USER REFERENCE MANUAL FOR
TASK LEVEL DATA FLOW LANGUAGE:
VERSION 1

Nicolas Graner & Jit Biswas
Department of Computer Sciences
University of Texas at Austin

Austin, Texas 78712

TR-86-05 January 1986

1 Abstract

2 Introduction

3 The Core of TDFL
4 Examples

5 Implementation

6 Running the system
7 Future work

Table of Contents

B bt b e

U
0 b =3

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:

ii

List of Figures

Primitive nodes of TDFL

Partitioning of back substitution.
Computation Graph for back substitution.
Partitioning for example 2.

Formulation for example 2 with two partitions.

Airline reservation.
Node and edge labels for sample run.

w3 O O Ut W

14

1 Abstract

The language TDFL (task level data flow language) is in its formation stages. We have
implemented a core of the language which we are certain about. We also have the tools
with which to implement further primitive elements of the language as and when they

are deemed necessary. This document defines the core of TDFL, its implementation and
examples of its use.

2 Introduction

Given a computation graph, it is possible to traverse it in a manner such that each
task executes asynchronously and the only constraints on scheduling are due to the
dependencies between tasks as revealed in the graph. In this report we outline a simple
graphical programming language called TDFL (Task Level Data Flow Language) that
allows the expression of computations as task level data flow graphs. We also outline an
implementation of TDFL on a dual processor Cyber 70 mainframe.

3 The Core of TDFL

Core here refers to a minimal set of operations that may be used to represent a
significant class of computations. '

The core of TDFL consists of nodes and arcs. Nodes are active elements of a
computation. They can be of the following types.

¢ General

e Initiator

e Terminator
e Loop

e Merge

Arcs are directional FIFO channels that transport tokens, or data values between
nodes. By including self loops (an arc leaving and entering the same node), we have an
easy way of representing state retention. Associated with each arc is a positive number
that denotes the integral number of words constituting a token for that arc. This
number is fixed for the duration of the computation.

We briefly describe the actions of each of the above node types.

General nodes. These have any number of input and output arcs. The body is

executed if and only if a token is available on each incoming arc. After execution a
token is placed along each output arc.

Initiator nodes. These have no input ares and any number of output ares. The
execution of these nodes is spontaneous. With each execution a token is placed on each

output arc. Typically a program contains only one initiator, although we do not make
this a restriction.

Terminator nodes. These are orthogonal to Initiator nodes in that they have any
pumber of input arcs but no output arcs. They execute only when they have a token on

each input arc. Typically a data flow program contains only one terminator that
accumulates and displays the results.

Loop nodes. A loop node has two input arcs, called the main and feedback input
arcs, and two output arcs called the main and feedback output arcs (Fig 1). It also has
a boolean predicate function that can be evaluated taking as argument 2 token that
arrives on an input arc. Operationally a loop node behaves as follows. There are two
distinct states that the loop node can be in - "expecting main input" and "expecting
feedback input". Initially a loop node is in the state "expecting main input". It is
activated by the presence of a token at its main input arc; the feedback input are being
ignored at this point. If the result of the predicate function applied upon the token is
true, it places the token upon the main output arc and goes back to the "expecting
main input" state. If the predicate evaluates to false it puts the token on the feedback
output arc, ignoring the main output arc, and enters the state "expecting feedback
input". Until the predicate becomes true, for each subsequent firing the loop mnode
removes a token from its feedback input arc. As before once the boolean predicate is

true, the loop node places the token upon the main output arc and goes back to the
wexpecting main input” state.

Merge nodes. A merge node has any number of input arcs and only one output arc.
The node executes whenever a token is available on at least one input arc. The act of
execution amounts to removal of a token from one of the input arcs
(nondeterministically selected), and putting that token on the unique output arc.

4 Examples

We do not yet have a data flow language from which we can compile into graph
representations. Thus the form of the graph is entirely in the hands of the programmer.
It is hoped that the programmer will build "reasonable" graphs from these primitives.
We now present some examples of TDFL programs.

Example 1. A triangular solver.

\ |/ \+/
/SN

General Merge
Task
Feedback
inp
Main
input /—\
Body
Main
Output

Feedback
Output

Figure 1: Primitive nodes of TDFL

Let Ax = b be a system of linear equations in n unknowns. A is an n by n coefficient
matrix, x is an n by 1 vector of unknowns. b is an n by 1 vector of constants
representing the right hand side (RHS) values. The algorithm for solving these
equations, called Gaussian Elimination proceeds in two steps. The first step puts the
system into upper triangular form by "zeroing" out or pivoting the subdiagomnal
elements of A, making appropriate changes to b. The second solves the revised system
of equations by back substitution. Here we are interested in only the second step. We
assume that we have a system of equations TX = b where T is an n by n lower
triangular matrix, X is an n by 1 vector of unknowns and b is an n by 1 rhs vector. For

example, say the first step puts a given 3 by 3 matrix into triangular form as shown
below: ’

Solve -1 0 0 X, -1
1 1 0 X, = 2
1 2 3 X, 6

First we solve -X; = -1 from row 3. Substituting X; =1 in row 2 gives us X, = 1.
Substituting the values of X, and X, in row 1 gives X3 = 1.

Parallel formulation. The parallel formulation we use is shown in Fig 2. Let k be a
factor of n. Let s = n/k. A k way partition of the system corresponds to k(k+1)/2
subblocks of T and k subvectors of X and b. Each diagonal subblock of T is a lower
triangular matrix of side s. Each non diagonal subblock is a square matrix of side s.

x, |)
x4 B
T X

X2 B2

oansrmsmmmed

X3
Ty (T2 T3
IS
Tny A T“"A Xx B« k

T T2

I

83

Figure 2: Partitioning of back substitution.

Notations. Let Tij denote the subblock on the ith row and jth column of the partition.
Let X denote the ith subvector of unknowns [x(i_l)*s—%-l, - x(i*s)]. Similarly B; denotes
the ith subvector of rhs values.

Strategy. The basic idea is to reduce each row of blocks into a set of s equations in s
unknowns. The first row T, X, = B, is already in this form and the solution of this
can be assigned to a sequential task P,;. The equations represented by the ith row of
blocks can be written as:

Clearly, as soon as X, has been evaluated by P, we can assign to P, the task of
removing these unknowns from equations (i) by carrying out the transformations:

o TyX= B, - Tj; X4

The new set of equations are:

where Bi’ is the new sub vector of rhs values. After this transformation the 2nd row of
blocks now represents a set of s equations in s unknowns T,, X, = B2’ and can
therefore be solved by task P22. Values of X2 thus evaluated can be substituted in

parallel by tasks {Pi2 : 3<=i< =Kk} to transform the remaining equations by removing
the unknowns X,.

In short all we have done is to extend the most obvious algorithm of backwards
substitution to blocks instead of unit variables. If k=1, the algorithms are identical.

The computation graph resulting from the above mentioned task assignments is shown
in Fig 3.

8‘ --’ P‘s

Figure 3: Computation Graph for back substitution.

Note: Pij has subblock Tij of coefficients. Task P,; takes as inputs the original vector
Bi from the environment. Pii determines the wvalues of Xi and returns it to the
environment.

Example 2. A partitioned iterative problem.

Say we have a problem in which a certain computation is performed upon equal
partitions of an array (Fig 4). At the end of the compute phase neighbouring partitions
exchange their results. This scheme is repeated a number of times after which the

computation terminates. The problem is formulated for two partitions in TDFL as
follows (Fig 5).

SOLVE
/NN

| swar

RIS N SOLVE

SWAP

Figure 4: Partitioning for example 2.

Token fields:
eration count,
Left val, Right val

Predicate -
iteration count = 0?

Loop
Predicate

Leht Right

Figure 5: Formulation for example 2 with two partitions.

The dots on the self loops for LEFT and RIGHT indicate initial state (i.e. the
partition of the array) and the self loops themselves indicate state retention. A token
has three fields, a count field a left and a right value. The Switcher node swaps the left
and right values of a token. The Collector node builds a new token from the left value

field of its left input, the right value field of its right input and the count value field (of
either input) decremented by 1.

Example 3. Airline reservation

The third example illustrates the use of a merge node. S, and S, are booking agents
that receive replies to requests for seats in an airplane. A request is of the form:

Source 1d
Number of seats

Replies may be one of the following two forms:

Destination id | Destination 1d
Done] Falled

The booking agents scan the incoming stream of replies, throwing away tokens that do
not apply to them (Fig 6).

J

—

J.._

ACCESS
RESOURCE

NG

Figure 6: Airline reservation.

5 Implementation

Overview. The system consists of an "initializer", which takes a description of the
program graph and starts the asynchronous execution of the nodes of the graph. Omnce
each task (node) has been started, the initializer is no longer needed. The initializer
uses a set of predefined files, which contain prototype encapsulations written in Pascal.
There is one such encapsulation for each of the node types in Section 3. The initializer
"plugs in" the user written code into these encapsulations compiles the resulting files
and forks processes under the UT-2D operating system.

1. Task table:
The task table is stored in a user named file. It includes one line for each task; each
line has three or four fields separated by one or several spaces:

e task index: an integer that uniquely identifies the task. Indices must run
sequentially from 1 to N, otherwise an error is detected by the initializer.

e task category:

1 = general
= initlator

3 = terminator
4 = merge
5 = loop

e body name: name of the file containing the source code of the body (1 to
7 letters and/or digits). This file should conform with the format described
below, and be in the pfset when the program is started. Several tasks may
use the same body (they will each get a different copy of it). The system
may be extended in the future to accept task bodies either in source or
object form.

e input file name: (optional) This file will be assigned to the standard
identifier INPUT when the task is executed, so it can be read without
specifying a file name. Several tasks may use the same input file. The
option is selected by preceding the filename with the character 'T’.

e FORTRAN file name: (optional) This feature allows some procedures of
the task to be written separately in FORTRAN and separately compiled. At
runtime the binary file named is linked to the rest of the program. Several

tasks may use the same input file. The option is selected by preceding the
filename with the character 'F’.

2. Channel table:

The channel table must be in a separate user file. It includes one line for each chanmnel,

in any order (since channels are not globally indexed); each line has seven fields
separated by one or more spaces:

1. channel name: a string of 1 to 10 characters that uniquely identifies the
channel. This name is not used by the data flow system, but is stored in
ESM with the channel and can be used for debugging.

9. index of source task: the index (see "Task table") of the only task that
will be able to send to this channel.

3. index of channel in source task: all the output channels of one task are
numbered sequentially from 1 to nbout. This index uniquely identifies this
channel among the output channels of its source task.

4. index of destination task: the index (see "Task table") of the only task
that will be able to receive from this channel.

5. index of channel in destination task: all the input channels of one task
are numbered sequentially from 1 to nbin. This index uniquely identifies
this channel among the input channels of its destination task.

6. size of tokens: tokens transmitted along this channel will all be of type
array[0..size] of integer , i.e. they will in fact contain one more word than
requested by this parameter (word O is used as a tag by the system, but is
also accessible to the user).

7. number of buffers: this is the maximum number of tokens that can be
sent to the channel before any is received (actually, the system will reserve
one more buffer in order to implement a FIFO). Usually, the value of this
parameter won’t affect significantly the performance of the system.

3. The user written task bodies:

The function actually performed by a task is determined by its "body". This is a
procedure that is called as soon as a token has been received on every input channel (on

one input channel for a merge). It receives these tokens as input parameters and returns
new tokens to be sent along output channels.

Each body is contained in a separate file (see "Task table" above) with the following
format:

e a line consisting of the following word starting in column 1.

BODY

e a procedure declaration, which is different for each category of tasks:

o general -- procedure body(var x : inset; var y : outset);

o initiator -- procedure body(var y : outset; var b : boolean);

o terminator -- procedure body(var x : inset);

o loop -- procedure body(var x1, x2 : intoken; var y1, y2 : outset);
o merge -- procedure body(var x : intoken; var y : outset);

e! The procedure proper: It may use any constant, type or global

variable and call any function defined in the encapsulation (but not modify
a variable!). Of special interest are the following:

ltormal parameter names may be different, only the types are required; these types need not be defined
in the body, they are globally defined as: :

type intoken = array[0..maxinsize] of integer; outtoken = array[0..maxoutsize|] of integer; inset =
array|1..nbin] of intoken; outset = array(1..nbout] of outtoken;

10

const null : a token t 1s a null token if and only 1f
t[0] = null

default : value given to the tag of all output

tokens before body 1s called. Therefore

the tag need not be assigned a value 1n

the body..
nbin : number of input channels for this task
nbout : number of output channels for thls task
maxinsize : maximum size of input tokens for
this task
maxoutsize : maximum size of output tokens for
this task

(note that every token 1is passed as an array of
size maxinsize or maxoutsize, but only the first
k elements are meaningful, where k variles with

each channel and 1s supposedly known to the body
beforehand)

var nulltoken, killtoken : outtoken
predefined output tokens

procedure intorel(inp : integer; var out : real P
integer to real conversion

procedure reltoin(inp : real : var out : integer);
real to integer conversion

procedure intoalf (inp : integer; var out : alfa)
integer to alfa converslon

procedure alftoin(inp : alfa ; var out :@ lnteger),

alfa to integer conversion
4. Initiator.

The initiator must fire a number of times, then send killers to all its output chanmnels.
In order to do this, a extra boolean variable is provided to the body. If after executing
the body this variable has the value "true’, output tokens are sent normally. If it has the
value 'false’, the value of the output tokens is ignored, killers are sent and the initiator
terminates. i

This implies that the body has some way to keep a global state (so that each
execution does not return the same value). In a batch environment, this will normally
be achieved by reading data from an input file. Thus a typical body for an initiator
will have the following structure: -

BODY
procedure body(var y : outset; var b : boolean) ;

11

begin
if eof then
b := false
else begin
b := true;

x.‘c.a;,d (data);
yI[1103] = ...

end;
end;

5. Generated files:

The following files are generated and saved in the pfset during execution (some of
them may be missing if the program terminates abnormally); other temporary files are
created but not saved.

Files associated with the initializer:

e NICLINI: Listing of the initializer generated by the Pascal compiler
e NICOUT: Output from the initializer

e NICDAYF: Dayfile for the job that ran the initializer

Files associated with each task (i’ represents a task index:)

e NICOi: Output file from task i. Contains output from the body, the
encapsulation (to help debugging) and possibly the operating system (in case
of error).

e NICDi: Dayfile for the job that ran task i. If the job terminates
abnormally (inexistent file, compile time error, run time error...) an
explanation will usually be found in this file.

o NICSi: Source code for task i. Identical to NICGEN, NIC1ST, NICTER or

NICMER but with the appropriate values ’plugged in’. The body is not
included, only a directive to instruct the compiler to include it is.

e NICLi: Listing generated by the Pascal compiler. Includes the source of the
body.

e NICCi: Command file for the job that reads, compiles and executes task i.

12

Further details of the implementation can be found in the appendix.

6 Running the system

Let us consider the triangular solver problem on the following data:

1 o o o O O 1
2 7 0 0 0 O 9
A=3 812 0 O 0 P = 23
4 91316 0 O 492
5 10 14 17 19 O 65
6 11 15 18 20 21 90

We shall partition three ways. This gives rise to six subproblems, three of which are
diagonal SOLVE tasks and three are non-diagonal MATVECT tasks.

The problem consists of a static graph (Fig 7). We convert this graph into a channel
table and a task table in separate files. Once we have decided the file names we
incorporate them in a file called NICSUB that is the batch submit file for the system.
Nothing else needs to be changed.

The task table. (file named JITTASK)

1 1 JITSOLV I FIL1
2 1 JITMATV I FIL2
3 1 JITMATV I FIL3
4 1 JITSOLV I FIL4
5 1 JITMATV I FIL5
6 1 JITSOLV I FIL6
7 2 JITINIT I FIL7
8 3 JITTERM

The third column consists of task bodies. These are Pascal procedures that we would
have written for the corresponding partitions of the triangular solver. Since there are no
FORTRAN procedures we do not use the F option.

The channel table. (file named JITCHAN)

chant
chan2
chan3
chan4

i
2

0o B e
b N
N B R
M NN
NNNDN

1
1

13

chand 4
chan6é b5
chan7 7
chan8 7
chan9 7
chani0 1 3 8 1 2 2
chanlili 4 2 8 2 2 2
chanli2 6 1 8 3 2 2

The next step is to edit a file called NICSUB and incorporate the names of the above
files in place of JITTASK and JITCHAN.

The submit command is:
SUBMIT CC=NICSUB TM=100

This command starts a task that looks into the task table and forks all the tasks in
serial order starting at the top of the table. For each task we maintain (in other words
save on disk) the following files:

1. The source pascal program created (eg NICS1). This includes some
additional routines of ours.

2. The submit module that was utilized by NICSUB to get the task started (eg
NICC1).

3. The dayfile for the task (eg NICD1).

4. The listing file for the task (eg NICL1). (It is useful only in helping us catch
compilation bugs. In content it is really no different from 1).

5. The output file of the task (NICO1).

7 Future work

Critical examination.

Our major design goal was to make the system modular and self-contained.
Application dependent elements have been constrained to a few files clearly separated
from the system proper, making it easy to write/modify an application with little or no
knowledge of the environment (this is consistent with the concept of task in CSL).

The user has a lot of freedom in using the system. For instance, each token carries a
"tag" that can take any integer value. A few predefined values are known to the system

14

Chan7 - Chan10 —-—\
Chan2
' Chan1
7 Chan8 *@—*@’* Chan11 —-/‘
Chan3 |
‘ Chan5
Chand = Chan12
an
Chana Chané

Figure 7: Node and edge labels for sample run.

(default, null, kill), but the user can define any value for his own usage, such as loop
control (for which no standard mechanism is provided). Of course, freedom implies

responsibility, and the system won't be able to catch most programming errors
involving user-defined features.

We also avoided requesting redundant information from the user (each task or chamnnel
feature is described only once). This of course doesn’t allow for error detection/recovery,

which may be a problem as long as our applications are written manually, but should
make things easier for a compiler.

What could be improved.

We tried to make the system as machine-independent as possible. However, some
peculiarities of the UT-2D operating system required special treatment. In particular,
the need to transfer files to and from the pfset and the necessity to write command files
in order to make system calls are highly non-standard. We tried to constrain those

problems to low-level functions, but porting the system to another machine would still
involve some nontrivial recoding.

In order to keep the system separated from user-defined tasks, the interface has been
simplified to a minimum. This means that each tasks receives as input a array of
tokens, each element of which is an array of integers received from a given chaninel.
Therefore, each element can be referenced only by a pair of indices (channel nummber
and address in the token) and not by a symbolic name. It may be awkward for the wuser
to write the task bodies with this constraint, but we don’t see any other solution wuntil

we can use a data flow language and let the compiler do the mapping from names to
indices.

15

For the same reason, tokens cannot have any data type other than array of integers.
Conversion functions (reltoin, intorel, alftoin and intoalf) are available to the task body,
but have to be called explicitly when needed.

16

Appendix

Standard files.

The following files are always present in the permanent file set and are independent of
the particular application being executed:

e NICINIT: source code for the initializer.

e NICGEN: prototype encapsulation for a general node.

e NIC1ST: prototype encapsulation for a initiator node.

e NICTER: prototype encapsulation for a terminator node.
e NICLOO: prototype encapsulation for a loop node.

e NICSUB: command file to run the program in batch mode.

Application dependent files.

These files describe the application to be executed. They should be generated
automatically from a high-level description in some appropriate language, but are
currently hand-written.

1. NICTASK: The task table, includes one line for each task with the
following information:

e task index (an integer that uniquely identifies the task).
e task category (an integer from 1 to 5, as defined earlier).

e body name (the name of the file containing the source code of the
body).

e optionally, an input file name (this file will be assigned to the standard
identifier INPUT when the task is executed).

e optionally, a FORTRAN (binary) file name.

9. NICCHAN: The channel table consisting of one line for each channel
which indicates: S

o channel name (1 to 10 characters)

17

e index of source task.

e index of channel in source task (an integer that uniquely identifies the
channel among all the output channels of the source task).

e index of destination task.

e index of channel in destination task (an integer that uniquely identifies
the channel among all the input channels of the destination task).

e size of tokens in the channel (number of words per buffer).

e number of buffers.

3. Bodies: One file for each task containing the source code of its body. Each
of these files should have a first line containing only the word BODY,

followed by the declaration and code of a procedure called body. The
declaration varies with each category of task.

4. Optional: An input file for some or all of the tasks (an output file will be
automatically created by the system as needed). Usually, only the initiator(s)

will need an input file. A FORTRAN generated binary file may also
optionally be specified.

Channel Implementation.

Channels are implemented using shared memory (ESM). A channel consists of a

descriptor and a set of buffers organized as a FIFO. The descriptor contains the
following items:

e head pointer (to first token in channel).
e tail pointer (to first free buffer).

e number of words per buffer.

e number of buffers.

e channel name (alfa stored as an integer).

A channel should only be accessed by two tasks, a reader and a writer, though nothing
prevents other tasks from accessing it as well. There may be several channels from one
task to another, or even from one task to itself (in the latter case the task should be a
merge, otherwise it is automatically deadlocked).

18

All commands required to run a data flow program are in a file which is submitted in
batch mode. (See example in section 4). The initializer is read, compiled and executed.
It creates the source code for each task, saves them in the pfset, creates command files
and forks the corresponding processes. Each command file, when executed, reads the
source of a task, compiles and executes it, and saves its output (as well as the compiler-
generated listing, dayfile and other files to allow debugging).

A note on null and kill tokens and the merge node.

Every token carries a 'tag’ which can take any integer value. However, two particular
values are recognized by the system: 'null’ and ’kill’.

A third value, 'default’, is defined but doesn’t have any special meaning. It is the
value given to an output token if the task body doesn’t set it explicitly.

The meaning of 'null’ is: if the tokens received on all incoming channels are null, the
body is not executed and a null token is sent to every output channel. If at least omne

token is non null, the body is executed and gets all the tokens (null and non null) as
arguments.

Any task may generate null tokens as output. This is particularly useful to implem ent
conditionals. The meaning of 'kill’ is: if at least one token received is a ’'killer’, the
body is not executed, a 'killer’ is sent to every output channel and the task terminates.
In principle, when a killer is received, all other tokens received at the same time should

also be killers, but this is not checked for by the system. Sending a token to a task that
has terminated yields unpredictable results.

A Killer is generated by the initiator after a number of executions (e.g. when there is
no more input to be read) and propagates through all the tasks to ensure complete
termination. Any task may generate Killers but this will usually not be needed.

Specification of merge nodes.

A merge node behaves very much like a regular (general) node, except that it need not
receive a token on every input channel to fire. It may appear anywhere in a data flow

graph, and it is the user’s responsibility to ensure that the program is sound, deadlock
free and meaningful.

Specifically, a merge node executes the following algorithm:

1. select an input channel according to some scheduling policy (cur‘rent:ly plain
round-robin).

19

2. poll the channel to see if it contains a token. If it is empty, go to 1. (unlike
a regular node, a merge executes a non-blocking receive).

3. get a token from the channel. If this token is:

e regular (neither null nor kill) execute the body, which produces

one output token for each output channel. Send these tokens and go
to 1.

¢ null don't execute the body. Send a null token to every output channel
and go to 1.

e kill don’t execute the body, don’t send any token. Mark the channel
from which this was received as 'inactive’, and don’t try to receive
from it subsequently. When all input channels are ’inactive’, send a
killer to every output channel and terminate. Otherwise go to 1.

A merge node following these specifications has been implemented.

