BOOLEAN MINIMIZATION AND
THE VICINITY METHOD

Norman M. Martin
Department of Computer Sciences
University of Texas at Austin

Austin, Texas 78712

TR-86-03 January 1986

-

ABSTRACT

Boolean minimization remains a useful tool in the design of
digital hardware. In minimization theory, an interesting concept is
that of the vicinity, (i.e., the least n-cube covering a given minterm
but none of its adjacent zeroes). Its sp;Cial properties yield an
extremely convenient and flexible method for minimizing sum-product
and related Boolean forms. The paper presents a summarv of standard
minimization theory and an explanation of this method. Among the
interesting features of this method are the direct calculation of essen-
tial prime implicants and the generation of the remaining terms of min-
imal cost expressions in order of increasing complexity. This avoids

much of the calculation involved in the Quine-McCluskey and related

minimization methods.

?‘
INTRODUCTION
In designing digital hardware, issues of efficiency occur in several
ways. In the first place, the completion of a particular task can frequently
be accomplished by one of several algorithms, not necessarily strictly
equivalent. (Where the algorithms are all correct for the purpose involved, -

there is usually, presumably always, a.stjucture under which they are all
equivalent up to an appropriate isgmorphism; this does not however imply
that they are equivalent for other purposes). Since the algorithm can
fffect the efficiency and costiv affects the optimality of the final
design. Even when the algorithm in the mathematical abstract sense does
not vary, the digital device can be organized in more than one way, resulting
in a choice of detailed algorithms. Finally with a final detailed algorithm,
more than one combination of gates will realize that algorithm. (Actually
this always is an infinite number although in any actual case only a finite
number of them are simple enough to be practically attractive). In a classic
paper in 1937, Claude Shannon pointed out the correlation between switching
circuits and Boolean expressions. A corollary of his work is that this
last problem is equivalent to that of choosing the minimal cost expression
among a set of equivalent Boolean formulae, relative to specified cost
criteria. TFor an important class of cost functions, the meonotonic, this
problem was first solved by W.V.0. Quine in 1955, The method described in
this paper is an improvement of the methods derived from Quine's work
which are commonly known as the Quine-McCluskey method

It compares favorably (how favorably is an opemn

question) with Quine-McCluskey and other well-known methods and unlike

other methods developed because of convergence properties superior to the
Quine-McCluskey method, is very easy to learn and use.

It should be emphasized that, like any combinational minimization
method, only the third problem referred to ahove is dealt with. Since,
more often than not, improvements from algorithmic variation or from the
architecture, i.e. from considerations of the first and second types,
result in more radical design improvement# than combinatorial minimization,
it is important that we avoid the conceptual ﬁrap of identifying this

part of the optimality problem with the whole problem.

COST FUNCTIONS

In order to evaluate characteristics which we wish to optimize, it is
convenient to express them in mathematical form. To do so we use the concept
of cost function, that is a function from the set of Boolean terms into the
positive dintegers. Over a very wide variety of cases, we can then express
the optimization problem in which we are tnterested as the problem of
obtaining a minimal cost expression relative go a particular cost function.
1n this connection there are a number of classes of cost functions of
special interest, either because of their frequent occurrence in practical
applications or because of results obtainable concerning them.

One such class are the symmetric cost functions, that is, those

satisfying:
1. C(A*B) = C(B-A), for all term A and B
2. C(A+B) = C(B+A), for all terms A and B

3. 1f A, B, D and E are terms, D is like E except for having an
occurrence of A where D has an occurrence of B, and c(a) = C(B), then
c(d) = C(E). Virtually all cost functions which are of practical
importance are symmetric and, in the remainder, assume the cost functions
to be symmetric except where we explicitly say otherwise.

Another significant class is called the strictly monotonic cost

functions. These are the cost functions satisfying: For all terms A, B, and

D:
1. C(A) < C(A-B)
2. C(B) < C(A°B)
3. C(A) < C(A+B)
4. C(B) < C(A+B)

A

5. C(A) < C(B) == C(A*D) < C(B'D)
6. C(A) < C(B) = C(D-A) < C(D-B)

7. C(A)

A

C(B) => C(A+D) < C(B+D)

8. c(a)

A

C(B) => C(D+A)

A

C(D+B)

If, in the above conditions, we substitute "<" for '<', the cost function

is called weakly monotonic.

»

While monotonic cost functions are not quite as universal among the
practically interesting ones as symmetric cost functions are, they are
nevertheless of wide practical import. Among the strictly monotonic cost
functions (either simply or with very mild assumptions) are:

1. Number of literal inputs

2. Diode cost (number of diodes or transistors in a combinational
circuit)

3. Actual cost of components (in dollars or the like)

4. Minimum required weight

5. Minimum required volume (usually weakly monotonic)

6. Required power (usually weakly monotonic)

7. Number of required integrated circuits (normally weakly monotonic)

In addition the strictly monotonic functions are closed under weighted
average with positive weights and the entire class (both strict and weak)
is closed under weighted average with non-negative weights. This fact when
combined with the number and variety of monotonic cost functions is important
where what is to be optimized is a mixture of criteria, provided all are
monotonic.

Of course, not all useful optimality criteria yield monotonic cost
functions. For instance, under most circumstances, neither average nor

maximum speed is monotonic and as a result where speed functions as an

optimality, rather than a boundary, condition, the kind of minimization
we are discussing is of decreased or no importance. Where, as occurs quite
frequently, optimality depends on a mixture of criteria some connected
with monotonic costs and some not, the importance of minimization acquires
a rather mixed character. In addition, it should be noted that the one-
many relation between mathematical and switching theoretical functions
»
creates the situation that even when the optimality criteria all give
rise to monotonic cost functions, issues of organizational and architectural

arrangement frequently give rise to simplifications much more drastic than

can be achieved by the minimization theory here discussed.

A SUMMARY OF CONVENTIONAL MINIMIZATION THEORY

In what follows we will assume our cost function is symmetric in our
main discussion. An interesting question, useful both in itself and
because of its connection to other problems, is the question of the
minimum cost sum of products expression that expresses a given Boulean
function.

Let us first introduce a few definitfons. A Boolean expression A
(or the function it expresses) is called an iﬁglicant of another B
provided A+B=B is a Boolean identity (i.e. a Theorem of Boolean algebra).

An expression is called a literal if it is a variable or the complement
of a variable. A minterm of a set of variables a is a product of literals
of the elements of a such that no variable occurs twice (i.e. each
variable occurs once, either complemented or not). A minterm is a
1~minterﬁ of a function if it is a minterm of the variables of that
function and is an implicant of it. A PEQQRQt,iTRliﬁéﬁﬁ is an implicant
which is a product of literals in which no variable occurs twice. Finally

a prime implicant of a function A is & product implicant P of A such that

if P is an implicant of P' and P is a product implicant of A, then
P=P'. This is equivalent to saying that any way of shortening P by
eliminating one of the literals will not be an implicant.

It is known that if the cost function is strictly monotonic,
every minimum cost sum of products expression is a sum of prime implicants
and if the cost function is weakly monotonic, at least one minimum cost
expression is a sum of prime implicants.

A prime implicant P of B is called essential if every sum of prime
implicants of B which is equivalent to B contains P. The sum of all the

essential prime implicants of B is called the core of B. A non-essential

prime implicant of B which is an implicant of the core of B is called
redundant. All other prime implicants are called optional. It follows
easily that if the cost function is monotonic, every essential prime
implicant and no redundant prime implicants of B will be in the minimum
cost sum of products expression.

Let us call a product of literals a standard product if no variable

occurs more than once. We will call tﬁo standard products adjacent
if there is exactly one variable which occurs uncomplemented in one and
complemented in the other.

With the help of these concepts and results, we can outline a strategy
for generating a minimal cost expression. The strategy in most common
use is to determine all of the prime implicants and then use the fact
that for every essential prime implicant E there is at least one l-minterm
M such that E is the only prime implicant which covers M to determine
which prime implicants are essential, redundant, and optional. Then if
we term any l-minterm not an implicant of any essential prime implicant
a remaining minterm, the minimum cost sum-of-products expression is the
sum of all of the essential prime implicants plus (if there are remaining
minterms) the least cost way of covering the remaining minterms with optiocnal
prime implicants. (For weakly monotonic cost functions, the same result
holds for at least one minimal cost expression.) In principle, only the
last step requires the laborious move of looking at all possibilities and
even here when the cost function is not too complex, one can often use ad hoc
considerations to decrease the number of cases to be considered.

For a method of generating all of the prime implicants we could for

example use the fact that a product implicant P is prime if and only if

there is no product implicant P' which has the same variables and is
adjacent to P. Thus if we start with the list of minterms, repeatedly
use the lemma mentioned in all possible ways, adding shorter product
implicants each time a noﬁ—prime pair of the kind mentioned in the lemma
is detected, the process will terminate with a complete list of prime
implicants. The resulting algorithm is what is usually called the

»

Quine-McCloskey method.

THE VICINITY METHOD

There is however an alternative method, generally more convenient
and faster, which we will call the vicinity method. To define it we will
need a few additional definitions.

We will call the function which takes the opposite value of A (in a
two-valued algebra) the complement of A. We will call a l-minterm of

A's complement a O-minterm of A. We will call a literal an adjacency literal

of a l-minterm M provided it appears in M but is absent in some O-minterm

adjacent to M. We will call V the vicinity expression (or sirply the vicinity)

of M if it is the product of all M's adjacency literals (or 1 if M has none).
It can then be proved that every product implicant expression (and
hence, any prime implicant expression) of which M is an implicant contains
every adjacency literal of M and hence the vicinity of M. (Note that
in the Karnaugh map representation this means that every prime implicant
that covers M is covered by the vicinity).
A consequence of this theorem is that a product implicant is an
essential prime implicant if and only if it is the vicinity of one of
its l-minterms. This result allows the determination of all essential

prime implicants by determining the vicinities of the l1-minterms

10

(skipping those already covered by essential prime implicants already
determined). Note this allows us to generate all the essential prime
implicants without first generating all prime implicants. When the
function is not simply equivalent to the sum, we can if we wish
generate the prime implicants which cover a given remaining minterm
M by adding the subsets of the set of literals in M but not in M's
vicinity in order of increasing size. = *

In addition, if Ml’ ey Mn are l-minterms, let us call the joint

vicinity of Ml’ cens Mn the product of vicinities of Ml’ ...y M and the
n
conjoin of Ml’ oo Mn the product of all literals in all of Ml’ N Mn.

It then follows that there is a prime implicant P which covers all of
Ml’ ceoy Mn exactly if every literal in the joint vicinity is in the conjoin
and the conjoin is an implicant.
It follows from this that if P is a minimal cost prime implicant
covering both of the conjoin of Ml’ e Mn and of one of the Mi's,
it is in one of the minimal cost sum of products expressions. Let us
define the compatability set of a remaining minterm M the set of all
remaining minterms M' such that M is an implicants of the vicinity of M
and M' is an implicant of the vicinity of M.
Putting these considerations together, we have the following algorithm:
1. Chose a minterm not yet covered or checked and determine its vicinity.
2. Test whether the vicinity covers any O-minterms; if it does not,
vicinity is essential: List vicinity in minimal expression, check
off all l-minterms covered by vicinity and go back to step 1.
3. If every minterm has been checked or covered, choose a remaining minterm
and determine its compatability set (remember all of the vicinities have

already been determined).

4. Calculate the joint vicinity and the conjoin of the compatibility sect.

11

5. 1f the conjoin is not an implicant of the function or is not
an implicant of the vicinity, choose a remaining minterm not processed
since the last change and go back to step 4.

6. Otherwise, determine the minimal cost covering of the conjoin,
starting with the joint vicinity and, if necessary, adjoining
literals in the conjoin.

7. Check those coverings against the members of the compatability set of
M and determine if any are minimal cost prime implicants of M.

8. 1If there is a minimal cost covering of the conjoin which is also a
minimal cost prime implicant covering’M include the term in the minimal
expression, and eliminate all members of the compatability set.
Otherwise chose another remaining minterm and go to step 4,

9. This process either terminates in the elimination of all remaining
minterms or in the failure of all minterms still remaining to generate
any term satisfying the required conditions. In the latter case,
choose one of the remaining minterms and generate all of the prime
implicants which cover it; i1f the conjoin is an implicant, this can
be limited to those whose cost is less than the minimal covering of the
conjoin. Then divide the problem into cases (each case using one
of these or the conjoin), eliminate in each case the minterms covered
and proceed.

Explanation of the algorithm:

The first part of the algorithm determines those terms which must be
included if the answer is to be correct: the essential prime implicants.
Since we know that all terms and only terms which are vicinities of
l-minterms that they cover and are also implicants are essential, we hence
look for the vicinities of l-minterms and include them (since we know that
if a term A is essential and covers a l-minterm M, it is either M's vicinity
or M's vicinity is not essential, we try to choose essential prime implicants
which cover many terms early and, in any event, we need not bother with
minterms already covered). Having determined the case, our basic
strategy changes to looking for terms which it is safe to include, i.e.
which are in at least one minimum cost expression. Terms accepted
by the main algorithm are on es which are in at least one minimum cost

expression (which includes all terms already accepted). If the main loop

of the algorithm does not yield a prime implicant which can be accepted

12

without risk of being non-minimal, we can at least rely on the fact that
every remaining minterm is covered by (at least two) prime implicants
and generate, for one minterm, all the prime implicants that cover it and
one not excluded by dominance considerations (i.e. all which might possibly
be in a minimal cost covering) and divide into cases, each case including
one of these (as if it had been chosen by the algorithm). At the end,
we chose the case which is minimal. ’

In each case when the algorithm prescribes a choice, such a choice
is quite free, although choice of a promising one can well decrease the
number of steps.

Let us illustrate with a few examples. Suppose the function to be

simplified is and the cost is the number of literal occurrences (Fx.1)

ME o0 01 11 1o
oo 1* 1f 0 ?
o1 1® o o 1°
11 0 ? 0o 0
10 0 14 18 1t

The vicinity of b is BC which is the upper two cells in the first
and last columns and hence also covers a and e. Since no O-minterm
is covered, BC is essential. The remaining minterms and their vicinities
are: c-AD, d-B, £f-AD, g—Cﬁ. Choosing ¢ we obtain as compatability set
{c,d}. The joint vicinity is ABD which is also the conjoin. Since
ABD covers no 0's it is an implicant and since it is the joint vicinity
it is the minimal cost covering of the conjoin. Since its cost is one
more than the vicinity of C it is a minimal cost cover of C and hence

can be added, leaving only f and g. The compatability set of f is {f,gl.

13

The joint vicinity and conjoin is ACD which satisfies the required conditions
so that a minimum cost covering is: BC + ABD + ACD.

Consider with the same cost function (Ex. 2)

o 00 01 11 10

oo 1 1 0 0
01 o 19 1° 0
11 0 o 1° 18
10 1P 0 o 1°

The vicinities none of which implicants are:

Minterm Vicinity Compatability set Joint Vicinity Conjoin

a AD abc ABCD AD
b BD abh ABCD BD
c AC acd ABCD AC
d BC cde ABCD BC
e BC def ABCD BD
£ AD efg ABCD AD
g AC fgh ABCD AC
h BC bgh ABCD BC

Since the required conditions are not met in any case, we chose a minterm,
say a. The vicinity is AD and the remaining literals are B and C. We
thus get as candidates ABD and ACD both of which are implicants and

hence prime implicants. We get then Case I: ABD + ... and Case II:

ACD + Then for Case II:

b's new compatability set is {b,h} with joint vicinity and conjoin

BCD which satisifes our conditions. Then g's new compatability set

is {f,g} with joint vicinity and conjoin ACD which also does. Then ¢'s
compatability set is {d,e} with joint vicinity and conjoin BCD which does

as well. Since this exhausts all minterms the solution for Case 1I is:

14

ACD + BCD + ACD + BCD. TFor Case I ABD covers a and b. Then c's compatability
set is {c,d} with joint vicinity and conjoin ABC which satisfies our conditions.
Then e's is {e,f} with joint vicinity and conjoin ABD which also does.

Finally g's 1is {g,h} with ABC as joint vicinity and conjoin and also acceptable.
So that the solution for Case I is: ABD + ABC + ABD + ABC. Since the cost

of the two are equal, either may be chosen.

»

15

KARNAUGH MAPS

In our examples, we have used a method of representing partial Boolean
functions normally called Karnaugh maps. Although the representation of the
functions in Karnaugh map form is not a fundamental aspect of the method and
indeed for programmed versions of it, other representations (e.g. the truth-
table) are likely to be preferable, it 1is likely that people utilizing the
method manually would find a variety of K;rnaggh map representation convenient.

1f we consider geometric representations of Boolean functions, it seems
apparent that the most intuitive of them is the n-cube, i.e. a figure with two
points in each dimension and as many dimensions as there are variables. 1In
the n-cube, minterms are corners, products of literals are subcubes and
adjacency (as defined above) is the property of being joined by an edge.

This nice correspondence between fundamental geometric and fundamental logical
properties would make the (marked) n-cube an ideal tool for representing
Boolean functions were it not for the fact that, for virtually all of us, our
ability to represent and remember figures in more than three dimensions is
virtually nil.

As a result, we find it convenient to use a representation which will slow
down the point at which our intuition fails. One such is the Karnaugh map.

For 2 variables a Karnaugh map 1s essentially an n-cube, that is, it is
a table with each physical dimension corresponding to a logical one and with

tow points (the obvious ones) on a side, namely

y\X 0 1

0 £(0,00 £(1,0)

1 f(o,1) £(1,1)

16

When we extend this to 3 variables, we can without leaving a two-
dimensional surface still preserve the properties of correspondence between
being in the representation, not a sub-cube, but a sub-rectangle with each
dimension having Zi points and the property of being a product of literals.
This can be done by placing two variables (and hence 4 points) in one dimension
so that in order the points are x=y=0; x=0,y=1; x=y=1; x=1,y=0 and then placing
the whole on a cylinder so that x=1,y=0 is adjacent to x=y=0. In practice

S

instead of actually placing the map on a cylinder, we adopt the convention

that both ends of the long side are identified, thus obtaining:

N 00 01 11 10
| |
0 £(0,0,0) £(0,1,0) £(1,1,0) £(1,0,0) |
1| £(0,0,1) £(0,1,1) £(1,1,1) £(1,0,1) {
1 }

The edges identified by convention are here marked by dotted lines.

With some practice identifying adjacent cells and products of given
literals becomes quite easy. Identifying product implicants (i.e. products
which cover no O-minterms) is somewhat more difficult but can be handled.

To go to 4-dimensions we need only to perform the same maneuver in
both physical dimensions, thus in effect placing the table on a torus
(i.e. a doughnut shaped surface).

To extend this further, additional surfaces are not available and
various techniques have been used to try to save one Or the other feature.
For our purposes the important features are (1) easy identification of
adjacency, and (2) ease 1in jdentifying which rectangle corresponds to a
given product. As a result, the method sometimes called the 'supermap"

is called for.

17

For 5 to 8 dimensions we line up the dimensions beyvond 4 in such a way as
to create a figure arranged like a Karnaugh map except that the cells instead
of being minterms are Karnaugh maps of the first 4 variables. Two cells are
then adjacent. If, and only if, they are on the same basic level map and are
adjacent, or they are in the same position on two adjacent maps, calculation
of rectangles then uses the same procedure as in 4-variable maps. Note also
that this method can be extended in a regalar fashion to any finite number
of variables (although, of course, the exponeﬁtial growth in number of min-
terms probably makes it impractical beyond 10 to 14 variables).

It is well known that Karnaugh maps can be used directly to cover
functions with product implicants non-algorithmically. Historically, doing
well with maps of more than &4 variables 1is limited to experienced practitioners
and few people claim proficiency for, say, 8 variables. Viewed as a Karmaugh
map method, a great virtue of the current method is the ease at which it can

be learned well enough to solve 5-8 variable problems.

18

SOME REMARKS

In general the method is designed to generate as few extraneous
calculations as possible. As a result, the algorithm works on the
principle '"the best that can be done is all that needs be done."
Accordingly (1) since (regardless of which monotonic cost function
is involved) every essential prime impiic;nt has to be included
(2) since any minterm not in the compatability set of M cannot be covered
by any prime implicant that also covers M, we cannot do better than
cover M with a least cost prime implicant that covers M and also covers
the whole compatability set (3) Every l-minterm must be covered by
some minterm and cannot be covered more cheaply than by its minimum
cost covering. Accordingly all terms selected by step 8 of the algorithm
can be safely added.

There are a number of additional applications of the "best possible”
principle. Since for any remaining minterm M, its vicinity VM is not
a prime implicant but every prime implicant which covers M is equal to
A-VM, for some product term A, there is, depending on the cost function,
a "best conceivable" way M might be covered. For example, if the cost
is the number of literal occurrences, the number of variables in the
problem is N, and VM has m literals, the best we could hope for is
to cover it with a rectangle with 2n—m+1 calls, so that given the whole
configuration of remaining minterms we can define a "best conceivable”
solution type which if it exists has to be minimal. If we can spot
such a covering, say by direct inspection of the map, we can in some

cases shorten the determination by a significant number of steps. For

19

example, in Example 2, either once we have determined all the vicinities
(and hence know there are no essential prime implicants) r, at least,
once we see that none of the compatability classes generates a term
by the main algorithm, we can note that there are 8 remaining minterms
none of which can be covered by prime implicants with less than 3
literals. Consequently the best conceivable covering consists of 4
: »

products of 3 literals each, each of which covers 2 minterms. If that
can be accomplished no two of the 4 can overlap. In this case, it is
easy to see which they are. Additionally, in this type of observation
of the "best conceivable,'" in any case in which either the conjoin is
not an implicant or the joint vicinity has literals not in the conjoin,
the best conceivable covering of the minterm will not cover more than
one minterm less than the number in the compatability set (since then
there is no prime implicant covering the entire compatability set).

Three remarks ought to be made. Firstly, "best conceivable"
analysis could if desired be carried out in a step-by-step fashion if
someone wanted to; secondly, the main algorithm is onthe average
so efficient that it is only occasionally worthwhile to bother with

"best conceivable,”

in general, only when we would otherwise need to
consider cases via step 9. Even then, the chains of reasoning with
"best conceivable' analysis are so complicated that it is normally
advisible only if it works out quickly. Otherwise literal use of step 9

is usually indicated. Finally, nothing can be obtained by '"best

conceivable" analysis which won't eventually be reached by the algorithm.

20

There is an additional representational move which, while it 1is

by no means necessary, helps speed the process in manual application of

the vicinity method, namely, representing the minterm by a sequence of

radix-4 digits. This is advantageous because it is closely related to

the physical structure
some easily detectible
including the variable

Specifically, for

digit:

The presence of

a B

a B

of the extended Karnaugh map but also because

arithmetic property correspond to an expression
‘ »

uncomplemented or complemented, respectively.

each pair of variables o, B forming a redex 4

corresponds to

digit high (i.e. 2 or 3)

digit
digit
digit
digit
digit
digit

digit

low (i.e. 0 or 1)
odd

even

3

2

1

0

Hence in the six variable problem with variables u,v,w,X,y,z (in that

order), the minterms covered by u X y z are those satisfying:

1. First digit high

2. Second digit even

3. Third digit 1

The speed at which this can be visually detected is gratifving.

21

EXTENSIONS

From results which are well-known in the literature, it is known
that every method which simplifies two level sum of products expressions
generates, via De Morgan's Theorems A.B = AM+B and A+B = E-E, a method
for two level product of sum expressions, two level NAND-NAND and two
level NOR-NOR expressions. In addition, the pioneer work of McNaughton
on mult;output minimization shows that a variant of standard minimization
theory such that the prime implicants of the functions themselves and
of their products correspond to prime implicants in the single output
problem. When this is combined with the methods of this article one
gets a variant applicable to the multiple output problem., Similarly,
if one wanted to minimize sum-product-sum expressions, it is obvious
that a minimal cost expression I = F1 + ...+ Fn must satisfy:

1. Each Fi is an implicant of F

2. Fi must be a minimum cost product of sume expression.
1f we combine these features and we define a subfunction of F to be a
partial function G such that

1. every l-minterm of G is a l-mipterm of F

2. F and G have the same O-minterms

3. G has at least one l-minterm (unless F=0)
it follows that the minimum cost sum-product-sum expression for F is a
sum of minimum cost product-sum expressions of subfunctions of T,
specifically, the minimal such sum that covers all l-minterms of F.
Consequently (with the help of duality), any two level minimization

method can be extended to a three-level one. By repetition, it fcllows

22

any two level method can be extended to an n-level one and, since an
expression is absolutely minimal if and only if there is an n such
that it 1s both n-level and n+l-level minimal, any two-level minimization
method can be extended to an absolute minimization method.

These results while interesting in theory, involve except in
extremely simple cases, such a computational load as to normally make

‘ »

them impractical (although if for some unusual reason the desirability of
minimizing was so strong as to make one willing to do this, the pay-off

for a relatively efficient rather than a relatively inefficient two-

level method is great indeed).

SOME DETAILED EXAMPLES

We close with a couple of six~-variable examples. 1In actual cases,
the output conditions are determined by a combination of system specifications,
systems analysis and the mathematical algorithms which it is intended to
realize. Although in different cases, the source of the definition of
the switching function to be realized will differ, in each case it will
result in a set of condition which imply for each combination of inputs,
that combination is either positive, negative or don't care.

For our examples we will, to obviate the danger of inadvertently
biasing the case by chosing functions especially favorable, instead
use functions generated by a random function generator, i.e. combining
the output of a random number generator with a remainder modulo 3 sub-
routine to generate zeroes, ones and question marks with equal probability.
We chose (for easy understanding) as cost function the number of literal

occurrences and to make the problems simple enough to follow but complex

23

enough to be interesting, chose 6 variable problems:

yzwx 00 01 11 10 yz% 00 01 11 10
00 7 0 1 1 00 7 1 1 7
01 1 0 7 7 01 o o0 ? 1
11 1 1 1 0© 11 7 72 0 1
10 1 0?1 2 10 2 0 1 0
yz\w" 00 01 11 10 yzﬁ 00 o1 11 10
00 o 1 ? 2 00 o 0 ? 2
01 1 0 1 72 01 0 1 1 1
11 1 2 0 2 11 1?7 7 2
10 1?2 1 1 10 7 2 1 0

As we go through the algorithm we make entries on the map indicating the
minterms covered and those which have already been checked for vicinity.

To indicate what happens we will repeat the map (without marginal markings)
inserting "X" for minterms covered and "Y" for "misfires." Assuming we
have no particular geometric insight, a fairly good tactic b to examine
first minterms that having a larger h number of adjacent zeroes, but

in effect for this purpose we choose on the basis of adjacent zeroes on
the same map. It is of course not difficult to spot multiple zeroes on
the same map. 232, for example, has 3 adjacent zeroes immediately visible
(and no others) and, close by, 223 and 210 have two on the same map (and

additional ones on adjacent maps). So we have:

Minterm

232
223
210

Vicinity

wX2z
uxz

uvyz

Looking for further

311
101
110
131

uyxz
uxz
uvxz

wy

plausible cases:

24

Essential

yes
ne

yes

yes
no
yes

yes

20
1 0
11
1 7
0 1
1 0
1 2

R B
2 0
1 0
1 1
1 7
07
Y
1 2
1 X

T

MO e

RS I

X

O M

1

OO >
[

>

O = b

-3
-~
>

XX

o
OO XN
[RN I

- o O
woopd O
A]

~J
-

?

0

Since this exhausts the plausible candidates, we now go through

the others in a systematic fashion, entering results in a table for the

next step.

Of éourse, if additional essential prime implicants are found,

the table is adjusted so that only remaining l-minterms are listed.

Process
Order

[e

Minterm Vicinity Ess.?

001
002
003
013
033
101

102
103
122
223
303

no
no
noe
no
no
no

no
no
no
no
no

Compatability
Set

013,033
001,003,
101,103

002,102,122
223,303

Joint
Vicinity

uvxy
uwxz

Uy
uxyz

Conjoin

uvxyz
uwx z

uxyz
uxyz

Remarks

-t S S S N N

25

starting with small vicinities being advisible in the absence of reason to

the contrary, we start with 033. Its vicinity, uvx translates to

"first digit O, second odd."” Results are indicated above. uvxy being

a cover of the compatability set, minimal cost for 033 and an implicant

it is adopted. 101's vicinity, uxz translates to "first low, second

even, third odd." awxz satisfies the three conditions and so is adopted.
‘ »

223's vicinity translates as "first high, second even, third odd."

uxyz satisfies the three conditions and so is adopted. We now have only

three minterms left: 002, 102 and 122. 122's vicinity u translates as

"first digit low' which all three satisfy. Since (1) any prime implicant

which covers a remaining minterm must have at least one move literal

than the vicinity expression, (2) any prime implicant that covers both

102 and 122 must be covered by uy (3) uy is not an implicant (4) uyz

is an implicant and covers the whole compatability set, it follows that

we cannot do better than uyz (we could also get this result by examining

the five products with u and on finding that none are implicants, the

main algorithm lets us choose uyz). A minimum cost covering is therefore:

wxz + u;§2 + uvxz + uvxz + w§ + Gny + uwxz + u§yz + Gyz.

Another randomly generated case is:

AN

SNE 00 01 11 10 N g0 01 11 10
yz > vz O\

00 1 1 ? 0 00 o o 0 2
o1 0 0 0 1 01 T 172
11 0 1 ? 2 11 o o 1 1

10 ? ? ? 1 10 ? 1 i 1

26

;;3? 00 01 11 10 ;;31 00 01 11 10
00 1 0 0 0 00 1 1 ? ?
01 o 1 7? ? 01 1 ? 0 0
11 i1 0o ? ? 11 1 ? 0 1
10 0 ? ? 1 10 6 0 0 o0

Following the same notation and strategy as in the last example, we

find the following plausible candidates

Minterm Vicinity Essential
100 wXyZz no 11 7 0 0 0 07
103 v§yz yes 0 0 0 1 7 1 77
111 vwyz no 0 X X ? 0 0 11
013 uvxy yes 7 X X 1 ? 1 11
Y 0 0 0 11 77
6 vy 7 7 1?7 00
X 0 7 X X 7 0X
Other plausible cases are: 0 7 7 0 0 00
000 uwz no y 1?2 0 0 0 02
021 wxz no 0 0 ¥ 7Y 77
122 uwy yes ¥ X X 0
211 uyz no X X X X X X XX
212 vyz yes
Y 0 0 0O 11 7?27
0 vy 7 72 1 7?2 00
¥ 0 X X X 7 0X
0 ? X X 0 0 00

Our plausible cases being exhausted we now calculate:

27

Process Minterm Vicinity FEss Compatability Joint Vicinity Conjoin

Order . Set
000 uwz no
3 010 uvz no 000,010 wvwz uvwy z
5 021 WXz no 021,223 WX 2 WKz
1, 4 100 WXy Z no 100,300 VWXY Z VXY Z
2 111 , vx§z no 111 vxyz UVWXY 2
6 211 uyz no 211,301 uwy z uwy z
223 \ no ©
8 233 vw no 233 vw UVWXY Z
300 vy no
301 uw no
7 310 uvy no 310 uvy UVWVY Z

Starting with small vicinities, we start with 100. 7Its vicinity translates
to "second digit 0, third 0," giving us 000, 100 and 300 as its compatability
set. Since its vicinity has 4 literals, every prime implicant covering it
will have at least 5 and hence only cover two minterms at most. We hence
pass to 111. Its vicinity gives "ist digit odd, 2nd odd, third 1."

111 is the only remaining l-minterm which satisfies this. Hence since

va§z is an implicant, it can thus be added. Moving to 3 literal vicinities,
010 gives "1st digit 0, third even," giving 000 and 010 as compatability

set. Since uvwz is only one literal move than the vicinity and is an
implicant, it can be added. This reduces the compatability set of 100

to 100 and 300, Hence vwxyz can be added. Minterm 021 gives condition
“second digit 2, third odd" giving as compatability set 021 and 223.

Their conjoin is vwXz which is one literal longer than the vicinity

wxz and is an implicant and hence may be added. Minterm 211's vicinity

gives "first digit high third 1" giving as compatability set 211 and 301.

28

This gives u§§z as joint vicinity and conjoin. Since it is an implicant
and one literal longer than the vicinity, it may be added. This leaves
only 233 and 310. Minterm 310's vicinity gives "first digit 3, third low,"”
with only 310 as compatability set. Hence uvwy, being an implicant
may be added. This leaves only 233 remaining and since vwy is an
implicant and is one literal larger, it likewise may be added.

Thus, one minimal cost expression is:

vXyz + uvwy + uwy + vyz + uvxyz + uvwz + vwxyz + vwxz + uwyz + uvwy + vwy

