A CONCURRENCY CONTROL SCHEME
FOR CAD TRANSACTIONS

Henry F. Korth and Won Kim
Department of Computer Sciences
University of Texas at Austin

Austin, Texas 78712

TR-85-34 December 1985

A Concurrency Control Scheme for CAD Transactions

Henry F. Korth
Department of Computer Sciences
University of Texas
Austin, Texas 78712-1188

Won Kim
Microelectronics and Computer Technology Corporation
9430 Research Blud.
Austin, Texas 78759

ABSTRACT

A CAD (Computer-Aided Design) environment requires a significantly
different model of transaction from that developed for typical data-processing
transactions. One reason is that a CAD database system must support CAD
objects as units of retrieval and update. Another reason is that CAD transac-
tions are of longer duration than standard transactions. In this paper, we
present a concurrency control scheme which supports CAD objects and takes
advantage of the CAD transaction model we proposed earlier to achieve greater
parallelism. We also outline techniques for implementing the concurrency control
and recovery manager of our CAD transaction model.

1. Introduction

The goal of any concurrency control scheme for a database system Is to allow for a high
degree of parallelism among the members of a set of concurrently executing transactions, while
regulating that parallelism so as to ensure that the consistency of the data is preserved. In tradi-
tional data-processing style applications, concurrency control theory is based on the notion of
serializability. A concurrent execution of a set of transactions is said to be serializable if it is
equivalent to some serial execution of that set of transactions.

However, serializability is a strong requirement. In systems in which locking is used as the
concurrency control mechanism, it is necessary to use two-phase locking to ensure serializability
unless some structure is imposed on the data or additional semantic information about the data is
made available to the concurrency control mechanism. A drawback to two-phase locking is that
it may require locks to be held for a substantial fraction of a transaction’s duration, thus restrict-
ing the amount of parallelism.

In a CAD environment, transactions are often of long duration. This property exacerbates
the disadvantages of two-phase locking. In [BANC85|, we proposed a transaction model for CAD
transactions in which serializability is not required. Instead, a consistency constraint is stated for
the database and an invariant is defined for each transaction. Executions that preserve the
requisite invariants are allowed, including some executions that may not be serializable. The
model allows for transactions to be nested within other transactions [MOSS81]. Nesting allows
for the modeling of collections of cooperating transactions that represent a group of designers
that are collaborating closely on a design. Other types of interaction among transactions may be
represented also, such as a client/subcontractor interaction, in which a subtransaction may run

concurrently with its parent, but is logically equivalent to a procedure call by the parent.

In [BANCS5|, we presented a few simple schemes for concurrency control within the model.
In this paper, we present an approach to concurrency control that is designed especially for this
CAD transaction model. First, we extend the granularity DAG of [GRAY76] to represent ver-
sions of CAD objects. We then extend the lock modes of [KORT83| to include the special data-
base operations associated with CAD transactions and versions. Because we do not use serializa-
bility as our notion of correctness, we define new criteria for the correctness of a database con-
currency scheme. We show that our definitions are compatible with the CAD transaction model
of [BANCS5] and prove that our scheme is correct under our new definition. We also show tech-
niques for implementing the concurrency control and recovery manager for our model of transac-
tions.

2. Extending the Multiple-Granularity DAG

In this section, we review the directed acyclic graph (DAG) used by [GRAY76] and
[KORTS3]| to represent multiple granularities of data. We then show how this approach can be
extended to represent versions.

2.1. Standard Granularities

Multiple-granularity locking is motivated by the fact the different transactions require
different units of data. Some may need a few records chosen randomly from a relation; others
may need a whole relation, etc. In a design database, design objects may consist of tuples stored
in several distinct relations. Many transactions will access data in object units rather than in
relation or tuple units. It is possible to implement a locking scheme using only one lock granular-
ity. However, such a scheme imposes inefficiencies on the system:

° Transactions that access data in large units (e.g., design objects or relations) need to take a
large number of locks. This increases the amount of overhead imposed by locking.

o Transactions that access data in small units (e.g., records) may have to lock a larger unit of
data than is actually needed. This has the effect of reducing the amount of potential con-
currency in the system.

Multiple-granularity locking is a technique that allows a transaction to lock data using a granule
size that corresponds closely to that with which the transactions accesses data.

We describe a collection of lock granularities by defining a granularity scheme, which
specifies the types of granularity (e.g., record, file, relation) that we shall allow. A granularity
scheme also gives a sub-granule relationship between pairs of granularities (e.g., record is a sub-
granule of file). Typically, we represent a granularity scheme by a directed graph. Figure 1
shows a granularity scheme for a simple data-processing database.

database

area

file rel‘at\i:)n
index

/

record

Figure. 1 Granularity DAG for a Conventional Database

The database is partitioned into a collection of areas. Areas are partitioned in several ways:

® An area contains a collection of files. Although every record is contained in some file, it
may be the case that records of a particular relation are spread over many files.

-3-

. An area contains a collection of database relations. Records of a relation may appear in
several different files.

Having defined a granularity scheme, we may construct an instance of this scheme for any
given instance of the database. An instance is a directed acyclic graph (DAG) that shows the
sub-granules and super-granules for each granule of data in the database. There is a one-to-one
correspondence between the nodes of the DAG and the granules of data in the instance. An edge
(a,b) appears in the DAG if and only if the granule associated with node b is a subgranule of the
granule associated with node a. Thus, the leaves of the DAG represent the smallest units of data
at which we are willing to allow locking. The multiple-granularity locking protocol uses the
granularity-scheme instance.

The directed-graph for an instance is necessarily acyclic, since it represents the notion of
sub-granule. Since the granule representing the entire database contains all other granules as
sub-granules, the database granule serves as the root of this DAG. Figure 2 shows a sample
instance for the scheme of Figure 1.

database
\
area-1 area-2
ﬁlle-l\ file-2 relation-1 relation-2
rec-1 rec-2 rec-3- rec-4 Tec-5 rec-6

Figure. 2 Instance of Granularity Scheme of Figure 1.

We review briefly the locking protocol of [GRAY76] using the instance of Figure 2 as our
example. The database is split into 2 areas. Area-1 holds 2 relations (rel-1 and rel-2), and 2 files
(file-1 and file-2). The records contained within the relations, and files of area-1 and records rec-
1, rec-2, ..., rec-n. We have not shown the structure of area-2 in our figure due to space con-
siderations.

We use the DAG of Figure 2 to explain the semantics of locking in a multiple-granularity
scheme. A lock on file file-1, for example, locks all the records within file-1, but does so with only
one lock request. In such a case, we say that the records of file-1 (rec-1 and rec-2) are locked
implicitly. Similarly, a lock on area-1 locks all the files, and relations in area-1 implicitly, and
thus locks all records contained in area-1 implicitly.

The astute reader will note what appears to be a flaw in this scheme. One transaction, say
t, may lock rec-1. Meanwhile, transaction ¢, may lock area-1. The result is that both transac-
tions have locked rec-1 and we apparently have defeated the entire purpose of locking. This
potential flaw is dealt with using intention locks. We shall present this form of lock in Section 4.
Another apparent flaw is that two transactions may lock record-1, one by locking file-1 and the
other by locking relation-1. This issue, too, is dealt with in Section 4 where the semantics of
implicit locking are defined precisely.

2.2. Design-Object Granularity

The granularity scheme of Figure 1 needs to be augmented in order to describe granularities
appropriate for CAD transactions. We need to include a granularity that represents design
objects. A design object consists of records from several relations and several files [HASKS82].
Thus, the design-object granularity is neither a sub-granule nor a super-granule of either the file
or record granularities. This leads to a granularity scheme as shown in Figure 3.

The scheme of Figure 3 is not sufficiently general to represent design hierarchies of compo-
site objects. In general, an object may contain other objects. That is, objects may be composite.
Sub-objects may be shared among several objects. We do not know, in general, how many sub-
objects an object might have in a particular instance, nor is there any fixed bound on the depth

of nesting. Figure 4 shows an example of a nesting of objects. (Note that we have omitted the
structure of area2 and object2 to simplify the figure. Also, we have not shown the file granular-
ity.)

database
area
de51gn-ob]ect e relatlon
\\ / ™~ index
r cord
Figure 3 Granularity Scheme for a CAD database (without composite objects)
database
/ \
areal area2
objectl object2 relationl relation2
objectl.1 object1.2
recordl record2 Tecord3 record4 record5 record6

Figure. 4 Instance of Granularity Scheme with Composite Objects.

In order to represent composite objects, we add an edge in the directed graph from a design
object to itself, thus creating a cycle. This edge indicates that an object granule may be a sub-
granule of another object granule. Although the resulting granularity scheme is cyclic, we restrict
instances of granularity scheme to be acyclic. This does not constrain our model in any practical
sense, since our condition of acyclicity simply requires that no design object contain itself. Figure
5 shows our granularity scheme for composite objects. Figure 4 is, in fact, a sample instance of
the granularity scheme of Figure 5.

database
area
de51gn-ob]ect e relatlon
1ndex

record

Figure 5 Granularity Scheme for a CAD database (with composite objects)

2.3. Versions of Design Objects

We consider the question of allowing multiple versions of data [KATZ84). The idea of ver-
sions has been used previously in concurrency-control schemes. In [BERN81] versions are used in
conjunction with timestamp-ordering for concurrency control. Versions in schemes such as those
in [BERN81] are not visible to users and exist solely to assist in concurrency control. In a CAD

environment, versions are a natural consequence of the design process. Versions may represent
released designs as well as modifications of existing designs. Thus, the distinction among versions
must be visible to the user.

In a practical system, one may wish to place an upper bound on the number of versions
allowed for a given data item. However, no matter what bound we choose, [PAPA82] has shown
that raising that bound by 1 will allow still greater potential parallelism.

For these reasons, we do not set an a priori bound on the number of versions and seek an
approach that will accommodate however many versions we are willing to allocate space for. In
general, we can represent versions in an instance of our granularity scheme as follows: Let n be a
node of the DAG. If n represents a data granule for which multiple versions exist, create a node
n; for each version v; of the data. Add an edge (n,n;) for each node n;. Create a copy of the
subtree of node n for each version and associate one copy with each of the n;. Mark node n as
representing a multiversion granule.

areal area2 -
| \ S — >
objectl object2 relationl relation2
>N ' t
objectl.1 objectl.2 \ '

objectl.1.V1 object1.1.V2 objectl.2.V1 objectl.2.V2

recordl.l record2.1 record3.1 record4.1 record5.1} record6.1

recordl.2 record2.2 record3.2 record4.2 record5.2 record6.2

Figure. 6 Instance of Granularity Scheme with Composite Objects and Multiple Versions.

Thus, we have a two-level scheme for representing a multiversion datum in a DAG. The
higher level represents the datum itself (all its versions). The lower level represents the individual
versions. In order to model a practical CAD environment, it is sufficient to allow versions only
for design objects. However, we do not need to make this restriction a requirement of our model.

Figure 6 shows the instance of Figure 4 extended to include several versions of the design
objects.

3. Extended Lock Modes for CAD Databases

There are several types of access to CAD data that may be required. Often, design data
(design file) is “checked out” of a design database, operated on by the transaction in a designer’s
private database, and then “checked in”, perhaps as a new version [KATZ84]. Below, we list
four lock modes and show intuitively how these modes can be used to provide access to CAD data
under different requirements for transaction isolation.

. X -- Exclusive
. W -- Write
o R -- Read

. D -- Read dirty snapshot

Figure 7 shows a lock compatibility matriz for our set of lock modes. To determine if a
lock in mode a can be granted to a transaction despite another transaction already holding a b
mode lock on the same datum, we look in the row for @ and the column for b. If the entry is
true then the request is allowed. Otherwise the lock request is denied.

X w R D

X false false false false
W false false false true
R false false true true
D false true true true

Figure 7: Compatibility Matrix

We now show to which of several modes of access to a CAD database these lock modes
correspond. In what follows, for a data item n for which versions exist, we shall use n; to denote
the node corresponding to a particular version. We assume that if ¢ <, version n; is older than

version n;.

o Protect all versions: This means obtaining exclusive access to all of the n;s of a version
granule n. This is accomplished by locking n in X mode. Since this lock provides an
implicit X lock on all versions, no concurrent access to any version is allowed. An X lock
on n also precludes the creation of a new version by another transaction, since a new ver-
sion becomes a child of n.

. Create new version: When a new version of a datum is created, a node corresponding to it
must be inserted into the granularity DAG. The creator of a new version needs write access
to that version (or exclusive access). Thus, creation of a new version will conflict with an X
lock on n, but will not conflict with locks on any of the existing n;s. The exact mechanism
of the conflict is based on intention mode locks, as presented in [GRAY76, KORTS83].

. Write specific version: This mode of access is represented by W. Concurrent reading and
writing is, of course, not allowed. W mode does, however, allow concurrent reading of a
dirty snapshot. If the writer needs to disallow such accesses, it may use X mode on the
node corresponding to the specific version.

. Write latest: This mode of access is the same as ‘“write specific version”, where the specific
version is the latest version.

o Read specific version: This mode of access is represented by E.

° Read latest: This mode is implemented using ‘‘read specific version” in a manner similar to

the implementation of “write latest’".

. Read latest available: This mode uses R mode. The system needs to determine the latest
version on which no locks other than R and D locks are held. This information is available
in the lock manager’s state information.

o Read dirty snapshot: This mode of access is represented by D mode. A dirty snapshot is a
copy of the datum that may contain uncommitted changes by concurrent transactions.

Note that the presence of D mode implies that we allow for pon-serializable schedules even if
two-phase locking is used. In what follows, we shall pay little attention to D mode under the
assumption that it will be used only by read-only transactions. Thus, transactions that use D
mode will not generate an inconsistent database.

Suppose that we support the granularities shown in Figure 5. Consider the case of a tran-
saction checking a design object out of the design database. The checkout operation amounts to
a read (R), on one of the versions. The version read is copied into the transaction’s private data-
base. The transaction has write access to the newly created private version. Eventually, the
transaction will check in the object to the design database, thereby creating a new version. Con-
current checkout requests are allowed since they correspond to concurrent R lock requests.

Note that the approach to checkout and checkin presented above allows for the generation
of non-serializable schedules, since two checkin operations on the same datum do not conflict.
When we require serializability, we need to regulate further legal operations on versions. Among
the rules we can add to the protocol for version creation are the following:

) Before a transaction may create a new version of a datum, it must hold the latest version of
that datum in W mode.
. Before a transaction may create a new version of a datum, it must hold an X mode lock on

the node representing all versions of the datum.

4. Lock Modes

In this section, we define the set of lock modes that we use in our concurrency control
scheme. These modes are based on [KORT83], and Sections 4.2 and 4.3 are based heavily on that
paper. After defining our set of locks, we propose new protocols based on the notion of predicate-
wise two-phase locking that preserve database consistency as defined in [BANCSS5].

4.1. Correctness of a Compatibility Function

In the previous section, defined a lock compatibility function for the modes X, W, R, and
D. We gave an intuitive argument justifying our choice of compatibility function. We now state
precisely what we require of lock compatibility functions. Each lock mode that we have defined
(X, W, R, D) corresponds to a database operation. For this reason, we call them operational
modes. The operational lock modes define the amount of semantic information available for con-
currency control.

Definition: A lock compatibility function COMPAT is correct if all schedules for all sets of
two-phase transactions are serializable, provided that compatibility is observed.

Because of the inclusion of D mode, the compatibility function of Figure 7 is not correct.
However, if we consider the restriction of COMPAT to X, W, R, then the function is correct.

Although we are not, in general, interested in serializability for CAD transactions, we shall
see that the notion of correctness remains useful in defining the class of “acceptable’ lock compa-
tibility functions.

4.2. Definition of Intention Lock Modes

We define intention mode locks in order to ensure that locks taken at different granularities
do not conflict. For example, we must avoid a situation in which a transaction is allowed an X
mode lock on a relation while another transaction holds a W mode lock on one record of the rela-
tion. We define one intention mode for each operational mode. We then construct a lock compa-
tibility matrix for this extended set of modes.

Let INITIAL denote our initial set of lock modes. For each mode a in INITIAL, we define a
new mode called intend-a mode, denoted I,. Let INTENT denote the union of INITIAL and the
set of intention modes constructed from INITIAL. Let COMPAT be the initial lock compatibility
function mapping INITIAL x INITIAL to {true, false}. The first argument to COMPAT signifies
the mode of lock being requested. The second argument signifies the mode of lock already held on
the data item in question. We extend COMPAT to INTENT as follows: Let p and ¢ be two lock
modes. Then COMPAT(p,q) is
. true if both p and ¢ are intention modes, that is, if there is a mode P and ¢ in INITIAL

such that p = Ip and ¢ = Ig.

) COMPAT(P,q) if ¢ is in INITIAL and there is a mode P in INITIAL such that p = Ip.
. COMPAT(p,Q) if p is in INITIAL and there is a mode @ in INITIAL such that ¢ = Ig.

4.3. Protocols and Intention Modes

To illustrate the intuition behind the use of intention modes, consider the special case in
which the granularity DAG happens to be a tree. We require all transactions to observe the fol-
lowing rule, called the tree/parent rule.

Definition: A transaction observes the tree/parent rule if it does not request a lock on a node
unless it already holds a lock on the parent of the node in the corresponding intention mode.

This rule does not apply to the root of the tree (since the root has no parent).

Thus, if transaction ¢ is to be allowed to lock a node n in mode a, ¢t must already hold an
I, lock on the parent of n. The tree/parent rule implies that transactions must begin locking at

the root and take intention locks along tree paths to those nodes that it needs to lock in one of
the operational modes (X, W, R, D).

The above rule is not sufficient to ensure a correct concurrency scheme. Suppose transac-
tion ¢, follows the tree/parent rule to lock relation rel-1 in X' mode and then releases all of its Iy
mode locks. Another transaction ¢, could take an X mode lock on the root, thus locking the

entire database implicitly. Therefore, we impose the leaf-to-root node release rule [GRAY7S,
KORTS2]:

Definition: A transaction t observes the leaf-to-root node release rule in a DAG G if:

. for each node n of G, t is two-phase with respect to n. (i.e., no node is locked, unlocked,
and re-locked).
. for each node n of G, t does not unlock n while it holds a lock on a child of n in G.

These definitions allow us to characterize the correctness of a lock compatibility function as fol-
lows:

Definition: A lock compatibility function is tree-correct if all schedules for all sets of transac-
tions that

. are two-phase
) follow the tree/parent rule
. follow the leaf-to-root node release rule

are serializable provided that compatibility is observed. when we do not require serializability.
Theorem: The lock compatibility function for INTENT (X, W, R) is tree correct.
Proof: This is a corollary to a theorem in [KORTS83].

In order to extend this locking scheme to DAGs, we need to replace the tree/parent rule.
Since a DAG node may have many parents, we need to define the number of parents that must be
locked. The most general form of the requirement that must be satisfied is that for any two
conflicting INITIAL modes a and b, the number of parents that must be locked in J, mode plus
the number of parents that must be locked in J; mode must be greater than the number of
parents. For our purposes, we shall use only the following rule. We require intention mode locks
on only one parent for R and D, but we require locks on all parents for W and for X. Further-
more, we restrict implicit locking. In order for a node to be locked implicitly, in R or D mode,
only one parent of the node need be locked. However, all parents are required for implicit locking
in W or X mode. We call our DAG analog of the tree/parent rule the biased-parent rule since
we are “biased” in favor of readers. We choose to favor readers in this way because reading is a
more frequent activity than writing. Thus, we anticipate that providing fewer requirements for
reading will result in improved system performance.

Definition: A transaction observes the biased-parent rule if it does not request a lock on a node
n in modes R, Ig, D, or Ip unless it already holds a lock on a parent of the node in the
corresponding intention mode and it does not request a lock on a node n in modes X, Iy, W, or
Iy unless it already holds a lock on all parents on the node in the corresponding intention mode.

The above rule leads to a notion of DAG-correctness:

Definition: A lock compatibility function is DAG-correct if all schedules for all sets of transac-
tions that

o are two-phase
) follow the biased-parent rule

° follow the leaf-to-root node release rule

are serializable provided that compatibility is observed.
The following theorem follows directly from [KORT83]:
Theorem: INTENT (X, W, R) is DAG-correct.

4.4. Predicatewise Two-Phase Locking

We relax our requirement of serializability by replacing it with a requirement of preserva-
tion of the consistency constraint. In the model of [BANC85|, the definition of each transaction
includes an invariant and a partial order on the steps and sub-transactions of the transaction.
We require that a transaction preserve its invariant if it is run alone. Initially, we shall assume
that transactions are not nested. We consider nested transactions in Section 6.

Although we refer to the invariant as the consistency constraint, many practical invariants
are a conjunction of relatively simple consistency constraints. This motivates us to put each
invariant C into conjunctive normal form, that is, we write C' as a conjunction of predicates
€1,C2,---,Cn , SUch that the ¢; do not contain any “ands”. It is an elementary fact of mathematical
logic that we can put any C into this form. We refer to each ¢; as a conjunct.

Before we introduce our main protocol, we present a special case in which each conjunct is
expressed in terms of an individual object. We do not claim that this is frequently true in prac-
tice; rather we wish to illustrate the technique we shall use in the general protocol. Consider the
history of accesses to one particular object by a set of transactions. If we can show that this his-
tory is equivalent to one created by a serial execution of the transactions, then we know that our
consistency constraint is preserved. Note that this does not imply serializability since the
equivalent serial ordering may be different for different objects. In this case, we can consider the
following protocol:

) Two-phase locking with respect to versions: A transaction is required not to request any
lock on any node pertaining to a multiversion granule after it has released a lock on that
granule.

Note that this is a very weak two-phase requirement. That is, this requirement imposes fewer
limitations on the legality of schedules than does standard two-phase locking. It is applied to
each multiversion granule individually.

Although the above rule is not very general, it suggests a fruitful approach to concurrency
control without global serializability. We define localized sections of the database on which two-
phase locking is required. To the extent that these sections of the database are small, we have
gained in potential concurrency over standard two-phase locking.

We now extend our approach to arbitrary predicates.
® Two-phase locking with respect to sets of predicates (Predicatewise 2PL): For each conjunct,

¢;, let d; denote the set of data items mentioned in c;. This protocol requires that two-

phase locking be observed with respect to each d; set of which a member is accessed by the
transaction.
Note that this is weaker than standard 2PL, but stronger than two-phase locking with respect to
versions.

We now introduce a new notion of correctness and a new multiple-granularity locking pro-
tocol based upon predicatewise 2PL, the leaf-to-root node release rule, and the biased-parent rule.
We begin by defining a notion of correctness for a single-granularity locking scheme.

Definition: A lock compatibility function is predicatewise correct with respect to a consistency
constraint C if all schedules for all sets of transactions that:

o preserve C
. are predicatewise two-phase

preserve C provided that compatibility is observed.

- 10 -

Now, we extend the above notion to a multiple-granularity locking scheme represented by a

DAG:

Definition: A lock compatibility function is predicatewise-DAG correct with respect to a con-
sistency constraint C if all schedules for all sets of transactions that:

. preserve C,

. are predicatewise two-phase,

) follow the biased-parent rule, and

. follow the leaf-to-root node release rule

preserve C provided that compatibility is observed.

When we use the term predicatewise correct without reference to a specific constraint C, we
mean predicatewise correct with respect to all possible constraints C. We are now able to justify
our original choice of a lock compatibility function:

Theorem: The compatibility function of Figure 5 for (X, W, R) is a predicatewise correct com-
patibility function.

Proof: Let s be a schedule. Let C be the consistency constraint and let ¢; (1=1,...,n) denote the
conjuncts in a conjunctive normal form representation of C. For each set d; of data items refer-
enced by conjunct ¢;, let s; denote a schedule formed from s as follows: Take those steps from s
that access a data item in d; and list those steps in the same order in which they appear in s.
Note that a particular step in s may appear in several of the s;s. Since all transactions in the set
T that generated s are predicatewise two-phase, they are two-phase with respect to d;. For each
transaction ¢ in T, let t; denote a transaction formed by taking only those steps of ¢ that appear
in s;. Since, t; accesses only data items in d;, and t; is two-phase with respect to d;, ¢; is a two-
phase transaction. Therefore, s; is a schedule for a set of two-phase transactions. Since we know
that the compatibility function is correct, and is observed in s;, s; must be serializable. Each s;
thus preserves ¢;. Furthermore, since the steps in s; include exactly the steps in s that access a
data item in d;, it follows that s must preserve c¢; as well. Since ¢ was chosen arbitrarily, s
preserves c; for all ¢ and therefore, s preserves the conjunction of the ¢;s, which is C.

We generalize the proof of the above theorem to show the following more general result.
Theorem: If a lock compatibility function is correct then it is predicatewise correct.

Proof: Let C be a consistency constraint and let ¢; (¢=1,...,n) denote the conjuncts in a conjunc-
tive normal form representation of C. Let d; denote the set of data items referenced by conjunct
¢;. Assume that COMPAT is not predicatewise correct with respect to C. Then there is a
schedule s for a set T of predicatewise two-phase transactions such that s fails to preserve some
¢;. Each t in T must preserve c; if there is no concurrency since C is the consistency constraint.
Define a set R of transactions as follows: For each ¢ in T, create a transaction r consisting of
those steps of ¢ that access data in d;. R is the set of all such transactions r. Define a schedule
p for R by deleting from s those steps that do not pertain to data in d;. Since s does not
preserve c;, neither does p. However, all transactions in R are two-phase since all transactions in
T are two-phase with respect to d;. But then p is a counterexample to the assertion that COM-
PAT is correct.

The above theorem implies that we can use any correct compatibility function for predicate-
wise two-phase locking, regardless of the consistency constraint. However, since in a CAD data-
base, we are interested in multiple granularities of locking, we must consider the extension of a
predicatewise correct compatibility function to a predicatewise DAG-correct compatibility func-
tion. In [KORTS83|, it was shown that the extension of correct compatibility functions to
INTENT results in a DAG-correct compatibility function. The following theorem is an analogous
result for predicatewise correctness.

Theorem: Let INITIAL be a set of basic lock modes and let COMPAT be a given lock compati-
bility function for INITIAL. If COMPAT is predicatewise correct, then the extension of

- 11 -

COMPAT to INTENT, as defined above, is predicatewise-DAG correct.

Proof: Let s be a schedule for a set T of two-phase biased-parent rule observing transactions.
Construct a schedule p from s as follows: Delete all steps involving the request or release of
intention mode locks. Replace each step that locks a granule of data in an operational mode with
a series of steps that locks explicitly all granules (at the finest granularity) locked implicitly by
the step being replaced. Schedule p is equivalent to s since there is no change to steps that result
in modification to the database. Furthermore, if the compatibility function INTENT was
observed in s, then COMPAT must be observed in p. Since COMPAT is predicatewise correct, p
must preserve the consistency constraint and thus, so must s.

We note without proof that the above theorems still hold if we used an unbiased parent rule
rather than a biased parent rule as the basis of our definition of predicatewise correctness. This
follows from a theorem of [KORT83].

5. Conversions and Deadlock

It is often the case that a transaction will read a datum, do some computation and some
other database accesses, and then write that datum. If we require that a write lock be used for
this purpose, we reduce potential parallelism. Yet, if we allow conversions from read mode to
write mode, we may introduce deadlocks involving updaters. A simple example of this is two
transactions that obtain read locks on a datum and both wish to convert the read lock to a write
lock. [GRAY8la] reports on experiments that show that a large percentage (97 percent) of real-
world deadlocks may result from such conversions. The class of update-mode locks [KORT83] is
designed to eliminate most (though, unfortunately, not all) deadlocks resulting from conversions,
while minimizing the impact that this has on the amount of parallelism. Given a set of lock
modes (such as INITIAL or INTENT) we generate an update mode for every pair of lock modes
in our given set. If @ and b are given lock modes, then U} is a mode which allows exactly the
privileges of @ mode but indicates that the transaction plans to convert this lock to b mode at
some point in the future.

As an example, consider U¥ mode (called update mode). This mode allows its holder the
privileges of R mode, that is, the right to read the locked datum. This mode is not compatible
with itself, thereby avoiding the simple deadlock scenario we noted above. However, update
mode is designed to allow the update transaction to read the datum concurrent with transactions
holds 2 R mode lock. [KORT83] defines COMPAT(UY,R) to be true, but COMPAT(R,UY) to be
false. This prevents a series of readers from delaying the updater indefinitely. In the experiments
of [GRAY81|, approximately 76 percent of the observed deadlocks could have been avoided by the
use of update modes.

The notion of update mode that we have just defined appears to be the appropriate form of
update mode for short-duration transactions. We conjecture that for long-duration updaters, it
makes sense for COMPAT(R,UY) to be true. Consider, for example, a case in which a long-
duration transaction has checked out an object and will be overwriting the object upon checkin of
the object (i.e., it will not be creating a new version). In such a case, we wish to allow short
duration transaction to have read access to the object without waiting for the object to be
checked back in. If the long-duration transaction uses update mode, read access may proceed
concurrently with the long-duration transaction until the point that the long-duration transaction
upgrades its lock via a lock conversion in order to be able to check in its updated version. How-
ever, transactions that need to modify the datum locked in update mode will be forced to wait.

We now give a general definition of an extension of a compatibility function COMPAT to
the update modes. Let UPDATE denote the set of lock modes consisting of our given set of lock
modes and all update modes U? for which a is a weaker lock mode that b. Then, using the
definition of [KORT83], COMPAT(U},U¢) = COMPAT(a,d).

Theorem: Let MODES be a set of lock modes with a predicatewise-DAG-correct compatibility
function COMPAT. Then the extension of COMPAT to UPDATE is also predicatewise-DAG-

correct.

-12 -

Proof (sketch): The proof follows directly from the observation that for all mode a and b, Ut is
a mode that allows the same accesses as a but is strictly more restrictive that a. Thus any coun-
terexample to the predicatewise DAG correctness of UPDATE would also be a counterexample to
the predicatewise DAG correctness of COMPAT.

6. Implementation of the Protocol with Nested Transactions

The above discussion of lock modes and protocols allows us to define a correct approach to
the generation of non-serializable schedules. However, a naive implementation of a lock manager
might result in a subtransaction waiting for its parent, thereby creating unnecessary waits and
deadlocks. For example, if the lock manager treats the parent and its child as two distinct, unre-
lated transactions, the child would not be able to execute against data held by the parent.

We want to allow subtransactions to access data concurrently with parent transactions, sub-
ject, of course, to authorization by the parent. In other words, it may be legal for two distinct
transactions to hold locks on a datum in what appear to be incompatible modes, provided that
one transaction is a subtransaction of the other. In this section, we define those cases in which
such concurrent access is to be permitted and propose a scheme to implement it.

In the CAD transaction model of [BANCS85|, a system has a collection of project transac-
tions that operate with a large degree of isolation from each other. Conflicting lock requests from
distinct project transactions are treated as conflicting requests. A project transaction locks a
datum, not to access it directly, but to allow its subtransactions to access the datum. In other
words, a lock taken by a project transaction is intended to restrict access to the datum by other
project transactions. Since a project transaction has many subtransactions executing con-
currently, it is necessary to impose locking at the subtransaction level. Although a lock taken by
one subtransaction must conflict with an incompatible lock requested by another subtransaction,
it must not conflict with the lock held by the parent project transaction.

We implement locking in our transaction model by defining a nested form of the protocol
we presented above. Each transaction or subtransaction is allowed access to a subset of the entire
database defined by a sub-DAG of the DAG for the entire database. Conceptually, there is a
separate lock manager for each level of nesting. A lock request is legal if all parents of the
requesting transaction already hold the lock being requested. A lock request is granted if the lock
manager for the appropriate nesting level allows it. In other words, a legal lock request is
checked only against requests made by other transactions at the same level of nesting within the
same parent (that is, against sibling transactions).

In practice, we do not want to implement multiple lock managers due to the excessive over-
head involved. Instead, we use a hierarchical transaction naming scheme that allows a single lock
manager to simulate the various lock managers required by our scheme. Let ¢y, 5, ..., t, denote
the set of project transactions. Each subtransaction of a project transaction (a cooperating tran-
saction in the model of [BANCS85]) is named uniquely within its project. The globally-unique
name of the transaction is the concatenation of its parent’s name with its own locally-unique
name. Thus, the cooperating transactions within project transaction ¢; are named ¢, £, ...,
t1m- In general, the name of a transaction includes the full name of its parent as a prefix. Using
this naming structure, it is a simple matter for a single lock manager to perform the following
functions:

. check legality of requests: If the lock manager is designed to accept only legal requests, then
to verify the legality of a new request it suffices to see that the parent of the requesting
transaction has the appropriate lock.

. check legality of lock release requests: If a transaction attempts to release a lock, the lock
manager can check to see if a subtransaction of the requester still holds a lock on the
datum. If so, the lock manager should disallow the request.

. simulate a set of nested lock managers: A legal lock request is checked for compatibility in
the same way as a standard lock manager would. However, if the request turns out not to
be compatible with one or more currently-held locks, the name of the transaction holding

- 13 -

the lock is compared with the name of the transaction requesting the lock. If the name of
the transaction holding the lock is a prefix of the name of the transaction requesting the
lock, then the incompatibility is ignored.

It is important to note that the above technique is based on the assumption that all lock
managers being simulated follow the same set of protocol rules.

Our CAD transaction model allows for several kinds of subtransaction. Variations in the
nature of concurrency control required are accommodated easily in our concurrency control
scheme if the semantics of the lock modes remain the same and the variation is only in the
presense or absence of restrictions on how long a lock may be held (e.g. degrees of consistency in

[GRAYTS)).

A more serious problem is presented by certain forms of the client/subcontractor relation-
ship of [BANC85]. There may be a partial (or total) ordering among the subcontractors of a
client (parent) transaction. In order to preserve this ordering, [BANCS5| proposes the use of a
virtual timestamping scheme. Timestamps are assigned to each client/subcontractor transaction
based on the partial order. By use of the standard timestamp-ordering protocols, it is then possi-
ble to enfore the partial order.

It is necessary to integrate these two concurrency control schemes. Because of the absence
of waits in timestamp schemes, it is never necessary to involve the timestamp scheme in the
deadlock detection algorithm of the lock manager. However, each concurrency manager must
inform the other of any transaction aborts that it initiates. Within the timestamp scheme, a
transaction must not be given access to data that is not locked by its closest ancestor running
under a locking protocol. Similarly, a transaction running under locking must not be given a
lock that its closest ancestor running under timestamping could not access. These two conditions
are easy to test via simple queries of the concurrency control’s internal data structure. Testing
these conditions corresponds directly to tests that have to be performed in standards applications
of each of these schemes.

7. Implications of Concurrency Control for Recovery

In traditional database systems, crash recovery requires that all transactions active at the
time of a crash be aborted. This presents a severe problem in systems that include long-duration
transactions. The amount of work that is lost in aborting a long-duration transaction is
significant. Further, in a CAD environment, long-duration transactions include not only work
done by the system, but also work done by designers. Thus, abortion of long-duration transac-
tions is undesirable not only from a performance standpoint, but from a human-factors stand-
point.

In order to minimize the amount of work that is lost due to a crash, the notion of a save
point is proposed in [GRAY78, GRAY79]. Under the save-point scheme, a transaction may
request that the system save the internal state of the transaction. In the event of a crash, the
transaction is restarted from the most recent save point possible.

In general, the implementation of save points is complex. Not only must the internal state
of the transaction be saved, but also all subsystems of the database system must save all data
pertaining to the transaction. For example, the lock manager must save all locks taken by the
transaction requesting a save point. At recovery time, it may not be possible to restart the tran-
saction from the most recent save point prior to the crash. Let us consider transaction t,, which
has read data written by transaction t,. If £, has not yet committed, and cannot be restarted at a
point beyond the writing of the data read by t;, then it is not possible to restart t; at any point
after the reading of the data written by t.

There are several approaches to dealing with this problem. One is to construct a depen-
dency graph which is used at recovery time to choose the correct save point at which to restart
each transaction. Alternatively, we can impose a locking scheme which requires that all lock
releases be delayed until the end of the transaction. In this case, it is always possible to restart a
transaction from its most recent save point.

- 14 -

In the CAD transaction model of [BANCS85|, long-duration transactions are composed (at
the lowest level of nesting) of a set of short-duration transactions. This fact allows us to solve
the transaction-restart problem more simply. If a long-duration transaction is active at the time
of a crash, any short-duration subtransactions of the long transaction are aborted. The results of
all committed subtransactions are restored (by means of a redo operation, if necessary). Thus, in
effect, the termination of a short-duration transaction represents a save point for the long-
duration transaction that contains it.

The state of a long-duration transaction includes a record of which subtransactions have
been completed. This information is obtained from the log at recovery time by checking for com-
mit records for subtransactions [GRAYS81b|. This data represents most of the long-duration
transaction’s state, so the overhead of implementing a save point at the termination of each sub-
transaction is minimal. However, in order to be able to restart the database system, it is neces-
sary to restore the lock manager’s record of locks held by long-duration transactions. Locks held
by short-duration transactions need not be restored, since those transactions will be aborted.
Therefore, we treat locks taken or released on behalf of a long-duration transaction as we treat
database accesses. Specifically, each lock and unlock request by a long transaction is written to
the log. These log records are forced to disk in accordance with the write-ahead log protocol

[GRAYS1c].

A second problem pertaining to recovery in systems with long-duration transactions is
management of the log. In a traditional database system, it is possible to perform a checkpoint
of the database and purge all log records that were written before the checkpoint. In case of a
catastrophic failure, recovery is accomplished by reloading the database from the checkpoint tape,
undoing uncommitted transactions, and redoing committed transactions using the log. When all
transactions are short, relatively few log records need to be kept for each transaction active
immediately following a checkpoint. These records are all near the end of the log. Thus, it is
reasonable to treat the log as a sequential-access file.

In a system with long-duration transactions, modeling the log as a sequential file has two
disadvantages:

o It may force an unnecessarily large number of log records to be kept on-line after a check-
point.
. An undo operation occurring due to the abort of a long-duration transaction (rather than

due to recovery from a crash) must scan a large number of irrelevant log records.

Thus, the log must be treated as a random-access file indexed by transaction identifier. Although
this complicates checkpointing and logging to some degree, all of the code required to implement
this is already available within the database system to support the database itself.

8. User Interface

The approach we have presented for concurrency control benefits from having a large
amount of information about transactions. The more information available regarding the possi-
ble future accesses of transactions, the higher the degree of concurrent execution possible. Below
we list the kinds of information that are useful:

° Transaction duration: It is useful to know if a transaction is of short or long duration. We
may assume that all designer’s transactions are long durations transactions and that each
command entered by the designer as part of this long-duration transaction is a short dura-
tion subtransaction. In those cases where the designer begins a long-duration transaction it
is likely that he will either open a new window (thereby declaring a new long transaction) or
execute a single command that invokes a long transaction that was coded in advance by an
application programmer. The application programmer can place a declaration of expected
transaction duration in his code. (The idea here is that the designer never gives an explicit
transaction duration declaration, but we are willing to ask application programmers to do
this. Such declarations need not be complex -- a single statement in the application pro-
grammer interface that translates to a system call should suffice.)

- 15 -

. Completion of access to a datum: If a transaction access a datum and completes all work
with that datum prior to the end of transaction, this information is useful. It allows early
release of locks on that datum if such releases are consistent with the two-phase locking
requirements imposed by PW2PL. A designer-level command of “release d”’, where d is a
data item, can be included. Most designers will not bother with this command since it does
not help them and is only a public service. However, such commands may be useful if the
designer receives a phone call from a colleague asking if he is done with datum d. The
release command is the means by which the designer may respond ‘“‘yes’ to such a query.

) Negative information: It is as useful for the system to know what a transaction will NOT
access as it is to know what a transaction will access. Negative information, along with the
release command, allows for early lock release under PW2PL. Calls for the declaration of
such information can be placed in the programmer interface. Furthermore, the compiler
may deduce such information via data-flow analysis and the compiler itself may insert
declarative system calls.

9. Summary

We have explored concurrency control schemes that admit the special requirements of CAD
objects and that exploit our model of transactions. We presented an extension to the theory of
multiple-granularity locking, which incorporates CAD objects as lock granules. Then we explored
some techniques for increasing the degree of parallelism in concurrently executing transactions,
when we remove serializability as the criterion for database consistency.

We defined predicatewise two-phase locking in order to allow the definition of protocols that
ensure the preservation of consistency constraints while allowing greater parallelism than under
traditional approaches to concurrency.

References

[BANCS85] Bancilhon, F., W. Kim, and H. F. Korth, A Model of CAD Transactions,” Proc. 11th
International Con ference on Very Large Data Bases, pp. 25-33 (1985).

[BERNS8I| Bernstein, P.A., and N. Goodman ‘“Concurrency Control in Distributed Database Sys-
tems,” ACM Computing Surveys, 13:2 (June 1981), pp. 185-221.

[GRAY76] Gray, J.N., R.A. Lorie, G.R. Putzolu, I.L. Traiger, ‘“Granularity of Locks and Degrees
of Consistency in a Shared Data Base”, in Nijssen, G.M., ed. Modeling in Data Base
Management Systems, pp. 365-394, also RJ1606, IBM Research Laboratory, San Jose, CA.

[GRAY78] Gray, J.N. “Notes on Data Base Operating Systems,”” RJ2188, IBM Research Labora-
tory, San Jose, CA., February 1978.

[GRAY79] Gray, J.N., P. McJones, M. Blasgen, R. Lorie, T. Price, G.R.. Putzolu, and IL.
Traiger, “The Recovery Manager of a Data Management System”, RJ2623, IBM Research
Laboratory, San Jose, CA.

[GRAY81a| Gray, J.N., P. Homan, H. F. Korth and R. Obermarck, “A Straw Man Analysis of
the Probability of Waiting and Deadlock,” Oral presentation, 5th Berkeley Workshop on
Distributed Databases and Computer Networks, also, RJ3066 IBM Research Laboratory,
San Jose, CA.

[GRAY81b] Gray, J.N., “The Transaction Concept: Virtues and Limitations,” Proc. 7th Interna-
tional Con ference on Very Large Data Bases, pp. 144-154 (1981).

[GRAY81c| Gray, J.N,, et al., “Recovery Manager of a Data Management System”, ACM Com-
puting Surveys, 13:2, pp. 223-242.

[HASKS82] Haskin, R. and R.A. Lorie, “On Extending the Functions of a Relational Database Sys-
tem,” Proc. ACM SIGMOD International Con ference on Management of Data, June 1982,
pp- 207-212.

[KATZ84] Katz, R. and S. Weiss, “Transaction Management for Design Databases,” working
paper, 1984.

- 16 -

[KIM84] Kim, W., R.A. Lorie, D. McNabb, and W. Plouffe, “A Transaction Mechanism for
Engineering Design Databases,” in Proc. 9th International Con ference on Very Large Data
Bases, August 1984.

[KORT82] Korth, H.F., “Deadlock Freedom Using Edge Locks”, ACM Transactions on Database
Systems, T:4, (Dec 1982), pp. 632-652.

[KORTS83] Korth, H. F., “Locking Primitives in a Database System,” Journal of the ACM, 30:1
(Jan 1983), pp. 55-79.

[MOSS81] Moss, J.E.B., “Nested Transactions: An Approach to Reliable Distributed Computing,”
Ph.D. dissertation, Dept. of Electrical Engineering and Computer Science, MIT, April 1981.

[PAPA82] Papadimitriou, C., and P. Kannelakis, “On Concurrency Control by Multiple Ver-
sions,” Proc. ACM SIGACT/SIGMOD Symposium on the Principles of Database Systems,
pp. 76-82.

