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Abstract

The special properties of the vicinity, i.e. the largest n-cube covering a given minterm
but none of its adjacent zeroes, gives rise to an extremely convenient and flexible
method for minimizing sum-product and related Boolean forms, since it allows direct
calculation of essential prime implicants and the generation of remaining terms of min-
imal cost expressions in order of increasing complexity, thus obviating much of the cal-
culation involved in standard methods.



1. Theory of Vicinities

The purpose of this paper is to prove a number of theorems of elementary switch-
ing theory which underlie a method of simplifying sum-product and related Boolean
functions in a way generally more efficient than prevailing methods, especially for
manual simplification. In the presentation, we assume the usual terminology and the
relationship between n-cubes and product terms.

Standard methods rely, as does this one, on the relationship between cost func-
tions having monotonicity properties with respect to product and sum and prime im-
plicants which are product implicants whose expression cannot be shortened to produce
an implicant, and calculate, first, the set of all prime implicants and from this set,
determine which are essential (i.e. which must ocecur in every representation of the given
function as a sum of prime implicants) [1]. The algorithm which is derivable from the
theorems which follow instead determines essential prime implicants directly and is, fur-

thermore, readily applicable to popular geometric representations such as Karnaugh
maps and n-cubes.

In order to conveniently map partial functions we will assume that we are given
three Boolean functions fO, f1 and f2 such that fO +- f1 + f2 = 1 and fofl = f0f2 = f1f2

= 0 are Boolean identities. f, will be taken as determining the cases in which the par-
tial function is O, f1 those in which it is 1 and f2 those in which it is undefined. The

minimal cost sum-product expression will be that sum-product expression which (strictly
speaking, whose correlated function) contains f, and is contained in f, + £, We will

mean by a literal either a variable or its complement and by minterm a product of
literals containing no variables twice and at least all variables on which any of f, f, or

f2 depend (and in referring to several minterms we require that any variable in one is in

all).

We shall now add a few definitions of our own. Two minterms M, and M, will be
termed adjacent provided there are literals L, and L, and a product of literals P such
that M, = L;P and M, = L,P and L,L, = 0. A minterm M, will be said to be an
adjacent zero of a minterm M1 provided M, is adjacent to M, and M2 C f,- We will
term L an adjacency literal of a minterm M1 provided there is a minterm M2 which is
an adjacent zero of M, and a literal L, and a product term P such that M, = LP and

M, = L,P. V is the vicinity of a minterm M, provided it is the product of all the ad-
jacency literals of Ml‘

Theorem 1. Every product term implicant of f1 + f2, of which a minterm M is an im-
plicant, is an implicant of the vicinity of M.

Proof: Let A C f1 + fz’ M C A and V the vicinity of M. If A were not implicant of V,



since it is a product of literals there would be a literal L in V which is not in A. Let B
be a product term such that M = LB. Then there is a literal L’ such that LL’ = 0.
Then L’B is an adjacent zero of M. Hence, since every literal in A is in M and L is not
in A, B C A. Since B is an implicant of fl + f2, L'B C £, + f2. But since it is an ad-
jacent zero of M, L'B C fO. But since L’'B is a minterm, this gives L'B C f0 and L'B ¢
fo- )

Theorem 2. Let M be a minterm and V its vicinity, then V is an implicant if and only
if Vis a prime implicant.

Proof: If V is a prime implicant it is an implicant. For the converse assume V is an im-

plicant. Then there is a prime implicant A such that V C A. But by Theorem 1, A C
V and hence V is prime.

Theorem 3. Let M be a minterm such that M C fl and let V be its vicinity. Then V is
an implicant if and only if V is an essential prime implicant.

Proof: If V is an essential prime implicant, it is an implicant. For the converse assume
V is an implicant. By Theorem 2, V is prime. If V were not essential, there would be a
prime implicant P such that V 3£ P and M C P. But then by Theorem 1, P C V and,
since P is prime, V = P. Hence V is an essential prime implicant.

Theorem 4. A product term A is an essential prime implicant if and only if there is a
minterm M such that M C f1 and A is the vicinity of M.

Proof: If there is a minterm M such that A is a vicinity of M and M C f1’ A is an es-

sential prime implicant by Theorem 3. For the converse, assume A is an essential prime
implicant. Obviously, flA £ 0, since otherwise A would be redundant. Let Ml,...,Mn be

all those minterms such that M, C f|A for i = 1,...,n. Suppose for each i (1<i<k),
there is a j (1<j<n) such that Mj = L.B; and a literal L; such that L; B, ¢ f, and LiL;

= 0. Then L, B, C f; + f,. But then B, = LB, + L B, C f, + f,. Hence, since B, is
an implicant, there is a prime implicant Pi such that B, C P;. Hence, if fl CA+BC

f, + £y it follows that f, € 3 | M; +B C f; + fyand M, C P, f, C ¥ P, + B
C f, + f,. Since B, ¢ A, P. ¢ A and hence A is not essential.

Theorem 5. Let E,,...,E_ be the essential prime implicants. If f, C Z?xl E, Z?:l E,

is the minimum cost sum-product expression (provided the cost function satisfies the
usual monotonicity properties).



Proof: Since E, C f, + f,, f; C E?xl E, C f; + f, and since the E’s are essential

n N . . .
> iy E; is the minimum cost expression.

Theorem 6. Let B E be the essential implicants and Mi""’Mm be the minterms
such that M; C f; and M E?zl EJ. = 0. For each i (1<i<n), let V, be the vicinity of
M. Let f,* = £, YO, V; compl(Y"0 | E)), £,* = (f, + i, E) Y0V, and f,*
= compl(}:;[][_l_:1 V.) + f,- Then if Z?:l E. + Zi;l P. is the minimum cost expression

A satisfying f; C A C f, + f, and P; are prime implicants, lele P, is the minimum
cost expression A satisfying f,* C A C f* + f,*

Proof: If Pj Cfy + Z?:_-—l E,, it could be eliminated. But since Pj C I, + 1, it follows
that Pj of o compl(z?___l E,) # 0 and hence that there must be at least one minterm
in it. Hence, there is an M, C Pj. Then by Theorem 1, Pj - Efnzl V.. Since fl* + f2*
= TPV, (8, + fy), it follows that o5 P, C £,* + 1%, (O, M) e ©b_ E =0
and f, C Z?:l E, + Zim;l M.. Thus f; Z:I_I_“l V. compl(Z?xl E) = Eil M, C
Zi;l P.. Hence f,* C Z?:l P. C f,* + f,*. Suppose there were a B with less cost
than E?____l P.and f* C B C f;* + {,*. Then since (Z?___l E.) + B is of less cost than
S B + Yh, Piandf, C 0| E, + B. Since Yp_| E; C f, + f, and £,* + f,*

n n k .
Cf +fy > E+BCT +fand 3 | E + 3 | P, would not be the min-
imum cost sum-product expression, contrary to assumption.

Theorem 7. Let E be an essential term and M a minterm such that M C E. Then ei-
ther E is the vicinity of M or the minimum cost expression is independent of whether M
C f1 orM C f2.

Proof: Let E be essential, M C E, V the vicinity of M, and V 5£ E. Since M C E, E C
V, by Theorem 1. Then V ¢ f, + f, since otherwise E could not be prime, by Theorem

2. Hence, more specifically, V is not essential. Hence the set of essential terms does not



depend on whether M C f, or M C f,. But since M C Z?:l E. of Theorem 6 either M

C f*if M C 2:1;1 V, and M C f,* otherwise. In neither case does this depend on
whether M C f, or M C f,,. ’

2. Determination of Essential and Optional Prime Implicants
Theorems 4 and 7 together provide the basis for an algorithm for determining the
essential terms, viz. Let Ml""’Mn be the minterms in f1 in any order. For each 1, check

if M, is contained in an essential term already determined. If it is, proceed to i+1. If

not, determine its vicinity by writing the product of its adjacency literals. Observe if
the vicinity is in fl + 1, (for Karnaugh maps or the like, this means to see if the n-cube

fails to cover any O-cell). If it does, add the vicinity to the list of essential terms and
proceed to i+1. If not, just proceed to i+1. Suitable choice of the order may decrease
the number of steps concerned, but cannot affect the final result.

If the minimum cost expression is the sum of essential terms, the algorithm yields
it directly. If not, Theorem 6 usually substitutes a somewhat simpler problem to be
solved by one or another conventional algorithms.

It should be noted that in the reduced problem generated in accordance with
Theorem 6, there are never essential terms, but that, in most cases the number of prime
implicants will be substantially decreased.

At this point in the process, one additional advantage which can be utilized sys-
tematically is present as compared to e.g. Quine-MacClusky viz. as a consequence of
Theorem 1 we know that every product implicant and hence every prime implicant
which covers M must contain every literal in the expression for M’s vicinity. From the
definition of prime implicant we know that prime implicants may contain no literals
other than those of M. The process for determining the prime implicants that cover the
remaining minterms then is:

1. Adjoin to the expression for V  one literal in M but not in V | (in all pos-

sible ways). For each resulting product, it is an implicant, it is prime. Let us
call those resulting products which are not implicants "unsuccessful can-
didates of the first level" and the literals added to create them "unsuccessful
literals."

2. Adjoin to every unsuccessful candidate of the k™ level an unsuccessful literal
(in all possible ways) such that the resulting product does not have all the
literals in a prime implicant already generated. If the resulting product is an
implicant it is prime. If not, call it an unsuccessful candidate of the k + 15t
level.



The process should obviously terminate if either we have finished the level in
which the number of literals is one less than the number in M or if at some level we
have no unsuccessful candidates (since then it cannot continue). It can however also be
discontinued if on the ntt level, there are no more than n unsuccessful candidates, since
then the next level is bound to yield no products which are not the result of adding a
literal to a prime implicant already detected and hence no candidates on the n + 1%

level.

We illustrate the method described using Karnaugh maps.

A/B
CD/EF 00
00 0
0 01 0
11 ?
10 0
00
00 0
1 01 0
11 ?
10 ?
\' ess?
a. ABDF X
b. ADF
c. CE
d. ACE X
e. ADEF X
f. A
g. ABCEF X
h. ACDF X
1. BCD

0 0 0
12 1P 0
? ? ?

1¢ 14

01 11 10
0 0 11
0 0 0
? ? ?
? ? ?

Covered

by
a
a
d

d

e
e,g
g
g

Table 1
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4m
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01
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X

14

11 10
1f 18
11 0
? ?
1k 0
11 10
1° 0
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Table 1 illustrates the application of the method to a function chosen more or less
at random (f2 was chosen arbitrarily as BE + EF and f, then literally generated

randomly). There are 18 minterms in f;, 24 in f, and the remaining 22 in f. There are

9 essential prime implicants as indicated. The author chose these 9 in 10 tries (with 1
negative test on minterm i- and a final test one on k). ZV, (of Theorem 6) thus becomes

BCD + CD which equals CD, so that the reduced partial function becomes:

0 0 0 0 0 0 ? 0
0 0 7 0 0 0 1 0
0 0 ? 0 0 0 ? 0
0 0 ? 0 0 0 1 0
o) 0 0 0 0 0 ? 0
o 0 0 0 0 0 0 0
o) 0 ? 0 0 0 ? 0
o) 0 ? 0 0 0 ? 0

Table 2

The remaining prime implicant for minimizing diode cost (A§CD) is extremely obvious
and application of a standard method such as iterated consensus is quite easy and short
rather than laborious as it would have been with the initial function.

Applying instead our indicated algorithm we note that the vicinity for i is BCD
and i is ABCDEF while the vicinity for k is CD and k is ABCDEF. For i our first level
candidates are then: ABCD, BCDE, BCDF of which the first and third are implicants
and hence prime. Since BCDE is the only unsuccessful candidate, they are all of the
prime implicants that cover i. For k, our first level candidates are: ACD, BCD, CDE,
CDF of which only CDE is an implicant and hence prime. Our successful literals are A,
B and F and hence our second level candidates are ABCD, ACDF and BCDF, ABCD is
a prime implicant as we have seen and since ACDF is an implicant, it is also prime.
ABCD is not an implicant and hence an unsuccessful candidate. Since there are not
more than 2 unsuccessful candidates on level 2, we are left with ABCD, BCDF, CDE

and ACDF of which the first two cover i and the first, third and fourth cover k.



3. Multiple Minterm Covering and the Full Algorithm

This process can be simplified additionally if we know the cost function. For in-
stance, returning to the point at which we have calculated the vicinities and assuming
all literals equal in cost we know that the best we could hope to do is to choose a 4
literal prime implicant which covers i and k since no prime implicant which covers i can
have less than 4 literals (since its non-implicant vicinity has 3). Such a prime implicant
would however have to agree with both i and k in all its literals and hence could only

be ABCD. Since this is a 4 literal implicant, it is prime and is an appropriate choice.
Note that we do not need to determine the other prime implicants.

Suppose, on the other hand, our cost function assigned a cost of 1 to each use of a
literal except A, a cost of 5 for each use of A and no additional charge for the "and"
gate. In that case we can, in advance of determining the prime implicants which cover i
and k, determine the following order of preference for coverings:

1. A 4 literal prime implicant which covers i and k and contains no A.

2. A 5 literal one which satisfies the same condition.

3. A 4 literal one which covers i and a 3 literal one which covers k, neither of
which contains A.

4. Either a 5 and 3, or two 4’s, neither containing A or a 4 literal one contain-
ing A.

Since we know that any prime implicant which covers i must have at least the
literal in its vicinity plus one and i and k have only 4 literals in common, one of which
is A, it follows that 1. and 2. above cannot occur. Hence a solution satisfying 3. is min-

imal cost. We then find BCDF, either by observation of the map or by adding succes-

sively literals in i which are neither A nor in the expression for the vicinity. In the same
way we find CDE.

Let us call a set of minterms compatible if there exists a product implicant which
covers all of them. The following theorem relates vicinity and compatibility.

Theorem 8. Let m,,..,m_ be minterms. We will call P the p-cover of m,,...,m

provided P is the longest product such that }::?:1 M, C P (i.e. P is the product of all
literals shared by all of the Mi)’ Let Vl,...,Vm be the vicinities of m,..,m respectively.

Then if P is an implicant a necessary and sufficient condition for there to be a prime

o N . . m
implicant using my,...,m IS P C Hi=1 Vi'



Proof: Let P’ be a prime implicant covering each m,. This by Theorem 1; P’ C Hinzl
Vi‘ Since P’ covers each m,, every literal in P’ is in each m, and hence in P. Hence P C

P’ and P C H:nzl V.. Suppose P C H:::l V.. Since P is an implicant there exists a

prime implicant P’ such that P C P’. But since Z:n:l m, C P, Zil m;, C P

Theorem 8 results in a structure similar to that between vicinity and minterm ex-
pressions, namely every literal in the product of vicinities is in every prime implicant
that covers my,...,m and only literals in the expression for the p-cover, that is, literals

in each of m,,...,m_, are. Since, of course, the product of vicinities may itself be a prime
implicant, the generating algorithm starts with the product rather than one step later.

The systematic determination then proceeds as follows:

1. Determine the essential terms.

2. For each remaining minterm, determine all the remaining minterms in its
vicinity.

3. Prune the lists determined in step 2 by eliminating the non-symmetric cases.

4. For each minterm still remaining, determine the product of the vicinities and
the P-cover of the minterms on its list. If the P-cover is an implicant and in-
cluded in the product, determine the least cost prime implicant(s) included
in the product of vicinities and check that it is a minimal cost cover of the
minterm. If it is, add it to the list of accepted terms, eliminate the minterms

it covers from the problem, correct the lists and proceed. Otherwise proceed
to the next minterm [2].

5. If any minterms remain, compare costs of minimal covering products of each
remaining compatible covering and choose the best.

To illustrate, consider our test function. Minterm i is in the vicinity of k and vice
versa. The product of their vicinities is BCD and their P-cover is ABCD. Since BCD is

not a prime implicant, ABCD is the only prime implicant which covers both and hence
should be added if it is a minimal cost prime implicant for either i or k. For example, if
the cost of increasing any one literal is the same, step 4 dictates it. Otherwise we com-
pare its cost with the minimal cost coverings of i and k (which in this case would have

to be BCDF and CDE) and choose the cheapest between adding ABCD or both of
BCDF and CDE.



Notice that as minterms get covered as a result of terms adopted by application of
steps 2-4, they are eliminated from the problem, so that normally as the method
proceeds, not only does the number of lines indicating minterms decrease, but also the
number of entries indicating minterms which might be covered with the given minterm
decrease as well; specifically, only minterms still to be covered may appear there. Ac-
cordingly, especially in manual application, it is frequently desirable to apply steps 2-4
(and, occasionally, step 5 as well) to promising minterms one at a time, thus taking ad-
vantage of the simplifications which result. Indeed, when a minterm cost covering of a
minterm is one literal more than the vicinity, this fact can frequently be directly read
off of the Karnaugh map. To illustrate, consider the following partial function (with the
cost being one unit for each occurrence of a literal):

B/A 0 1
EF/CD 00 o1 11 10 00 01 11 10
00 0 1€ 0 0 1° 0 0 0
0 01 12 ? 10 1° 0 12 ? 0
11 ? 14 2 1P 1P 0 0 1°
10 1P 0 2 18 18 0 1 1t
00 0 1k ? ? 0 0 0 0
1 01 0 0 10 11 0 ' 132 9
11 11 0 0 2 ? 1% 0 0
10 1] 0 10 0 1V 1Y 1P 42

The vicinity of a is ABF which, since it covers no zeroes, is an essential prime implicant
and also covers d, h, e and f. The vicinity of j similarly determines the essential prime

implicant CDE which also covers b, i, p, q and v. Similarly, the vicinity of a determines

ABCDF which also covers q, and that of s BDE which also covers b, f, g, p, q and t.
Checking the remaining Il-cells we obtain the following vicinities (none of which are
implicants):

¢ ACDE n DEF z  AEF
k ABEF u CEF aa EF
1 C w  ADF bb EF
m CE X  ABC

n CDF y  ABE



10

The vicinity of ¢ contains but one remaining minterm, k and ACDEF is minimal

for ¢ and covers k. The vicinity of n contains u and bb and CDEF is minimal for n and
covers u and bb. The vicinity of r contains m, w and aa, but since r is not in the

vicinity of m, the prime implicant. ADEF, which covers w and aa is minimal for r, is
the least cost way of covering r by rules 2-4. Now the vicinity of x covers w and y, but

since w is already covered and ABCE is minimal for x and covers y, it is accepted by
rules 2-4. The vicinity of n covers w and bb. This leaves us with 1 and m. The vicinity

of m, CE covers | and since none of ACE, BCE, CDE and CEF are implicants, ACEF

(or BCEF) is minimal for m and covers 1. Hence ABF + CDE + ABCDF + BDE +

ACDEF + CDEF + ADEF + ABCE + ACEF is a minimal cost covering of the given
function.

The reader who intends to use this method should note that when the cost funec-
tion, though monotonic, is rather complex, he may prefer to use the first two algorithms
and choose the best coverings among the optional prime implicants rather than the
more complicated full algorithm, since the advantage of the full algorithm lies primarily
in the elimination of the calculation of some of the optional terms, an advantage which
is considerably less when the cost function is complex [3].

Affiliation of author: Professor of Computer Sciences, of Philosophy and of Electrical
Engineering, University of Texas at Austin.
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It should be noted that the indicated method is readily amenable to machine
representation (although the advantages of choosing good candidates for
determining essential terms probably is not practically available). While not
decisive, preliminary evidence seems to indicate efficiency advantages rela-
tive to the Quine-McCluskey algorithm in machine versions. These ad-
vantages are obviously more extreme in manual application.



