NULL VALUES IN
-1NF RELATIONAL DATABASES

Mark A. Roth, Henry F. Korth &
Abraham Silberschatz

Department of Computer Sciences
University of Texas at Austin

Austin, Texas 78712

TR-85-32 December 1985

Null Values in =1NF Relational Databases

Mark A. Roth
Henry F. Korth t
Abraham Silberschatz I

Department of Computer Science
University of Texas at Austin
Austin, Texas 78712

Abstract

The desire to extend the applicability of the relational model beyond traditional data-processing
applications has stimulated interest in non-first-normal-form relations in which the attributes of a
relation can take on values which are sets or even relations themselves. In this paper, we study
the role of null values in the non-first-normal-form relational model. We extend the traditional
theory and study the properties of extended non-first-normal-form relational operators operating
on relations containing nulls. The no-information, unknown, and non-existent interpretation of
nulls are discussed and the meaning of “empty set” is clarified. Finally, contrary to several previous
results, we determine that the traditional axiomatization of functional and multivalued dependencies
is valid in the presence of nulls.

1. Introduction

There has been a flurry of activity in recent years in the development of databases to support “high-level”
data structures and complex objects. Office forms, computer-aided design, and text retrieval systems are a
few examples of non-traditional applications that require specialized database support. One of the stumbling
blocks in using traditional relational databases and relational theory is the assumption that all relations are
required to be in first-normal-form (1NF)}; that is, all values in the database are non-decomposable. For this
reason, non-first-normal-form (-1NF) relations were proposed in which the attributes of a relation can take
on values which are sets or even relations themselves. This created a need to reexamine the fundamentals
of relational database theory in light of this new assumption and opened the door for the introduction of
operators which take advantage of the nested structure of —1NF relations.

To illustrate this, consider an employee relation which is in INF (Pigure 1-1a}, and a possible ~1NF
structuring of it (Figure 1-1b). The —1INF relation has two tuples, (Smith, {(Sam), (Sue)}, {{(typing),
(filing)}) and (Jomes, {(Joe), (Mike)}, {{typing), (dictation), (data entry)}). The —1NF relation makes
clearer the independent associations of employee and skill, and employee and child, and reduces the data
redundancy when compared with an equivalent 1NF relation.

One additional advantage of using a ~1NF structuring of the database is that fewer relations are needed
to maintain normal forms like third (3NF) and fourth normal form (4NF). To illustrate this, consider that
in the employee example of Figure 1-1a, we would expect the multivalued dependency, employee —— child |
skill, to hold. In order to reduce redundancy and avoid update anomalies we would, according to the given
dependency, decompose this relation into its projections (employee, child) and (employee, skill). The result
is a 4NF database scheme as shown in Figure 1-2. To view the entire database we must use a join operator
to reassemble the original relation. With a straightforward carryover of the definitions of dependencies and
normal forms, the -1NF relation of Figure 1-2b is in 4NF, and does not need to be decomposed. Queries

involving child and skill will be simpler and more efficient since a join of decomposed relations is not necessary.

']' Research partially supported by an IBM Faculty Development Award and NSF grant DCR-8507224
1 Research partially supported by NSF grants DCR-8507224, M CS881-22039, MCS882-14613, and MCS81-04017

1

employee child skill employee Children Skills
Smith Sam typing child skill
Smith Sue typing Smith Sam typing
Smith Sam filing Sue filing
Smith Sue filing Jones Joe typing
Jones Joe typing Mike dictation
Jones Mike typing data entry
Jones Joe dictation (b)
Jones Mike dictation
Jones Joe data entry
Jones Mike data entry
@
Figure 1-1. Employee relation in (a) 1NF and (b) —1NF.
employee child employee skill
Smith Sam Smith typing
Smith Sue Smith filing
Jones Joe Jones typing
Jones Mike Jones dictation
Jones data entry

Figure 1-2. 4NF decomposition of employee relation.

A problem arises in the —=1NF representation of the database. If we have an employee with several skills
and no children, then, in the database of Figure 1-2, we simply add tuples to the decomposed (employee,
skill) relation and add nothing to the (employee, child) relation. Now, consider the representation of this
information in the —1NF relation of Figure 1-1b. In this relation, a tuple seemingly requires that employees
have at least one skill and at least one child before they can be entered into the database. The solution is
to employ empty sets. This is the same problem encountered by users of a universal relation system [K+].
In the —1NF case, null values can occur in nested relations as well as for nondecomposable attributes. The
empty set is, in effect, a type of null value.

The various nulls which have been proposed vary in the type of incomplete information they represent
or the degree of the incompleteness. For example, we may have different nulls to represent both the non-
existence of a value and the existence of a value that is not precisely known. In this paper we make the open
world assumption. That is, we assume that just because a tuple is not in a relation does not mean it should
not be there. The best we can do at any point in time is enter tuples into a relation that we know currently
belong there. In addition, if we know partial information about a tuple then the unknown information is
represented using null values.

A different, although compatible, source of nulls occurs when we attempt to represent multiple relation-
ships among data in a single relation (an extreme example being the universal relation assumption [FMU]).
For example, in a single relation we may want to represent facts about suppliers, parts, and associations
stating which suppliers supply which parts. If a supplier is currently not supplying a part, then the part
attributes of the relation must contain null values. If null values are not allowed, then a non-supplying
supplier could not be represented in this relation.

Thus, the same motivation which requires us to add null values to a traditional INF database holds
for —1NF databases. We still want the advantages of handling null values in a standard and unambiguous

system. However, the need for nulls is even more critical in a —1NF database since otherwise we lose some

2

of its advantages.

The remainder of this paper is organized as follows. In section 3, we summarize a formal treatment of null
values in the traditional relational model. The no-information, unknown, and nonexistent interpretation of
nulls are discussed. We show that reasonable extensions to the traditional relational operators are possible
under the above assumptions. These extensions serve as a basis for the main results of this paper, the
extension to —1NF. In section 4, we define the =1NF model we will be using. Two new operators used to
restructure relations, nest and unnest, are defined and partitioned normal form is presented as a desirable
goal in structuring —1NF relations. We provide extensions to the traditional relational operators which work
with —1NF relations and maintain partitioned normal form. In section 5, we extend the null value theory
presented in section 3 to —1NF relations, and further extend the operators of section 4 to deal with null
values. Finally, in section 6, we discuss dependency theory, shedding some new light on the problem of nulls
when dealing with functional and multivalued dependencies, and their axiomatization.

2. Notation

We will assume, without loss of generality, that all attributes of our relations are contained in a finite universe
of attributes, U. Each attribute A € U may assume values drawn from a domain, DOM(A4). A relation
structure R consists of a relation scheme R and a relation r defined on R, and is denoted (R, 7). A relation
scheme is defined by a rule R = (A3, A2,...,4,) where 4; € U, 1 < 5 < n. The set of attributes in a
relation scheme rule R are denoted Ex. For A € Eg, an A-value is an assignment of a value from DOM(A4)
to attribute A. Generalizing this notion, an X-value, where X C Epg, is an assignment of values to the
attributes in X from their respective domains. Thus, a relation r defined on scheme R is a set of Egr-values,
with the elements of this set called tuples of r. We will generally use upper case letters from the beginning of
the alphabet to represent single attributes and upper case letters from the end of the alphabet to represent
sets of attributes. We also let XY denote X UY.

The operators U, N, —, X, <, m, and o represent the standard relational operators on 1NF relations
without null values. The projection of relation r onto attributes X is denoted r[X], and similarly, the
projection of tuple ¢ € r onto attributes X is denoted ¢{X]. We also use t|X] to denote an X-value of ¢ when
we are talking about an arbitrary assignment from the respective domains of each attribute in X.

As we will occasionally refer to various data dependencies we provide reference definitions here.

e Functional dependency (FD). Let r be a relation on scheme R, with X and Y subsets of E. Relation
r satisfies the functional dependency X — Y if for every pair of tuples ¢; and to, in r, if t1]X] = t5[X],
then ¢ [Y] = t2[Y].

e Multivalued dependency (MVD). Let r be a relation on scheme R, with X and Y subsets of Ex and
Z = Ep — XY. Relation r satisfies the multivalued dependency X——Y if for every pair of tuples #;
and tp, in r, if ¢1[X] = 5[X], then there exists a tuple 3 in r with ts| X]| = ¢1[X], t3[Y] = ¢1[Y], and
(7] = 1212,

e Join dependency (JD). Let r be a relation on scheme R, with X3, X5, ..., X,, subsets of Er. Relation r
satisfies the join dependency (X1, Xs, ..., X,] if r decomposes losslessly onto Xi, X5, ..., X,,. That is,

r=mx,(r) eamx, (r) o< amy, (7).

Fixing a particular scheme, the set of all relations on that scheme that satisfies a set of dependencies D is
denoted SAT(D).

3. Null Values in 1INF Relations

In this section, we briefly review the basic concepts that concern null values in INF relations. The pre-

sentation is based on some of the work of Zaniolo [Zanl, Zan2]. We distinguish between three types of
nulls:

e ni — no-information,
e unk — unknown, and
o dne — nonexistent (or does not exist),
and extend each domain to include these null values.

Previous approaches have usually assumed only one of the interpretations is valid, unknown by [Bisl,
Cod, Gran, Mail], and nonezistent by [Liel, Lie2, Sci, Zan1]. In [Vas2] a combination of the two is proposed
in which nonexistence is considered an inconsistent state of data. Finally, Zaniolo [Zan2| provides a unified
approach to nulls with the use of a no-information null. This null is less informative than either an unknown
or a nonezistent null, and can be used to approximate both when we don’t know whether or not a value
exists. As this is the most complete and conceptually sound approach proposed to date, it forms the basis
of our extensions to —1NF relations.

Other proposals for nulls are rather sophisticated, involving partial specification [Lip1, Lip2, IL1, IL2],
probability distributions [Won], and conditional tuples [KW], but it could be argued “that the complexity
of their management is not justified by their richer semantics” [AM; 233].

8.1 Basic Concepts

When dealing with incomplete information, we talk about a strength ordering of information in which certain
tuples will be more informative than others, say by having a previously unknown value replaced by an actual
value, or by finding out that a value for which we previously had no-information is now known not to exist.

In order to compare values for this purpose we define a greatest lower bound function which tells us the most
information we can infer from two values from the same extended domain.

Definition 8.1: Let {d1,d2,...,dn} be a domain and D = {d1,dz2,...,dn,unk,dne, ni} the corresponding

extended domain. A greatest lower bound function, glb(a,b), between two values a and b from D is defined
in Figure 3-1.

b\a d ds e d, unk dne mni
dy d; unk unk unk unk mi ni
do unk d; wunk unk unk mni ni

: unk unk . unk wunk =®ni ni
dn unk unk unk d, wunk ni ni
unk unk unk unk wunk unk =ni ni
dne ni ni ni ni ni dne mni
ni ni ni ni ni ni ni =ni

Figure 3-1. Definition of glb function.

This information can also be represented as a lattice with ni as the bottom element, unk and dne as more
informative nulls than ni, and actual values dy,ds, ..., d, as more informative than unk. See Figure 3-2.

Note that the dne null is special in that it does not have a possible, more informative, replacement. It
is, in fact, a special “value” in itself, for which equality is meaningful. That is, dne = dne, but ni ni and
unk # unk. Other restrictions on relations with dne nulls will be discussed in section 6.

We now define an information-wise strength ordering of tuples using the glb function as follows:

4

dy dy - dy dne

unk

ni

Figure 3-2. Information lattice.

Definition 3.2: An X-value s is said to be more informaiive than a Y-value ¢, written s > ¢, if for each
B eV, if t|B] is not ni then B € X, and for each A € X NY, glb(t[A], s[A4]) = ¢[A].

Conversely, if s > £ we say that t is less informative than s. The notion of more informative is
synonymous to the concept of subsumption. We say s subsumes ¢ when s > ¢. If we have two tuples in
a relation such that one is more informative than the other, then the less informative tuple is redundant
and can be removed. Note that in the absence of nulls, this condition reduces to elimination of redundant
identical tuples. If both ¢t > s and s > ¢, then we say ¢ and s are information-wise equivalent and write s = ¢,

As a running example in this section, we use relation schemes R; = (employee,skill), and R, =
(employee, child, skill).

Example 8.1: Let
t1 = (Smith, Bill, typing), ¢ = (Smith,ni, unk)
denote Eg, -values, and let
t3 = (Smith,unk), t4 = (Smith, typing)
denote Eg,-values. Then, ¢; is more informative than t2, t5, and t4. Furthermore, t; > to, t; > t3, and
to = t3. -

For certain relational operators it is convenient that all tuples be defined over the same set of attributes.

With the availability of a no-information null we can extend tuples defined over different sets of attributes

without changing the information content of the tuples. The extension is done by adding attributes used in
one tuple and not in the other and assigning the value ni to these added attributes.

In order to find the most informative tuple which characterizes two other tuples we define the meet
operator as follows:

Definition 3.3: The meet of an X-value, t1, and a Y-value, t3, is the XY-value, ¢, written, ¢; A t5, where
for each attribute A € X NY, t[A] = glb(t1[A], t2[A]), and for each attribute B ¢ X NY, ¢[B] = ni.

Example 8.2: Using the tuples defined in Example 3.1 we find that
tl AN t3 =~t2
t1 Aty = (Smith,ni, typing)

O
We also generalize the notion of a tuple being an element, or a member of a relation as follows.

Definition 3.4: A tuple ¢ is an z-element of a relation r, written ¢ € r, when there exists a tuple s € r such
that s > ¢.

Thus an x-element of a relation is any tuple that is equal to or less informative than some tuple in the
relation. We also write ¢ ¢ r to denote —(t & r).

Given a set of tuples t1,%z,...,t,, we can eliminate tuples in which all attributes have value ni (the
null tuple) !, eliminate all tuples less informative than some other tuple, and extend all tuples by adding ni
values for attributes not in the tuple but in some other tuple in the set. This is called tuple set reduction
and is denoted by

{t1,t2,---,tn}

The notion of being more informative can be extended to relations.

Definition 3.5: A relation rq is more informative than, or subsumes, a relation rg, written r; > rz, when
for each tuple ta € ro there is a tuple t; € ry with ¢; > ¢a.

This > relationship is transitive and reflexive, leading to the following definition of information-wise
equivalence.

Definition 3.6: The relations r; and ry are information-wise equivalent, written ry = rp, when ry > 75 and
9. 2> T1.
The equivalence relation & partitions the universe of relations into disjoint subclasses. Each class can

be represented by a minimum relation in which no tuples in the relation are subsumed by a tuple in the
same relation.

Definition 3.7: A relation r constitutes a minimum representation for a relation g when no proper subset
of r subsumes q.

3.2 Operators

In this section we briefly review extensions to the relational algebra operators to 1NF relations with nulls.
We treat the dne null as any other domain value and, unless otherwise specified, any future reference to null
will include only ni and unk nulls. Some of this presentation is based on Section 12.4 of [Mai2].

Let Rel? denote the sets of all relations having at least one null value and let Rel denote the set of all
relations having no nulls, with Rel1{R) and Rel(R) denoting restrictions of Rell and Rel to relations on
scheme R. We shall view a relation r in Relf(R) as representing a set of relations from Rel(R) that subsume

r. Each such relation in Rel(R) is called a possibility. The set of possibilities for r is denoted by POS S(r),
which is defined as:

POSS(r)={q| g€ Rel(R) and ¢ > r}

We extend the definition of relational operators to map sets of relations to other sets of relations. For sets
P, and P, of relations and relational operator v,

4P) ={v(g) | g€ Pi} and
PoyP,={q179:|q1 € P1,92 € P2}.

We now discuss what constitutes a reasonable extension of a relational operator relative to this possibility

function. However, first, we want the generalized operator to agree with the regular operator on Rel without
regard to the possibility function.

1 Even though a null tuple is subsumed by all tuples, it may be the only tuple in a relation, and thus should be eliminated.

6

Definition 3.8: Let v be an operator on Rel and let 4’ be an operator on Relt U Rel. We say that ' is
fasthful to v if one of the following two conditions holds:

1. when « and 7' are unary operators, y(r) = '(r) for every r € Rel for which ~(r) is defined.

2. when ~ and «' are binary operators, r v ¢ = r ' ¢ for every r, ¢ € Rel for which r v ¢ is defined.

Second, we would ideally like our generalized operator to give us the same set of possibilities as the
standard operator.

Definition 3.9: Let y be an operator on Rel and let 4’ be an operator on Rel}. We say that 4’ is a precise
generalization of relative to possibility function POSS if one of the following two conditions holds:
1. when « and 7' are unary operators, POSS(v'(r)) = v(POSS(r)) for every r € Relf.
2. when + and ' are binary operators, POSS(r o q) = POSS(r) v POSS(q) for every r,q € Relf.
Unfortunately, not all relational operators have a precise generalization relative to POSS. Consider a
join operator for POSS. It cannot be precise. For relations r € Relf(R) and ¢ € Rell(Q), POSS(r) v«
POSS(q) is subset of SAT(*[R,Q]). But, for some relation p € Rel{(RQ), POSS(p) is not a subset of

SAT(*[R, Q]). In these cases, we settle for a generalization of y that captures everything in v(POSS(r)) or
POSS(r) v POSS(g) and as little extra as possible.

Definition 3.10: Let v be an operator on Rel and let 4/ be an operator on Relf. We say that operator «'
is adequate for « relative to possibility function POSS if one of the following two conditions holds:

1. when « and ' are unary operators, POSS(+'(r)) 2 7(POSS(r)) for every r € Rel?.

2. when ~ and ' are binary operators, POSS(r v’ q) 2 POSS(r) v POSS(q) for every r,q € RelT.
Furthermore, we say that operator ' is restricted for -y relative to POS S if one of the following two conditions
holds:

1. when « and «' are unary operators, for every r € RelT, there is no p in Rel] such that POSS(y'(r)) 2

POSS(p) 2 4(POSS(r)).
2. when v and ' are binary operators, for every r,q € Rell, there is no p in Relf such that POSS(r +
q) 2 POSS(p) 2 POSS(r) v POSS(q).
Clearly, if v’ is precise for -, then 4 is adequate and restricted for v. We would also like the generalized
operators to have properties that the standard operator possesses, such as commutativity or associativity.
For example, if v is an associative binary operator, we want a generalization v’ to satisfy

Py v r=p (g7 r)
for p,q,r € Relf. Finally, we would like the generalized operators to return only minimal relations given

minimal relations as input.

We now present generalizations for the standard operators, called null-union, null-difference, null-
product, null-select, and null-project (denoted U, —/, x', o', and #', respectively), which are faithful,
and at least adequate and restricted, if not precise. These operators, together with attribute renaming, will
form a complete set of relational algebra operators for INF relations with null values. Some sample relations
are shown in Figure 3-3. These will be used to illustrate the new operators.

3.2.1 Null-union

The null-union of two relations r on scheme R and g on scheme @ in Rel U Rel] is a relation p on scheme P
where:

i. Ep = ErU Eg, and
2. p:ru’q=/{\tltérort§q/}\=i{\titErortEq}\.

Some examples of null-union are shown in Figure 3-4.

7

71

T2 T3 Ty
employee skill employee skill employee | child | skill employee | child
Smith typing Smith ni Smith | Sam | typing Smith Sam
Jones filing Jones typing Smith Sue | typing Smith Sue
Jones typing ni clerk Jones unk ni Jones ni
Adams ni unk dictation unk Joe
ni dictation
PFigure 3-3. Some sample relations.
1 U' To 1 U’ rs
employee skill employee child skill
Smith typing Smith Sam typing
Jones filing Smith Sue typing
Jones typing Jones ni filing
Adams ni Jones ni typing
unk dictation Jones unk ni
ni clerk Adams ni ni
ni ni dictation

Figure 3-4. Examples of null-union.

Proposition 3.1: The operator null-union is faithful to standard union.
Proof: The only difference between the definition of null-union and standard union is that tuple set reduction
is applied to the result of a null-union operation. However, since we are dealing with relations in which there

are no null values, this extra operation makes no changes. Thus, null-union is faithful to standard union.
-4

Proposition 3.2: The operator null-union is a precise generalization of standard union with respect to

possibility function POSS.

Proof: We show inclusion both ways. Let p=1r U gq.

D Let $ € POSS(r) U POSS(g). There must be 7 € POSS(r) and § € POSS(g) such that p= 7U7.
Let t, be a tuple in p. Eithert, €rort, € ¢ Iftp €, there is a tuple to€ 7, and hence in D, such
that t~2> tp. A similar argument holds if t, € g. We conclude # > p and so § € POSS(p). Therefore,
POSS(p) D POSS(r) U POSS(g).

C Let p € POSS(p). Since p > r, § > r and so p € POSS(r). Similarly, p € POSS(q). Therefore,
$e POSS(r) UPOSS(q), and so POSS(p) € POSS(r) U POSS(q).

We conclude that null-union is a precise generalization of standard union for POSS. .

8.2.2 Null-difference
The null-difference of two relations r on scheme R and g on scheme Q in RelU Rel1 is a relation p on scheme
P where Ep = Eg U Eg and

p=r—'q=/{\tlt’érandt%q’}\={t}tEra,nst €q:-(s>1t)}.

The definitions of null-union and null-difference were first proposed by Zaniolo [Zan2|, who showed the
given equivalences. The second equality is preferable as € implies a combinatorial explosion in generated

tuples which are subsequently removed by tuple set reduction, and that tuple set reduction is not needed for
difference as we assume the input relations are minimal.

8

r—'ro ro—'1y

employee skill employee skill
Smith typing unk dictation
Jones filing ni clerk
Adams ni

Figure 3-5. Examples of null-difference.

Some examples of null-difference are shown in Figure 3-5. Null-difference is a faithful, and restricted
generalization of standard difference. To show that null-difference is not adequate, consider a relation r
with one non-null tuple and an empty relation g. Every relation in POSS(r —' ¢) must subsume r, whereas
POSS(r) — POSS(q) contains the empty relation. Thus, POSS(r —' q) 2 POSS(r) — POSS(q).

Proposition 8.3: The operator null-difference is faithful to standard difference.
Proof: When there are no null values then the only way for one tuple to subsume another is for them to be
identical. Thus, in the definition of null-difference the statement Vs € ¢ : =5 > t) reduces to Vs € g : —{s = ¢)

which is equivalent to —(t € g). With this reduction, we have the standard definition of difference. Thus,
null-difference is faithful to standard difference. -

Proposition 3.4: The operator null-difference is a restricted generalization of standard difference with
respect to possibility function POSS.

Proof: We show that there does not exist p such that POSS(r —'q) 2 POSS(p) 2 POSS(r) — POSS(q)-
Suppose there is some p. If POSS(r —'q) 2 POSS(p), then there must be some tuple ¢ in p that does not
subsume any tuple in r—'g. This means that the non-null valued attributes X of ¢ do not match any tuple on
X in r —' g. There are two possible reasons for this: either t[X] € r[X] and Is € ¢: s 2 ¢, or t[X] € r[X]. In
each case, any relation in POSS(p) must contain a tuple which subsumes ¢, however, POSS(r)—POSS(q)
contains a relation which does not. In the first case, t’s possibility can be eliminated by the possibility of s in
g that subsumes it, and in the second case, simply consider the possibilities of » that do not include a tuple
which subsumes t. Therefore, POSS(p) 2 POSS(r) — POSS(g), which is a contradiction. We conclude
that null-difference is a restricted generalization of standard difference for POSS. -

We note that a generalized null-intersection operator is not derivable from null-difference alone. Figure
3-6 shows that the usual equivalence

o rg=r =" (ry="r)=ry =" (rz =" r)

does not hold. However, as pointed out in [Zan2], the following more symmetric definition of intersection in

terms of union and difference does carry forward to the null generalizations.

ri N rg = (ry U ra) =" ((r2 ~'rg) U (ro =" 1))

This result is also shown in Figure 3-6. Note that ry ~'rp, 2 —!ry, and 71 " 75 now appropriately partition
71 U ro just as the standard operators do. We note also that null-intersection is an adequate and restricted
generalization of standard intersection for POSS.

3.2.8 Null-product

The null-product of two relations is identical to the standard (cartesian) product, as no values are checked in

the process. Let r € Rel(R) U Rel1(R) and g € Rel(Q) U Rel1(Q), with Ex N Eq = #. Then the null-product
of r and ¢ is defined as follows:

(ro U rg)=" ry = (ry =" 13) ro = (ro ='11)

((r1 =" r2) V' (r2 =" 1)) employee skill employee skill
employee skill ni dictation Smith ni
Jones typing Jones typing Jones typing

Figure 3-6. Examples of null-intersection.

rx'q = {t|3t, € r and 3t, € ¢, t[Er] = t,, and t{Eq] =t,}
Null-product is obviously a faithful and precise generalization of standard product.

8.2.4 Null-select

Selection of tuples comes in two flavors, comparison of an attribute value against a non-null constant and

comparison of one attribute value against another. Let r € Rel(R)U Rell (R) and let A € Eg. Null selection
is defined as follows:

0 0a(r)={t|terand t{A]6a}

olyop(r) = {t|t e randt{A]6¢[B]}
where 6 is = or <. Recall that null values are not equal to each other or to any other domain value, and
with this stipulation null-select is essentially identical to standard select.

Null-select is faithful to standard select, but it is not precise. For o!y_,, note that for any relation

q € 04—a(POSS(r)), every tuple ¢ € g has t[A] = a. For any relation p, POSS(p) contains relations whose
tuples are not all a on A. However, the definitions are adequate and restricted.

Proposition 3.5: The operator null-select is faithful to standard select.

Proof: As the definitions of null-select and select are identical when no null values are present, the result
follows immediately. &

Proposition 8.6: The operator null-select is an adequate and restricted generalization of standard select

with respect to possibility function POSS.

Proof: We show adequate and then restricted. Let F' be any selection predicate.

adequate: POSS(ox(r)) 2 or(POSS(r)).
Let p = o'x(r), and 5 € op(POSS(r)). There must be 7€ POSS(r) such that p = or(7). Let £, be a
tuple in p. Then, ¢, must be in r and satisfy F'. Therefore, there is a tuple ts € 7, such that is 2 b,
and satisfies F. We conclude that > p and so $ € POSS(p). Therefore, POSS(p) 2 or(POS S (r)).

restricted: there does not exist p such that POSS(o%(r)) 2 POSS(p) 2 or(POSS(r)).
Suppose there is some p. If POSS (o} (r)) 2 POSS(p), then there must be some tuple ¢ in p that does
not subsume any tuple in o (r). This means that the non-null valued attributes X of ¢ do not match
and tuple on X in o’ (r). There are two possible reasons for this: either t|X] € r[X] and t does not
satisfy F, or t{X] & r|X]. In each case, any relation in POSS(p) must contain a tuple which subsumes ¢,
however, or(POSS(r)) contains a relation which does not. In the first case, ’s possibility is eliminated
by applying the selection predicate, and in the second case, simply consider the possibilities of » that do
not include a tuple which subsumes t. Therefore, POSS(p) 2 or(POSS(r)), which is a contradiction.

We conclude that null-select is an adequate and restricted generalization of standard select for POSS. [

10

T (71) Thpita. skt (71 U' 73)

skill child skill
dictation Sam typing
filing Sue typing
typing ni filing
ni dictation

Figure 3-7. Examples of null-project.
3.2.5 Null-project

While standard projection eliminates duplicate tuples from the reduced relation, null-projection eliminates

less informative tuples. Let r € Rel(R) U Rel1(R) and let Ay, Ag,..., A, € Eg. Null-project is defined as
follows:

Ty ngan(r) = {tlA1dz - An] |t €T}
Examples of null-project are shown in Figure 3-7.

Proposition 3.7: The operator null-project is faithful to standard project.
Proof: As in the proof of proposition 3.1, without null values, tuple set reduction has no affect on the result
of the relation, making the definitions of null-project and standard project identical. -

Proposition 8.8: The operator null-project is a precise generalization of standard project with respect to
possibility function POSS.
Proof: We show inclusion both ways. Let p = n’(r), where X are the attributes being projected.

D Let § € mx (POSS(r)). There must be 7€ POSS(r) such that § = mx (7). Let ¢, be a tuple in p. Then,
t, € r|X]. If t, € r[X], there is a tuple ts€ 71X], and hence in P, such that 52> t,. We conclude p>p
and so p € POSS(p). Therefore, POSS(p) 2 nx(POSS(r)).

Let p € POSS(p). Consider each tuple t, € p. Each ¢, is in 7[X] and possibly eliminated some
other tuples in r[X] since t, subsumed them. We then construct the following relation in POSS(r):
for each tuple in r whose projection is i, and the tuples in r whose projection it subsumes, make
the same assignment to the null values in attributes X that was made in constructing p. By making
the same assignment, in the projection mx(POSS(r)), the tuples which were subsumed in the null-
project will be duplicates and thus, eliminated in both cases. Therefore, p € nx(P0OSS(r)), and so
POSS(p) C mx(POSS(r)).

We conclude that null-project is a precise generalization of standard project for POSS. .

8.2.6 Join

N

As in the case of the standard operators, the various f-joins can be defined as selections on a cartesian
product. In our case,

TAD§;3 g=0'ep(rx"g).

As in [Zan2, LP], the use of null values allows the definition of new information-preserving joins (also
called outer joins) which include tuples that normally do not participate in the join. An information-
preserving equijoin is defined by

(rAbi'B U rJ g

11

(r2

NI

employee=employee

T4) U’ T2 UI T4

rp.employee skill ry4.employee child
Smith ni Smith Sam
Smith ni Smith Sue
Jones typing Jones ni
ni clerk ni ni
unk dictation ni ni
ni ni unk Joe

Figure 3-8. Information preserving equijoin.

Figure 3-8 shows an example of the information-preserving equijoin of 3 and ry4.

4. The -1NF Relational Model

Various researchers have studied the effect of dropping the assumption that all relations be in first-normal-
form (1NF). Early work was done by Makinouchi [Mak] and led to the concept of nesting. This was later
studied by Jaeschke and Schek [JS] for one level nesting over single attributes and by Thomas and Fischer
[TF] in a.more general setting. Utilizing —1NF relations for structuring database outputs was discussed
by Kambayashi, et al. [KTT], while Fischer and Van Gucht [FV1, FV2] looked at dependencies which
characterize —~1NT relations.

Ozsoyoglu and Ozsoyoglu [00] consider operations similar to that of [JS], and extend the basic algebra
for relations by aggregate operators. f)zsoyoélu and Yuan [OY] introduce nested normal form for —1NF
relations. Given a set of attributes U, and a set of MVDs M over U, they give an algorithm to obtain
a nested normal form decomposition of U with respect to M, which explicitly represents a set of full and
embedded MVDs implied by M and is a faithful and nonredundant representation of U.

"Our previous work [RKS] defines a relational calculus and relational algebra for ~1NF relations and
proves their equivalence. We also introduced partitioned normal form for ~1NF relations (described later)
which is equivalent to scheme trees of [OY] and formats of [AB]. Abiteboul and Bidoit [AB] also define
some extended operators which are refined in [RKS], where it was also proved that the set of relations in
partitioned normal form are closed under the extended operators. Others [Jael, Jae2, PHH, RKB, Sch2,
SS1, SS2] have been developing languages and implementations for —1NF relational databases.

4.1 Basic Concepls

A database scheme S is a collection of rules of the form R; = (R;,, Ry,,..., R;,). The objects R;, Ry,
1 < 4 < n, are attributes. Rj is a higher order attribute if it appears on the left hand side of some rule;
otherwise it is zero order. The names on the right hand side of rule R; form a set denoted Eg;, the elements
of R;. As with any set, attributes on the right hand side of the same rule are unique, and to avoid ambiguity
we require that no two rules can have the same name on the left hand side.

Example 4.1: Consider a slightly expanded version of the employee example used in the introduction. The
scheme is

Emp = {employee, Children, Skills),
Children = (name, dob),
Skills = {type, Exams),

Exams = (year, city).

12

employee Children Skills

name dob type Exams
year city
Smith Sam | 2/10/84 | typing | 1984 | Atlanta
Sue | 1/20/85 1985 | Dallas

dictation | 1984 | Atlanta
Watson | Sam | 3/12/78 | filing | 1984 | Atlanta
1975 | Austin
1971 | Austin
typing | 1962 | Waco

Figure 4-1. A sample relation on the Emp scheme.

Tn this scheme each employee has a set of children each with a name and birthdate, and a set of skills, each
with a skill type and a set of exam years and cities, when and where the employee retested his proficiency
at the skill. A sample relation is shown in the relation in Figure 4-1. v 1

In this example the higher order attributes are Emp, Children, Skills and Exams. All others are zero
order attributes. We will generally use capitalized names for higher order attributes and uncapitalized names
for zero order attributes.

A INTF database scheme is a collection of rules of the form R; = (Rj,, Ry,.. -, R;,) where all the R,
are zero order. —1NF schemes may contain any combination of zero or higher order attributes on the right
hand side of the rules as long as the scheme remains nonrecursive. Note, a nested relation is represented
simply as a higher order attribute on the right hand side of a rule.

In the relation of Figure 4-1, we would not expect two tuples with employee = ‘Smith’ since all of
Smith’s children and skills should be grouped into one tuple. That is, there is no significance in separate
groups of children or skills. This led us to restrict the set of —1NF relations to those that are in partitioned
normal form (PNF).

A relation is in PNF if the zero order attributes in the relation form a key for the relation, and each
nested relation is also in PNF, that is, the zero order attributes of each nested relation form a key for that
relation. The employee relation in Figure 4-1 is in PNF. Note that employee is a key for the sample relation,

type is a key for each Skills relation, and (year, city) is a key for each Ezams relation. The formal definition
is as follows.

Definition 4.1: [RKS| Let r be a relation on scheme R with attributes ER containing zero order attributes
Ay, Az, ..., Ag and higher order attributes X1, X2, ..., X¢. Relation r is in partitioned normal form (PNF)
if and only if the following two conditions hold:

(a) A1Az--- Ax — Er.

(b) For all t € r and for all X; : 1 <4< £: Ry is in PNF, where Ry; is the nested relation t[X;] on

scheme X;.

PNF is precisely the same as structuring ~1NF relations in the form of scheme trees [OY] or as Verso
instances over a format [AB]. A scheme tree is a tree whose vertices are labeled by pairwise disjoint sets of
zero order attributes, where the edges of the tree represent multivalued dependencies (MVDs) between the
attributes in the vertices of the tree. These MVDs allow a INF relation to be represented as a =1NF relation
in PNF. The scheme tree and associated MVDs for the Emp scheme are shown in Figure 4-2. A format
is recursively defined by: (i) let X be a finite string of attributes with no repeated attribute, then X is a
format over the set X of attributes, and (ii) let X be a finite string of attributes with no repeated attribute,
X non-empty, and f1, f2,..., fn some formats over Y1, Ys,...,Y,, resp., such that the sets X, Y, Y2, ..., ¥y,

13

employee

l
l |

name, dob type employee —— name, dob
l employee —— type, year, city
year, city employee, type —— year, city

Figure 4-2. Scheme tree and implied MVDs for employee database.

are pairwise disjoint, then the string X(f1)*(f2)* - - (fa)" is a format over the set XY;Y3 --- Y. The format
for the Emp scheme is employee(name dob)*(type(year city)*)*.

4.2 Operators

In this section, we discuss operators for ~1NF relations without null values. The traditional relational algebra
operators can be used with —=1NF relations with only minor modifications to define equality between nested
relations and to include more complex renaming rules for cartesian product. With the addition of wnnest
and nest operators, this algebra is as powerful as the standard relational algebra working on INF relations.
We state the formal definitions of nest and unnest from [RKS, TF].

Definition 4.2: Let R be a relation scheme in database S. Let {Bi, Bs,...,Bn} € Eg and C = Egr —
{Biy,Bs,..., By} Assume that either the rule B = (By, B, ..., By) is in S or that B does not appear on
the left hand side of any rule in S. Then the nest operator vg—(s,,5,,...,B,)(r) Produces a relation r’ on
scheme R’ where:
1. R = (C,(B1, Bz, ..., Bn)) = (C, B) and the rule B = (B1, Bz, ..., Bn) is appended to the set of rules
in S if it is not already in S, and
2. ' = {t | there exists a tuple u € r such that ¢{{C] = u[C] A ¢[B] = {v[B1 B Bpllver A v[C] =

{en).)

Definition 4.3: Let R be a relation scheme in database S. Assume B is some higher order attribute in
Eg with an associated rule B = (By,Bz,...,Bp) in §. Let C = Er — B. Then the unnest operator
UB=(B;.Ba,....B) (r) Produces a relation r' on scheme R' where:
1. R' = (C, By, Bs,..., Bp,) and the rule B = (By, Ba, ... , Bm) is removed from the set of rules in .S if it
does not appear in any other relation scheme, and
2. r' = {t | there exists a tuple u € r such that t[C] = u[C] A t[B1Bz--- Bn] € u[B]}.

We can apply unnest to a relation as long as it still contains nested relations. Thomas and F'ischer
[TF] showed that the order of unnesting does not affect the content of the resulting INF relation. They
defined the UNNEST* operator to transform any —1NF relation to a INF one. We will use u* to indicate
this operation.

There is not much correspondence between the way most of the relational algebra operators work on
1NF relations and their counterpart —1NF relations.

Example 4.2: Consider —=1NTF relations ry and ry of Figure 4-3 and their INF counterparts, s; and s3.
Note, however, that r; N 7y is not the —1NF counterpart of s; N s2, as the usual definition of intersection
requires that a tuple is in the result only if that tuple is in both input relations. O

We believe that each 1NF operator should have a reasonable =INF counterpart. Intuitively, a —INF
operator is reasonable if it behaves identically to the corresponding 1INF operator on 1INF relations and if it
produces a result which would have been produced had the equivalent set of 1NF relations been used instead

of ~1NF relations. We now formally define reasonable in terms of faithfulness and precision similar to the

14

71 T 71 N To

A B* A B* A B*
B B B
a b a b a b
bl bl ‘b!
a b al b
bl bll
31 8g 81 N 52
A B A B A B
a b a b a b
a b a b’ a b
al b al b a’ b
al bf al bll

Figure 4-3. Intersection applied to —~1NF and 1NF relations.

way we defined it for null values. The parallel definitions substitute the set of —=1NF relations for the set of
relations with null values, and the unnesting operator for the possibility function.

Let Rel be the set of all INF relations and let Rel* be the set of all =1NF relations that have at least
one higher order attribute in the scheme. Thus, Rel N Rel* = 0.

Definition 4.4: Let v be an operator on Rel and let 4’ be an operator on Rel™ U Rel. We say that ' is
faithful to « if one of the following two conditions holds:

1. when « and ' are unary operators, y(r) = +'{r) for every r € Rel for which «(r) is defined.

2. when «y and «' are binary operators, r v ¢ = r 4’ ¢ for every r,q € Rel for which r v ¢ is defined.

Definition 4.5: Let v be an operator on Rel and let 4’ be an operator on Relx. We say that 4’ is a precise
generalization of <y relative to unnesting if one of the following two conditions holds:
1. when « and «' are unary operators, u*(v'(r)) = v(1*(r)) for every r € Rel* for which +'(r) is defined.
2. when « and ' are binary operators, u*(r v’ g) = u*(r) v u*(q) for every r,g € Rel# for which » ~' ¢ is
defined.
We now define ~1NF operators which are faithful and precise and also have some intuition behind them.
In [RKS], we defined some extended operators in order to work within the domain of PNF relations. We

now discuss these extensions in light of the above requirements.
4.2.1 Extended Union

Tn order to take the extended union of two relations r; and ro we require that they have equal relation
schemes, say R. The scheme of the resultant structure is also equal to R. We define eztended union at the

instance level as follows.

Definition 4.6: Let r1 and ro be relations on scheme R. Let X range over the zero order attributes in Eg
and Y range over the higher order attributes in Ex. The eztended union of r; and r; is:

U ry={t| (3t €r1 A3tgery: (VXY € Eg : t[X]|=1[X] = to| X] A Y] = (61]Y]U° 2[Y])))
V(ter, AV €ry: (VX € Eg : t[X] # t'[X])))
V{ter, AV er: (VX € Eg - t[X] # t'[X])))}

Note, this definition is recursive in that we apply the estended union to each higher order attribute Y.

15

1 o ry U ry w{ry U® rg)

A B* c* A B* c* A B* c* A B C
B C B C B C a b c
a b c a b’ c a b c a b ¢!
d b’ d a b c
a b’ c!
p*(r1) p*(rz) p*(ra) U p*(ra)
A B C A B C A B C
a b c a b’ c a b c
a b <! a b <
a b’ c

Figure 4-4. Counterexample to preciseness of U°.

Proposition 4.1: Extended union is faithful to standard union.
Proof: The definition of U¢ differs from the definition of U only when higher order attributes are present
in the scheme. When there are no higher order attributes, as in Rel, then the definition of U® reduces to a

selection of tuples that are in both relations or are tuples in only one of the two relations, i.., a standard
union. -

Proposition 4.2: Extended union is not a precise generalization of standard union with respect to urninest-
ing.
Proof: Figure 4-4 shows two —1NF relations r; and r; where p* (r1 U® ro) # p*(r1) U p*(r2). -
Extended union is not precise due to the syntactic nature of standard union. Standard union does not
take into account dependencies that should exist in a relation if it is going to be nested. If we agree that
only relations from Rel* which are in PNF should be allowed, then each nesting scheme is allowed if and
only if certain multivalued dependencies hold in the completely unnested relation.
As in [OY], let U be a set of zero order attributes, T be a scheme tree, and ¢ = (u,v) be an edge of
T. Let A(v) be the union of all ancestors of v, including v, and D(v) be the union of all descendants of v,

including v. Then the MVD represented by the edge e is A(u)——D(v). Also, let MVD(T) be the set of
MVD’s represented by the edges of T'.

Definition 4.7: [OY] Let T be a scheme tree, and uj,ug,...,%n be all the leaf nodes of 7. Then the path

set of T, denoted P(T), is {A(u1), A(u2), ..., A(un)}. Note that, for a leaf node u, A(u) is the union of all
the nodes in the path from the root of T to u in T.

The following proposition gives some properties of a scheme tree.

Proposition 4.3: [OY] If T is a scheme tree, then MVD(T) <= *(P(T)). O

The intuition behind the extended union, and, as we will see, the other extended operators, is to take
advantage of the MVDs which allow us to nest relations and maintain partitioned normal form. For instance,
in the example of Figure 4-4 the MVD A —— B | C holds. Thus, B and C values are only indirectly related
through the A attribute, and the primary associations are AB and AC. Since we can think of unionn as an
insertion operation, we would like to be able to insert AB and AC associations independently of each other.

With a INF relation on ABC this is not possible unless we specify every existing AC association for an
A-value whenever we add a new AB association for that A value, and vice versa. However, in the —INF
relation each A value functionally determines a B* and C* set, and each set can be independently up dated

with our extended union. A similar result can be achieved by decomposing each ABC relation into A B and

16

AC, which is the path set for this scheme. We then perform a standard union among the corresponding
decomposed relations, and finally rejoin. Proposition 4.3 ensures that the same MVDs will hold in the new
result and so the same nesting structure will be possible.

If we use a modified version of standard union which takes into account the MVDs or, equivalently, the
join dependency which produces the nested structure, then we have a precise extended union operator.

Definition 4.8: Let (X, X5,...,X,,) be a join dependency on scheme R with zero order attributes Ep =
X; UXoU---UX,. The decomposition union (or A-union) of two 1INF relations r; and r2 on R is

1y UA ro = (7‘1[X1] U rz{XI],Tl{Xz] UTZ[XZ}, e ,’I'1[Xn] U Tz[Xn])

where < is the standard natural join.

Proposition 4.4: Extended union is a precise generalization of A-union with respect to unnesting, where
the join dependency used in the A-union is the path set of the —1NF relation’s scheme tree.

Proof: We need to show that u*(r) U® u*(g) = p*(r U® g) for any r,q € Relx for which r U® ¢ is defined,
i.e., r and g have identical relation schemes. We show inclusion both ways to prove the equivalence.

C Let t be a tuple in u*(r) UA u*(g). Two cases need to be considered: either ¢ came only from tuples in
one of p*(r) or u*(g), or ¢ is a combination of tuples from u* (r) and p*(g), put together via the join
operation in the A-union.

Case 1: Suppose t came directly from tuples in p* (r). The argument for g is symmetrical. Due to the
join dependency holding in p*(r), all of these tuples agree on the join attributes which are the non-leaf
nodes in the scheme tree for r. Thus, we know that there is one tuple in p*(r) which decomposed and
rejoined to make ¢. This tuple unnested from a single tuple t, in r. Now any tuple in r must either be
intact in 7 U® g if there was no tuple in g with the same partition key, or there is some tuple tin rUfq
in which each nested relation of ¢, is a subset of the corresponding nested relation in ¢'. In either case,
unnesting r U° g will return the original tuple ¢.

Case 2: If t was created by taking pieces of tuples from both u*(r) and p*(g), as in Case 1, the tuples
from which it came must agree on the non-leaf nodes in the scheme tree for r and ¢g. Thus the tuples

from r and g which unnested to these tuples interact in the extended union of r and ¢ which, when
unnested, must contain the tuple ¢. :

U

Let T be a set of tuples in p*(r U° g) such that all tuples in T unnested from a single tuple ¢ in r U° q.
Two cases need to be considered: either t comes only from r or g, or ¢ is a combination of tuples in ¢,
in r and t4 in g.

Case 1: Suppose t came only from r. The argument for ¢ is symmetrical. All tuples in T will get
decomposed and rejoined by the A-union, plus perhaps participating with other tuples in the join. But
at least the original tuples will be returned, so all tuples in T are in the left hand side.

Case 2: Each tuple in T' may take some of its values from attributes in ¢, or tg, but if the values of
some attributes are different, then the attributes which are above that attribute in the scheme tree have
equal values. This is exactly how the unnested tuples of Z. and t, will interact in the join operation

of the A-union. So every tuple in T will be the join of pieces from an unnested tuple £, of » and an
unnested tuple ¢, of g. .

4.2.2 Eaxtended Intersection

Extended intersection has the same scheme requirements as extended union. Two tuples intersect if they

agree on their zero order attributes and they have non-empty extended intersections of their higher order
attributes.

17

Definition 4.9: Let r; and ro be relations on scheme R. Let X range over the zero order attributes in Ep
and Y range over the higher order attributes in Er. The estended intersection of r; and ry is:

riNero={t|{(Ft1€r Ay Ery:
(VX,Y € Eg : t{X] = t1[X] = t2[X] A t[Y] = (t1[Y] 0° 22[Y]) A ¢[Y] # 0))}
Proposition 4.5: Extended intersection is faithful to standard intersection.

Proof: As in the proof for union, the definition of N¢ differs from the definition of N only when higher order

attributes are in the scheme. When only relations in Rel are being considered, the definition of N® reduces
to the definition of standard intersection. |

Proposition 4.6: Extended intersection is a precise generalization of standard intersection with respect to
unnesting.

Proof: We need to show that p*(r) N pu*(q) = p*(r N° g) for any r,q € Relx for which r U°® ¢ is defined. We
show inclusion both ways to prove the equivalence.

C Let t be a tuple in u*(r) N u*(g). Then, t € p*(r) and ¢t € p*(g). Now, ¢ unnested from some tuple

t, € r and some tuple ¢, € gq. Furthermore, ¢, and t; agree on the attributes which are the non-leaf
nodes in the scheme tree for r and q. Therefore, when r N ¢ is calculated, ¢, and ¢, will participate in
the result, and when unnested, will produce the tuple ¢. Thus, ¢t € u*(r N° q).
Let T be a set of tuples in p*(r N° g) such that all tuples in T unnested from a single tuple ¢ in » N® g.
Then, all tuples in T agree with ¢ on the attributes which are the non-leaf nodes in the scheme tree
for r and q. Furthermore, the only values of attributes which are leaf nodes, which are in tuples of
T, are those that were in both the r and g tuples which participated to form t. Thus, a tuple is in
T exactly when it agrees with some tuple unnested from r and some tuple unnested from ¢g. That is,
V' e T: ¢ € p*(r) N p*(qg). -
We note that a A-intersection operator could be defined in a similar manner to A-union, although it is
not necessary as ry MNrg =1y N® rq for any r1,re € Rel.

U

4.2.8 Extended Difference

The extended difference operator has semantic complications similar to extended union. Eztended difference
also has the same scheme requirements as union. In r; —° ro a tuple is retained from r; if it does not agree

with any tuple in ro on the zero order attributes or if it does then it has non-empty extended differences
between the higher order attributes.

Definition 4.10: Let r; and ro be relations on scheme R. Let X range over the zero order attributes in
Eg and Y and Z range over the higher order attributes in Eg. The estended difference of r; and rp is:

r—Srp={t|(Ft1€ry Adto€r; AN IZ€ ER:
(VX,Y € Eg : t|{X] = 1| X] = t2[X] A t[Y] = (t1[Y] =° t2[Y]) A t[Y] # 9))
V(ter AV er: (VX € Er : t[X] #¢[X]))}
Proposition 4.7: Extended difference is faithful to standard difference.

Proof: Similar to proofs for union and intersection. , -

Proposition 4.8: Extended difference is not a precise generalization of standard difference with respect to
unnesting.

18

] g Ty —° 19 p(ry —¢ra)

A B* c* A B* Cc* A B* c* B C
B C B C B C a b o
a b c a b c a b c
cl
p(r1) p*(ra) pr(r1) — u*(ra)
A B C A B C A B C
a b c a b’ c a b c
a b ' a b <

Figure 4-5. Counterexample to preciseness of —°.

Proof: Figure 4-5 shows two —1NF relations r; and ry where u*(ry —° ra) # p*(r1) — p*(r2). 1

The intuition behind this definition of extended difference is similar to the intuition behind extended
union. We think of difference as the deletion of information from the database. In the counterexample in
Figure 4-5, we are trying to delete two relationships from ry, the AB association between a and b’ and the
AC association between a and c. Since there is no association between a and b’ in r;, nothing changes due
to that request. However, the a to ¢ association is in r; and so it is removed. In the 1NF versions of r; and
ra, it is not possible to express only an AB or an AC relationship, but only an artificial ABC relationship.
Thus in order to delete, say, an AC association, we would have to know all of the B values associated with
the A value so all ABC relationships could be deleted.

As with union, the problem stems from the MVDs that must exist in the INF counterparts of the
~1NF relations. Our solution follows the same line as for union. We first decompose the relation via the
join dependency specified by the scheme tree, perform the difference on the decomposed relations and then
rejoin.

Definition 4.11: Let *(Xi, X3,...,X,) be a join dependency on scheme R with zero order attributes

Egp = X, UX,U---UX,. The decomposition difference or A-difference, of two 1NF relations r; and 72 on
R is

1 _a 7o ==pJg (rl{X]_] - Tz{Xl], Ty [Xg] - TQ[XQ], e ,Tl{Xn] e TQ[XH])
where pd is the natural join.

Proposition 4.9: Extended difference is a precise generalization of A-difference with respect to unnesting,
where the join dependency used in the A-difference is the path set of the ~1NF relation’s scheme tree.
Proof: We need to show that u*(r) —2 u*(q) = p*(r —° gq) for any r,q € Rel* for which r —¢ g is defined,
i.e., r and ¢ have identical relation schemes. We show inclusion both ways to prove the equivalence.

C Let t be a tuple in u*(r) —2 p*(g). Two cases need to be considered: either ¢ came only from tuples in

u*(r), or t is a combination of tuples from u*(r) and p*(g), put together via the join operation in the
A-difference.
Case 1: Suppose t came directly from tuples in p*(r). Due to the join dependency holding in u*(r),
all of these tuples agree on the join attributes which are the non-leaf nodes in the scheme tree for r.
Thus, we know that there is one tuple in u*(r) which decomposed and rejoined to make t. This tuple
unnested from a single tuple ¢, in 7. Since t came directly from p*(r), it was not affected by tuples in
g. So t, € r —° g, and unnesting r —° g will return the original tuple ¢.

19

Case 2: If t was created by taking pieces of tuples from p*(r) that were not in u*(g), as in Case 1, the
tuples from which it came must agree on the non-leaf nodes in the scheme tree for » and ¢g. Thus the
tuples from r and g which unnested to these tuples interact in the extended difference of r and ¢ which,
when unnested, must contain the tuple .

Let T be a set of tuples in u*(r —¢ g) such that all tuples in T unnested from a single tuple ¢ inr —°gq.

Two cases need to be considered: either t comes only from r, or ¢ is a combination of tuples in £, inr
and t, in ¢.

U

Case 1: Suppose t came only from r. All tuples in T will get decomposed and rejoined by the A-
difference. Thus, the original tuples will be returned, so all tuples in T" are in the left hand side.

Case 2: Each tuple in T may take some of its values from attributes in ¢, that are not in t,, but only if
the attributes which are above that attribute in the scheme tree have equal values. This is exactly how
the unnested tuples of ¢, and t, will interact in the join operation of the A-difference. So every tuple in
T will be the join of pieces from an unnested tuple ¢, of r that are not in an unnested tuple t, of g. [

4.2.4 Cartesian Product and Select

The standard product and select operators can be used on ~1NF relations. Since nest is an inverse for unnest
when dealing with PNF relations, when products or selections on tuples within nested relations are desired,
the appropriate attributes can be unnested, the operation performed, and the relation renested according to
the user’s desires.

More sophisticated predicates for select could be defined using set comparison operators (see [AB, Schi}),
however these operators do not have a simple mapping to standard select. In fact set comparisons in the
standard algebra usually require a combination of product, select, and project operators. There is a proposal
for a recursive algebra [Jae2] in which the standard operators are applied to nested relations in recursively

constructed queries. These extensions appear to be precise generalizations, however a recursive algebra is
beyond the scope of this paper.

4.2.5 Extended Natural Join

Join operations are difficult to define in the =1NF model due to the possibility of different nesting depths
for the attributes. The problems with an extended natural join (><®) can be illustrated as follows.

Let r; be arelation on R; = (4, X), X = (B, C) and let r; be arelation on Ry = (B, D). Then ry 0<® 1y
is the cartesian product of ry and r; since Eg, N Eg, = #. However, in the INF counterparts of r; and rs,
attribute B is a common attribute so a join on B must take place. Thus, we limit the relations which can
participate in an extended natural join to those whose only common attributes are elements of the top level
scheme, i.e., in Eg for scheme R, or are attributes of a common higher order attribute. With a recursive
algebra as discussed above, more general join operations could be defined.

Let r; be arelation on scheme R; and rz a relation on scheme R;. We define the extended natural join
ri D<€ ry as a recursive application of a rule similar to the definition of natural join used for standard 1INF
relations.

In the standard natural join, two tuples contribute to the join if they agree on the attributes in common

to both schemes. Under extended natural join, two tuple contribute to the join if the extended intersection
of their projections over common attributes is not empty.

Definition 4.12: Let X be the higher order attributes in Eg, N Eg,, A= Eg, — X, and B = Ep, — X.

Then the eztended natural join of r1 and rg is rq ><° ro which produces a relation r on scheme R where:

1. R=(A,X,B), and
2. r={t|(Fuer,ver A = u[4] A t{B] = v[B] A t[X] = (u[X]N° v[X]) A t[X] # 0}

20

Proposition 4.10: Extended natural join is fasthful to standard natural join.

Proof: If there are no higher order attributes, then X is empty, and the definition of extended natural join
reduces to the definition of standard natural join. |

Proposition 4.11: Extended natural join is precise generalization of standard natural join with respect to
unnesting.

Proof: We need to show that p*(r) pa p*(g) = p*(r < ¢) for any r,qg € Relx for which r <® ¢ is defined.
We show inclusion both ways to prove the equivalence.

C Let t be a tuple in p*(r) > p*(g). Then, ¢ agrees on all zero order attributes common to r and g and
all attributes which unnested from common higher order attributes inrand q. Let t, € rand t; € g, be
the tuples that unnested to participate in producing t. In r < ¢, we will take the extended intersection
of the common higher order attributes of r and g, producing only those values common to both. Since
t, and t, agree on all attributes which unnest from the common higher order attributes, they will
participate in the extended intersection, and when we unnest this result, the tuple ¢ will appear.

Let T be a set of tuples in u*(r > ¢) such that all tuples in T unnested from a single tuple ¢ in
r < g. Then, there are tuple ¢, Er and tg € ¢ that participated to make ¢. These tuples agree omn the
common zero order attributes of r and ¢g. Furthermore, t contains only values in the common higher
order attributes that are in both t, and t,. Thus, when we unnest . and t; and join the result we
match up only on those same common values. Thus, all tuples of T are also in u*(r) < p*(q). ™

4.2.6 Extended Projection

U

Estended projection is a normal projection followed by a tuplewise extended union of the result. The union
merges tuples which agree on the zero order attributes left in the projected relation.

Definition 4.13: The exztended projection of relation r on attributes Xis

€
5= U ©
te€mx(r)
Note, that projection still removes duplicate tuples, that is those which agree on all attributes, with set
equality holding on higher order attributes.

Proposition 4.12: Extended projection is faithful to standard projection.

Proof: When there are no higher order attributes, a tuple wise extended union of mx(r} will not add or
delete any values. -

Proposition 4.13: Extended projection is precise generalization of standard projection with respect to
unnesting.

Proof: We need to show that mx: (u*(r)) = p*(7%(r)), where X' are all of the attributes of the completely
unnested scheme X. We show inclusion both ways to prove the equivalence.

C Let t be a tuple in mx:(u*(r)). Then, ¢ is the projection onto X' of some tuple which unnested from
a tuple ¢, in r. For 7%(r), t, will be projected onto X and possibly combined with other tuples in an
extended union. In any case, when unnested, the tuple ¢ will be in the result.

Let T be a set of tuples in u*(7%(r)) such that all tuples in T unnested from a single tuple t in w5 (r).
Then, there are two cases: either ¢ came directly from a projection of r, or t is a combination of tuples
in the projection of 7.

v

Case 1: Suppose t came directly a tuple in a projection of r. Then, the projection hasn’t been altered
by the extended union, and since unnest commutes with projection [RKS], all tuples in 7' will be in
mx (w(r)-

21

Case 2: Suppose t is the extended union of two or more tuples in the projection of r. Then all of these
tuples will be combined only where they agree on non-leaf attributes of the scheme tree for mx(r). Now,

the unnest of r will not eliminate any of these tuples, so the projection onto X' will return all tuples in

T.]

5. Introducing Null Values into the -1NF Relational Model

Previous research on nulls in —~1NF relations has been either ambiguous or incompletely treated. One source
of concern is the effect of the unnest operator on empty sets. As defined in the previous section wunnest
produces a flatter relation structure with each element of the unnested set forming a value in a separate
tuple in the flatter relation. When the set is empty, it is not clear what this operation means. Schek states,
“Tn the general case unnest on empty relations will produce undefined attribute values” [Sch2;180]. However,
if the empty set has a meaning in the relation, then whatever it unnests to should have meaning also. In
the VERSO model [AB|, empty sets are used as null values for set-valued attributes. However, nulls are not
allowed for atomic-valued attributes. Thus, when an empty set is unnested the entire tuple is deleted from
the resulting relation.

Two researchers have assigned the non-ezistent interpretation to empty set. One of Makinouchi’s prop-
erties of “not-necessarily-normalized” relations is that “A null set (§) may be in the domain of a relation
column. # means exactly non-existence” [Mak;448]. In deriving an extended set-containment operation for
1NTF relations with non-existent nulls, Zaniolo [Zan1] discusses the ~1NF viewpoint. In this development, he
assigns the non-existence meaning to the empty set, viewing the non-existent null as the image of an empty
set when mapping from an unnormalized relation to a normalized one.

We believe that the correct interpretation for empty set is the no-information one. We have already
seen in the definition of tuple set reduction that the null tuple is eliminated from any relation even if it is the
only tuple in the relation. So, in the simplest case of a relation with one attribute, we have that the empty
relation is equivalent to the relation with the relation containing only the tuple (ni). This is consistent
with the open world assumption we have been making in which we do not assume that the empty relation
indicates that no tuples belong in the relation but that we currently have no information about the world

and so we do not know if the tuples belong or not. As we will see, this means an empty nested relation
should unnest to a no-information, null tuple.

5.1 Basic Concepts

When nulls are introduced into our model, the concept of more informative (or subsumes) must be extended to
handle nested relations. The main idea is to treat nested relations as values which must be more informative
than the corresponding nested relation in the less informative tuple. In addition, a null tuple which consists
of all ni values in the 1NF model is extended in the ~1NF model so that all zero order attributes have ni
values and all higher order attributes are empty or, equivalently, contain exactly one null tuple. Thus, our
new definition of more informative, which includes the old one as a special case, is as follows.

Definition 5.1: Let t; be a tuple on zero order attributes X; and higher order attributes Y;, and let 5 bea

tuple on zero order attributes X5 and higher order attributes Y. The tuple t; is said to be more informative
than the tuple t; when:

(a) for each B € Xy, if #2[B] is not ni then B € X},
(b) for each C € Yz, if 3[C] contains a tuple that is not null then C € Y,
(c) for each A € X; N X, glb(t1]A], t2[A]) = t2[A], and

22

employee Children Skills

name dob type Exams
' year city
Smith | Sam | 2/10/84 | typing | 1984 | Atlanta
Sue | 1/20/85 1985 | Dallas

dictation | 1984 | Atlanta
Watson | Sam | 3/12/78 filing 1984 | Atlanta
1975 | Awustin
1971 | Austin
typing | 1962 | Waco

Figure 5-1. A sample relation on the Emp scheme.

(@) for each D € Y1 NY> and tuple uz € t2[D], there exists some tuple uy € ¢1[D] which is more
informative than us.

Example 5.1: Recall the Emp scheme and sample relation (shown again in Figure 5-1) introduced in the
previous section. If a new employee, say Jones, is added to the database and we do not know anything about
him except his name, then we would add the tuple (Jomes, {}, {}), or, equivalently, (Jones, {(ni, mi)},
{(ni, {{ ni, ni)}}). If we find out later that Jones has no children and has some skill for which he took a
1981 exam, we could update the tuple to (Jones, {dne,dne}, {(unk, {(1981, unk)}}). =

There is an aspect of our definition of more informative which goes beyond nulls. Consider the following
tuple

(Smith, {(Sam, 2/10/84)}, {(ni, {{ ni, ni)}}).

According to definition 5.1, this tuple is less informative than the one in Figure 5-1. Note that the Children
attribute in the original “Smith” tuple is a nested relation with two tuples while in the new tuple only one
of the Children tuples exists. This reasoning stems from our interpretation of the relationship between the
attributes in —1NF relations. Nested relations are not nondecomposable values, so that it is the tuples of
the nested relation that are related to the other attributes. Thus an employee is related to each child and
there is no particular significance to sets of children. Similar reasoning about the significance of sets led

to our definition of PNF. However, the requirement of PNF is a somewhat different notion than that of
subsumption, as the following example shows.

Example 5.2: Let t; = { Smith, {{ Sam),{ Sue)}) and 5 = { Smith, {{ Sue),{ Bill}}) be tuples from a
projected employee relation. We have that ¢; 2 t2 and ¢ Z ¢4, but under PNF ¢; and ¢, would be combined
into ts = (Smith, {{ Sam),(Sue}, (Bill)}). |

The definitions of z-element (€), and tuple set reduction ('{\set of tuples’}\), from section 3, carry over
to —1NF in a straightforward manner. However, the meet of two —1NF tuples must be extended to handle

nested relations. This can be done using the glb function for zero order attributes and applying the definition
recursively for higher order attributes.

Definition 5.2: Let U be the attributes on which two tuples ¢; and i, are defined, where ¢; and £z have
been extended to U with the addition of ni values for zero order attributes and single null tuple relations
for higher order attributes, if necessary. A tuple t is the meet of t; and tz, written ¢; A ty, when for
each zero order attribute A € U, t[A] = glb(t1[A],t2[4]), and for each higher order attribute X € U,
t|X] = {s Au|s €t:[X] and u € tz[X]}.

Finally, the ideas of more informative relations, information-wise equivalence and minimal representa-

tions for a relation all have the same definitions when we substitute the =1NF version of subsumption.

23

5.2 Operators for ~1NF Relations with Nulls

Since the mapping between INF and —1NF relations is an important one, we need to revise the definitions
of nest and unnest to deal with the presence of null values. For nest, we deal with the problem of null values
for the partitioning attributes (the attributes not being nested), and for unnest we deal with subsumption
and possible loss of information. Once this is dealt with, we provide, where possible, precise extensions to
the ~1NF operators defined in the previous section accommodating null values. Once again we will work
only on relations in PNF. However, our definition of PNF relies on the definition of functional dependency
in which we test equality of attribute values, and therefore, we need to specify how null values should be

treated. For purposes of testing for equality, ni # ni, unk # unk, and dne = dne. The intuition b ehind
this will be discussed in what follows.

5.2.1 Null-nest

When null values occur as values of attributes which are being nested, then no special rules need apply. We
could use tuple set reduction on each nested relation, but if we assume that the input relation is minimal then
the new relation and its new nested relations will all be minimal as well. Problems in the standard defimition
of nest arise when nulls are values of the partitioning attributes. The question is whether we equate nulls for
partitioning purposes. At first glance, equating nulls would be advantageous in that we could have a succinct
notation for grouping all values for which we do not have a fully defined partition value. However, doing
this grouping would give the impression that one value could replace the null for all members of the group.
Since this is not generally true, we should not equate no-information and unknown nulls, when partitioning
the relation. The does not ezist null is a special case though. Since there is no value which can replace a dne
null, it is appropriate to nest all tuples which have that property together. Thus, our definition of null-nest
is not different from standard nest except that two attribute values are considered equal iff they are both
the same domain value or they are both dne nulls.

Example 5.83: Consider the 1INF relation of Figure 5-2a. Suppose that we want to nest all courses taught
by each teacher. For the two “Smith” tuples the standard nest applies and we get the single tuple with
“Math1” and “Math2” together in a nested relation. The same applies to the two tuples with dne nulls.
These two tuples indicate that “Math5” and “Math6” are courses that exist, but there are no te achers
teaching them, so we can group these courses together as courses for which there is no teacher. If we find
that our information was wrong and “Math5” does have a teacher then we would be forced to update this
tuple just as if we found out the “Smith” is not really teaching “Math2”. Finally, the two tuples with r2i nulls
are nested singly, since we have no assurance that they will be in the same partition when more inforrmation
is found out about them. In this case, the two courses may be newly added ones, for which we know n othing
about who will teach them or even if they will be taught. Figure 5-2b shows the nested relation. |

Before we consider the preciseness of the null-nest operator, we introduce a modified possibility function
to deal with PNF relations. Consider the nested relation of Example 5.3. Using our current definition of
POSS, one possibility for this relation is constructed by replacing the ni nulls with the same value, say
“Jones.” As a result, we no longer have a PNF relation. An alternative possibility, representing the same
information, is constructed by replacing the { mi, {{ Sciencel)}) and (ni, {{ Science2)}) tuples with
the single tuple, { Jones, {({ Sciencel), (Science2)}). This possibility also satisfies the current definition
of POSS, but the resulting relation is in PNF. Therefore, we will use a modified definition of PO.S' S, so

that only PNF relations are allowed. The set of PNF possibilities for relation r on scheme R is demnoted
POSS*(r), and is defined as:

24

r Vcourse*:(course) (T)
teacher course teacher course™
Smith Mathl course
Smith Math2 Smith Mathl
dne Math5s Math2
dne Math6 dne Mathb
ni Sciencel Math6
ni Science2 ni Sciencel
(a) ni Science2

(b)
Figure 5-2. Example of nest with null values.

POSS*(r) = {q| g € Rel*(R)U Rel(R) and ¢ > r and ¢ is in PNF}.

Proposition 5.1: Null-nest is a precise generalization of standard nest with respect to PNF possibility
function POSS*.

Proof: Let X be the attributes of r being nested. We show that POSS™(vp_ (x(r)) = vp=(x)(POSS ™ (r)).
We show inclusion both ways. Let p = vj_ (X)(r).

C Let p & POSS*(p). Tuples in P may be a combination of tuples in p only if POSS* assigned the same
value to nulls in otherwise equal partition keys of p. By making this same assignment directly to 7, and
then nesting, we can generate p. Thus, § € vg=(x)(POSS*(r)).

D Let § € vp=(x)(POSS*(r)). There must be ¥ € POSS*(r) such that p = vp_(x)(7). Consider the
assignment of values made by POSS* in 7. If we, in POSS*(p), make the same assignment to the
corresponding nulls in p, then we get also p. Thus, 7 € POSS*(p).

We conclude that null-nest is a precise generalization of standard nest for POSS™, .

5.2.2 Null-unnest

If nested relations are inserted into our database solely by application of the nest operator to relations in
INF, then the standard definition of unnest can apply to relations with nulls and there are no problems.
However, if we allow arbitrary nested relations then unnesting can produce non-minimal relations and cause
loss of information.

Example 5.4: Recalling the database scheme of the previous example, consider a relation r with two tuples
t; = { Jones, {{ Math), (Science)}) and ¢z = (ni, {{ Math), { English)}). If we unnest r, then the
resulting (ni, Math) tuple is less informative than the (Jones, Math) tuple. Thus, even though ¢; and ¢;
form a minimal relation, their unnested counterparts do not. 1

The problem with arbitrary —1NF relations is they allow the misuse of ni and unk nulls in the partition
attributes. Our previous discussion of the nest operator showed that when an mni or a unk null is in one of
the partition attributes, then the nested relation should have cardinality of one. But, one can argue that we
may know that, say, two tuples are both related to one undetermined value and we should take advantage
of that fact and store those two tuples in the same nested relation. If this is true, then an answer is to
use marked ni and unk nulls [Sci]. Then a tuple can be subsumed only if its marked nulls do not exist in
any tuple other than the subsuming tuple. Using marked nulls also avoids some loss of information. In the

previous example, if we unnest r and then perform the reverse nest operation, we would find three tuples

25

in the result as the tuples with ni as the teacher value would not be nested together as per our previous
arguments. It would be appropriate to equate identical marked nulls and so a nest would return the original
relation.

Another reason for our treatment of ni and unk is so that null-unnest is a precise generalizations of the
standard operator. In Example 5.4, every relation in pooyrses (POSS*(r)) must contain (z, Math) and (=,
English) for some value z. However, there are relations in POSS* (1, e« (7)) Which do not have both of
these tuples for some value z. So, under the assumption that tuples with ni or unk nulls in the partition
attributes of a relation (nested or otherwise) have only single tuple nested relations for each higher order

attribute, our definition of null-unnest is unchanged from the standard unnest definition. Furthermore, we
can prove that null-unnest is a precise generalization.

Proposition 5.2: Null-unnest is a precise generalization of standard unnest with respect to PNF possibility
function POSS™.

Proof: We show that POSS*(u/5(r)) = pp(POSS*(r)). Let p = pp(r).

C Let p € POSS*(p). If we make the same assignment to the nulls in p as in the nested relation r then
p € up(POSS*(r)). This is possible since we assume that tuples in r with null values in the partition
keys have single tuple nested relations. Therefore, there is a one-to-one correspondence between these
null values in both r and p.

D Let p € up(POSS*(r)). Then there must be 7 € POSS*(r) such that = pup(7). Let t, be a tuple in
p. Now, t, unnested from some tuple ¢, in r, which has some PNF possibility ¢~ € 7 such that t~ > ¢,.
Let t5= pp (). Then, we have ts2 1. We conclude that $ > p and so p € POSS*(p).

We conclude that null-unnest is a precise generalization of standard unnest for POSS*. -
With this result we can now show that the null-unnest™® operator (u'*) is a precise generalization of the

standard unnest* operator.

Corrolary 5.1: Null-unnest* is a precise generalization of standard unnest™ with respect to PNF possibility
function POSS™.

Proof: Apply the same argument as for Proposition 5.2, only use complete unnesting instead of single
unnesting. 1

5.8 Null-extended Operators

Let Relt* represent the set of all relations which are not in INF or contain a null value. Thus, Rel*
URelt = Rel1* and Rel N Rell™ = @. Our goal is to generalize the —1NF operators to deal with null values.
We have two choices for our definition of a precise generalization for the operators. We can either apply the
PNF possibility function first and then unnest the result or we can unnest first and then apply the PNF
possibility function, resulting in the following two definitions.

Definition 5.3: Let 4 be an operator on Rel and let 4'* be an operator on Rell”. We say that v'™ is a
precise generalization of y relative to unnesting and PNF possibility function POSS* if one of the following
two conditions holds:

1. when ~ and 4'* are unary operators, u*(POSS*(v'*(r))) = v(u*(POSS*(r))) for every r € Rell™ for
which 4'*(r) is defined.

2. when « and 4'* are binary operators, u*(POSS*(r v'* q)) = u*(POSS*(r)) v p*(POSS*(q)) for every
r,q € Rell™ for which r 4'* ¢ is defined.

Definition 5.4: Let v be an operator on Rel and let 4'* be an operator on Rell”. We say that '™ is a

precise generalization of «y relative to unnesting and PNF possibility function POSS™ if one of the following
two conditions holds:

26

1. when + and '* are unary operators, POSS*(u'*(y'*(r))) = 4(POSS* (u'*(r))) for every r € RelT™ for
which 4'*(r) is defined.

2. when « and 4'* are binary operators, POSS*(p'*(r 7'* ¢)) = POSS” (u'*(r)) v+ POSS*(p'*(q)) for
every r,q € Rell™ for which r 4'* g is defined.
Theorem 5.1: Definitions 5.3 and 5.4 are equivalent.
Proof: By Corrolary 5.1, we know that null-unnest* is a precise generalization of standard unnest™ for
POSS*. Thus, the definitions are equivalent. 7
There are corresponding definitions of adequate and restricted for Rel?™, and there are three specifications

of faithfulness we could use: comparing relations in Rel{* to relations in Rel, Relt, and Rel*. Asin previous
sections, proofs of faithfulness are straightforward and so we shall omit them here.

5.8.1 Null-extended union

Our definition of null-extended union can be revised to accommodate nulls by adding tuple set reduction as
follows.

Definition 5.5: In order to take the null-eztended union of two relations ri and ry we require that they
have equal relation schemes, say R. The scheme of the resultant structure is also R. We define null-extended
union at the instance level as follows. Let X range over the zero order attributes in Ep and Y range over
the higher order attributes in Eg. The null-eztended union of r; and rg is:

U ={t| (Gt e A g Erg: (VXY € Br : t{X] = t1]X] = t2[X] A t[Y] = (aa[Y] U £2[Y7])))
vV (ter AVt €ry: (VX € Er - t[X] # t'[X])))
Vv (tery AV Er (VX € Br s t{X] # £[X]))T

Note, this definition is recursive in that we apply the null-extended union to each higher order attribute Y.

Proposition 5.3: Null-extended union is a precise generalization of A-union with respect to unnesting and
PNF possibility function POSS*, where the join dependency used in the A-union is the path set of the
—1NT relation’s scheme tree.

Proof: We show that u*(POSS*(r U¢' g)) = p*(POSS*(r)) U® u*(POSS*(q)). By Proposition 4.4, we
know that extended union is a precise generalization of A-union, and so u*(POSS*(r)) U? u*(POSS™ (q)) =
u*(POSS*(r) U POSS*(g)). Thus, we only need to show that POSS*(r u* ¢q) = POSS*(r) v°
P0OSS*(g). We show inclusion both ways. Let p=r ue q.

D Let € POSS*(r) U® POSS*(q). There must be ¥ € POSS*(r) and § € POSS*(g) such that
p=7U°q. Let tp be atuple in p. Eithert, €r,t, € g, or iy is a combination of tuples in r and g with
equal partition keys. If ¢, € r, thereis a tuple t; € 7such that i5 > . Now, tis either in por is included
in a combined tuple of P, since the null values of some partition key may have been assigned values that
make the partition key non-unique. In any case, this tuple subsumes i,. A similar argument can be
made if t, € q. If £, is a combination of tuples in ¢ and g, then there are no null values in the outer most
partition key. Therefore, in P, these tuples will also combine, and there is a possibility which sulosumes
tp. We conclude 7 > p, and so § € POSS* (p). Therefore, POSS*(p) 2 POSS*{r) U° POSS*(g).

C Let $ € POSS*(p). Since p > r, p > r and p is in PNF. Therefore, p € POSS*(r). Similarly,
$€ POSS*(q). Then, € POSS*(r) U° POSS*(g), and so POSS*(p) € POSS*(r) U® POSS™ (q).

We conclude that null-extended union is a precise generalization of standard union for POSS*. E]

27

5.8.2 Null-extended difference

We change the definition of extended difference to include null values by keeping tuples in a relation only if
they are not subsumed by some tuple in the other relation.

Definition 5.6: Let r; and r; be relations on scheme R. Let X range over the zero order attributes in Ep
and Y and Z range over the higher order attributes in Eg. The null-estended difference of r1 and ro is:

7y —e T2={t‘(at167‘1 A dtp Erg A iZ € Egr :
(VX,Y € B : f1X] = t2]X] = t2[X] A Y] = (t[¥] =" 22[Y])))
v (ter AV eri(t’ 21)))}

Proposition 5.4: Null-extended difference is a restricted generalization of A-difference with respect to
unnesting and possibility function POSS*, where the join dependency used in the A-difference is the path
set of the —1NTF relation’s scheme tree.

Proof: We show that there does mot exist p such that u*(POSS*(r —¢' gq)) 2 w*(POSS* () 2
u*(POSS*(r)) =% p* (POSS*(q)). By Proposition 4.9, we know that extended difference is a precise gener-
alization of A-difference, and so u*(POSS*(r)) —2 u*(POSS*(q)) = p*(POSS* (r) —¢ POSS5*(q)). Thus,
we need only show that there does not exist p such that POSS*(r ~¢' q) 2 POSS*(p) 2 POSS*(r) —°
POSS*(q)). Suppose there is some p. If POSS™ (r —' q) 2 POSS*(p), then there must be some tuple ¢
in p that does not subsume any tuple in r —' g. This means that the non-null valued gzero order attributes
X of t, or some nested relation in ¢, do not match any tuple on X in the corresponding place in r —<' q.
Let ' be the tuple and z be the relation {either r or a nested relation in r) where the matching does not
occur, and w be the corresponding relation in g. There are two possible reasons for there not being a match:
either ¢/[X] € z and Js € w: s > t/, or t'[X] & 2[X]. In each case, the corresponding relation in POS S™(p)
must contain a tuple which subsumes t', however, POSS*(r) — POSS *(g) contains a relation in which the
corresponding relation does not. In the first case, the possibility of t' can be eliminated by the possibility
of s in w that subsumes it, and in the second case, simply choose not to include t' in POSS*(r). There-

fore, POSS*(p) 2 POSS*(r) — POSS*(g), which is a contradiction. We conclude that null-difference is a
restricted generalization of standard difference for POSS*™. ™

5.8.8 Intersection, Cartesian Product, and Select

We will not formally define these “null-extended” versions of these operators. A null-extended intersection
can be obtained from union and difference by

re N 7 = (ry U 13) = ((r1 = r2) U (rz =" r1)).

We note also that null-extended intersection is an adequate and restricted generalization of standard inter-
section with respect to unnesting and PNF possibility function POSS*. Asin the previous two sections we

will use the standard cartesian product operator. For select we will use null-select as defined in section 3.
5.8.4 Join
The problems involved in defining join operations for relations with nulls and for -1NF relations have been

discussed before. Combining nulls and ~1NF does not improve the situation. However, our limited operator,

extended natural join, does have an adequate and restricted generalization with respect to PNF possibility
function POSS*.

28

Definition 5.7: Let X be the higher order attributes in Eg, N Eg,, A = Eg, — X, and B = Eg, — X.
Then the null-eztended natural join is r1 <¢' r, which produces a relation r on scheme R where:

1. R= (4, X, B), and

2. r={t| (Fu & ri,v € rp : t{A] = u[A4] A t[B] = o[B] A t{X]= (u[X] 0" o[X]) A t[X] # 0}
Note we use null-eztended intersection to combine the nested relations, and that zero order attributes can
only have equal values if neither is ni or unk.

Proposition 5.5: Null-extended natural join is an adequate and restricted generalization of standard nat-
ural join with respect to unnesting and PNF possibility function POSS*.
Proof: By Proposition 4.11 we know that extended natural join is a precise generalization for standard
natural join. Therefore, we need only show that null-extended natural join is an adequate and restricted
generalization of extended natural join. We show adequate and then restricted.
adequate: POSS*(r ><*' g) D POSS*(r) b POSS*(q).
Let p = r o<’ ¢ and p € POSS* (r) 0<® POSS*(q). Also, let C be the common zero order attributes
of r and g. Then, there must be 7 € POSS*(r) and § € POSS*(q) such that p = 7v<® §. Let ¢, be
a tuple in p. Then, there are tuples ¢, € r and t, € g such that tp|C] = t,[C] = t4|C]. There are also
tuples t~ € ¥ and t~ € g that agree on C and will participate in the join giving ¢5. Now, the cormmon
higher order attributes X of ¢» and ¢~ will participate in an extended intersection, the result of which

will subsume the result of the null-extended intersection of ¢.[X] and t4[X]. Therefore, t>2>1;, P 2 p,
and so p € POSS*(p).

restricted: there does not exist p such that POSS*(r <*' g) 2 POSS*(p) 2 POSS*(r) <® POSS*(q).
Suppose there is some p. If POSS*(r * ¢) 2 POSS*(p), then there must be some tuple ¢ in p
that does not subsume any tuple in r ><*’ g. Thus, ¢ contains non-null values which must occur in any
possibility of p, but not in all possibilities of r p<®’ q. Consider the possibilities for tuples in r and g
which could exist to join to make a possibility for ¢. Since ¢ does not subsume any tuple in r 1€’ g, it
must either have projections on the common zero order attributes that are null or different actual values,
or have different actual values in a common nested relation. In the first case, there is a possibility for
tuples in r and g which set the null value to different actual values, and so they do not participate in
the join. In the second and third case, there are possibilities which do not have those different actual
values. Therefore, there is a possibility of r and g whose extended join is not a possibility of p. So,
POSS*(p) 2 POSS*(r) v<®* POSS*(g), which is a contradiction.

We conclude that null-extended natural join is an adequate and restricted generalization of standard natural

join with respect to unnesting and PNF possibility function POSS*.

5.8.5 Null-estended Projection

We define null-extended projection as an extended projection followed by tuple set reduction, or as a tuple-
wise null-extended union of the usual projection.

Definition 5.8: The null-eztended projection of relation r on attributes X is

w5 =Tt ezl = U @
ter{X]
Proposition 5.6: Null-extended projection is a precise generalization of standard projection with respect
to unnesting and PNF possibility function POSS*.
Proof: Since the only difference between null-extended projection and extended projection is removal of

subsumed tuples, the proof mirrors the proof for null-extended union (Proposition 3.3). O

29

A B C D
a dne C1 d1
[+ 51 dne [} dg
an b (5] Cll
2573 b (43 dz
ag b [} dl
ag b Ci dz

Figure 6-1. Relation satisfying A——B and B——C, but not A——C

when dne nulls are not equated.

6. Dependencies in a -1NF Database with Null Values

A key assumption made in this paper has been the requirement of partitioned normal form. In the definition
of PNF, we assume that certain multivalued dependencies must hold in a 1NF relation before it can be
legally nested into a particular form. Furthermore, multivalued dependencies imply functional depend encies
in the nested relation. Therefore, it is important to determine what effect the addition of null values will
have on these dependencies.

In this section we will discuss the previous work on extending dependencies to deal with nulls, providing

some new clarifying information. We will examine how these dependencies interact with the non-existent,
unknown, and no-information interpretation of nulls.

6.1 Non-ezistent Nulls

In [Lie2], a sound and complete axiomatization for functional and multivalued dependencies are given for
a relational model in which dne nulls are allowed. In this model, dne nulls are not considered equal to
each other. Notably missing from the inference rules for both FDs and MVDs is the transitivity rule. The
problem occurs when dne nulls appear in the attribute that implements the transitivity, as the application
of the FD and MVD rules is denied when null values are present on the left hand side of the rule.

An example for MVDs is a relation r on scheme R = (4, B, C, D) where A—— B and B——C hold, but
A——C does not hold (Figure 6-1).

We assume a model of a relation in which tuples or fragments of tuples represent fundamental rela-
tionships in the world being modeled. Each set of attributes that is involved in one of these fundarmental
relationships is called an object [FMU]. On examining the first two tuples in relation r, it must be true that
there is an object involving attributes A, C, and D, and no subset of them. Otherwise, we would have to add
two tuples matching the first two tuples in r but with the C and D values swapped. However, on examing
the last four tuples, where dne nulls do not occur, there are independent AC and AD objects. If we accept
this, then we must accept the fact that there are two different semantics for tuples in r. If the value of
B is dne then an ACD association must exist, and if the value is not dne then independent AC and AD
associations must exist, in addition to associations involving B. We do not believe this is a plausible way to
interpret a relation.

The solution is to equate dne nulls from the same domain. Then, in a database with only dne nulls
added, the definitions of FD and MVD remain identical to the standard ones and the same axiomatization
is valid. This is intuitively pleasing as well, since a dne null cannot be replaced by another value. In fact,
it indicates that we know that no other domain value is valid.

Non-existent nulls also require a more complicated test when tuples are inserted into a relatiomn. In

addition to the usual tests to see that given dependencies are not violated, we must ensure the exclusivity of

30

the dne null in each object in which it appears. For example, let us attempt to add the tuple {(as,b,dne, ds)
to relation r above. This insertion should be denied since it is inconsistent that b is related to ¢y and co and
also that b is related to no C value. This new integrity constraint is embodied in the following rule.
Eszclusivity Rule for dne Nulls: Let r be a relation with objects 0. For each O € 0, in 7o(r) there
does not exist two tuples t; and t; where ¢;1[A] = dne, t1[A] # t2|A], and ;[0 — A] = t2[0 ~ Al,
for any A € O.

6.2 Unknown Nulls

The effect of unk nulls on functional dependencies has been adequately covered in [Vasl]. The definition of
an FD must be modified so that unk nulls are not equivalent. This must be the case since we have no way
of knowing whether two unk nulls will turn out to be the same or different values. The same logic holds
for MVDs. However, unlike the assumptions made by [Liel, Lie2] for dne nulls, even though we cannot
apply an FD to adjust values or an MVD to add tuples when there are unk nulls on the left hand side
of the dependency, we still have the usual axiomatization for FDs and MVDs. In proof, suppose we have
a relation that satisfies some given dependencies, but not some dependency which follows from the wusual
axiomatization. An example is relation r in Figure 6-1, with unk nulls replacing the dne nulls. Since unk
nulls are placeholders for actual facts about the world, the dependencies with which we have constrained
the world are not altered by the presence of these nulls. Therefore, dependencies which follow from the
given dependencies in a world without null values must still hold in a world with nulls. Thus, a relation
such as r with unk nulls, must not be a complete or accurate representation of the world, since for any

relation r, every relation in POSS(r) must satisfy all FDs and MVDs which can be derived from the given
dependencies.

6.8 No-information Nulls

The only published work dealing with dependencies and the no-information interpretation of nulls is an
axiomatization of FDs by [AM]. As in previous approaches, they redefine the FD so that it is applicable
only when non-null values are present. Therefore, they conclude the same results as [Lie2], about the lack of
transitivity in this model. Based on the lattice developed in section 2, we know that an ni null will eventually
be replaced by either an unk null or a2 dne null when we find out whether or not a value actually exists.
Hence, given a relation r with ni nulls, in any relation in POSS(r) all ni nulls will be replaced by actual
values or by dne. As discussed earlier in this section, in these cases, there is no valid reason not to retain the
same axiomatization for FDs and MVDs as for relations without nulls, and to do so would possibly elimminate
important dependencies for use in database design and normalization. Thus, we repeat an earlier stat ement,
that the definitions of FD and MVD need not be changed as long as the convention that two values from
the same extended domain are equal if they are the same value and neither one is mi or unk.

6.4 Join Dependency

At first glance, there doesn’t seem to be any good way to define the join dependency on relations with nulls.
Consider the tuple (a,ni,c) defined on scheme B = (A, B,C). Normally any one tuple relation satisfies any
join dependency since any projections of the tuple will obviously join to form the original tuple. However,
with the given tuple, the join dependency #(AB, BC) does not hold since the projections will not join on
ni. However, the MVD which follows from this join dependency, B—— A, does hold by default. What we
need is a “default” for the join dependency when ni or unk nulls are present in the join attributes. Ve have
decided that, in general, ni and unk nulls should not be equated with each other. However, each n1zll does

31

stand for one and only one value (actual or dne), and so if a null is transported to more than one place
we should identify them to be the same. Therefore, we mark ni and unk nulls before applying the test for
satisfying the join dependency, doing so by equating identically marked nulls. We now have an appropriate

definition for a join dependency in our framework and we can use the existing theory for deriving MVDs
from valid join dependencies.

7. Conclusion

The model of incomplete information pre'sented in this paper is based on the concept of more informative
tuples and relations. Using a partial order in which the no-information null is less informative than both the
unknown and non-ezistent nulls allows systems to be designed with either the no-information null alone or
with a combination of nulls. If one wants to avoid any computational problems with unknown nulls, they can

be deleted from the model. However, the framework is there if applications arise in which the no-inform ation
interpretation is not adequate.

It was shown how the theory of nulls can be used in a —=1NF database with a straightforward extension.
We discovered that our ~1NF extended operators have a pleasing mapping to their INF counterparts, based
on the concept of partitioned normal form. Furthermore, null values do not affect the operation of the
important nest and unnest operators. Finally, we showed how existing theories on the axiomatization of

functional and multivalued dependencies in the presence of nulls are flawed, and, in fact, the traditional
axiomatization is valid.

Further work is needed in the area of relational operators for —1NF relations. We especially need more
sophisticated select and project operators which can work on nested relations. The lack of a satisfactory
generalization for natural join suggests that more work is necessary before a solution is reached. Of special

interest is a join which will work in a database in nested normal form. This topic and other language issues
will be the topic of forthcoming papers.

8. Bibliography

[AB] Abiteboul, S. and N. Bidoit, “Non First Normal Form Relations: An Algebra Allowing Data Re-
structuring,” Rapports de Recherche No 347, Institut National de Recherche en Informatique et en
Automatique, Rocquencourt, France (November 1984).

[AM] Atzeni, P. and N. Morfuni, “Functional Dependencies in Relations with Null Values,” Information
Processing Letters 18, 4 (May 1984}, 233-238.

[Bis1] Biskup, J., “A Formal Approach to Null Values in Database Relations.” In Advances in Database
Theory, Volume 1, H. Gallaire, J. Minker, J. Nicolas, Eds., Plenum Press, New York, 1981, 209-341.

[Bis2] Biskup, J., “A Foundation of Codd’s Relational Maybe-Operations,” ACM Transactions on Data-
base Systems 8, 4 (December 1983), 608-636.

[Cod] Codd, E., “Extending the Database Relational Model to Capture More Meaning,” ACM Transac-
tions on Database Systems 4, 4 (December 1979), 397-434.

[FMU] Fagin, R., A. Mendelzon and J. Ullman, “A simplified universal relation assumption and its prop-
erties,” ACM Transactions on Database Systems 7, 3 (September 1982), 343-360.

[FV1] Fischer, P. and D. Van Gucht, “Determining when a Structure is a Nested Relation,” Proceedings
of the Eleventh International Conference on Very Large Databases, Stockholm {August 1985).

[FV2] Fischer, P. and D. Van Gucht, “Weak Multivalued Dependencies,” Proceedings of the ACM
SIGACT-SIGMOD Symposium on Principles of Database Systems, Waterloo (April 1984), 266-
274.

[Gol] Goldstein, B., “Constraints on Null Values in Relational Databases,” Proceedings of the Seventh
International Conference on Very Large Databases, Cannes (September 1981), 101-110.

32

[Gran]
[Grah]

[1L1]

[LP]

[Lie1]

[Lie2]
[Lip1]
(Lip2]
[Maii]

[Mai2]
[Mak]
[00]
[0Y]

[PHH]

[RKB]

Crant, J., “Null Values in a Relational Data Base,” Information Processing Letters 6, 5 {October
1977), 156-157.

Grahne, G., “Dependency Satisfaction in Databases with Incomplete Information,” Proceedings of
the Tenth International Conference on Very Large Databases, Singapore (August 1984), 37-45.
Imielifiski, T. and W. Lipski, “Incomplete Information in and Dependencies in Relational Data-
bases,” Proceedings of the ACM-SIGMOD Conference on Management of Data, San Jose (May
1083), 178-184.

Imielinski, T. and W. Lipski, “On Representing Incomplete Information in a Relational Database,”
Proceedings of the Seventh International Conference on Very Large Databases, Cannes (September
1981), 388-397.

Jaeschke, G., “Nonrecursive Algebra for Relations with Relation Valued Attributes,” TR 84.12.001,
Heidelberg Scientific Center, IBM Germany (December 1984).

Jaeschke, G., “Recursive Algebra for Relations with Relation Valued Attributes,” TR 84.01.003,
Heidelberg Scientific Center, IBM Germany (January 1984).

Jaeschke, G. and H. Schek, “Remarks on the Algebra of Non First Normal Form Relations,” Pro-
ceedings of the ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, Los An-
geles (March 1982), 124-138.

Kambayashi, Y., K. Tanaka and K. Takeda, “Synthesis of Unnormalized Relations Incorporating
More Meaning,” Information Sciences 29 (1983), 201-247.

Keller, A. and M. Wilkins, “On the Use of an Extended Relational Model to Handle Changing
Incomplete Information,” IEEE Transactions on Software Engineering 11, 7 (July 1985), 620-633.
Korth, H., G. Kuper, J. Feigenbaum, A. Van Gelder and J. Ullman, “System/U: A Database
System Based on the Universal Relation Assumption,” ACM Transactions on Database Systems 9,
3 (September 1984), 331-347.

LaCroix, M. and A. Pirotte, “Qeneralized Joins,” ACM SIGMOD Record 8, 3 (September 1976),
14-15.

Lien, Y., “Multivalued Dependencies with Null Values in Relational Data Bases,” Proceedings
of the Fifth International Conference on Very Large Databases, Rio De Janeiro (October 1979),
61-606.

Lien, Y., “On the Equivalence of Database Models,” Journal of the ACM 29, 2 (April 1982}, 333-
362.

Lipski, W., “On Databases with Incomplete Information,” Journal of the ACM 28, 1 (January
1981}, 41-70.

Lipski, W., “On Semantic Issues Connected with Incomplete Information Databases,” ACM Trans-
actions on Database Systems 4, 3 (September 1979), 262-296.

Maier, D., “Discarding the Universal Relation Instance Assumption: Preliminary Results.” In Pro-
ceedings of the XP1 Workshop on Relational Database Theory, New York, June 1930.

Maier, D., Theory of Relational Databases, Computer Science Press, Rockville, MD, 1983.
Makinouchi, A., “A Consideration on Normal Form of Not-Necessarily-Normalized Relation in
the Relational Data Model,” Proceedings of the Third International Conference on Very Large
Databases, Tokyo (October 1977), 447-453.

Ozsoyoglu, G. and Z. Ozsoyoglu, “An Extension of Relational Algebra for Summary Tables,” Fro-

ceedings of the 2nd International (LBL) Conference on Statistical Database Management, Los
Angeles (September 1983), 202-211.

Ozsoyoglu, Z. and L. Yuan, “A Normal Form for Nested Relations,” Proceedings of the ACM
SIGACT-SIGMOD Symposium on Principles of Database Systems, Portland (March 1985), 251-
260. ‘

Pistor, P., B. Hansen and M. Hansen, “Eine sequelarige Sprachschnittstelle fir das NF2-Modell.”
In Sprachen fir Datenbanken, J. Schmidt, Ed., Informatik Fachberichte Nr. 72, Springer- Verlag,
Berlin, 1983.

Roth, M., H. Korth and D. Batory, “SQL/NF: A Query Language for —1NF Relational Databases,”
TR-85-19, Department of Computer Science, University of Texas at Austin (September 198 5).

33

[RKS]

[Schi]

[Sch2]
[ss1]

[SS2]

[Sci]

[TF]

[Vas1]
[Vas2]
[Won]
[Zan1]

[Zan2]

Roth, M., H. Korth and A. Silberschatz, “Theory of Non-First-Normal-Form Relational Databases,”
TR-84-36, Department of Computer Science, University of Texas at Austin (December 1984).
Schek, H.-J., “Methods for the administration of textual data in database systems.” In Information
Retrieval Research, Oddy, Robinson, Van Rijsbergen and Williams, Eds., Buttersworth, London,
1981, 218-235.

Schek, H.-J., “Towards a Basic Relational NF? Algebra Processor,” International Conference on
Foundations of Data Organization, Kyoto, Japan (May 1985), 173-182.

Schek, H.-J. and M. Scholl, “An Algebra for the Relational Model with Relation-Valued Attributes,”
TR DVSI-1984-T1, Technical University of Darmstadt, Darmstadt, West Germany (1984).

Schek, H.-J. and M. Scholl, “Die NF2-Relationenalgebra zur Einheitlichen Manipulation Externer,
Konzeptueller und Interner Datenstrukturen.” In Sprachen fiir Datenbanken, J. Schmidt, Ed., In-
formatik Fachberichte Nr. 72, Springer-Verlag, Berlin, 1983.

Sciore, E., “Null Values, Updates, and Normalization in Relational Databases,” Technical Re-
port, Department of Electrical Engineering and Computer Science, Princeton University (December
1979).

Thomas, S. and P. Fischer, “Nested Relational Structures.” In The Theory of Databases, P. Kanel-
lakis, Ed., JAI Press, to appear, 1985.

Vassiliou, Y., “Functional Dependencies and Incomplete Information,” Proceedings of the Sixth
International Conference on Very Large Databases, Montreal (October 1980), 260-269.

Vassiliou, Y., “Null Values in Data Base Management: A Denotational Semantics Approach,” Pro-
ceedings of the ACM-SIGMOD Conference on Management of Data, Boston (1979), 162-169.
Wong, E., “A Statistical Approach to Incomplete Information in Database Systems,” ACM Trans-
actions on Database Systems 7, 3 (September 1982), 470-488.

Zaniolo, C., “A Formal Treatment of Nonexistent Values in Database Relations,” Technical Report,
Bell Laboratories, Holmdel, NJ (January 1983).

Zaniolo, C., “Database Relations with Null Values,” Journal of Computer and System Sciences 28,
1 {February 1984) 142-166.

34

