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In this paper the full branching time logic (CTL*) is studied. It has basic
modalities consisting of a path quantifier, either 4 (“for all paths™) of E (“for some
path”), followed by an arbitrary linear time assertion composed of unrestricted
combinations of the usual linear temporal operators F (“sometime™), G (“always”),
X (“nexttime”), and U (“until”). It is shown that the problem of determining if a
CTL* formula is satisfiable in a structure generated by a binary relation is
decidable in triple exponential time. The decision procedure exploits the special
structure of the finite state w-automata for linear temporal formulae which allows
them to be determinized with only a single exponential blowup in size. Also the
expressive power of tree automata is compared with that of CTL* augmented by
quantified auxillary propositions. € 1984 Academic Press, Inc.

1. INTRODUCTION

A number of systems of branching time temporal logic have been
proposed for reasoning about existential properties of concurrent programs
(e.g., potential for deadlock along some future) in addition to universal
properties (e.g., inevitability of service along all futures). The modalities of
these logics are of the general form: either A (for all paths) or E (for some
path) followed by a combination of the usual linear time operators F
(sometime), G (always), X (nexttime), and U (until). In many such logics
restrictions are placed on how the linear time operators can combine with the
path quantifiers. For example, in the logic UB of (Ben-Ari, Manna, and
Pnuelli, 1981), 4 or E is always paired with a single occurrence of F, G, or

* Preliminary versions of some of these results were presented at the 1983 CMU Workshop
on Logics of Programs and the 1984 ACM Symposium on Theory of Computing.
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X. While these restrictions can reduce the complexity of reasoning in a logic,
they can also significantly limit the logic’s expressive power. For instance, a
property associated with fairness such as “along some future an event P
occurs infinitely often” can be formulated as EGFP; however, this formula
involves a nesting of F inside G violating the restrictions of UB’s syntax and
is provably (cf. Emerson and Halpern, 1983) not equivalent to any UB
formula.

In this paper, we study the full branching time temporal logic CTL* of
(Emerson and Halpern, 1983) in which a path quantifier A or E can prefix
an assertion composed of unrestricted combinations (i.e., involving arbitrary
nestings and boolean connectives) of the linear time operators F, G, X, and
U; CTL* subsumes a number of logics from the literature including the
systems of (Manna and Pnueli, 1979; Lamport, 1980; Gabbay et al., 1980,
Ben-Ari, Manna, and Pnueli, 1981; Emerson and Halpern, 1982; and Clarke,
Emerson, and Sistla, 1983), as well as the Computation Tree Logic of
(Clarke and Emerson, 1981). (It is also closely related to the logic MPL of
(Abrahamson, 1980); see below.) We interpret CTL* formulae over R-
generable models (cf. Emerson, 1983)—i.e., structures generated by a binary
relation like those used in (Fischer and Ladner, 1979; and Ben-Ari, Manna,
and Pnueli, 1981). We show that satisfiability for CTL* with this semantics
is decidable in triple exponential time.

Somewhat surprisingly, for some time it was not known if there was a
decision procedure of elementary complexity for full branching time logic
interpreted over this very natural class of structures. In (Abrahamson, 1980)
a logic, MPL is defined which has a very similar syntax to CTL* but
somewhat different semantics. While a double exponential decision procedure
is given for MPL interpreted over structures which violate the R-generability
condition, for semantics (corresponding to) R-generable structures,
(Abrahamson, 1980) gives only a nonelementary decision procedure ' and
states that the existence of an elementary procedure is open. Recently, other
researchers (Pnueli and Sherman, 1983; Vardi and Wolper, 1983) have,
independently, announced four exponential decision procedures for the R-
generable case. Our procedure is thus exponentially faster. We can give a
faster decision procedure, in part, because we uncover some structural
properties of branching time and linear time logics which had gone
heretofore unnoticed.

To get our decision procedure, we first show that given any CTL*
formula f, we can derive an “equivalent” formula f, of length O(| fy!) in
which the depth of nesting of path quantifiers is at most two. This establishes
a normal form for CTL* which is essentially conjunctions and disjunctions

! The decision procedure is obtained by translation into SnS, the second order monadic
theory of n successors; by the results of (Meyer, 1974), SnS is not elementary recursive.
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of subformulae of the form Ap,, AGEp,, and Ep,, where p, is a pure linear
time formulae (i.e., p, contains no path quantifiers). We then argue that f is
satisfiable iff it has an infinite tree-like model, where the branching at each
node is bounded by | f; |. This enables us to reduce the satisfiability problem
to the emptiness problem for finite automata on infinite trees (Rabin, 1969):
For each subformula Ap,, AGEp,, or Ep,, we build a complemented pairs
tree automaton of size at most double exponential in | p,|. These tree
automata are then combined using a cross product construction to get a
complemented pairs tree automaton for f, of size at most double exponential
in | f,| which accepts infinite trees that define models of f,. By the results of
(Streett, 1981) the emptiness problem of this tree automaton is decidable in
time exponential in its size, i.e., in time triple exponential in |fy|. As a
corollary, we also obtain a small model theorem since an automaton accepts
an infinite tree iff it accepts a finitely generable tree obtained by
“unwinding” a finite tree (Rabin, 1969; Hossley and Rackoff, 1972).

Building the tree automata for AGEp, or Ep, is straightforward. However,
design of the tree automaton for Ap, is much more subtle. A tableau
construction can be applied to p, to get a nondeterministic (Buchi)
automaton .%/, on infinite strings (where acceptance is defined by repeating a
designated set of states infinitely often) recognizing {x:x=p,} with
N =exp(| p,|) states. A seemingly natural next step would be to program the
tree automaton to simply run ., down every path from the root of the input
tree to check that p, indeed holds along every path. In fact, for this tree
automaton to work correctly, the string automaton must be deterministic. It
is well known that the subset construction (Rabin and Scott, 1959) cannot in
general be used to determinize finite automata on infinite strings; instead, the
“classical” method for determinizing such an automaton involves application
of McNaughton’s (1966) construction and yields an equivalent deterministic
string automaton with a number of states, that is, double exponential in N.
However, we show that ./, has a special structure derived from the tableau
which allows us to obtain, by means of a rather delicate construction, an
equivalent deterministic automaton with a number of states only single
exponential in N. This in turn enables us to construct the tree automaton for
Ap, of the desired size.

Last, we compare the expressive power of branching time logic with tree
automata. We show that while CTL* itself is less expressive than tree
automata, CTL* (resp., UB) with quantification over auxillary propositions
is as expressive as pairs (resp. Buchi) tree automata.

The remainder of the paper is organized as follows: In Section 2 we give
some preliminary definitions. Then in Section 3 we discuss the normal form
and tree-like models. Section 4 shows how the tableau for a linear time
formula defines a Buchi automaton and describes its special structure while
Section 5 shows how to determinize it with only a single exponential blowup.
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The design of the tree automata is given in Section 6, and Section 7 gives our
expressiveness results. Section 8 presents some concluding remarks.

2. PRELIMINARIES: DEFINITIONS AND TERMINILOGY

2.1. Syntax. We will inductively define a class of state formulae (true or
false of states) and a class of path formulae (true or false of paths). We use
the large roman letters P, Q, R,..., to represent atomic propositions and small
the roman letters p, ¢, 7,..., to represent nonatomic (state or path) formulae:

(S1) Any atomic proposition P is a state formula.
(S2) If p, g are state formulae then so are p A g, —p.
(S3) If pis a path formula then Ep is a state formula.
(P1) Any state formula p is a path formula.

(P2) If p, g are path formulae then so are p Agq, —p.
(P3) If p, q are path formulae then so are Xp, (p U q).

The set of state formulae generated by all of the above rules forms the
language CTL* of full branching time temporal logic (cf. Emerson and
Halpern, 1983) while the set of path formulae generated by rules (S1), (P1),
(P2), and (P3) forms the language L(X, U) of ordinary linear time temporal
logic (cf. Emerson and Clarke, 1982). (We call this latter type of path
formula a pure path formula or a pure linear time Jformula to emphasize that
it contains no nested A’s or E’s.) The other connectives can then be defined
as abbreviations: p V q abbreviates —(—p A —q), p=>¢ abbreviates —p V g,
p = q abbreviates (p=q) A (q=p), Ap abbreviates —E—p, Fp abbreviates
true Up, Gp abbreviates —F—p, and (p Wq) abbreviates —(—p U —q).
(Note: | p| denotes the length of p viewed as a string in the obvious way.)

2.2. Semantics. We define the semantics of a CTL* formula with
respect to a structure M = (S, R, L), where

(1) S is a nonempty set of states,
(2) R is a nonempty total binary relation on S, and

(3) L is a labelling which assigns to each state a set of atomic
propositions true in the state.

A fullpath (a,,a,,a;,...) is an infinite sequence of states such that
(@;,a;,,)ER for all i. We write M,a=p (M, x = p) to mean that state
formula p (path formula p) is true in structure M at state a (of pah x, respec-
tively). When M is understood, we write simply a = p (x = p). We define =
inductively using the convention that x = (a,, a,,a,,...) denotes a path and
x! denotes the suffix path (a;,a;,;,@;, )
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(S1) akE P iff P L(s), for any atomic proposition P
(S2) aEpAgiffa=pandaFgq
a = —p iff not (aF p)
(S3) ar= Ep iff for some fullpath x starting at a, x=p
(P1) xEpiff a,=p, for any state formula p
(P2) x=pAqgiff xEpand xEg
x = —p iff not (x=p)
(P3) x=Xpiff x’=p
x=(pUgq) iff for some i > 1, x' =g and for all j > 1
[j < i implies x’ &= p]

We say that state formula p is valid, and write &=p, if for every structure M
and every state @ in M, M, a = p. We say that state formula p is satisfiable if
for some structure M and some state s in M, M, a = p. In this case we also
say that M defines a model of p. We define validity and satisfiability
similarly for path formulae.

Note that, given a pure path formula p, and a path x, only the truth values
of the atomic propositions actually appearing in p, matter in determining
whether x = p,. We can thus view a path x = a,a,4, ---, as an infinite string
of sets of atomic propositions of p, (so each a; € PowerSet (Atomic-

Propositions( p,)) where AtomicPropositions(p,) denotes the set of atomic
propositions appearing in p,).

2.3. DeFINITION.  Given a pure path formula p,, the Fischer-Ladner
closure of p, is the least set FL(p,) of subformulae of p, such that

(1) po € FL(py)

(2) if p A g€ FL(p,) then p, g € FL(p,)

(3) if —p € FL(p,) then p € FL(p,)

(4) if (pUq)€ FL(p,) then p,q, X(p U q) € FL(p,)
(5) if Xp € FL(p,) then p € FL(p,).

Note. |FL(p,)l = O( pol).

The extended Fischer—Ladner closure of p,, EFL(p,), is the set
FL(p,)V {—p: p € FL(p,)}-

2.4. DEFINITION. A set sC EFL(p,) is maximal provided that
¥p=—-q € EFL(p,), at least one of g, —gE€s. A set s< EFL(p,) is
consistent provided that
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(1) VYp=—g Es at most one of g, .g€E s

(2) (pAg)EsiffpEsandg€Es
—(pAg)ESsiff pEsor—gEs

(3) (pUg)esiffg€Esorp, X(pUgqg)Es
—(pUq)Esiff -q,—pEsor—q, —X(pUg)Es.

2.5. DEFINITION.  The tableau for p, is a iabelled, directed graph
€ = (V,R), where the set of nodes V= {s< EFL(p,): s is maximal and
consistent} and R = {arcs s — ¢: 5,1 € V and for each formula Xp € EFL(p,)
[Xp € s iff p € 1]}.

2.6. Terminology. The symbols §o and ? are read “there exist infinitely
many” and “for all but a finite number,” respectively. We write i.0. to
abbreviate “infinitely often,” fo. to abbreviate “only finitely often,” and a.e.
to abbreviate “almost everywhere” (meaning “at all but a finite number of
instances”). We extend the AromicPropositions (c) notation to indicate the
set of all atomic propositions appearing in formula ¢ or elements of node ¢
or input symbol ¢. We also write exp(n) to indicate ¢” for some ¢ > I.
We further use exp’(n) to abbreviate exp(exp(n)) and exp’(n) for
exp(exp(exp(n))).

2.7. Finite Automata on Infinite Strings and Infinite Trees. There is an
extensive literature for finite automata on infinite strings and on infinite
trees, and the reader is referred to (McNaughton, 1966; Rabin, 1969, 1970
Hossley and Rackoff, 1972) as well as (Street, 1981). For now, we briefly
review the following definitions:

A finite automaton ./ on infinite strings consists of a tuple (Z, S. 6, s,).
where X' is the finite input alphabet, S is the finite set of states, §: S X £ —
PowerSet(S) is the transition function, and s, € S is the start state—plus an
acceptance condition as described subsequently. A run r of . on infinite
input string x = a,a,a, ---, is an infinite sequence r = s,s,s,5, ---, of states
such that ¥i> 0, é(s;,a;,,) 2 {s,,,}. For a Buchi automaton acceptance is
defined in terms of a distinguished set of states, GREEN, (think of a green
light flashing upon entering any state of GREEN): x is accepted iff there
exists a run r on x such that 3 GREEN flashes along r. For a pairs
automaton we have a finite list (RED,, GREEN,)...., (RED,, GREEN,}) of
pairs of sets of states (think of them as pairs of colored lights, where .o/
flashes the red light of the lst pair upon entering any state of set RED,,
etc.): x is accepted iff there exists a run r on x such that for some pair
i€ [1:k] (—,%C RED, flashes and ?GREEN, flashes) along r. Finally, a
complemented pairs automaton accepts x iff there exists a run r on x such
that the above pairs condmon is false, ie., iff for all pairs i€ [1:k]|

(3 GREEN, flashes implies 3 RED; flashes) along r.
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Let I',={b,,b,,..,b,_,} be an alphabet over n distinct symbols
by,...b,_,. Then I'} may be viewed as an infinite n-ary tree T,., where the
empty string 4 is the root node and each node ¢ has as its successors the
nodes tb,,..., tb,. A finite (infinite) path through T, is a finite (resp., infinite)
sequence x = f,, }, I,,..., of nodes such that for all , ¢,, , is a successor of l.
An infinite n-ary Z-tree is a labelling ¢ which maps T,-Z.

A finite automaton .o/ on infinite n-ary Z-trees consists of a tuple
(£, S8,0,s,) plus an acceptance condition similar to a string automaton
except that 6: S X X — PowerSet(S"). A run of .« on Z-tree ¢ is a function
p:T,— S such that for all s € T,(p(sby)...., p(sb, ,))E O(p(s), #(s)). We say
that .« accepts input Z-tree ¢ iff 3 a run p of .« on ¢ such that ¥ path x
starting at the root of T, if r = p | x, the sequence of states .+’ goes through
along path x, then the string acceptance condition (as above) holds along r.

3. NorMAL ForM AND TREE MODELS

3.1. THEOREM. Given any CTL* formula fo we can construct a
corresponding formula f, in a normal form composed of conjunctions and
disjunctions of subformulae of the form Ap,, Ep,, or AGEp,, where p, is a
pure linear time formula such that (1) f, is satisfiable iff’ /o is satisfiable and
(2) | fil = O f41). Moreover, any model of f, can be used to define a model
of f, and conversely.

Proof. We will initially obtain a preliminary normal form f, composed of
conjunctions and disjunctions of subformulae of the form Ap,, Ep,, or
AG(P= A/Ep,), where P denotes an atomic proposition or its negation and,
for brevity, we write A/Ep to indicate a formula of either the form Ap or Ep.
We will then apply the validities AG(Q=Ep)=AG(—Q =A—p) and
AG(Q =A4p)=(4[G(Q = p)] AN AGE(—Q = —p)) to transform f, into Sy in
the final normal form.?

To get the preliminary form, we first drive negations inward using
DeMorgan’s laws and dualities such as —Fp = G—yp, —Ap = E—p, etc. so that
only atomic propositions appear negated. The resulting formula f, consists
of conjunctions and disjunctions of the form g =A/Ep, where each p is a
path formula possibly containing nested 4’s or E’s. We then reduce each
such g appearing in f; to the form g°=A/Ep® A /\,’.':,AG(Q,.EA/Eq,),
where p® and the g, are all pure path formulae and where n | f|. We
do this by introducing “fresh” atomic propositions for each “deeply™

> The verification of these identities is straightforward and involves applying valid
equivalences such as [4G(Q = Ep)| = [AGE(Q = p)| where Q is an arbitrary atomic
proposition and p is an arbitrary state formula. The reader may note that the generalized
equivalence [4G(g = Ep)| = |AGE(g = p)| where p and ¢ are both arbitrary state formulae is
also valid. However, the formula [4G(r = Ep)| = [AGE(r= p)| where p is an.arbitrary state
formula but r is an arbitrary path formula is not a valid equivalence.
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nested A/Ep subformula. For example, E(GEFAFP A FAGR) becomes
E(GEFQ, AN FAGR) N AG(Q, = AFP) which becomes E(GQ, A FAGR) A
AG(Q,=AFP)N AG(Q,= EFQ,) which finally becomes E(GQ, A FQ,) A
AG(Q,=AFP)NAG(Q,=EFQ,) AN AG(Q,= AGR).

To describe the reduction formally, let g,=g. Inductively, assume we
have g,=A/Ep, A \¥_, AG(Q, = A/Eq;), where the g, are pure path
formulae but p, may not be. If p, is a pure path formula, we are done.
Otherwise, let A/Eq, ., be a subformula of p, such that g, ,, is a pure path
formula. Then let p,,, be the result of substituting a unique, previously
unused atomic proposition Q,,, for A/Eq,,, in p, and define
8is1 =A/Ep, . AN AG(Q; = A/Eq,). Note that g, , is satisfiable iff g,
is satisfiable. In particular, a model of g, defines a model of g,,, by
extending the labelling so that that Q, ., is true exactly at the states where
A/Egq, ., holds. Conversely, a model of g,,, must be a model of g,.

This reduction process must terminate within n<|p| steps because
| Pyl <| Pyl When it does terminate, let p° = p, so that p° g, ..., g, are all
pure path formulae. Moreover, | g°|=0(| g|) since | g**'|=|g*|+ some
constant C, as can be seen by transforming g, , , into g, A AG(Q,,,=Q,.,)
by textually swapping the occurrence of Q,,, in p,,, with 4/Eq,,, in
AG(Qy, = A/Eq, ).

The reduced formula f, is of length O(lfy]) and is in the preliminary
normal form. Since f, is of length about 2 - | f,| = O(| fy|), we are done. 1

It is well known that any R-generable model may be unwound into an
equivalent infinite tree-like model. Using an approach similar to that of
(Street, 1981) we can ensure that the resulting tree-like model has some
additional structure wich simplifies programming the tree automata:

Suppose M =(S,R,L) is a model of f; so that M,s,=f,. We will
construct another model M’ = (S’,R’,L’) with §' =TI}, | where I'*, | is the
alphabet {by, b,,..,b,} and Ep,,..., Ep, are all the Ep subformulae of f,.
Intuitively, M’ is obtained by unravelling M so that each Ep, subformula is
satisfied along a designated path of M’ which is a copy of a correponding
path in M. We define a function g: S’ — S. Let g(A)=s,, where 1 is the
empty string. Inductively, assume g(z) is defined = ¢,. For each subformula
Ep,,if M, t,= Ep, then let x=1t,,1,,t,...., be a path in M such that p, holds
along it. Then let zb, by be a “copy” of x, ie., let g(z)=1,, g(zb,)=1,,
g(zbyby) =t,, g(zb, byby) = t;, etc. Now define R’ by the rule (z,,z,) E R’
iff (i) z,=2z,b, for some i€ [0:n] and (ii) (g(z,), g(z,)) € R. Finally, let
L'(z) = L(g(z)). (Note: let zby be a copy of a path starting at g(z).)

By construction of M’, every path starting at 4 of M’ is a copy of a path
starting at s, of M. Hence, if M,s,= Ap then M’, 1 = Ap. In addition, for
every state z of M’ and for each Ep; subformula, if M, g(z)&= Ep, then
M', z=Ep,. Thus, if M,s,=Ep (M,s,=AGEp) then M', A= Ep (resp.
M', A= AGEDp). 1t follows that M’, A= f,. We have thus shown
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3.2. THEOREM. For any formula f, of CTL* in the above normal Sorm, if
J1 has a model M, then it has an infinite tree-like model M' where each node
is of outdegree < | f,|. Moreover, each Ep subformula of f, that holds in M is
satisfied along a designated path of the tree-like model M'.

4. THE TABLEAU AS A NONDETERMINISTIC FINITE AUTOMATON

We may view the tableau for a linear time formula p, as defining the tran-
sition diagram of a nondeterministic finite automaton .« on infinite strings
which accepts {x:x = p,} by letting the arc u — v be labelled with Atomic-
Propositions(v). A run r of & on input x=a,a,a,---, is an infinite
sequence r=S$,S,5,5; -+-, of tableau nodes such that Yi2 0, 6(s;,a;,,)2
{$;+1}, where d is the transition function of .%. (Actually, s, is not a tableau
node but the unique star: state defined so that J(s,, a)= {tableau nodes
u:po € u and AtomicPropositions(z) = AtomicPropositions(a)}.) Note that
Vi> 1 AtomicPropositions(s;) = AtomicPropositions(a;). Any run of .«
would correspond to a model of p, (in that Vi > 1, x' = {formulas p: p € 5:1)
except that eventualities might not be fulfilled. To check fulfillment, we can
define acceptance via complemented pairs: if EFL(p,) has m eventualities,
we let »/ have m pairs (RED,;, GREEN,) of lights. Each time a state
containing (p; U q;) is entered, flash GREEN;,; each time a state containing

g; is entered flash RED,. A run r accepted iff Vi€ [1:m] [| 3 GREEN;

flashes - 3 RED,; flashes], iff every eventuality is fulfilled, iff x &= p,.

However, we ﬁnd it more convenient to convert .%/ into an elquivalent
nondeterministic Buchi automaton, .+, : We say that the eventuality (p U q)
is pending at state s of run r provided that (p Ugq)E s and g &s. Observe
that run 7 of ./ on input x corresponds to a model of p, iff not (3 even-
tuality (pUgq), (pUgq) is pending a.e. along r) iff (V eventuality (p Ugq),
(pUq) is not pending i.o. alongr). The Buchi automaton .« is then
obtained from .« by augmenting the state with an m + 1 valued counter so
that a state of .« is of the form (tableau component, counter component).
(The start state of .« is (start state of %, 1).) The counter is incremented
from i to i+ 1 (mod(m + 1)) when the ith eventuality (p; Ugq,) is next seen
to be not pending along the tableau component of the run. When the counter
is reset to 0, flash GREEN and set the counter to 1. (If m =0, flash GREEN
in every state.) Now observe that 3 GREEN flashes iff Vie [1:m)]
((p;Ug;) is not pending i.0.), iff every pending eventuality is sometime
fulfilled, iff x = p,. Moreover, .#] still has N = exp(| po|) - O(| po|) = exp(| p,|)
states. ,

The tableau has the following special structure:

4.1. LEMMA. If s,,5,,1 are nodes of & such that s,,s, are both
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immediate predecessors of t, and AtomicPropositions(s,) = AtomicProposi-
tions(s,), then s, = s,.

Proof. We argue by induction on the structure of formulas in s,, s, that
p' €s, iff p'E€s,, for al p'€ EFL(p,). The basis case of atomic
propositions follows directly by assumption. Suppose p’' €s,. If p’=—p
then p € s,. By induction hypothesis, p ¢ s,. So —p € 5, by maximality. If
p'=pAgEs, then consistency of s, implies p,q €s,. By induction
hypothesis, p, q € s,, so, again, by consistency pA g€ s;. If p=Xp€Es,
then, by definition of the tableau, p € ¢ and so Xp € 5,.

Finally suppose p'=(pUgq)Es,. By consistency, either g€ s, or
p,X(pUg)€Es,. If g€s, then, by induction hypothesis, g€ s,, so
consistency implies pUg€Es, also. If p, X(pUg)Es, then by induction
hypothesis, p € s,. By definition of the tableau, (pUg)€r and also
X(p Uq) € s,. By consistency then, (p Ug)Es,.

We just showed that p’ €s, implies p’ € s,. By symmetry, p’ € s, iff
pEs, |

The automaton ./, inherits from the tableau a similar special structure so
that, essentially, different runs on the same input cannot merge:

4.2. THEOREM. If ry=(5¢.5,,5;,..) and ry=(ly, 1,,t,,...) are two runs
of &, on input x, and r,,r, “intersect” after having read the same finite
prefix of x (technically, 3k, s, =1,), then r,,r, coincide up to the point of
intersection (technically, ¥j < k, s;=1;).

Proof. Let s, (t]) denote the tableau component of s; (resp.,t;). By
hypothesis, s, = #, and hence s; = #;. Since the two runs r, and r, are on the
same input, for all i >1, AtomicPropositions(s;)= AtomicPropositions(#; ).
Thus by repeatedly applying Lemma 4.1, we see that for all j<k, sj =1
(i.e., the tableau components of the two runs coincide out to position k).
Note that the counter component of the ith state along a run of &/, depends
only on (i) the initial value of the counter and (ii) the tableau components of
the preceeding states along the run. Since the start state of ./ is unique and
since the two runs coincide in their tableau components out to position k, it
follows that they also coincide in their counter components out to position k.
Thus the two runs coincide entirely out to position k as claimed. |

Given a Buchi automaton ./, for linear time formula pg=—p, with
N =exp(| pj|) = exp(| p,|) states, we will show in the next section how to
construct an equivalent deterministic pairs automaton & * of size (exp(N?)
states, N? pairs). Since . * is deterministic and . * accepts x iff x =—p,y,
we may view &/ * as a deterministic complemented pairs automaton which
accepts x iff x=p,. This will allow us to construct the desired tree
automaton for Ap,.



DECIDING FULL BRANCHING TIME LOGIC 185

5. How 1O DETERMINIZE THE BUCHI AUTOMATON

5.1. The Run Tree. The set of all runs of the nondeterministic Buchi
automaton %/, on input x may be viewed as an infinite directed acyclic graph
(DAG) of width <N = exp(| p,|), where each node on level i of the DAG
represents one of the possible states %7, could be in after having read the first
i symbols of x. Since by Theorem 4.2 no two runs on x can merge, it is
actually a tree. However, a run can dead end, (e.g., if —Fp € a node on level
i and p appears in i + 1th input symbol). Observe that, while there may be
an infinite number of runs in this tree, there are at most N distinct runs of
infinite length; the rest are finite. (In the sequel, we will say that a P-node of
the run tree is one corresponding to a state of .&; where »/’s GREEN light
flashes.)

5.2. Intuition. The dfa ./ * is based on the subset construction—it builds
the tree of all runs on input x, a level at a time—plus some machinery to do,
roughly, a depth-first search of the run tree looking for an infinite run along
which there are infinitely many P-nodes. The problem is complicated by the
possibility that there may be infinitely many P-nodes in the run tree but only
a finite number of them on any one path. Up to N markers are used in order
to follow each active run. Associated with each marker i are N pairs of
lights: (i, 0),..., (i N — 1). There are thus a total of N? pairs of lights. The
need for multiple pairs of light per marker is explained subsequently.

Intuitively, .« * operates as follows. As each symbol of x is read, the next
level of the run tree is built from the current level, which will shortly become
the new current level. (Only two levels are kept in memory at one time.)
Each state of the current level is the tip of an active run which is associated
with some marker /. Note that some runs split apart and others die out.
Whenever (the) run (associated with marker) i splits, one alternative is
followed by marker i and the other alternatives are assigned “free” (i.e.,
currently unused) markers j, --- j,. We then say that the runs just started up,
JissJxs spawn off run i. When and if run i/ dies, its marker becomes free for
use with another run that may later start up. Since there are at most N active
runs at any level, the N markers can be recycled indefinitely so that each
active run is always assigned a marker.

We want each marker i to follow an infinite run if possible. However, run
i may split apart many (even infinitely many) times. Some branches may be
infinite and others finite. How does .« * know which of the alternatives is
infinite and should be followed? If there were a way for . * to know this,
one pair of lights per run would suffice. For we could then simply have, for
each run i, the pair of lights {7, 0) flash GREEN whenever marker i/ encoun-
tered a P-node and flash RED whenever run / encountered a dead end (see
Fig. 1a, b). (The RED flashes are needed to ensure that an infinite number of
“noncollinear” P-nodes do not cause erroneous acceptance.)
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FiG. 1. (a) Correctly accepts because (1,0) flashes GREEN i.0.; (b) Correctly rejects
because (2, 0) flashes RED i.0.; (c) Erroneously rejects because (2, 0), (1, 0) both flash RED
i.0.; (d) Accepts because backups allow run 1 to follow the infinite path. Note. In these
figures, @ denotes a P-node.

However, there is in general no way for .« * to know which alternatives to
follow because this depends on the suffix of the input yet to be read: one
suffix might make alternative A infinite and alternative B finite while another
suffix might do the opposite. Since & * is deterministic, on some inputs it
may repeatedly make poor decisions in which case the above rules can lead
to false results. For example, in Fig. lc, &/ * erroneously rejects because
both (1,0) and (2, 0) flash RED as well as GREEN i.o.
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The problem is that the single infinite path in the run tree has been parsed
into infinitely many finite pieces rather than a single infinite piece. The
solution is to have any run i which dead-ends back up—but as little as
possible—by taking over the “youngest” surviving run j which previously
spawned off i. For example, in Fig. 1d because “father” run 1 is older than
its “son” run 2 (it was “born” earlier), when run 1 dead-ends it takes over its
youngest son, run 2. The rules for the backup require that .« * flash RED on
pairs (2,0), (2, 1) since run 2 is totally obliterated when run 1 takes it over.
/' * also flashes RED on the pair (1,0). This ensures that .« * will not
falsely accept due to GREEN flashes on (1,0) caused by noncollinear P-
nodes detected by run 1 prior to backups. Then, .« * flashes GREEN on the
pair (1, 1) iff a P-node has been seen on the finite path from the site of the
previous backup of run I to the site of the current backup (indicated by *'s).

Consider the simple case where the width N of the run tree is at most 2.
Then for any input x, one of two situations obtains:

(1) After a certain depth, .«/* always makes “good” decisions and
run 1 never again has to backup. Then pair (1,0) will never again flash

RED. It will flash GREEN i.o. iff 3 P-nodes along the run I.
(2) 9* makes infinitely many “poor” decisions so that run 1 backs
oc
up i.0. in which case (1, 0) flashes RED i.0. Then 3 P-nodes along run | iff

3 GREEN flashes of (1, 1).

In general, when the width N > 2, we have N pairs of lights and associated
stages of backups for each marker i. (By convention, when marker 7 is
pushed from a node to a successor node without any actual backup we have
a stage 0 backup of run i. P-nodes detected in this way are “recorded” via
GREEN flashes of (i, 0).) Roughly, ancestor run i takes over descendent run
J in a backup of stage m when the highest stage of previous backups of run i
which must be “undone” is m — 1 (See Fig. 2). P-nodes detected by run i on
the path between consecutive stage m backup points are recorded via
GREEN flashes of (i, m).

5.3. The Spawning Tree. To perform these backups, .&# * does not have
to reread portions of the input. Instead, & * is able to remember enough
information in various “flag bits” to simulate rereading of inputs as needed.
The “data structure” used in implementing .= * is the spawning tree which is
defined:

(1) There is one node, labelled i, for each active run i. Thus, there are
at most N nodes.

(2) If run i has spawned, in order, runs j, ..., , then node i has sons,
in order from left to right, j,....,j,. (Note: if two or more sons are spawned
simultaneously, order them using some fixed convention.)
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FiG. 2. (a) A path parsed by stage 2 backups; (b) A stage 4 backup. Note nested stage 1.

2, 3 backups.

(3) Each node i is labelled with its name as well as

(a)
(b)

(c)
CY
(e)

()

birth[{]—a single bit = 1 iff a P-node has ever been seen along i
since its birth.

bstage[i]—a O(log N bit) counter =m, the maximum of the
stage numbers of the backups of A, the father run of i, which
have occurred at descendents of the point where i spawned off
from A.

backup|i]—an array of N bits: backupli] [k] =1 iff a P-node
had been seen along / since its last stage k backup.
foirth[i}—a single bit=1 iff, at the time i spawns off from its
father h, h has seen a P-node since its birth.

foackup[i]—an array of N bits: fbackup|i] [k] =1 iff, at the
time 7 spawns off from its father A, # had seen a P-node since its
last stage k backup.

state[i}—a O(log N bit) counter =k iff the current state
associated with run i is state k.

See Fig. 3 for an example of the spawning tree and how it represents active
runs. The spawning tree provides all needed information for performing
backups, controlling the lights, and associated bookkeeping operations.
Moreover, it can be represented using O(N?) bits.
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Fic. 3. (a) A run tree and (b) its corresponding spawning tree.

5.4. Implementation. The following “pseudo-code” describes the
implementation in greater detail:

Flash GREEN on {—, 0) pairs with P-nodes:

for each active marker i
if state[i] is a P-node then flash GREEN on (i, 0)
birth[i] :=1
backupli] := (1,..., 1)
end

Read input symbol

Pre-compute successor states of each current state associated with a node of
the spawning tree.

In the spawning tree, cross-out all nodes corresponding to markers with no
successor.

Backup as needed:
Repeat the following until all crossed-out nodes are deleted.
Find a topmost crossed-out node: i

Pre-order walk the subtree rooted at i to try to find the first
non-crossed-out node: j

if j exist then
Run j is the “youngest” surviving descendant run of /
Let i backup and take over run j as described below
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if j does not exist then
delete the entire subtree rooted at i from the spawning tree
flash RED on (k, 0),..., (k, N— 1) for all k in the subtree
return all such k to the pool of available markers

End of repeat
(At this point, all remaining runs have >1 successors)

for each active run i
if i has a single descendant, advance marker i to it

if { has several descendants s,...., 5, then

assign i to s,

assign “free” markers i,,..., i, to s,,..., 5,, respectively

for each i’ € {i,,..., i;}
add i’ as a leftmost son of i in the spawning tree
let bstage[i’'] :=0
let foackup(i’] := backup|i]
let fbirth[i’] := birth[i]

end

end

We now describe how to do a backup of run i. Refer to Fig. 4 as needed.
Suppose the current node A associated with marker i has no successors, there
is a descendant run of i which survives beyond depth(4), and i is not taken
over at this depth by a backup of an ancestor run. Let run j be the

FiG. 4. A stage n backup of run i.
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“youngest” (as determined above) descendant run of run i which survives
beyond depth(4). Let the sequence of descendant runs of i that are ancestors
of j be i=kqy, k, ... kK, =j. (Possibly, /=1 so that k, =/, if / > 1 then runs
kys.., k,_, dead end at depth(4) just as does run i.) Run i will take over run
J (as well as runs k,,..,k,_,) in a backup of stage bs =1 + bstage|k,] by
performing the actions numbered below.

Note that node B is the current node of run j, node C is the first node of
run k,, and node D is the deepest node of run i/ which has a descendent node
(namely, some immediate successor of B) at a depth greater than depth(4).
We say that, for this backup of run i, node A4 is the dead point, node B is the
advance point, node C is the backup point, and node D is the branch point.
We also say that the backup occurs at location node C at time depth(4).

(1) Flash RED on (i,bs— 1), (i, bs—2),.,(#0) since for each
m < bs, the most recent previous stage m backup of run i has failed in that
its backup point does not live on any infinite path.

(2) Flash RED on (k, N — 1),..., (k, 0) for each run k whose node is
encountered in performing the preorder walk from (but not including) i to
(and including) j the spawning tree because each such run dies at depth(4).
(Each of k,,..., k,=j is such a k but there may be more.)

(3) Flash GREEN on (i, bs) iff fbackup|k,][bs] (iff between the time
of the previous stage bs backup of i and this new stage bs backup point, run i
has seen a P-node; note that the new stage bs backup point is the first node
of runk,).

(8) For each m€ [1:1], let ¢, := V(3. fbirth[k,] so that for each
such m, t,, = 1 iff on the path from where k,, is born back to run i, a P-node
occurs. (Note that £, = 0; for m > 1, this path includes exactly the following
segments |first node of k, : last node of k, before k, splits off] [first node of
k,: last node of k, before k, splits off ... [first node of k,,_,: last node of
k,_, before k,, splits off]).

(5) Let run i resume at the current node of the run j=runk, which
has just been taken over: Flash GREEN on (i, 0) iff ¢, V birth[j].

(6) We must now adjust birth{i], backup|i] for where run i resumes
(the “old” current node of j, node B): birth|[i] := fbirth{k,] V t, V birth[ j]
corresponding to the path, reading backwards, [the current node of j=k;:
the first node of j = k, [the last node of k,_, before k, splits off: the first node
of k,] [the last node of i before k, splits off: the first node of i]

For n+bs, backup|i]{n] := fbackup|k,][n] V ¢, V birth| ]
For n=bs, backup[i]|bs] :=¢, V birth[j].

(7) Now i may get some new sons k which were sons of the
k... k,=j. We must collapse the spawning tree properly to install these
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new sons, and for each new son k of i, update fbirth[k], fbackup|k]:

forn:=1tol
add the oldest surviving son of k, as a son of i

add the youngest surviving son of k, as a son of i
end

(When the above loop is done, the oldest group of suns of i will be those
that were there originally, still present in their original order. The next oldest
group of sons will be those of k,, with the oldest having been added first, the
youngest last. So the youngest son if i will be the youngest surviving son of
k,, provided it exists.)

Delete all the nodes on the walk from (but not including) i to (and
including) j from the spawning tree. This has collapsed the tree and installed
’s new sons k.

To adjust fbirth|k], fbackup|k], where k is a surviving son of k.,
1 < m < I: foirth[k] := fbirth[k,] V ¢, V fbirth[k] corresponding to the path,
reading backwards [the last node of k,, before k is born: the first node of k]
[the last node of k,,_, before k,, is born: the first node of k,] [the last node
of i before k, is born: the first node of i].

For n#bs, fbackup|k]|[n]:=fbackup|k,](n]V ¢, V fbirth[k]
For n=bs, fbackuplk][bs]:=1, V fbirth[k]

(8) We must ensure that for each son & of i, bstage[k ] = the maximum
stage of backup of run i, which has occurred at a descendent of the point
where k split off from i If k is an older sibling of k, (so k was a son of /
present before this backup), let bstage(k] = max{bs, bstage[k]} to reflect the
fact that i took over k, at a descendant of k via a stage bs backup. If & is son
just added to i, let bstage|k]=0 to reflect that no backups of i have yet
occurred below where k splits off from the “new, backed up” i.

Remark. The above description provides a template for & * to be
implemented by a program with O(N) instructions on a RAM (random
access machine) of wordlength O(log N) bits. Since the spawning tree can be
represented in O(N?) bits, & * can be realized as a deterministic
complemented pairs finite state automaton of size (exp(V ?) states, N7 pairs).

5.5. Correctness

5.5.1. PROPOSITION. If a stage n backup of run i occurs then (using the
notation of Fig. 4) we have

(a) For each m < n, a stage m backup of i has previously occurred
whose branch point is a descendant node of D.
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(b) Each backup of run i that has previously occurred whose branch
point is a descendant node of D is of stage m <n.

(c) Moreover, each such branch point lies on no infinite path.

(d) For some d, depth(C) < d < depth(A4), the width of the run tree at
depth d is at least n + 1.

Proof. We can argue by induction on n. Recall that, by convention, a
stage 0 backup means no actual backup at all. So for n =0, parts (a)-(c)
hold vacuously and (d) holds trivially.

Now, suppose a stage n > 0 backup occurs. This means run { takes over
k, ... k,=j and that bstage{k,] = n — 1. By the way the algorithm maintains
bstage|—], there has been a stage n — 1 backup of i whose branch point is a
descendant of D. By induction hypothesis, we see that for each m <n, there
is a stage m backup’s branch point at a descendant of D. This establishes
(a). The truth of (b) also follows from the way bstage|—] is maintained: if
there were previously a stage n or higher backup of i at a descendant of D,
then bstage[k,] > n — 1, a contradiction. To see that (c) is true, note that the
algorithm is designed so that, for any backup, its branch point D” is the
deepest ancestor node of its dead point 4” which has any descendant node at
depth greater than depth(4”). Finally, to establish (d) note that, by part (a),
there is a stage n — 1 backup whose branchpoint D' is a descendent of D. By
induction hypothesis, there is a d’ such that depth(C’) € d’ < depth(4’)
(where C' is the backup point, 4’ is the dead point of this stage n— 1
backup) and the width at depth d’ is at least n. Since the path from B up to
C does not include any descendent nodes of D’ accessed by the time of the
stage n— 1 backup, depth(C)=depth(D)+ 1< depth(D’) + 1 = depth(C’),
and depth(4’) < depth(4), we have that depth(C) <d’ < depth(4) and the
width at depth d’ is at least n + 1 (see Fig. 5). |

5.5.2. PROPOSITION. Every infinite run r is eventually assigned a marker
i that follows it (allowing for backups) forever. This marker never has to
make more than a stage N — 1 backup to follow r.

Proof. Suppose r is an infinite run. After a certain depth, every node on r
of greater depth lies on only 1 infinite run, namely r. (If this were not true,
the width of the run tree would increase without bound.) Let v, be such a
node. Now v, is assigned a marker i,. Since v, has a unique infinite path
(the suffix of r starting at v,) coming out of it, the only way i, will not
follow r forever (allowing for backups) is if i, is taken over by an ancestor
marker i,. So either i, follows r forever after v,, or i, is taken over by an
ancestor i, at some node v,. In the latter case, either i, follows r forever, or
i, is taken over by an ancestor i, at some node v;, etc. This process must
stop with some ancestor run i; for j < N because, otherwise, the width of the
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tree would exceed N. To see this, note that run i, started prior to run i, and
continued down to depth(v,) (>depth(v,)), where it takes over i,. Similarly,
Iy started prior to i, and continues down to depth(v,) (>depth(v,)), where it
takes over i,, etc. When i; takes over i;_, the width at depth(v,) must be at
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least j. So the process must stop by i, (see Fig. 6).
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To see that a backup of stage >N — 1 is not required, observe that by part
(a) of Proposition 5.5.1, a backup of stage >N — 1 would imply that the
width of the run tree was >N. [

5.5.3. PROPOSITION. Suppose that, for run i,

(1) at time ¢ there is a stage n backup with backup point C,
(2) at time t' >t there is a stage m backup with backup point C’,

(3) for every backup occurring at time t" € (¢:¢"), the backup point C"
is a descendent of C, and

4) mgn
Then C’ is a descendent of C.

Proof. Suppose (1), (2), (3) hold. Immediately prior to the time ¢’
backup, run i is a line segment of the form (first node of i):C: A" where A’ is
the dead point of thet’ backup. Thus branch point D’ is either an ancestor
of C or a descendent of C. If D’ is an ancestor of C then m > n by the way
backup stages are computed. Now if (4) holds so that m < n, then D’ (and
C’) must be a descendent of C. 1

5.5.4. THEOREM. For any input x, 3 a run r of =, along which jp-
nodes iff’ 3 a pair (i,j) of &/ * which flashes GREEN i.0. and RED fo..

Proof. (=) By Proposition 5.5.2, any infinite run r in the run tree of
&7, on an input x, will eventually be assigned, by . *, a marker i, which it
keeps forever allowing for backups of i. After that point, we consider run r
parsed by the backups of marker i. We have the following cases:

= 0]
(1) 3 stage N — 1 backups of i along r, or

@©
(2) —3stage N— 1 backups of i along r and %O stage N — 2 backups
of i along r, or ..

o
(N) —3 stage N—1 backups, ——.030 stage N —2 backups,..., and
[s0]
—3 stage 1 backups of i along r.

If the last case obtains, then there are only finitely many backups of any
stage of marker i as it follows the path r. After the last backup, marker i is
always pushed forward directly to the next node of r, and (j,0) flashes
GREEN every time a new P-node is encountered on 7. If there are infinitely
many such P-nodes, then plainly (i, 0) flashes GREEN i.0.; furthermore,
after the last backup, (i, 0) will never again flash RED so it flashes RED f.o.

o]
For the other cases, let j be the maximal j’ such that 3 stage j’ backups
of runi. Then for all j” € (j: N), there are only finitely many stage J’
backups of run i. So after some time, there will never again be a RED flash
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of the (i,j) pair. Consider the suffix of r after that time. It is parsed by the
infinitely many stage j backups of i into infinitely many contiguous

segments. Infinitely many of these segments will contain P-nodes iff 3 P-
nodes along r. Hence, at infinitely many of the stage j backups, a P-node will
be detected in the segment from the previous to the current backup point.
Accordingly, the pair {i,j) will flash GREEN each such time and hence i.o.

(<) When j=0 we note that if (i, 0) flashes GREEN i.o0., RED f.o,,
then (by construction of = *) the marker i never backs up after the last
RED flash. So at a certain node, say v, in the run tree, marker i is assigned
and is thereafter always pushed forward without backing up. Since there are
infinitely many GREEN flashes, (by construction of & *), there is an infinite
path r’ starting at v followed by marker i with no backups which has
infinitely many P-nodes along it. Since there is a finite path r” from the root
to v, r” concatenated with r’ is the desired infinite run r with infinitely many
P-nodes along it.

Otherwise assume j > 0 and {i,j) flashes GREEN i.0o.,, RED f... That
there is a last RED flash of (i,/) means that there are no more backups
taken by marker i of stage j' > j. Consider the GREEN flashes occurring
after the last RED flash of (i, j). For each n, at the nth such GREEN flash
of (i, j), marker i backs up (via a stage j backup) with a backup point that is
some node v,. After being assigned to node v, , marker i is never taken over
by an ancestor marker i’ (because if it were, (i,j) would again flash RED).
For each n, v,,, is a descendant of v, (because it is reached from v, without
any backups of stage j' > j and repeatedly applying Proposition 5.5.3) and
there is a P-node on the finite path from v, to v, ,. Let " be the finite path
from the root to v,. Then r” concatenated with (v, v,, vy,...) is the desired
infinite run r along which there are infinitely many P-nodes. [

6. PROGRAMMING THE TREE AUTOMATA

In Section 3 we argued that a normal form CTL* formula f| is satisfiable
iff it has an infinite tree-like model, where the branching at each node is
bounded by |f,| and where each Ep, subformula is satisfied along a
dsignated path. This enables us to reduce the satisfiability problem to the
emptiness problem for finite automata on infinite trees: For each subformula
Ap,, AGEp,, or Ep,, we can build a complemented pairs tree automaton of
size at most (exp’(| p,|) states, exp(| p,|) pairs). These tree automata can
then be combined using a cross product construction to get a complemented
pairs tree automaton for f, of size (exp?(| f;|) states, exp(| f;|) pairs) which
accepts an infinite |f,|-ary Z-tree (where X = PowerSet(AtomicProposi-
tions(f;))) iff it defines a model of f; as described above. By the results of
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(Streett, 1981) the emptiness problem for a complemented pairs tree autom-
aton with m states and k pairs can be decided in time exp’(k + log m);
hence, emptiness of the f; automaton is decidable in exp’(| f;|) time.

The tree automaton for an AGEp, subformula is designed so that it starts
up at each node of the tree the nondeterministic Buchi string automaton for
P, and runs it down the designated path for Ep, to ensure that p, actually
holds along it. (Along the designated path acceptance is determined by the
string automaton; along nondesignated paths acceptance occurs uncon-
ditionally). The tree automaton for an Ep, subformula operates similarly
except that the string automaton only needs to be run down the designated
path starting at the root of the tree. These tree automata can be implemented
in size (exp(| pol) states, | po| pairs).

To build the tree automaton for an Ap, subformula, we first construct the
deterministic complemented pairs string automaton of size (exp’(| p,|) states,
exp(| po|) pairs) as described in Section 5 for the linear time subformula p,.
The tree automaton for an Ap, subformula is then designed to simply run the
deterministic string automaton for p, down every path from the root. Since
the tree automaton is deterministic, it accepts iff for all paths x in the input
tree the deterministic string automaton accepts iff for all paths x in the input
tree p, holds along x iff Ap, holds at the root of the input tree. This tree
automaton will be of size (exp2(| pol) states, exp(| pol) pairs).

Remark. The string automaton for p, must be deterministic in order to
get the tree automaton for Ap,. To see this, consider two paths of the tree xy
and xz which start off with a common prefix but eventually separate to
follow two different infinite suffixes y and z. It is possible that p, holds along
both paths, but in order for the nondeterministic string automaton to accept,
it might have to “guess” while reading a particular symbol of x whether it
will eventually read the suffix y or the suffix z. The state it guesses for y is in
general different from the state it guesses for z. Consequently, no single run
of a tree automaton based on a nondeterministic string automaton can lead
to acceptance along all paths.

As a corollary, we have also obtained a small model theorem for CTL*
since an automaton accepts an infinite tree iff it accepts a finitely generable
tree obtained by “unwinding” a finite tree (Rabin, 1969; Hossley and
Rackoff, 1972).

7. EXPRESSIVENESS RESULTS

We wish to relate the “expressive power” of tree automata with branching
time logics. A precise comparison is difficult since (i) the logics can be inter-
preted over structures which are trees with nodes of infinite outdegree
whereas the automata take input trees of fixed, finite outdegree, and (ii) the
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tree automata can distinguish between, e.g., the leftmost and the rightmost
successor node whereas the logics cannot. To facilitate a comparison, we
therefore restrict our attention to (i) structures corresponding to infinite
binary trees and (ii) symmetric binary tree automata with a transition
function &:8 X Z'— PowerSet(S X S) for which (¢, ¢')€ d(s,a) iff
(¢, 1) € 6(s,a). We can then show that CTL* augmented with existential
quantification over atomic propositions (EQCTL*, for short) is exactly as
expressive as symmetric pairs automata on infinite binary trees. Moreover, if
we similarly augment UB of (Ben-Ari, Manna, and Pnueli, 1981) (recall that
in UB, 4 or E is paired with a single F, G, or X), the resulting logic (call it
EQUB) corresponds to symmetric Buchi automata on infinite binary trees.

An EQCTL* formula is of the form 3Q, --- 3Q,, f, where fis a CTL*
formula and the Q, are atomic propositions appearing in it. The semantics is
that, given a structure M =(S,R,L), M, s=3Q, --- 3Q,, [ iff there exists a
structure M'=(S,R,L’) such that M',s=f, where L’ extends L by
assigning a truth value to each Q, in each state of S; EQUB is defined
similarly.

7.1. THEOREM. EQCTL* is exactly as expressive as symmetric pairs
automata on infinite binary trees.

Proof. Given any EQCTL* formula f, =3Q, ---3Q,, f(P, ..., P,) with
free atomic propositions P,,..., P,, we can construct an equivalent formula
gP,,..,P,) of §2§ with free set variables P,...., P,. For example, EFP,
could be translated into a formula IP(PATH(P)A3x(xEPAXEP)),
where PATH(P) abbreviates A€ PAYy (yEP= (yb,EPVyb,EPA
—((yb, € P A yb, € P))). By (Rabin, 1969) we can therefore construct a
pairs automaton . which accepts an infinite binary -Z-tree with
X =PowerSet(P,,.., P,) iff f, holds at the root of the corresponding
structure. Since f; does not distinguish between left and right subtrees, we
can assume without loss of generality that % is symmetric, i.e., if & itself is
not symmetric we can obtain an equivalent automaton &' which is.

Let &/’ be the same as . but with transition function 8’ such that
6'(s,a) = {(t, u), (u, t): (t, u) € (s, a)}. Since any run of = is also a run of
/', if & accepts an input tree, so does .»/’. Conversely, suppose there is an
accepting run of &'’ on an input tree M. M can be viewed as an infinite
graph G which has the shape of a binary tree with nodes labelled from X and
arcs labelled by either b, or b,. By swapping the arc labels below
appropriate nodes, we can get a graph G* which is identical except for the
arc labels and which corresponds to an input tree M* accepted by .. Thus
M?* and G* define a model of f,. Since f, is oblivious to the labels on arcs,
G and M also define a model of f;. Because .« accepts all trees defining
models of f,, &/ must also accept M. Thus, & and &’ accept exactly the
same set of trees as desired.
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For the converse, let & be a symmetric pairs automaton on infinite binary
trees. For simplicity, we assume that the input alphabet is (or is coded as)
Z = PowerSet({P,..., P,}) for some list of atomic propositions P,,...,P,. We
can design an EQCTL* formula which is true at the root of a binary Z-tree
(viewed as a structure in the obvious way) iff ./ accepts the tree: Let
{4, q,} be the sate set of .. Associate with each g; an atomic proposition
Q;. Intuitively, Q; holds at node s iff .« is in state q; at s. Any truth
assignment to the Q, defines a candidate run of .« on the input tree. This is
an actual run provided all transitions are consistent with the transition
function & of . We can easily write a formula run(Q,,..., @,,) which
ensures such consistency. For example, if 6(q,, {P1, P,}) = {(45. 95), 9:.9,)}
then AG(Q, AP AP,A=PyA .- A=P,)) = (4X(Q,V Q,) A EXQ, A
EXQ;)) is a conjunct of run(Q, ..., O.n)

Now, let the acceptance condition of . be given by the list
((RED,, GREEN)),..., (RED,, GREEN,)) of pairs of sets of states (i.e.,
lights). If, for example, RED; = {q,,9,} and GREEN, = {g5,9,} then the
assertion that RED, flashes f.0. and GREEN, flashes i.o. along a path can be
expressed by the path formula flash, = -GF(Q, Vv 0.) A GF(Q, V @,). Thus,
the EQCTL* formula 3Q, --- 3Q,, (run(Q, --- @, ) AAd(flash, Vv -.. v flash,)
is equivalent to .. [

7.2. THEOREM. EQUB is exactly as expressive as symmetric Buchi
automata on infinite binary trees.

Proof. Letf,=30Q, - 3Q0m S (P} s Pyy Q1 eny @,,) be an EQUB formula
with free propositions P,,..., P,. Then f (Pyses Py, Q10enes @,,) by itself is a
UB formula with free propositions Py Py; Qyoes Q. Let 828, be the
second order language of two successors with one class of set variables
ranging over only finite sets, another class of set variables ranging over
infinite sets, and explicit second order quantification allowed only for
variables of the first class. We can construct from Jf an equivalent formula
&(Pyss Pyy Qysey @) in §28,  (where the free variables are of the second
class) because quantification over finite sets suffices to express all the
modalities of UB (e.g., AFP, can be expressed as “there exists a finite
subtree all of whose frontier nodes satisfy P,”). It is known (Rabin, 1983)
that for every formula g(P,...,P,,Q,,.. Q.) of S2S,., there is an
equivalent  Buchi  automaton  over binary = X’-trees,  where
2’ = PowerSet({P, ..., P,, Q,,.., Q,.}). By introducing additional nondeter-
minism to “guess” the truth assignments to the Q,, we can obtain from & a
Buchi automaton .2 on Z-trees with L= PowerSet({P,,..., P,}). The
automaton % accepts exactly those trees corresponding to models of
30, -+ 30 f(Pyses Poy @, yenny On) As before, we can assume without loss
of generality that % is symmetric.

The proof of the converse parallels the corresponding part of the proof of
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the previous theorem: Let % be a symmetric Buchi automaton. This formula
run(Q, .., @,,) is actually in UB syntax. To express the acceptance
condition, that along every path, there are infinitely many occurences of
states in GREEN we can write AGAF(V{Q,: q; € GREEN}). 1

8. CONCLUSIONS

We have given a triple exponential decision procedure for the full
branching time logic CTL* interpreted over R-generable structures. We have
also compared the expressive power of some branching time languages
derived from CTL* with finite automata on infinite trees. We believe that
our results serve to underscore the intimate relationship between systems of
temporal logic and finite automata on infinite objects. This relationship was
first exploited in (Streett, 1981) to give a decision procedure for PDL with
repeat and was further developed in (Wolper, Vardi, and Sistla, 1983). An
interesting aspect of our approach here is that by identifying some special
structure of the automata derived from the temporal formalism, we could
obtain better results than those obtained by relying solely on
automata—-theoretic techniques (Vardi and Wolper, 1983; Pnueli and
Sherman, 1983; Wolper, 1982). Perhaps such special structure will allow
similar improvements in decision procedures for other logics. Finally, we
note one shortcoming of the automata—theoretic approach as opposed to
tableau based methods (cf. Ben-Ari, Manna, and Pnueli, 1981; Emerson and
Clarke, 1982; Emerson and Halpern, 1982): it provides little help in
constructing an explicit, sound, and complete axiomitization. Indeed, the
problem of giving an axiomitization for CTL* interpreted over R-generable
structures is still open.

RECEIVED February 20, 1984; ACCEPTED August 1, 1984

Note added in progf. We also refer the reader to: Gurevich, Y., and Shelah, S. (1984). The
Decision Problem for Branching Time Logic, manuscript, (reporting results obtained in prin-
ciple during the Jerusalem Logic Year 1980-81), which shows decidability for another
branching time logic, but does not consider complexity issues.
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