LOCAL AREA NETWORK TESTBED DESIGN
B. Lewis Barnett and Michael K. Molloy
Department of Computer Sciences
University of Texas at Austin

Austin, Texas 78712

TR-85-25 October 1985

Local Area Network Testbed Design

B. Lewis Barnett
Michael K. Molloy

1. INTRODUCTION

The current explosion of local area networks for personal computers, profes-
sional workstations, and mainframe computers, has been fueled by the need for
sharing the cost of specialized peripherals, large databases, and high speed
correspondence among a large number of users . There are already several com-
mercially available network offerings to choose from. However, the industry has
so far standardized only three of them. There will probably be many more stan-
dards as more and more networks are developed. (An example is the manufac-
turing area protocol (MAP) forced through by General Motors, which is a token
bus, but different than ARCNET.) It is clear that the original intention of the
IEEE standards committee, to have a single local area network standard, or even
a limited number of local area network standards, will not be realized.

In this project, a testbed has been developed to study different local area
networks. The research is fundamentally experimental, rather than theoretical,
so that incorrect assumptions, implementation problems, and unusual responses
to realistic load patterns can be discovered and solved. The current research on
various local area networks indicates that the current designs have various prob-
lems. Many of these problems have not been observed in the field, because the
use of these networks is still in its infancy. However, as operating systems
change to adapt to a networking environment and installations increase in size,
the problems will become more evident. By studying current protocols and pro-
posed protocols in an experimental environment, a second generation of protocols
can be developed and thoroughly understood before the currentffrinstallations

observe any of the undesirable behavior seen in other research projects.

The initial performance studies for this project have been restricted to the
subset of protocols supportable on the hardware available, a contention bus.
These protocols for multiple access environments either minimize or resolve colli-

sions rather than rerandomize messages as Ethernet does. The study of these

-9

protocols will form the foundation for the second generation of protocols for con-
tention networks which will succeed the current technology, Ethernet. When and
if additional hardware is obtained, this project will be expanded to include other
topologies, such as rings. The design of this system is intended to be flexible
enough to handle different types of local area networks.

1.1. Problem Description

In order to communicate between a large number of low activity, bursty
devices, a low cost, flexible network is required. Because broadcast networks
have complete logical connectivity and are easily expandable, they are an attrac-
tive architecture for such a network. The broadcast nature of such a network
creates problems in the coordination of the individual users when they attempt to
access the shared communication medium. Many alternative procedures exist to
implement the access control required. They range from no control (Aloha) to
complete predetermination (TDMA).

Under light load conditions, complete predetermination is wasteful of
bandwidth and enforces unnecessarily long latency delays. In addition, frequent
changes in the topology require frequent reconfigurations and the systems are
highly vulnerable. In order to maintain stability and low delay in a lightly
loaded network (utility less than 1/2) and to allow a flexible topology, access
schemes such as Carrier Sense Multiple Access (CSMA) are needed.

The basic idea of CSMA protocols assumes the user has the ability to sense
the status of the transmission medium and determine whether it is active (CS) or
has two or more active users (collision detection CD) if it is active. By restricting
users from attempting to transmit when the medium is active, some collisions are
avoided. However, since users are physically removed from one another, colli-
sions are still possible when users attempt to transmit at times which are
separated by less than a propagation delay.

The main extensions to random access protocols are based upon different
approaches on what to do after a busy period or when a collision does occur.
These new protocols have algorithms to either resolve or minimize collisions
depending on whether or not the medium is slotted. The basic Ethernet protocol
stopped short of truly addressing this problem and instead delayed the
retransmission of the messages involved in the collision for an exponentially dis-
tributed amount of time. This heuristic approach demonstrates some undesirable

behavior. The delay characteristics for messages sent on the network are

-3-

bimodal. Most of the time, little delay is incurred, but if the message is involved
in a collision, the probability of the delay being long is high. This type of
behavior leads to excessive variance in the delay (Alme79). Furthermore, mes-
sages following the colliding messages will often arrive at the destination before
the {messages involved in the collision. This creates an additional load on the
host to host protocols to maintain the correct ordering of messages. Finally, in
the case of a mixture of message sizes, small interactive messages and large file
transfer messages, the delay characteristics are worse for the interactive traffic
(Toba79). This is in direct contradiction to the desired behavior of priority for
interactive traffic.

1.2. Previous Research

The development of local area network (LAN) technology has accelerated
since the introduction of Xerox’s Ethernet (Metc76), a multiple access broadcast
system. Some of the basic strategies for LANS have already been standardized
by the IEEE 802 committee. The standards include the 802.3 standard for
CSMA/CD busses (IEEE82a), the the 802.4 standard for token busses (IEEE82b),
and the 802.5 standard for token rings (IEEE82c). The existence of multiple
standards for LANS is characteristic of the ongoing debate about which network
protocol/architecture is best. Research continues on protocols in this area, in
spite of the existence of the standards, because technology is a dynamic entity.
The existence of local area networks will change the use of computer systems,
which, in turn, will change the performance requirements, offered loads, and
design of those networks.

One of the major problems involved in this debate is the lack of a mechan-
ism to compare the various technologies. Not only is the actual performance of
protocols unknown, but the typical loads to which a LAN will be subjected to,
are also unknown. It is clear that there are definite trade-offs between token-
rings, token busses and CSMA/CD busses (Bux81). What is not clear is where
the trade-offs really are, and whether or not there is a way around then'll.

Two separate paths of research activity in the area of CSMA La’ve evolved
in the last few years. First, several variants of Ethernet which hse the basic
(CSMA) protocol with an exponential or linear backoff have been proposed
(Fiel81, Arth84) or implemented (Witt80, Bela80, Toko77). Second, new algo-
rithms for the resolution (Moll84, Moll83a, Mass80, Gall78, Cape79, Tows82) or
minimization (Moll85, Toba79, Kies81) of collisions have been proposed and

-4-

studied analytically. These alternative directions have left a gap in the experi-
mental research on local networks. Only two projects, the Xerox experiments
(Shoc80, Gons85) and the NBS experiments (Amer82, Amer85, Stok83, Toen83)
have actually studied a loaded CSMA/CD system. They did not try any new
protocols. This research will determine implementation issues and measure the
relative performance of an actual local network running each of the protocols.

Several techniques have been suggested to deal with the problem of colli-
sions. The first are intended for unslotted systems and minimize the synchroniza-
tion effect of the Carrier Sense part of the the CSMA protocol. By deciding with
some probability p to attempt transmission at the end of a current busy period,
the messages that arrive during that period will have less of a chance of colliding
as p decreases. Of course, as p decreases they also have less of a chance to be
transmitted. Such algorithms are termed p-persistent CSMA protocols. They
still assume a backoff technique to randomize the retransmission of messages
which either collide or fail to attempt transmission.

Another approach has been to 'feedback’ information from the arrival pro-
cess to the transmission process. This technique is known as Virtual Time CSMA
(Moli85). A virtual clock runs only when the medium is idle and at a rate pro-
portional to the fraction of time the channel is busy. A transmission of a mes-
sage is attempted when the virtual time reaches the value of the the real arrival
time of the message. This technique minimizes the probability of a collision
occurring at the end of a busy period and minimizes the number of retransmis-
sion randomizations required.

In the case of slotted transmission mediums, collisions will occur only when
simultaneous rather than overlapping transmissions are attempted. In such
environments it is possible to resolve collisions by using distributed tree algo-
rithms (Cape79). Several variants of this algorithm, which have a higher average
throughput and potential deadlocks in error-prone environments, have been
developed and studied analytically (Cape79, Gall78, Mass80). These algorithms
implement a distributed algorithm which uses knowledge of the history of the
transmission medium and the slot synchronization to resolve any uf(rfol’lision. By
allowing the users involved in a collision to partition themselves by sampling pro-
babilistically, the collision is eventually resolved and the messages originally
involved are transmitted. The original Capetanakis algorithm used a binary
search on the addresses of the nodes. It was extended to use a binary coin

flipped by the stations to partition an arbitrary number of users. The Gallager

-5-

algorithm used a binary search on the time line where the arrival time of a mes-
sage was its associated value. These algorithms have the distinct advantage of
finite average delays and minimum variance.

. In a new approach, Enet II (Moll84), the maximum round trip delay in the
802.3 standard is used to create the feedback necessary for any of the collision
resolution protocols described above. The major problem with unslotted systems
has been the inability of stations to determine the number of successive idle slots
in a resolution interval. By detecting an idle channel for one round trip delay,
the stations can force a collision to effectively define the end of that idle step.
This delay and then forced collision creates an automatic timeout so the Massey
extension to the Capetanakis protocol will not deadlock.

Actual implementations of local networks operating as broadcast mediums
(Metc76, Bela80, Stok80, Biba79) are less rich in their diversity. To date only
variations on the backoff mechanism in 1-persistent CSMA with collision detec-
tion (Ethernet) have been implemented. One difficulty faced by most researchers
has been their restriction of considering only high speed networks. This require-
ment forced them to build network interfaces which incorporate much of the pro-
tocol in hardware. Therefore, a single protocol must be selected early in the
design phase. Currently, a single company (3Com) has built interfaces which
implement only the CSMA/CD part of the protocol in hardware. The algorithm
for collisions is implemented in software which requires a large percentage of the
CPU during transmission.

The Xerox experiment (Shoc80) is of some interest because it did load an
ethernet. However, the experiment was made from the viewpoint of the network
and not the user stations. Throughputs of 95% were claimed without any notion
of how long a station had to wait, on the average, before being successful. In the
NBS experiment (Amer82) the behavior of specific hardware was being evaluated
for the benefit of the user community. No attempt to evaluate alternative proto-
cols was made.

1.3. Specific Research Targets ’

Fid

Several problems have already been identified for research on new protocols
using an instrumented local area network. The problems have not been previ-
ously addressed by the research community since they are basically implementa-
tion issues.

-6-

To use any of the collision resolution protocols, some implementation
mechanism to replace slotting is necessary. Although a centralized mechanism
can be used to produce a short message fragment to synchronize the stations, it is
vulnerable to failure. The concept developed in the new resolution techniques
discussed in the work on collision resolution on the CSMA/CD bus (Moll84) pro-
vides a better mechanism for implementing the various resolution protocols.

In the use of Gallager’s algorithm for collision resolution, the Poisson arrival
process is used as a model. Therefore, the probability of two messages arriving
during the same instant is zero. However, in reality, a system cannot measure
time with infinite accuracy. Therefore, there is a potential deadlock in a real sys-
tem using this protocol. The detection of the deadlock is relatively trivial.
Whenever the new enabling interval reaches zero a deadlock has occurred.
Resolving the deadlock is not as clear cut. Many options exist; exponential
backoff, or Capetanakis hybrid are two possibilities. These options will be
evaluated in this research.

The virtual time CSMA protocol (Moll85) requires an adaptive measurement
of the current load to determine the virtual clock rate. The algorithm to make
such a determination has not been proposed or studied. The underlying problem
of clock synchronization in a distributed environment still persists. Although
Molle has determined that if there is a constant shift in the clock times the algo-
rithm still functions, what is the consequence of slowly drifting clocks? In addi-
tion, the virtual time CSMA protocol, like the p-persistent CSMA protocol, does
not resolve collisions. By using a collision resolution algorithm, the infrequent
collisions which can occur could be resolved.

An important point to be made about all protocols that maintain the FCFS
property (such as VITCSMA) is that the performance of the system as a whole
will be better in terms of buffer holding times, and overhead in higher levels of
the network protocols. By guaranteeing FCFS, additional overhead in host to
host protocols to handle out of sequence messages can be avoided.

”
Id

s

1.4. Equipment Configuration p

The hardware which has been acquired will allow changes to the basic ether-
net protocol in software to implement the various new protocols. In order to
avoid problems with biasing the results because of symmetrical load patterns,
four independent load simulators will be used. If a single source transmits to a

single destination, no collisions can occur, and a 100% throughput is possible.

-7 -

Similarly, because of the process activity and interface hardware architectures
which require significant time to change modes from receiving to transmitting, a
symmetric A to B and B to A load will tend to minimize collisions. The only
way to simulate a more random load (large user population) is by having at least
three processors actively communicating with each other. The Xerox experiments
indicated that a relatively small number (8) of machines obtained the same
throughput (i.e. behaved the same under their metrics) as a large number of
machines (120).

The experimental local area network testbed consists of five VAX 11/750
machines (Moll83b). Each machine has a minimal configuration of 2M bytes of
main memory, 131M bytes of disk storage and a console. The gateway machine
has a removable disk drive for system generation and backup. A single 3Com or
DEUNA ethernet board is installed in each machine with an additional Interlan
board for the gateway. The gateway machine allows the experimental network
to run in isolation from the basic ethernet in the computer science department.
The gateway machine allows easy access to the experimental network while pro-
viding isolation from the production ethernet environment.

The inherent speed of current hardware (10Mbps) requires a relatively large
processor to generate loads in this range. The current benchmarks from BBN
indicate that for large packets a single VAX with an Interlan (or 3Com) Ethernet
interface can only generate 2.2 Mbps. With four processors, the network can be
saturated. (With collisions throughput is less than 10 Mbps.) The measurements
made at the University of Delaware (Minn83), indicate that throughputs of
875,000 Bps (7Mbps) are possible on a dedicated Unibus for small packets (250
bytes). Special techniques, such as retransmitting controller buffers without
reloading, are being used to increase the load capacity of these machines.

2. DESIGN GOALS

The Local Area Network Testbed provides an environment in which experi-
ments to discover the performance behavior of various local area network com-
munications protocols can be conducted. Experiments should be reée’atable and
easy to configure. The system should allow the addition of new proltocols as they
are proposed. It should provide extensive monitoring capabilities, including pas-
sive monitoring of production networks and source queuing delay monitoring on

testbed hosts. These points are discussed in more detail in the following sections.

2.1. Repeatability

The primary goal in the design of the Local Area Network Testbed is to
create an environment where performance experiments can be run in a repeatable
and reliable fashion. Many of the performance measurements on local area net-
works have been done on production LANs operating under real workloads
(Shoc80). Much has been learned about typical network traffic in this way, but
because of the variable nature of day to day workloads, these measurements were
not repeatable. Even when artificial workloads were generated, the networks
were not dedicated to the experiments.

2.2. Alternative Protocols

The testbed should be designed in a way that facilitates the investigation of
alternative communications protocols. Many such protocols have been suggested
and analyzed mathematically or simulated, but very few have actually been
implemented and tested on actual networks. Repeatability is especially impor-
tant when investigating the performance of alternative protocols. The design of
the testbed should not be dependent on the medium or on specific interface
hardware. Satisfying this condition allows the testbed software to perform
equally well on bus networks and token rings.

2.3. High Level Description of Experiments

It should be possible to configure experiments quickly and easily. The pro-
cess of creating an experiment should be as simple as possible, allowing the exper-
iment to be described at a relatively high level of abstraction. The user should
not need to think about the details of writing processes to generate loads or how
to implement a different protocol.

2.4. Flexibility of Experiment Descriptions

The level of abstraction at which experiments are specified should also allow
a high degree of flexibility in the kinds of experiments that can be created.
Ideally, it should be possible to design an experiment that models any observed
network behavior closely. Specifically, we would like to be able to simulate net-
work nodes performing a wide range of functions, such as file servers, work sta-

tions, mainframes, terminals, and printers.

-9-

2.5. Observing Local Queueing Delays

There should be monitoring software on each host in the experimental net-
work capable of measuring the queueing delays incurred by each packet due to
traffic conditions and the operation of the protocol. Delay is an important
characteristic of a protocol which has been estimated and simulated, but has sel-
dom been actually measured.

2.6. Passive Monitoring Capability

It should be possible to monitor the traffic on the network passively. It is
necessary to dedicate a host to this activity in order to prevent monitoring and
load generating activities from interfering with each other. Such quantities as
total throughput and frequency of source/destination pairs should be recorded.
This capability can also be used to monitor the performance of production net-
works for purposes of tuning and diagnosis.

2.7. Physical Topology

It should also be possible to alter physically the network topology. Some
protocols exhibit undesirable characteristics only as a result of a particular
arrangement of nodes on the bus. Maintaining the ability to alter the topology
of the network will allow the eflects of varying propagation delays between nodes
to be studied.

3. CURRENT DESIGN

In order to meet the goals discussed in section 2, three general capabilities
are needed. First, there must be a way to describe the load behavior we wish to
induce on the network. Second, a means of using the experiment description to
produce the specified behavior on the network and to collect the data produced is
needed. Third, we need tools with which to analyze the collected data.

To meet the first requirement, a program called the Egperiment
Configuration Package (ECP) has been written. The program allows the user to
specify an experiment in terms of load generating processes residing'r on the vari-
ous nodes of the network and the probability distributions whlch govern the
length of and delay between packets. By specifying the behavior of the load gen-
erators in terms of distributions, we insure repeatability. (Ferr78) The ECP will
be discussed in further detail in section 3.1.

- 10 -

Generating an experiment from a description is accomplished by a set of
programs collectively referred to as the Execution Package (EXP). The EXP
translates the description output by ECP into parameters for load generating
processes, and handles transferring these parameter sets to the proper machines.
It also controls the execution of the experiment and manages the data collection.
The EXP is discussed in section 3.2.

To assist in reducing and analyzing the data collected by the EXP, an
Experiment Analysis Package (EAP) is planned. Since we are interested chiefly
in the delay behavior of the protocols investigated, the EAP will provide delay
versus throughput and delay versus offered load plots. The capability to compare
the delay characteristics of protocols under various load conditions as well as the
characteristics of various protocols under identical conditions will be provided. It

will also provide formatting for various statistics collected during experiments.
The EAP is discussed further in section 3.3.

3.1. Experiment Configuration Package

Logically, an experiment runs on a set of nodes, each of which falls into one
of two categories. There is one monitor node, and the remainder of the partici-
pating nodes are load generating nodes. The monitor node initially performs
some control and synchronization tasks, and then acts as a purely passive moni-
tor while the load generation is in progress. The monitor logs information of the
packets produced on the network during an experiment, such as source and desti-
nation addresses and reception time. The load generating nodes take active part
in producing traffic on the network by generating packets according to an experi-
ment description prepared in advance. The load generating nodes also maintain
local logs of packets produced and the queueing delay suffered by each packet.
The Experiment Configuration package allows the user to specify the load pro-

duced by the load generation nodes during an experiment.

3.1.1. Data Structures

»*

In order to achieve a high degree of flexibility in conﬁguringr éxperiments
while keeping the configuration process simple, the following scheme for
representing experiment descriptions was decided upon. Experiment descriptions
conceptually have three parts: a packet size and/or packet interarrival distribu-
tion list, a topology, and a protocol selection. These three parts determine the

behavior of the load generators and the network during an experiment; altering

- 11 -

any of the three effectively creates a different experiment.

With this scheme, it is possible to run experiments with different protocols
using the same packet size, time distribution and topology. It is also possible to
run- experiments using the same protocol and packet types with different
source/destination patterns. Finally, it is also possible to evaluate the sensitivity

of a protocol to packet size and average load for a given source/destination pat-
tern.

3.1.1.1. Distribution List

The behavior of the processes which generate packets during an experiment
will be governed by probability distributions for the length of packets generated
and the delay between packets. These distributions will be chosen from the dis-
tribution list. The distribution list contains a number of records, each specifying
a probability distribution taken from a standard list, along with the appropriate
parameters. The currently available distributions are exponential, poisson,
geometric, and binomial. It is also possible to specify a discrete or continuous
general distribution by entering a set of x,y coordinate pairs. One distribution
will be associated with a process for the generation of packet lengths, and

another distribution will be used for the generation of delays between packets.

3.1.1.2. Experiment Topology

The distribution list is referenced by the topology description of an experi-
ment. This description contains a record for each process on each node in the
network. For each process, an index into the distribution list is provided for
packet length generation as well as for interpacket delay generation for that pro-
cess. Also included in the topology record for a process is a list of receivers for
the packets produced by the process along with routing probabilities for each
receiver. This scheme allows a wide range of packet generation and packet rout-
ing behaviors to be specified in a uniform way.

3.1.1.3. Protocol Selection i

The protocol selection determines which protocol will run during the experi-
ment. The selection is made from a list of currently available alternative proto-
cols. Since implementing and installing a new protocol requires a great deal of
effort, each protocol is coded and compiled into a separate operating system ker-
nel. This approach will make the inclusion of different network architectures,

-12 -

such as token rings, a trivial change. To the software, a new architecture would

be nothing more than another protocol under which experiments could run.

3.1.2. Files

This experiment description is stored in two files, the header file and the
configuration file. Breaking the information into two files facilitates editing
experiment descriptions, allowing a series of experiments to be defined using the

same distribution list with multiple topology definitions or vice versa.

3.1.2.1. Header File

The header file contains general information concerning the experiment, the
distribution list, and the kernel selection. The general information includes the
name of the experiment, a comment on its purpose, and several general house-
keeping items such as creation and last modification dates, flags indicating the
completeness of the description, and information concerning the storage of the
description. There is also a count of the number of processes specified for each
node, which is used to read the topology entries in the configuration file.

The header file structure is as follows:

BYTES CONTENTS

0-2 Section complete flags

3-12 Experiment name (corresponds to file name)

13 Protocol code

14-20 Date of last modification (MMDDYY)

21-27 Date created

28 Unused

29-30 # of Processes on node 1

31-32 # of Processes on node 2 ,
33-34 # of Processes on node 3 {.'r

35-36 # of Processes on node 4
37-40 # of distributions defined
41-55 Load pattern name

56-70 Unused

71-140 Comment

- 13-

DISTRIBUTION RECORDS

Exponential Distribution

1-3.
4
5-13
14-20

Sequence #

Distribution code (= 1)

Value for theta (theta = mean interarrival time)
Unused

Poisson Distribution

1-3

4
5-13
14-20

Sequence #

Distribution code (= 2)

Value for lambda (arrival rate)
Unused

Geometric Distribution

1-3

4
5-13
14-20

Sequence #

Distribution code (= 3)

Value for p (probability of success)
Unused

Binomial Distribution

1-3

4
5-13
14-22
23-40

Sequence #

Distribution code (= 4)

Value for n (number of trials)

Value for p (probability of success for any trial)
Unused

General Discrete Distribution

1-3

4

5-7
8-10
11-15
16-20

Sequence # ,
Distribution code (= 5) 7
of coordinate pairs entered
Point sequence #

x value

y value

-14 -

Piecewise Continuous Distribution

1-3 Sequence #

4 Distribution code (= 6)

5-7 # of coordinate pairs entered
8-10 Point sequence #

11-15 x value

16-20 y value

3.1.2.2. Configuration File

The configuration file contains the topology entries for all processes to be
created by the experiment. These records consist of a process number, which will
be unique on the node where the process is created, the indices into the distribu-
tion list for interpacket delay and packet length, indices into a table of seeds for
the random number generation associated with the two distributions, and the list
of destinations specified as node/process addresses. There is also a routing pro-
bability associated with each entry in this list of destinations.

Each node has a number of process records stored in the configuration file.
The number of records for each node is stored in the header file. The
configuration file structure is as follows:

BYTES CONTENTS
1-2 Process number f,?'
3-5 Interpacket distribution code (determined from
list in header file)
6-8 Seed index for time generation
9-11 Packet length distribution code (determined from

list in header file)

- 15 -

12-14 Seed index for packet length generation
15-16 Number of nodes receiving messages from this node

" Each process on a node sends messages to a number of other
processes in the network. The identity of these receivers is
recorded in the Receiver sub-records.

1-2 Receiver #

3 Node receiver resides on

4-5 Process number of receiver

6-8 Probability that a packet goes to this receiver
9-10 Unused

3.1.2.3. Storage Structure

Since many experiments will be run using many different descriptions, it will
be important to maintain a reasonable, useful storage structure for experiment
descriptions and experiment log files. To accomplish this, the testbed makes use
of the Unix hierarchical directory structure to store each description and the data
gathered using it.

The software for configuring experiments (to be discussed in section 3.2.3)
resides in a directory named LANT. From this directory, there are three sub-
directories, each corresponding to a separate classification of experiments. These
directories are called experiment, configuration, and protocol. At the lowest
level, there exists a directory for each experiment description which contains the
header and configuration files for the experiment, any dumps that have been
done of the description, and log files for any experiments run using the descrip-
tion. These directories are multiply linked, in some cases through intermediate

levels, to the experiment, configuration, and protocol directories. (fig. 1)

The experiment directory is used in two ways. First, the ECP uses the
experiment directory path to the individual experiment subdirectories for creating
and editing the experiment descriptions. Second, the experiment coﬁ%rol software
uses this path to access experiment descriptions and to store the log file generated
when a description is used to run an experiment. "

The configuration directory contains several subdirectories, each correspond-
ing to a different load pattern.

- 16 -

LANT

. I I

experiment configuration protocol

l | l |]
full pairs Ether Enet I VTCSMA

= o o

ex1 ex2 ex3 ex4 exb
l

Figure 1 -- Data storage directory structure

DEFINITION: An experiment description is said to belong to some load

pattern, say [, if it shares the same distribution list and topology as the
other experiments in /.

Different members of a load pattern may have different protocol selections. The
subdirectory for any given load pattern contains links to the individual direc-
tories of each of the experiment descriptions that belong to that load pattern.
The purpose of this arrangement is to provide the data analysis programs with
easy access to experiments that stand in this relationship to one another. This
will facilitate comparisons of the performance of different protocols on workloads
generated from the same description.

The use of the protocol directory is similar to that of the configuration
directory. It contains a subdirectory for each of the currently avail@blé protocol
selections. Each of these subdirectories is linked to the individugl experiment
directories in which that protocol is the protocol selection. Again, this allows the
analysis programs to access easily all data from experiments which ran under the
same protocol, allowing investigation of the effect that different workloads have
on the performance of each protocol.

-17 -

The consequences with respect to this storage structure of editing an experi-
ment description are discussed in detail in the appendix.

3.1.3. Software

A front end called the Experiment Configuration Package (ECP) has been
written to allow a user to create and edit the experiment specifications discussed
above. This front end was written using Curses, a Unix package for terminal
independent screen manipulation. In order to allow the ECP to be used on as
many different types of terminal as possible, it is menu oriented and contains
only simple graphic aids for the experiment creation process. The structure of
each screen used in the program is maintained separately from the program code.

This allows the appearance of the screens to be altered without recompilation of
the front end.

A section of the ECP is dedicated to the creation of each of the three sec-
tions of the experiment description. In addition, each section can be edited after
entry, both to correct mistakes and to create new experiments. It is also possible
to dump any or all sections of a description in printable form to a text file for
later output, and to update the list of available protocols in the protocol selection
section. These functions are discussed in detail in the appendix.

3.2. Execution Package

A set of programs has been written to take an experiment description and
run an experiment which consists of a set of processes producing packets accord-
ing to the description. An experiment is implemented in terms of a process
model. The processes fall into two classifications: processes involved in generat-
ing trafic during the experiment and processes involved in creating and manag-
ing the progress of an experiment. In the following sections, these processes will
be described in high-level, functional terms. Figure 2 shows the distribution of
these processes among the machines of the testbed.

3.2.1. Data Structures o

The data structures used by the EXP relate to the translation of an experi-
ment description into input parameters for the various processes that will be used
to generate packets during the experiment. There is one supervisor record which
contains the information from the header file. Using this structure, the supervi-

sor creates records for each of the local control processes containing the

- 18 -

Load Generating nodes &_O

Monitor Node

(O

Load Generating process
Local Control process

Supervisor

> (000

Network Monitor

Figure 2 -- Process distribution in the experiment software

distribution list, and process records for each load generator the local controller is

to create. These process records are distributed to the load generating processes
upon their creation by the local controller. ’

-19 -

3.2.2. Files

Information can be logged during an experiment in two ways. In complete
logging, each message received is stored in its entirety. In summary logging, only
the .message header and some statistics about the message are stored. Summary
logging provides sufficient information for most purposes; artificially generated
packets have nothing meaningful in their data portions. The complete logging
option may be useful in situations where real traffic is monitored. |

Logging information is collected in two files, a header file and a message file.
In summary logging, the message file contains only the packet header, while in

complete logging, it also contains the body of the message. Each header file
record contains the following fields:

1) timestamp - monitor node system time when message was received

2) record type - current record types are message, error, and collision

3) addresses - source and destination addresses for the packet

4) message length - number of data bytes contained in message

5) offset - pointer to packet in message file.

These fields contain all the information necessary for analysis of network traffic.

The message file contains a record corresponding to each record in the
header file. The first portion of these records is the packet header, containing
the following fields:

1) addresses - source and destination addresses of the packet
2) sequence number - a number unique to the source node

3) attempt number - the number of collisions suffered by this packet before this
transmission

4) creation time - source node system time when packet was created.

If the logger is running in complete logging mode, this is followed by the body of

the message.

3.2.3. Software ,.*;
The programs which comprise the EXP form a distributed application.

Communication during experiments is carried out through polling, since the net-

work connecting the machines is running under an experimental protocol. The

processes can be thought of as falling into two categories. The first is data

- 920 -

generating processes. Two processes fall into this category, the load generating
process and the monitor process. An experiment consists of one or more instan-
tiations of the load generating process running on each load generating node,
while the monitor process logs the generated activity from the monitor node.
The second category is experiment management processes. The experiment
management processes are the supervisor, on the monitor node, and its agents,
the local controllers, on the load generating nodes. In the following sections,
each program will be discussed individually, then the flow of control among the
programs during an experiment will be described.

3.2.3.1. Load Generator

The experiment description specifies how many load generators (or sources)
will be created on each load generating node, as well as the distributions they
will follow to generate packets. Each load generator remains quiescent until it
receives an activation signal. The load generator then generates two random
numbers, according to distributions passed to it for packet length and inter-
packet delay. If the experiment description contained more than one destination
for the packets produced by the given source process, a third random number is
generated according to a uniform distribution. This number is used as a routing
probability to determine the destination of the packet being constructed. Using
the generated length, a packet is built, and after the generated delay has elapsed,
the packet is submitted for transmission.

3.2.3.2. Monitor

The monitor process actually controls the duration of the experiment. The
experiment duration is one of initial parameters of the monitor. The monitor
creates a log of all network activity while the experiment is in progress. It is pos-
sible to specify how detailed the log of a particular experiment will be. If the
traffic is light, each packet can be logged in its entirety, along with its time of
arrival. Otherwise, only the timestamp and packet header are retained. The
contents of the log file will be discussed in greater detail below. Wﬁen’ the moni-
tor has recorded network activity for the specified length of time, it terminates.

-921 -

3.2.3.3. Supervisor

The supervisor handles overall control of the experiment. The experimenter
first chooses an experiment description and specifies a duration for the experi-
ment. No other user intervention is necessary. The supervisor makes contact
with a local control process on each of the load generating nodes. These
processes can be thought of as local agents of the supervisor. For each of these
local control processes, the monitor extracts from the description the pertinent
information (number of load generators for that node, length and delay distribu-
tions for each load generator, etc.) and transmits it to the controller. When this
activity is completed, the supervisor waits for a signal from each of the controll-
ers. This signal indicates that the controller has received the descriptions of the
load generating processes successfully and is ready to create them. When a signal
has been received from each of the controllers, the supervisor sends a ‘go’ signal
to each. At this point, the monitor process is created, and the supervisor waits
for it to terminate. Upon monitor termination, the collection process (discussed
below) is created. When it terminates, the experiment is completed, and the
supervisor terminates.

3.2.3.4. Local Control Processes

The local controller performs duties specified by the supervisor on a load
generating node. After being initiated, the controller waits to be contacted by
the supervisor. Upon being contacted, the controller receives the descriptions of
the load generation processes it is to create and manage. When these descrip-
tions have been successfully received, the controller sends a signal to the supervi-
sor indicating that it is ready to proceed. At some later time, the controller
receives a ‘go’ signal. The controller then creates the specified number of load
generation processes, then sends an activation message to each one in turn. After
waiting for the specified duration of the experiment, (plus an added constant fac-
tor; the monitor actually determines when the ‘experiment proper’ ends) the con-
troller terminates each of the load generators. The controller then waits to be
contacted by a collection process. Upon being contacted, the contrq}?ex: transmits
the local logs compiled during the experiment. When this transmission is com-
pleted, the controller receives an ‘end’ message and terminates.

-929.

3.2.3.5. Collector

The collector polls each of the local controllers. Polling is used since the
network is still running an experimental protocol and may not be completely reli-
able. Polling eliminates the possibility of collisions. The collector receives the
local logs from each control process and writes the information to storage, then
sends an ‘end’ message to each, indicating that the experiment has successfully
concluded. The collector then terminates.

3.2.3.6. Control Flow

The actions of these processes can be grouped into three phases through
which an experiment run passes. These phases are initialization, load generation
and data acquisition, and cleanup. The actions of the various processes during
each phase are represented in table 1.

3.2.3.6.1. Initialization

The first phase consists of the translation of an experiment description into
information relevant to each load generating node, and the transmission of this
translated information to the proper local controller. This translation process is
carried out by the supervisor, which also synchronizes with each local controller
and transmits the translated description. The initialization phase ends when the
supervisor sends the ‘go’ message to the local controllers, and the controllers
create and activate the load generation processes.

3.2.3.6.2. Load Generation and Data Acquisition

The second phase consists of the actual generation of packets at the load
generating nodes and the logging of the network activity on the monitor node.
After sending the ‘go’ message, the supervisor creates the monitor process to han-
dle the logging while the load generating processes on the load generating nodes
are activated by their respective controllers to begin producing traffic. This
phase lasts until the monitor process and the load generating prﬁocé’sses shut
down. i

3.2.3.6.3. Clean Up

The last phase of an experiment run is initiated by the termination of the

monitor process. This reactivates the supervisor, which then creates the

-23-

Process
Phase
Supervisor | Monitor | Controller | Load Gen. Collector
. Select
experiment
Link expt.
kernel and
reboot load
generators
Initialize
Send expt. Rcv expt.
description description
Send synch. Rcv synch.
signal signal
Create load Start
generators
Send ’go’ Rcv 'go’
Create Start Send ’start’ Rcev ’start’
monitor to Id. gen.
Generate | Promiscuous
mode set
log packets | log delay gen. pkts.
Kill monitor Terminate Kili 1d. gen. Terminate
Create Start
collector
Rcv query Query controllers
Cleanup]
Send logs Receive logs
Terminate Terminate r - ;
Terminate

Table 1 -- Process actions during various experiment phases

- 924 -

collector. The collector receives the local logs from each local controller. These
logs include statistics on the number and distribution of collisions observed and
on the queueing delays suffered by the packets. When this transmissioﬁ is com-
pleted, the local controllers terminate. When the collector has completed its
\task, it terminates, allowing the supervisor to also terminate. The termination of
the supervisor marks the end of an experiment run.

3.3. Experiment Analysis Package

The desired types of analyses on collected data correspond to the structure
of storage linkages discussed earlier. First, corresponding to the experiment
directory, we shall wish to do data reduction on single experiments. Second,
corresponding to the configuration directory, we shall compare the performance
of different protocols on the same traffic pattern. Third, corresponding to the
protocol directory, we shall compare the performance of a protocol under
different traffic conditions. The analysis package should be simple to use and

should also be easily extensible in order to incorporate new analysis types as the
need arises.

3.3.1. Data Structures
The data structures for the EAP handle the log file information collected by

the EXP. The monitor node log contains data on the global outcome of an
experiment. The particular data items which can be extracted from the monitor
node log are:

1) Actual throughput observed during the experiment.
2) Packet lengths.

3) Reception delays at monitor node.

4) Source and destination addresses for all packets.

The logs maintained on each load generating node contain information about
local behavior during an experiment, including:

1) Offered load. o
2) Queueing delay before transmission.

3) Backoff distribution (the number of packets involved in 1, 2.'3,... collisions

before successful transmission).

-95-

3.3.2. Files

The EAP will produce as output a device independent description of the
appearance of the graph, histogram, or report requested. This file can be used in
two ways. On a workstation such as the Sun, the file could be used as input for
an interactive preview system. The file could also be processed for output on a

variety of output devices such as plotters or laser printers.

3.3.3. Software

Flexibility is desirable in the analysis package, but we are more interested in
some types of analysis than others. To simplify the design, those types of ana-
lyses will be emphasized, but the design, through modularity, will allow extension
to additional types of analyses. The purpose of the analysis package is to reduce

the data collected during experiments and to graphically compare different
aspects of the reduced data.

The analysis package will operate on data at three different levels. The first
level is examining data collected during a single run of an experiment. On this
level, reports will consist of histograms and average values of various collected
quantities and plotting of various throughput and delay curves. The second level
is examining data across several runs of an experiment. Reports will consist of
overall histograms, average values and throughput and delay curves. The third
level is comparison of data across experiments. At this level, it will be possible to
perform the comparisons among various protocols and traffic conditions discussed
in section 3.1.2.3.

In the preliminary design, the analysis package works in terms of reports.
The user will design a report by specifying how many series of data points will be
displayed, the treatment of each series, and where the data for those series is to
be found. The level at which the report is specified will determine the scope of
the user’s choice of data to be included in the report.

4. SUMMARY

We have presented the motivations for and design of a Local f,\'}ea Network
Testbed. A configuration package for creating experiment descriptions was
described. Experiment descriptions consist of sets of parameters for load generat-
ing processes that define the frequency and size of packets the process will pro-

duce. Software for running experiments based on these descriptions was

- 926 -

described, as well as a package for analyzing the data collected. This is a work-
ing document intended only to document the design of the components of the
Local Area Network Testbed. Descriptions of the implementation of the design
and the results of experiments run using the testbed will appear in forthcoming
reports.

- 927 -

5. Bibliography

Alme79

Amer82

Amer85

Arth84

Bela80

Biba79

Brog82

Bux81

Cape79

Ferr78

Almes, G.; Lazowska, E. " The Behavior of Ethernet-Like Computer
Communications Networks,” Proceedings of the Tth Symposium on
Operating Systems Principles, ACM# 534790, Asilomar CA, Dec
1979, pp. 66-81.

Amer, P.D. "A Measurement Center for the NBS Local Area Com-
puter Network,” IEEE Transactions on Computers, Vol. C-31, No. 8,
Aug. 1982, pp. 723-729.

Amer, P.D.; Kumar, R.N. »Local Area Broadcast Network Measure-
ment Part I -- Measurement Center Design and Implementation,”
University of Delaware Department of Computer and Information Sci-
ences, Technical Report No. 85-3, April 1985.

Arthurs, E.; Stuck, B.W. ”A Modified Retry Policy for ETHERNET
Version 1.0 Data Link Layer,” IEEE Transactions on Communica-
tions, Vol. COM-32, No. 8, Aug 1984, pp. 977-979.

Belanger, P.; Hankins, C.; Navindra, J. "Performance Measurements
of a Local Microcomputer Network,” Proceedings of the IFIP WG 6.4
Local Area Networks, Zurich Workshop, August 1980, to be published
by North-Holland Press.

Biba, K.; Yeh, J. "Ford Net: A Front-end Approach to Local Com-
puter Networks,” Proceedings o f Local Area Computer Network Sym-
posium, May 1979, pp 199-215.

Brogonovo, F.; Fratta, L. "A Collision Resolution Algorithm for Ran-
dom Access Channels with Echo,” Proceedings o f INFOCOM &2,
April 1982, pp. 68-75.

Bux, W. ”Local Area Subnetworks: a Performance Comparison,”
IEEE Transactions on Communications, Vol. COM-29, No. 10, Oct.
1981, pp. 1465-1473.

Capetanakis, ”Generalized TDMA: The Multi-Access Tree "Protocol,”
IEEE Transactions on Communications, Vol. COM-27, Oct. 1979,

pp. 1476-1484.

Ferrari, D. Computer Systems Performance Evaluation. Prentice-
Hall, Inc., 1978, pp. 66-67.

Ferr84

Fiel81

Gall78

Gons85

IEEES82a

IEEES2b

IEEES2¢

Kies81

Mass80

Metc76

Minn83

Moll83a

Moll85

- 98-

Ferrari, D. ”On the Foundations of Artificial Workload Design,”
Proceedings of SIGMETRICS 84, Aug 21-24, 1984, pp. 8-14.

Fields, J.A.; Wong, JJW. "An Analysis of a Carrier Sense Multiple
Access System with Collision Detection,” University of Waterloo,
Technical Report CCNG E-Report E-95, May 1981.

Gallager, R. ”Conflict Resolution in Random Access Broadcast Net-
works,” Proceedings of the AFOSR Workshop in Communication
Theory and Applications, Sept 1978, pp 74-76.

Gonsalves, Timothy A. "Performance Characteristics of 2 Ethernets:
an Experimental Study,” Proceedings of the 1985 ACM SIG-
METRICS Conference on Measuring and Modeling of Computer
Systems, August 1985, pp. 78 - 86.

”IEEE Project 802, Local Area Network Standards” Draft IEEE Stan-
dard 802.3 CSMA/CD Access Method, Draft D, 1982

"IEEE Project 802, Local Area Network Standards.” Draft IEEE
Standard 802.4 Token Passing Bus Access Method, Draft D, 1982.

"IEEE Project 802, Local Area Network Standards.” Draft IEEE
Standard 802.5 Token Passing Ring Access Method, Draft D, 1982.

Kiesel, W.M.; Kuehn, P.J. 7CSMA-CD-DR: A New Multi-access Pro-
tocol for Distributed Systems, Proceedings of NTC 81, Dec. 1981, pp
A2.4.1-A2.4.6.

Massey, J. ”Collision Resolution Algorithms and Random-Access
Communication,” UCLA Technical Report UCLA-ENG-8016 1980.

Metealfe, R.; Boggs, D. "Ethernet: Distributed Packet Switching for
Local Networks,” CACM, Vol 19, No 7, July 1976, pp 395-404.

Minnich, N.M.; Cotton, C.J. ”An Evaluation of Two Unibus Ethernet
Controllers,” Proceedings of the 8th Conference on Local Computer
Networks, Oct. 17-19, 1983, pp. 29-36.

Molle, M. ”Asynchronous Multiple Access Tree Algorithms,” Proceed-
#

ings of SIGCOMM 83 Symposium on Communications Archilec-

tures and Protocols, ACM #533830, March, 1983, pp 214-218.

Molle, M.; Kleinrock, L. ”Virtual Time CSMA: Why Two Clocks are

Better than One,” IEEE Transactions on Communications, Vol.
COM-33, No. 9, (September, 1985) pp. 919 - 933.

Moli83b

Moll84

Shoe80

Stok80

Stok83

Toba79

Toba80

Toen83

Toko77

Tows82

Witt80

-99 -

Molloy, M. ”Experimental Evaluation of New CSMA Protocols,”
Proceedings of the National Communications Forum, Oct. 24-26,
1983, pp. 350-354 ‘

Molloy, M. ”Collision Resolution on the CSMA/CD Bus,” Proceed-
ings of the 9th Conference on Local Computer Networks, Oct 8-10,
1984, pp. 44-47

Shoch, J. F.; Hupp, J. A. "Measured performance of an Ethernet local
network,” CACM, vol. 23, Dec 1980, pp. 711-721

Stokesberry, P.; Rosenthal, R. ”The Design and Engineering of a Per-
formance Center for a Local Network,” Proceedings of the Computer
Networking Sympostum, 1980 pp 110-115

Stokesberry, D.P. "A Characterization of Traffic on NBSNET,”
Proceedings of Workshop on Performance and Evaluation o©f Local
Area Networks, March 1983, pp. 43 - 82.

Tobagi, F.; Hunt, J.A. "Performance Analysis of Carrier Semse Multi-
ple Access with Collision Detection,” Proceedings of the Local Area
Network Symposium, May 1979

Tobagi, F. "Multiaccess Protocols in Packet Communication Sys-
tems,” IEEE Transactions on Communications, Vol. COM-28, No. 4,
April 1980, pp 468-488

Toense, R.E. ”Performance Analysis of NBSNET,” Journal of
Telecommunication Networks, Vol. 2, No. 2, Summer 1983, pp. 177 -
186.

Tokoro, Mario;Tamara, Kiichiro, " Acknowledging Ethernet,” Proceed-
ings of COMPCON 77, Sept. 1977, pp. 320-325.

Towsley, D.;Venkatesh, G. "Window Random Access Protocols for
Local Computer Networks,” IEEE Transactions on Computers, Vol
C-31, No. 8, Aug 1982, pp. 715-722.

Wittie, L.D.; Van Tilborg, A.M. "MICROS: A Distributed ‘Operating
System for MICRONET, A Reconfigurable Network, Computer,”

IEEE Transactions on Computers, Vol. C-29, No. 12, Dec 1980 pp
1133-1144. '

-30-

8. Appendix: Usage and Operation

This appendix contains a discussion of the actual usage of the various pro-
grams mentioned in sections 3.1 and 3.2. These sections should be considered full
fledged user manuals.

8.1. Front End

The Experimental Configuration Package (or ECP) is a front end for a set of
Local Area Network performance evaluation tools. It is used to enter
specifications for artificially generated network communications loads. The use of

the specifications generated using the ECP is described in section 6.2 of this
report.

8.1.1. The Structure of an Experiment Definition

An experiment definition has three parts: a list of distributions, a topology,
or connectivity matrix, and a protocol selection. The goal of the definition is to
produce complete descriptions of a set of packet producing processes. You will
enter a list of distributions which will be used to generate interpacket times and
packet lengths. These distributions are in turn used in the definition of the
experiment’s topology. For each machine in the network, you will enter the
number of processes producing packets, and the characteristics of these processes.
The distribution list and topology definition together constitute a load pattern.
This load pattern can be used in several experiments with different communica-
tions protocols as determined by the protocol selection.

6.1.2. Distribution List

To enter a list of distributions, choose entry 1 at the main menu. (ﬁgure Al)
The first prompt is for a name for the experiment to work on. If this question has
been asked previously in the current session, a choice of continuing to use that
experiment will be offered. If you would like to see a list of experiments that
already exist, type '?’ in response to this question. Experiment names may be a
maximum of 10 characters long. If the experiment you named alre?éd,y exists, it
will be checked for completeness. If the topology definition has not yet been
entered, you will automatically find yourself in the Topology definition section.
If both the distribution list and the topology definition are complete for the
specified experiment, you will be notified and given the choice of selecting a
different name, or re-using the distribution list to create a new experiment with a

-31-

Experimental Configuration Package

Your choices are:
1) Define topology and load characteristics for an experiment
2) Select protocol
3) Edit an experiment definition

4) Dump a configuration file in printable form
5) Exit

For defining a new experiment, steps 1 and 2 should be done in order.
Choice # ? _

Figure Al -- Main Menu

different topology.

If the name you enter is not currently in use, you will be prompted for
another name to identify the load pattern for the experiment. This name will be
used to set up groupings of experiments with the same load pattern but different
protocol selections. You will then be prompted for a comment to identify the
purpose of the experiment. After this is completed, the screen shown in figure A2
will appear. Choose one of the listed distribution types by typing the number
that appears next to the distribution name. Depending on the type of distribu-
tion you choose, you will be prompted for the parameters needed. If you choose
either of the user entered distributions, (distributions 5 and 6) you will be
prompted for a list of x and y coordinates. This will continue until you type 'n’
in respénse to the question ‘Enter another point?’ Likewise, you will continue to
be prompted for distributions until you type 'n’ in response to the question
‘Enter another distribution?’ Z: '

i

8.1.3. Topology Definition

To enter a topology definition, one may choose to continue into the topology
definition section immediately from the load distribution section, or topology
information can be entered at a later time by choosing '1’ at the main menu,

-39-

LOAD CHARACTERISTICS

Time intervals between instances of packet generation and packet
lengths will be specified by distributions from the following list.
Special distributions are entered by the user. Your choices here

form a list which will be referenced in the topology description.

Standard distributions
1) Exponential
2) Poisson
3) Geometric
4) Binomial

Special distributions
5) General Discrete

6) Piecewise Continuous

Choice # ? _

Figure A2 -- Distribution List entry screen

then entering the name of an experiment for which the distribution list has
already been entered. If the second route is taken, you will go through the same
procedure as discussed in section 6.1.2. for entering the experiment name. The
screen for entering the topology definition is shown in figure A3. Each repetition
of the questions in this screen represents one process. You will be prompted for
distributions from the list discussed in section 6.1.2. for interpacket time and
packet length for the packets generated by this process. You may lock at a list
of the distributions that you entered by typing an ’'h’ in response{to either of
these questions. You will then be prompted for the number of processes with
which this process will communicate. You will then cycle through the questions
for a receiver that many times. If you wish to examine the topology you are
entering at any point visually, type 'v’ in response to any of the questions about

the receivers. The process number requested in this subsection does not

-33-

TOPOLOGY DEFINITION
Node 1 How many processes will there be for this node?

Process 1
(Type 'h’ to see a recap of the distributions entered)
Distribution for inter-packet time?
Distribution for packet length?

Number of processes receiving packets from this process:

Receiver 1
Process address for receiver: node #

process #
Probability that a packet goes to this process:

Figure A3 -- Topology Definition entry screen

correspond to the sender process on the node specified; ‘sources’ and ‘sinks’ are
separate entities. If a process has more than one receiver, the probabilities of the

receivers should add up to one -- currently the program does not check to be sure
this is true.

6.1.4. Protocol Selection

The protocol select section determines what communication protocol will be
used for the experiment. When 2’ is chosen at the main menu, you are once
again asked for an experiment name. The codes and descriptions of the available
protocols are displayed, (see figure A4) and you will be prompted for-your choice.
Enter the code corresponding to the protocol you wish to use for your experi-
ment. and asked to choose the one you wish to edit.

- 34 -

Select Procotol
Name Description
1) 802 Ethernet

2) VTICSMA Virtual Time CSMA

Which protocol would you like to use for this experiment?

Figure A4 -- Protocol select screen

6.1.5. Edit Functions

An experiment definition consists of three parts, and these three parts are
edited independently. However, editing any section has an overall effect on the
experiment. Editing either the distribution list or the topology of a definition or
both creates a new load pattern. It is possible to deliberately copy in place,
(overwrite) but this should be done only to correct mistakes or before an experi-
ment has actually been run using the definition. If both the distribution list and
the topology of a definition are to be edited, the first section edited should be
copied to create 2 new experiment and thus a new load pattern, while the second
should be overwritten, to keep a third experiment from being created. After you
have entered the name of the experiment you wish to edit, it will be checked to
see which of its sections are complete and thus are eligible for editing. You will
be presented with a list of these sections,

6.1.5.1. Editing the Distribution List r

i
¥

After you have chosen to edit the load distributions, a menu will appear
offering several ways to edit the list. If you already know which ‘member of the
list you want to edit, choose '1’, Edit a specific entry. You will be prompted for
the number of the distribution you want to edit. This is the number that

appears beside the distribution in a dump of the experiment, which will be

-35-

discussed in section 6.1.7. The specified entry will be printed, along with a list of
possible values for the distribution code field. The question:

. [E]dit entry, [D]elete entry, [Q]uit?
will appear, and you will be prompted for input. Type the letter in brackets

from the choice you want. Typing ’e’ causes the cursor to move beside each field
in the distribution record in turn. If you wish to change the value in that field,
type the new value beside the old one. If you want to leave the old value
unchanged, simply type a carriage return. Typing 'd’ causes the displayed distri-
bution to be removed from the list. Typing ’q’ returns you to the edit menu
without making any changes. If the distribution chosen was one of the special
distributions, the question will also contain the option ‘[S]can points.” Typing ‘s’

lets you see the x and y coordinates of one point at a time, and change them if
you wish.

The second choice at the edit menu allows you to scan through the list of
distributions one at a time. You will be asked for an entry at which to begin
scanning. Enter an integer corresponding to the element of the list you wish to
see first. The requested entry will be displayed, and the following question will
appear:

[Nlext entry, [E]dit this entry, [Q]uit scanning?

Typing ‘n’ will display the next entry in the list. Typing ‘e’ will cause the edit-
ing process discussed above to be invoked on the current entry. Typing ‘q’ exits
back to the edit menu.

At the distribution edit menu you may also choose to add a new distribu-
tion. If you choose this option, the data entry process for load distributions (as
discussed in section 6.1.2.) will be invoked. The choices you enter will be
appended to the end of the distribution list. The new entry will not immediately
be available for editing. If changes need to be made to a distribution entered in
this way, you must choose 4 (exit) at the edit distribution menu, then begin the
edit process again by choosing 3 (edit) at the main menu. This will J’herge the
changes entered in the last edit session with the existing distributions and make

them available for editing subsequently.

- 36 -

6.1.5.2. Editing a Topology Description

A topology record consists of two distributions chosen from the _lisﬁ entered
in the load distributions section and a list of processes which receive packéts from
thefprocess being defined. The same editing options are available for topology
descriptions as for distribution lists. In addition, there is also an option which
allows you to examine the topology you have built visually .

In order to edit a particular entry, (choice 1 in the edit topology menu) you
need to know what node the process is defined on, and its process number on
that node. At present, valid node numbers are 1 through 4. When these have
been correctly entered, the process number, the two distributions, and the
number of receiver records are displayed. The following question will be
displayed:

[E]dit process,|[D]elete proc,[S]can receivers,[A]dd receiver,[Q]uit?

Typing ‘e’ causes the cursor to move to each of the editable values in turn. To
leave the value as it appears, type a carriage return. To change the value, type
the new value beside the old value. The number of receivers is not an editable
value; it is changed automatically if receiver records are deleted or added. Typ-
ing ‘d’ removes the process and its list of receivers from the experiment. Typing
‘s’ shows you each of the process’s receivers in turn. This works the same way as
scanning points, described in section 6.1.5.1. After the receiver is displayed, the
question

[N]ext receiver,[E]dit this entry,[R]eturn to process level?

will appear at the bottom of the screen. The first two options work the same
way their counterparts in point scanning do. Typing ‘r’ removes the receiver
record from the screen and positions the cursor next to the question for the pro-
cess. Typing ‘a’ at that question prompts you for the three questions of the
receiver subrecord, and adds the resulting record to the current process’s list of

receivers. Typing ‘q’ exits to the edit topology menu.

Choosing option 2, scan process records, at the edit topology menu prompts
you for a node and process number. If you just want to scan all of !tih;a'processes
on a node, type the node number, then a carriage return for the prdcess number.
The specified process is displayed, and the question

[N]ext process,|E]dit this process,[S]can receivers,|Q]uit?
appears. The actions associated with these options correspond to the ones dis-
cussed above.

- 37 -

Choosing the option to add a new process at the edit topology menu
prompts you for the number of the node you want the new process to reside on.
You are then taken through the data entry screen discussed in section 6.1.3 for
one process. As before, this process entry will not be immediately available for
editing. Exiting to the main menu, then choosing edit will remedy this.

The view topology option allows you to visually display the topology of the
current experiment. A screen in built with columns of integers for each node
representing the sender and receiver processes which reside there. To see which
receivers a sender communicates with, use the ‘h’,'j’,’k’,and ‘I’ keys as in vi to
move the cursor to the sending process you would like to examine. (‘h’ moves
left, ‘j’ moves down, ‘k’ moves up, and ‘I’ moves right) Type a carriage return.
The receivers of the process on which the cursor rests will appear in inverse video
on the lower half of the screen. (If the terminal you are working on doesn’t have
inverse video capability, this effect is less than impressive.) When you are finished
examining the result, type ‘r’ and a carriage return to repeat the process with
another sender, or ‘q’ and a carriage return to quit and go back to the edit topol-
ogy menu.

6.1.5.3. Editing Protocol Select

The protocol selection of an experiment is comprised of a single integer.
Editing the protocol selection is, therefore, very simple. The current selection is
displayed, along with a list of available protocols. This is the same list that is
displayed in the protocol select process, discussed in section 6.1.4. You will be
prompted for a choice. If you change you mind about editing the selection, sim-
ply type a carriage return and the selection will remain as is. To change the
selection, choose a different protocol from the list and type its number. As in the
other two edit sections, you will be presented with the possibility of overwriting
the current experiment, or copying to create a new experiment. If you choose to
copy, you will be prompted for a name for the new experiment. By typing ‘?’ in
response, you will be shown a list of existing experiments. When you Ijave typed
in the new name, the program will create a copy with the new protc,;i:ol selection,
and link it to the appropriate directories.

-38-

6.1.8. Caveats

In the load distributions and topology sections, the functions allow all distri-
butions to be removed, or all receivers to be removed from a process. Both situa-
tions are undesirable. The first would render an experiment unusable. Great care
should be taken if the distribution list is edited after the topology for an experi-
ment has been entered to insure that the new distributions have the desired
meaning in the context of the choices made in the topology description. The
second situation will not be fatal, but the proper way to achieve it is to delete
the process, not all of its receivers.

The overwrite option should be used only to correct mistakes or make
changes in an experiment definition only if the experiment has not yet been run.
Overwriting an experiment that has already been run may cause inconsistencies
in the analysis phase of the experiment.

If, in creating a new experiment by editing an old one, it is necessary to edit
both the load and topology sections, change the load section first and copy it to a
new experiment, then change the topology section and overwrite it. Doing this in

the opposite order is also permissible.

6.1.7. The Dump Utility

If you choose 4 (dump an experiment description) at the main menu, you
will be prompted for an experiment name as before. When the name of an exist-
ing experiment has been entered, that experiment will be examined and a list of
completed sections will be displayed. If you want a dump of the entire experi-
ment description, type ‘y’ in response to the question. If you only want to see
one or two sections, type a carriage return in response, then, as the cursor is
moved to each section in turn, type ‘y’ by the ones you want to include in the
dump, and carriage return by the ones you do not want to see. The dumpfile
will be created with a pathname of the form

experiment/ <exp name>/<exp name>.dmp

which can be viewed either on the screen using cat or vi, or sent to a, ptinter.

]

6.1.8. The Protocol Selection Table

When the ECP is first invoked, the file containing the list of available proto-
cols does not exist. To build this table, type ‘A’ at the main menu choice. You

will be prompted for an extension, which must be no longer than 8 characters.

-39 -

This will correspond to the name of the subdirectory in the protocol directory to
which experiments with this protocol selection will be linked. You will then be
asked for a description of this protocol. It must be no longer than 70 characters.
This will serve to explain the purpose of the protocol

with the extension entered before. These will appear in the protocol select and
protocol select edit sections. Typing ‘A’ permits one additional protocol to be
entered, so to initially build this file, procedure must be done repeatedly.

6.2. Experiment Control Software

The usage of the experiment control software is extremely simple; running
an experiment is completely automated. A shell script called ‘start.sh’ in the
directory LANT is executed. The shell prompts for experiment name, duration,
and a unique suflix for the log files which the experiment will generate. From
this point, the activities described in section 3.2.3.6 are carried out without
human intervention. The software has built in abort handling capabilities in the

event one of the load generating processes fails during an experiment run.

The actual implementation of experiments will change over the lifetime of
the Local Area Network Testbed project. The final implementation of the exper-
iment control software will be discussed in a subsequent report. However, the
interface between the front end and the experiment software will remain con-
stant. The activity of this interface consists of breaking down an experiment
description into the subdescriptions relevant to each of the load generating nodes

and the transmission of these subdescriptions to the appropriate local control
processes.

The nature of this interface is determined by the data structures used for
the translation and transmission of the experiment description to its various des-
tinations. The supcrvisor maintains a header containing information pertaining

to the experiment as a whole. This header consists of the following information:
1) name of the experiment

2) protocol selection code (an index into the protocol table) M

3) last modification date for experiment description

4) creation date for experiment description

5) number of load generating processes on each load generating node

6) number of entries in the distribution list

- 40 -

7) name of configuration subdirectory to which the description belongs
8) comment

9) experiment duration

This header is also stored directly in the monitor node log file generated by the
experiment.

The information required by each local controller is stored and transmitted
in a data structure with the following fields:

1) experiment name

2) number of load generating processes for node

3) number of entrics in distribution list

4) experiment duration

5) distribution list

6) process description list

The distribution list consists of records with the following structure:
1) distribution index

2) distribution code (poisson, geometric, etc.)

3) parameters

4) point list (only for user specified distributions)

Each member of the process description list contains:

1) process identilication number

2) time distribution index

4) time distribution sced index

4) packet length index

5) length distrilbution sced index

6) list of receivers.

Each element of the receiver list consists of a destination address and a routing

probability. The sced indices are pointers into a table of seeds xy'lth desirable
characteristics to e uscd in the generation of packet lengths and delays.

Any implenientation will work from these data structures. This maintains a
certain modularity in the experiment control system, and facilitates the develop-
ment of successive implementations. The interface is, in a sense, machine

independent; any machine dependent activity occurs in the actual

- 471 -

implementation. This approach makes it feasible to transport the experiment
control software to dillferent machines, provided they run under the UNIX

operating system.

v

