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Abstract

The concept of scaleability is important for the next generation of super-
multiprocessors. Two aspects of scaleability of an architecture are hardware scaleability
and application scaleability. While the concept of hardware scaleability is a familiar
one, the one of application scaleability is new and equally important. The paper
introduces the latter concept through an example of hypercube architecture and binary
tree application. It is observed that the mapping problem is intimately connected with

the problem of application scaleability. The paper includes the proof that a binary tree

application scales well on a hypercube.



Introduction

In this paper we investigate the scaleability of a complete, balanced binary tree on
a hypercube. Specifically, we look at the question of mapping the largest sized binary
tree on a hypercube graph. An important consideration today in designing an
architecture for a super-multiprocessor system is the scaleability of the architecture
[4,5]. By scaleability we imply the asymptotic incremental cost of building larger and
larger systems based on the defining topology of the architecture. Smaller the
incremental cost, more scaleable is the architecture. The concept of scaleability of an
architecture is not very new and has been used in the past. The multistage
interconnection networks such as the omega, the banyan and the baseline are prefered
for multiprocessor systems over the crossbar for the very reason that these networks
seale better than the crossbar. In gross terms, the hardware cost increases as NlogIN for

these networks while the same increases as N2 for the crossbar, where N is the number

of interconnected resources.

Related to the concept of hardware scaleability, but quite different, is the concept
of application scaleability of a given architecture and is of great concern for the future
multiprocessor systems. Application scaleability could make or break the promise of an
architecture as a basis for dedicated high performance multiprocessors. The concept of
application scaleability is subtle, and we have just begun to understand its importance.
In this paper we try to demonstrate the concept by considering an application whose

computation graph resembles a complete, balanced binary tree.

The concept of application scaleability involves the mapping problem 6]. In
addition, it also involves accurately accounting for the ‘architectural constructs
embedded in software. It is conceivable that as the application and the supporting
archiecture grow in size, the hardware scales gracefully, but the software architectural
constructs do not. Usually these constructs are not accounted for, and may result in
bottlenecks and degraded performance. Here we also demonstrate the importance and
complexity of the mapping problem by attempting to evaluate the scaleability of a

binary tree structure on a supporting hypercube architecture.



We have chosen an application graph which is a binary tree. Binary tree graphs
are popular in the area of computer science and appear in several computation graphs.
They naturally result from divide and conquer methodology of formulating parallel
algorithms for sorting, merging and min-max problems. The binary tree based
algorithm is used for the recursive doubling method of computing global histogram (8].
The Dictionary Machine of Atallah and Kosaraju uses a binary tree structured machine
architecture [9]. Binary tree structures result from search trees in inference systems.
Horowitz and Zorat suggest application of binary tree shaped interconnection network
for multiprocessor systems [10]. It would therefore be interesting to see how such an

important computational topology is supported on the hypercube architecture.

Recently, substantial attention has been given to the hypercube architecture for
multiprocessors [1,2]. Many applications have been successfully attempted and
impressive speed-ups have been obtained [3]. Most previous architectures have failed to
furnish respectable speed-ups for more than just a few applications. On the other hand,
hypercube architecture seems to have lived up to its promise of being a good supporting
architecture for a wide variety of application areas. This effectiveness of the hypercube
architecture is seen to derive from the rich internode connection topology afforded by
the underlying graph. But, before hypercube topology can be considered as a defining
topology for a future generation super-multiprocessor, its hardware scaleability should
be evaluated. Also of consequence to its applicability for a dedicated high performance
computing engine, is its application scaleability for the targeted use. Binary tree
structured algorithms being so common in the area of parallel processing, we focus here

on their scaleability on the hypercube.

Hardware Scaleability

Figure 5 shows an example of hypercube of order 3. In a hypercube based
multiprocessor, nodes of the graph are occupied by independent processing elements.
The edges between the nodes represent the point-to-point communication links between
the processors. Each link or edge is dedicated to the corresponding node-pair. In some
architectures like the Intel’s iPSC System, there is a separate processor called the Cube

Manager to coordinate the parallel execution of a job [11]. The Cube Manager is



connected to the processors in the cube by a broadcast bus for global communication,
i/o and control. However, the concepts of Cube Manager and the global bus is not

inherent to the hypercube architecture and we will therefore ignore them.

Each processing element in an n-cube has communication links to n other
processors. If we focus on the number of processors N = 2", in the cube, then there are
logN communication interfaces on each processor. Thus the total communication
interface cost of the network is NlogIN. This is same as the cost of the multistage
interconnection networks like banyan, omega etc., although there is one minor
difference: when the size of the hypercube is doubled, each of the original nodes has to
be modified to allow one more communication link. However, this is not a serious
drawback. The nodes of the original cube could be provided with ports for extra links,

and when the cube is doubled one of these could be utilized.

Like many multistage interconnection networks hypercube is a non-planar graph
and is most naturally implemented in three-dimensional space, with a point-to-point
interconnection scheme. The volume of the hypercube architecture increases linearly

with the number of nodes or processing elements.

The communication reliability of the hypercube scales much better than that of
two-sided multistage interconnection networks. For most two-sided multistage networks
like the banyan, baseline etc., unless extra stages are specifically provided for, there is a
unique path from a source node to a destination node. The communication takes place
directly between the two communicating nodes. If an interconnection node or a link in
the network fails, it results in disconnection between one or more pairs of nodes. On
the other hand, in the hypercube architecture, communication between a pair of nodes
passes over a path involving other processing nodes. There are logN! paths available for
any given pair of nodes. If one of the paths fails, the communication can still be
completed over the other paths. Thus the number of contingent paths and the

reliability of interprocessor communication increases with N.

The diameter of a network is defined as the maximum distance between the



source and destination nodes. For the multistage networks, the diameter is equal to the
number of stages in the network, which is logN. For these networks, therefore, the
diameter grows as logN. For a hypercube, the message passes at most logN links before
reaching the destination. For any given node, there is one node which is at distance

logN from it. So for the hypercube too, the diameter scales as logNN.
Application Scaleability

For the sake of this analysis, we assume that the binary tree application is the
only one being executed in the system (scaleability of an application in presence of other
concurrent applications being beyond the scope of this paper). Under these conditions,
we would like to be able to execute the largest possible size of the application. Ideally,
we would like to utilize the hypercube architecture fully, so that, when the architecture
and the application are scaled no wastage is observed. If that is not possible, a constant
amount of resource-wastage is desirable, since the percentage of wastage would diminish
with increase in the size of the application. The wastage that grows logarithmically or

linearly with the number of nodes in the hypercube is much less desirable.

It is observed that a balanced binary tree application is not well scaleable on a
hypercube. The largest size of the tree that can be mapped on an n-cube is of n-1
levels. Thus the tree occupies only o1 1 nodes out of 2" available nodes. Resultant
wastage of computing resources is 2n'1+1, which is slightly more than 50%. In terms of
the total computing resource available in the system, the wastage is linear and therefore

undesirable. Proof of this part is given in Appendix L.

The result obtained in Appendix I is very pessimistic and casts a serious doubt on
the merit of hypercube as a topology for super-multiprocessors. However, an interesting
and quite unexpected result obtained in Appendix II resurrects hypercube in terms of
the scaleability of the binary tree on it. Appendix II shows that it is possible to slightly
modify the original tree graph and make it well-scaleable on the cube. By introduction
of single node at the first level of the tree, and thereby stretching of an edge out of its
root, the tree can be made to utilize the cube completely. The extra node so

introduced, is used only for communication between the root and one of its sons. It is



interesting to note that only one such node is required for any n. This node therefore

represents a constant overhead (or wastage) for alln > 3.

Summary

The concepts of hardware scaleability and application scaleability of an
architecture were introduced. Both types of scaleability are of significance for future
super-multiprocessor systems. The concepts were illustrated by considering hypercube
as an example architecture and the binary tree as an example application. Mapping of
application on the architecture forms an important first step in analyzing application
scaleability of the architecture, but no universal method is known for obtaining such a
mapping. A clever modification of the algorithm graph may often lead to the
architecture being scaleable. This modification might lead to overheads, but may still

be desirable in terms of the overall utilization of system resources.
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Appendix I

Definition: A hypercube of order n (an n-cube) is an undirected graph with 2"
vertices labelled 0 through 2%-1. There is an edge between a given
pair of vertices if and only if the binary representation of their labels

differ by one and only one bit. (An example of hypercube of order 3
is shown in Figure 5.)

Definition: Parity of a node is odd or even and is determined by the number of
1’s in the label of the node.

Lemma 1: If nodes a and b are connected by an edge, a and b have opposite
parities.
Proof: Let a be of even parity. since a and b are connected by an edge, their

binary representations differ by one bit. The representation of b may
be obtained by changing a "1" to a "0" or a "0O" to a "1". In either
case the number of "1"s in b’s representation is odd. Thus b has odd
parity. Similarly, if a’s parity is odd, b’s parity is odd.



We now try to map a binary tree on a hypercube.

Assume, without loss of generality, that the root of the tree is located at an even
parity node. The root is designated level 0. By the above Lemma 1, the two sons of
the root have odd parity. Thus, the nodes at level 1 have odd parity. Consider nodes
at level i. All nodes at levels 7-1 and ¢+1 are of opposite parity to that of level . Thus

parities alternate over the levels of the mapped binary tree.

We now count the numbers of odd and even nodes necessary to map a binary tree,

and the number of odd and even nodes available in a hypercube:

By symmetry, The numbers of odd and even nodes available in the hypercube is same

1
and is half the total number of nodes = -2-(2n) = on1,
For a binary tree, we get the following values:

Case 1: 1 is even.

Number of even nodes = 204+2%4....+2"%% = ~(2"-1)

OD’J\H

2
Number of odd nodes = 21423 +....+2™1 = -5(2“-1)

Clearly, the numbers of even and odd nodes required by the binary tree do not match

those available in the hypercube.

Case 2: n is odd.

1
Number of even nodes = 90402  4oml — g(2n+-1_1)

; 2
Number of odd nodes = olyody 492 g(211-1_1)



Again, the numbers of even and odd nodes required by the tree do not match those of

the cube. This completes the proof.

Appendix IT

In Appendix I we saw that a balanced, complete binary tree can not be mapped
on a hypercube such that all but one nodes of the cube are occupied. This would mean

mapping an n-level binary tree on an n-cube, where n-cube has 2" nodes and the binary

tree has 21 nodes.

Consider the following: Figure 1 shows a binary tree of n==3. The figure also
shows the even and odd levels of the tree assuming level O of the tree is at an even level.
Figure 2 shows the construction of a 4-level tree out of two 3-level trees using an extra
node at level 1 of the right hand subtree. It is clear that the resultant tree utilizes 16
nodes of which 8 are even and 8 are odd. These can be matched by the even and odd
nodes of a 4-cube respectively. In fact if an n-1 level binary tree has A even nodes and
B odd nodes, then an n-level stretched binary tree created in the manner of figure 2
always has 2" total number of nodes of which A4+B+4+1=2"" are even and an equal
number are odd. Therefore an n-cube could provide the necessary even and odd nodes
to map the n-level stretched binary tree. The conjecture we can make is that, whether
such a mapping is at all possible. This is a conjecture because the match of the number

of even and odd nodes between the two graphs is only a necessary condition but not a

sufficient one.

The following is a constructive proof that such a mapping is indeed possible for n
> 3.

Definition: An n-cube is said to be transformed in the i*" dimension when the ith
bit in the binary representation x__;..X;X, of the label of each node of

the cube is modified according to certain rule. The rule is called the
transformation.

Definition: An n-cube is said to be k-dimensionally transformed when k bits in
the label of each node of the cube are transformed according to a



transformation. (Note that the bits undergoing transformation need
not be contiguous.)

We define two 3-dimensional transformations, FT3 and BTS3. The two
transformations are shown in figure 6. The X X and X are the original values of the

bits, and y;, ¥ and y, are the corresponding resultant values.

Definition: Distance between a pair of nodes in an n-cube is the number of bits
the binary representations of the labels of the two nodes differ by.

Definition: Adjacency in an n-cube is the distance relationship of each node with
the rest of the nodes in the cube. (This relationship is usually
captured in the distance matrix for a graph. In general graph

- theoretic terms, distance refers to the minimum number of edges that
have to be traversed from the source node to the destination node.
For an n-cube this corresponds to distance as defined above.)

We now prove that both FT3 and BT3 maintain the adjacency of an n-cube.

That is, after label-transformations every node has the same distance relationships with

other nodes as before.

Theorem 1: FT3 maintains cube adjacency.

Proof: Let SlxiSZXjS:;ka 4 be the binary representation, of length n, of a
node-label in an n-cube. Bits x;, X; and X) are the bits of interest.
Sy Sas Sg and S, are strings of bits of length zero or more.

For distance calculations S,, 82, Sg and S 4 can be combined into a
single string S. A node label can thus be represented as Sxixjxk. After
transformation the label becomes Syiyjyk.

Let |SXinXklP and ISxixjxk|Q be the original labels of nodes P and

Q. The distance between nodes P and Q is given by the number of
bits by which labels of P and Q differ. The contribution to the
distance comes from two parts of their labels, namely S and Xy X; and

Xy Thus,

IThe two transformations define two of the many rigid transformations of a 3-cube. The rigid
transformations include rotations and reflections of the original cube. Rigid transformation can be looked
upon as the transformations that maintain the adjacency relationships between nodes of the cube.
Transformations of rotation and reflection of a cube form a group [7].
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Distance(P, Q) = Distance(|S|p, [SlQ) + Distance(lxixjxklp, ]xixjxle)

After FT3 transformation,

Distance(P, Q) = Distance(|S|p, ISIQ) + Distance(iyiyjyklp, }yiyjyle)

To maintain adjacency, Distance(P, Q) should not change from its
value before the transformation. The first term on the right hand

side in the above two expressions is same. To maintain adjacency
then, we must prove

Distance(lxixjxklp, |xixjxk[Q) == Distance(lyiyjyklp» |Yiyjyle)

Theorem 2:

Proof:

The contribution to the distance between nodes P and Q by three bits
is 0, 1, 2 or 3. If the contribution to the initial distance between P
and Q by bits x,, X; and x, is O, then it implies that the three bits
under consideration were identical for P and Q. The bits will be
transformed identically for both P and Q, and therefore will not
contribute to changing the distance between the two nodes.
Therefore Distance(P, Q) is unchanged after FT3 transformation for
those nodes which have identical combinations for the designated
three bits. For the cases where the bits contribute 1, 2, or 3 counts to
the distance, the post-FT3 adjacency is proved in Table 1
exhaustively. The table shows for each combination of three bits,
combinations of bits at distances 1, 2 and 3. It also shows the
transformed values of bits for node pairs and demonstrates that
adjacency is indeed maintained after the transformation. This
concludes the proof.2

BT3 maintains cube adjacency.

The considerations involved here are the same as above. Table 2
gives the exhaustive proof for BT3.

2One does not have to prove the above using the exhaustive method of Table 1. As mentioned before,
the rotations and reflections of a 3-cube can be considered to be rigid transformations which essentially
leave relative positions of the nodes of the cube intact. By focusing on three bits of the labels in an
n-cube, we analyze the projection of the n-cube in the three desired dimensions. Each node in this

projection corresponds to ™3 nodes of the original n-cube. FT3 can be shown to be a combination of
rotations of this three-dimensional projection about three orthogonal axes, and a reflection about a plane
passing through the projection.
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We can now state the following corollaries:

Corollary 1:

Corollary 2:

Definition:

Theorem 3:

Proof:

Corollary 3:

Theorem 4:

Proof:

Nodes with distinct labels map to distinct resultant labels.

If two nodes are adjacent to each other and thus have labels differing

in one bit position, they get consistent labels after the
transformations.

A graph G is said to be mapped on an n-cube when the nodes in G
map on to nodes of the n-cube in a one-to-one fashion, and the edges
in G map on to those of the n-cube.

A graph G mapped on an n-cube remains unchanged in structure
after the transformations.

The proof follows as a direct consequence of corollaries 1 and 2. By
virtue of the fact that the graph was initially mapped on the cube,
the nodes of the graph correspond to the nodes of the cube and edges
of the graph correspond to the edges of the cube; clearly the graph
has no self-loops since they can not be mapped on to the edges of an
n-cube. The adjacent nodes in the graph are mapped on to the
adjacent nodes of the cube. After the transformations, the resultant

- nodes of the cube, and therefore of the graph, are still adjacent and

the edges of the graph remain intact. The transformations do not

result in collapse of nodes or stretching of edges of the graph by
introducing extra nodes.

The transformations FT3 and BT3 preserve a tree structure mapped
on an n-cube.

A stretched binary tree (of form shown in Figure 2) of level n can
always be mapped on an n-cube, for n > 3 (such that all the nodes
of the cube are utilized).

We give an inductive proof for this theorem.

The case of n==3 is shown in Figure 3a. Figure 3 shows the process of
going from n=3 to n=4. We shall list the steps involved in this
process:

e Duplicate the cube and the mapping.

e Apply FT3 on the least significant 3 bits of the duplicate
cube (Figure 3b).
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e Create a 4-cube by connecting the nodes in one cube to
the nodes with the same label in the other cube. Append
a 0 to the left of labels in the original.3-cube, and a 1 to
the left of labels in the transformed 3-cube.

e Deallocate links: 0100-0110 and 1100-1000, and allocate
links: 0100-1100, 0000-1000 and 0110-1110. Figure 3¢
shows only the useful links between the two subcubes.

e Apply BT3 to the most significant bit, the third significant
bit and the least significant bit of the 4-cube.

Figure 3d shows the 4 level stretched binary tree embedded in the
resultant 4-cube.

We will now describe the process for the inductive step. We assume
that an n level stretched binary tree, as shown in Figure 4a, is
mapped on an n-cube. Its root is assumed to be located at node S000,
where S is an n-3 bit-long string of most significant bits. The extra
node is located at S100. Two n-1 level binary (unstretched) subtrees
hang from nodes S001 and S110.

e Duplicate the cube and the mapping. See Figure 4b.

e Apply FT3 to the duplicate cube using bit-2 as x;, bit-1 as
X and bit-0 as x,. See Figure 4c.

e Form an n+l-cube by connecting the nodes with like
labels in the two n-subcubes. Append a O to the left of
labels in the original subcube and a 1 to the left of
duplicate subcube. See Figure 4d.

o Deallocate links: 0S100-0S110 and 1S100-1S000, and
allocate  links: 0S000-1S000, 0S110-1S110 and
0S100-1S100. We get the structure shown in Figure 4e.
Notice that the figure shows only the important edges.

e Apply BT3 to the n-+1l-cube to obtain an n+1 level
stretched binary tree rooted at 0S000. Use the most
significant bit as x;,, the third least significant bit as x. and
the least significant bit as x,. Replace string 0S by S’ to

obtain structure similar to the base structure. See Figures
4f and 4g.
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