not affect D2.

AcceptData: NEWTRY implies TryTimeG'=0, TryCount'=1, TryRecd'=False, and
ﬁl’=ﬁ2'=0. These together imply D2.1' .

Send _D: Send_D implies X = Acked=False and TryTimerG=RTripDelay. (X and Dl)

implies Y = (TryTimer, TryTimeG) started-together. Y, together with the definition of
RTripDelay and the accuracy axiom, implies that TryTimeG > RoundTripDelay. This
and D2 imply that Dg'4 holds, i.e., Z = TryCount=p4+p, holds. RETRY implies

TryTimeG'=0, TryCount'=TryCount+1, and TryRecd'=False. These together with Z im-
plies D,y 1’ .

Rec_ ACK: We only need consider the case Acked'=True, which implies D2' vacuously.

Send _ ACK: Does not affect D2.1’ D2_3, D2.4. Therefore, let us assume that Dé_2 holds and
D2.1’ D, s, and D2_4 do not hold. Then we have TryRecd=True, r===s, Acked=False, and
TryAckedG=O0If (because D, ;, D, 3, and D, 4 do not hold). In this case, D, , implies
D2'3' with TryAckedG'=0 and t2==t1+TryTimeG.

Rec_D: Dy 4, Dy 3, and D, , are not affected. (Note that D2'2=¢(AC'KTz'mer7éOff and
TryRecd=True).) (D, and TryRecd'=False) = D, ;. From D, , and TryRecd'=True,
we have D2.2, with tlzTryTimeG: from A,, we have s=r"s if ACKTimer=0ff then we
have ACKTimer'=ACKTimeG'=0.

Ideal time event: (D, ; and TryTimeG <Delay,) = Dy . (Dy ; and TryTimeG=Delay,) =
D, . (D, o and timer axiom for ACKTimer) = D, /. (D, 5 and TryAckedG < Delay,) =
D, . (Dy 5 and TryAckedG=Delay,) = D, /. D, =D, /.

End of proof



