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Abstract

In this paper, we analyze the complexity of the reachability, containment, and equivalence problexms for
two classes of vector addition systems with states (VASSs): finite VASSs and 2-dimensional VASSs. Both
of these classes are known to have effectively computable semilinear reachability sets (SLSs). By giving
upper bounds on the sizes of the SLS representations, we achieve upper bounds on each of the
aforementioned problems. In the case of finite VASSs, the SLS representation is simply a listing of the
reachability set; therefore, we derive a bound on the norm of any reachable vector based on the
dimension, number of states, and amount of increment caused by any move in the VASS. The bouand we
derive shows an improvement of two levels in the primitive recursive hierarchy over results prexiously
obtained by McAloon, thus answering a question posed by Clote. We then show this bound to be
optimal. We feel that the techniques we use in deriving our upper bounds represent an original ap yproach
to the problem, and since they yield improvements over previous results, we feel these techniques may
have applications to other problems. In the case of 2-dimensional VASSs, we analyze an algorithm given
by Hopcroft and Pansiot that generates a SLS representation of the reachability set.

c*l*n
show that the algorithm operates in 2?

Specifically, we

nondeterministic time, where ! is the length of the binary
representation of the largest integer in the VASS, n is the number of transitions, and ¢ is som e fixed
d*[*

constant. We also give examples for which this algorithm will take 92 nondeterministic time for some

positive constant d. Finally, we give a method of determinizing the algorithm in such a way that it
c*l*n
requires no more than 22 deterministic time. From this upper bound and special properties of the
* 1k

c*l*n
generated SLSs, we derive upper bounds of DTE\/IE(22 ) for the three problems mentioned above .

1. Introduction

The containment and equivalence problems for vector addition systems (VASs) (or equiv-alently
vector addition systems with states (VASSs) or petri nets) are, in general, undecidable [2, 11]. TIaey are
decidable, however, for classes of VASs (VASSs, petri nets) whose reachability sets are effectively

computable semilinear sets (SLSs). Such classes include finite VASs [19], 3-dimensional VASs [34], 5-

dimensional VASs (or, equivalently 2-dimensional VASSs) [12], conflict free VASs [7], persistent VASs
19, 22, 23, 28], weakly persistent VASs [36], and regular VASs [10, 35]. For each of these classes, the

algorithm which generates the SLS representation of the reachability set is a search procedure that is

guaranteed to terminate. However, no analysis of when termination will occur is provided, and £hus no

complexity results are obtained. The perhaps best studied class is that of symmetric VASs. For tlais class
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the equivalence and reachability problems have been shown to be exponential space complete [6, 14, 27].

The best known lower bound for the general reachability problem is exponential space [21]. Few other

complexity results appear to be known.

In this paper, we concern ourselves with examining the complexity of the containment and
equivalence problems for two classes of VASSs -- finite VASSs and 2-dimensional VASSs. Recently, Mayr
and Meyer [26] showed that the containment and equivalence problems for finite VASs are not primitive
recursive.  Subsequently, MecAloon [25] showed that the problems are primitive recursive in the
Ackermann function, and Clote [5] showed the finite containment problem to be DTIME(Ackermann)
complete. Let f;(x)=2x and fn(x)zfn-l(x)(l) for n>1, where fi(m) is the m-th fold composition of f;. Using
a combinatorial argument, McAloon showed an upper bound for the time complexity of the finite-
containment problem that can be shown to be at least f, +1(m), where k is the dimension and m is the

maximum sum of the elements of any vector in the VAS (see also [5]). Clote [5] subsequently used

Ramsey theory to give an upper bound of approximately f, +6(m) and posed a question as to whether
McAloon’s bound could be improved. It follows that these bounds also hold for the size of finite VASs.
McAloon’s bound on the size of finite VASs is close to optimal. See [23, 26, 29, 35].

Let BV(k,b,n) be the class of k-dimensional n-state finite VASSs where the maximum increase in the
norm of a vector (i.e., the sum of the absolute values of its elements) caused by any move is b. (Assume
the start vector is 0.) In Section 2, we use a tree construction technique to derive an upper bound on the
largest norm of any vector reachable in BV(k,b,n). We do this by first examining the problem for finite
VASs (i.e., systems without states) where the start vector is not required to be O. We then extend the
results to BV(k,b,n). The bound we derive for k-dimensional VASs is fk-l(d*m2)’ k > 2, (f, ,(d*m) for
k > 4), where m is the maximum sum of the elements of any vector in the VAS, and d is a constant. By
then considering the addition of states and the restriction of the start vector to 0, we derive a bound of
f, (c*max(n,log b)) on the norm of the largest vector reachable in BV(k,b,n), where k > 3 and cis a

constant. Furthermore, we show that this bound is tight for b==1. (l.e., we illustrate for each k and m a

VASS in BV(k,1,m*(2*k-1)+2) that can generate a vector with norm f,(m).) These results immediately
yield, for the k-dimensional VAS finite containment problem, a bound of fk_l(d'*m) time, for k = 4 and
some constant d’. This bound represents an improvement of two levels in the primitive recursive
hierarchy over McAloon’s result, thus answering the question posed by Clote. Since we do not know of
any attempts to use tree construction techniques similar to ours in analyzing combinatorial problems, and
because our techniques yield better results than the standard combinatorial techniques applied in the past
to this problem, we surmise that our techniques may have other applications. Finally, we show that the
containment and equivalence problem (for BV(k,b,n)) require at least time f, (d*n) infinitely often for

some constants ¢ and d. The proof is such that each position in the constructed VASS can be bounded by

fk_c(d*n). Hence, if we considered the entire class of VASSs whose positions were bounded by fk(n) (rather



than just BV(k,b,n)) our lower bound would be tight. We surmise, therefore, that the constant ¢ can be
eliminated. The section concludes by examining special cases where k is fixed. For example, the

problems for BV(1,1,n) are shown to be complete for AHIz‘ -- the second level of the alternating logspace
hierarchy [4].

In Section 3, we utilize the ideas inherent in the previous section to provide an analysis of the
algorithm given in [12], which generates from an arbitrary 2-dimensional VASS the SLS representation of
its reachability set. As a result of the analysis, we obtain upper bounds for the containment, equivalence
and reachability problems in the case of 2 dimensions. Let VASS(2,/,n) denote the class of 2-dimensional
VASSs whose integers can each be represented in [ bits and such that n is the maximum of the number of

states and the number of transitions. Specifically, we show that the algorithm of Hopcroft and P ansiot
* 7%

c*l*n
[12] operates on any VASS in VASS(2,/,n) in NTIME(2? ) for some constant ¢. Furthermore, there
d*l*n

are instances that require 22 steps for some positive constant d; hence our analysis (of the algorithm)

is tight. We then give a minor modification to the algorithm that reduces its complexity to

c'*[*n cl*l*n
D’_I?l]\/IE(Q2 ) for some constant ¢’. The SLS constructed by the resulting algorithm contains 0(22 )
1k 1k

linear sets. Each of these linear sets has a base with norm O(2? ) and O(2") periods with norm

* *n
} for

the reachability, equivalence, and containment problems for VASS(2,l,n). Now the best known lower

bounds for these problems are significantly smaller (e.s., NLOGSPACE (NP) for the reachability problem
of VASS(2,1,n) (VASS(2,/,n)) [30]). Hence, there is still much room for improvement. However, the two

<
O(2d’*l*n) for some constant d'. From these properties we derive an upper bound of DT]:ME(Q2

algorithms for the general reachability problem in (20, 24] do not appear to yield better upper bounds for

2-dimensional VASSs. Hence, whether or not these bounds can be tightened we leave as an open question.

2. Finite VASSs
Let Z (N, Nt, R) denote the set of integers (nonnegative integers, positive integers, rational numbers,
respectively), and let VA (Nk, Rk) be the set of vectors of k integers (nonnegative integers, rational

numbers). For a vector v € Zk, let v(i), 1 <1i <k, denote the i-th component of v. For a given value of

k, let 0 in Z* denote the vector of k zeros (i-e., O(i)=0 for i=1, . . . k). Now given vectors u, v, and w in
7¥ we say:

o v=w iff v(i)=w(i) for i=1, . . . k;

e v > wiff v(i) > w(i) for i==1, . .. k;

e v>wiff v>wand vs£w;
e u=v+w iff u(i)=v(i)+w(i) for i=1, . . . k.

A k-dimensional vector addition system (VAS) is a pair (voA) where Vv, in NE is called the start wvector,

and A, a finite subset of Zk, is called the set of addition rules. The reachability set of the VAS (VO,A),



denoted by R(VO,A), is the set of all vectors z, such that z=v +v,+ - - - +V, for some j > 0, where each v,

(1<i<j)isin A, and for each 1 <i<j, vptv+ - - +v 20 A k-dimensional vector addition system

with states (VASS) is a 5-tuple (vO,A,pO,S,é) where \f and A are the same as defined above, S is a finite
set of states, 6§ (S SXSXA) is the transition relation, and py, is the initial state. Elements (p,q,x) of & are

called transitions and are usually written p — (q,%). A configuration of the VASS is a pair (p,x), where

p is in S and x is a vector in N¥. (PgsV) is the initial configuration. The transition p —(q,x) can be

applied to the configuration (p,v) and yields the configuration (q,v+x), provided that v4+x > 0. In this
case, (q,v+x) is said to follow (p,v). Let o, and o, be two configurations. Then o, is said to be reachable
from o iff o 0= °F there exist configurations oy - %1 such that o, follows o, for r=0, . . . ,t-1.
We then say o=<0, - . .

0, > s a path in (VO,A,pO,S 6) The reachabzlzty set of the VASS (vO,A PyS 8),
denoted by R(vy,APy

S,6), is the subset of Sx Nk containing all configurations reachable from (po, 0)

We find it convenient to define VASS(k,l,n) as the set of VASSs (vO,A,pO,S,é) such that {VO}UAQ VA
I is the maximum length of the binary representation of any integer in the system, and n=max( |S|,]8]).

Note that this definition differs from the one in [30], where n represents the number of states. W e alter

the definition in this manner so that we may use in our analysis either the number of states or the

number of transitions, whichever is more applicable to the particular problem. In this section, we will
assume the start vector is O. (Note that R(VO,A pO,S §)=R(0 AUvo,q,SU{q} &) for some q¢ S and some

§.) Let BV(k,b,n) be the set of all VASSs (0,A,p,,S,6) such that R(0,A,p,,S,) is finite, AC z¥, |S|=m, and

max{zi v(i) : veA}=b. For any ve Z we define the norm of v, ||v]], as Ez-—l [v(i)]. (Note that
this is often called the Z-norm.) We define u(k,b,n) as the maximum norm of any vector reachable by a
VASS in BV(k,bn). Let o be a path in a VASS. We define the monotone increasing component of o
(o), to be the sequence of configurations o, in o for which all previous configurations in o having the
same state as o0, have a vector with strictly smaller norm than that of o..

BV(k,b,n), then i(o) clearly has finite length.

If o is a path in a V.ASS in

In this section, we will examine two related bounds, an upper bound on the time complexity of the

finite containment problem and an upper bound for u(k,b,n). In order to compare our results with those

of McAloon [25], we define the following hierarchy of primitive recursive functions (see also [18]):

f,(x)=2x
£(x)=1,,01), for i>1.

[25] gives an upper bound for the time complexity of the finite containment problem for k-place petri

nets; the result clearly holds for k-dimensional VASs as well. It is easy to show that this upper bound is

at least f 1(m), where m is the maximum of the norm of the start vector and the increase in norm

caused by any vector in the VAS. Our tightest results, however involve the VASS model rather than



either the petri net model or the VAS model. We can show that u(k,b,n) < f, (k,max(n,log b)), for k >3

and some constant d independent of k, b, and n. Furthermore, we exhibit a VASS in

BV(k,1,m*(2*k-1)+2) that can produce a vector with norm f,(m). In order to compare our results with

those of McAloon, however, we must phrase our upper-bound in terms of VASs. We are able to show

that for any finite k-dimensional VAS, k > 4, with start vector Vv, such that no move causes an increase

in norm of more than b, the containment problem can be solved in time f1(c*max(log b,||v,l])), where ¢
is a constant independent of k, b, and Vo Our upper bound, therefore, represents an improvement of two

levels of the primitive recursive hierarchy over that of McAloon. The bounds we get for k=2 and k==3

are similar.

2.1. Bounds on the Sizes of Finite VASSs

The general idea in what follows is to arrange the monotone increasing component of a path in a
VASS into a tree in which any proper subtree contains only configurations whose states are the sanne and
whose vectors have identical values in certain positions. In particular, in a subtree rooted at depth i
(where the root of the tree is defined to be at depth 0), i > 1, all vectors will agree in at least i-1
positions. The resulting tree has certain properties which allow us to give a tight upper bound on its size,
and hence, on the length of the monotone increasing component. The following lemma relates the length

of a monotone increasing component to the norms of its constituent vectors.

Lemma 2.1: Let o be a path in a VASS in BV(k,b,n), and let L(U)=<O'O,

o has norm no more than r*b, 0 <r <t.

S0 > Then the vector in

Proof. By induction on r. The vector in 0, is 0, so the induction is well-based. Assume that for some
>0, 0, has a vector with size u>r*b, but for all 5, 0 < s<r, the vector in o has size no more than s*b.
Clearly, no vector in any o, 0 < s<r, has size more than (r-1)*b. But since the size can be increased by
no more than b in one move, ¢ must pass through a configuration with a vector having size u’,

(r-1)*b<u'<u, before entering o --a contradition. Therefore, the vector in o_ has size no more than r*b.

]

We now define T(k,b,n) as the set of trees T having the following properties:

1. T has height < k (i.e., the longest path from the root to a leaf is no more than kY;

2. The root node of T is labelled 0 and has no more than n-1 children;

3. The nodes in T have integer labels such that for any node labelled r>b, there is a node
labelled s, r-b < s<r;

4. The label of any node in T is less than the label of any of its children;

5. The number of children of any node of depth i, 1 < i < k-1, is no more than the node’s label.



The following lemma shows that any monotone increasing component in BV(k,b,n) can be arranged into a
tree in T(k,b,n). We will subsequently derive an upper bound on the number of nodes in any tree in
T(k,b,n), thus yielding an upper bound on the length of any monotone increasing component in BV(k,b,n),
and finally an upper bound on u(k,b,n).

Lemma 2.2: Let o be a path in a VASS in BV(k,bn), o)=<oy, ...,0,>. There is a tree

T € T(k,b,n) with t-+1 nodes whose labels are the norms of the vectors in o).

Proof. We first construct a tree T' with nodes [Ar,ar], 0 <r <'t, that satisfies the following:

1. The root node is [#,0].

2. The children of the root node are {{#,0]: o, contains the first occurrence in ¢(o) of some state

q}-

3.1 [A,0 )=l ,<q,v, >] is the parent of (A0 ]=[A,<q,v>], and [A0,] is not the root

node, then
a. r<s;
b. qr::qs;

c. ieA,, v (i)=v(i);
d. AszAru{i}, i¢ A, such that Vs(i)<"r(i)'

4. 1f [AU{i},<q,v>] and [AU{i},<q,v'>] are children of [A,0], then v(i) 5% v'(i).

We show by induction on t that T! can be so constructed.

Clearly, T' can be constructed if t=0. Suppose t>0, and assume we can construct a tree T" from
o) =<og .- -0 1> Let o,=<q,v,>. If the state q has not appeared in ¢(o”), [(b,at] can be added as
a child of the root node, and all the conditions are clearly satisfied. Now suppose state q has appeared in
1(0") for the first time in o . If we stipulate that [A,0,] is added as a leaf at depth 2 or deeper, conditions
1, 2, and 3a continue to hold. By adding [A,0,] to the subtree rooted at [,0 ], condition 3b is satisfied.
Let [As,as]:[As,<q,vs>] be any node in the subtree rooted at [,0] such that Vi€ A, v, (D)=v i)
([As,o-s]z[(b,ar} satisfies this.) There must exist an i (¢ A ) such that v ())<v (i); otherwise, the VASS
would be unbounded. If [A_o ] has no child [A U{i},<q,v>] such that v (i)=v(i), then [AU{i},o] can
be added as a child of [AS,US], satisfying the remaining conditions. Otherwise, by induction on the height

of TV, we can add [A,,0,], where AU{i}CA,, to the subtree rooted at [Asu{i},<q,v>}.

We now construct T. To do so, we change every node label [A ,<q,v,>]in T' to |[v|]|. We claim
that T € Tk,b,n). Assume T' has a node [Ar,ar]z[Ar,<q,vr>] at depth k, and [Ar,ar] has =a child
[As,o-s]z[Aru{i},<q,vs>]. Clearly, A, must contain all the integers 1, ....k. Therefore, for all ji



1<) 2k v(i)=v(i) and v (i) <v (i), so v <v_. But this contradicts the fact that o, occurs before o_ in
t(0). Therefore, T’ has height no more than k. Clearly, the root node is labelled 0 and has no more than
n-1 children. As was shown in Lemma 2.1, if there exists a node label |[v.ll, there must exist a node label

[Vl Tv b < [V I<llv/ll-  Clearly, the label of any node in T is less than the label of any of its

children. From conditions 3d and 4 of the construction of T', for each i, 1<i<k, [Ar,ar] can have no

. . k . . ..

more than v (i) children, for a total of not more than 2, v, (i). Since v, 20, this is ||v |[|. Therefore,

T € T(k,b,n). O
We will now show that a tree in 7(k,b,n) having maximal size (i.e., a tree in T(k,b,n) having as many

nodes as any other tree in T(k,b,n)) is one whose depth-first (preorder) traversal visits its nodes in

increasing order of their labels. We show this in the next three lemmas by using a rearrangement

strategy.

Lemma 2.3: For any tree T € T(k,b,n), there is a tree T € T(k,b,n) with the same number of nodes as T

such that the labels on all nodes of any given depth are nondecreasing from left to right.

Proof. Suppose j is the smallest integer such that depth j of T is unordered; i.e., there exist nodes ¢ and
d of depth j such that ¢<{d and d is to the left of c. We will show that the subtrees rooted at ¢ and d
may be swapped without disobeying the properties of Tk,b,n). Clearly, properties 1, 2, 3, and 5 are
preserved, and if ¢ and d have the same parent, property 4 is also preserved. Suppose, then, that d’s
parent is a, and c¢’s parent is b, a < b (see Figure 2-1). From property 4, a<<d and b<ec. Therefore,
b<e<d and a < b<c, so if the subtrees rooted at ¢ and d are swapped, property 4 is preserved. This

swapping may be repeated until all depths are ordered, yielding T' € 1k,b,n). O

Lemma 2.4: For any k, b, and n, T(k,b,n) contains a tree of maximal size.

Proof. By induction on k. If k=1, T(k,b,n) clearly contains a tree of maximal size. Suppose k>1, and
assume that for any b and n, T(k-1,b,n) contains a tree of maximal size. Now assume that Tk,b,n) does
not contain a maximal-sized tree for some b and n. We will first show that under this assumption, there
exist n, and ug such that T(k,b,no) has no maximal-sized tree, but for any node label x occurring at depth
1in a tree in 7(k,b,n0), x<ug; i.e., the nodes at depth 1 in T(k,b,no) have bounded labels. First note that
the nodes having depth 1 in the trees in Tk,b,n+1) have unbounded node labels, because we can add to
any tree in T(k,b,n) a node at depth 1 with a label as large as any other label in the tree, thus yielding a
tree in T(k,b,n+1). Clearly, the nodes with depth 1 in the trees in T(k,b,2) have bounded node labels. Let
n, be the largest integer such that the nodes with depth 1 in the trees in T(k,b,no) have bounded labels.
Consider an arbitrary tree in 7(k,b,n0+1). If we remove all nodes having a label at least as large as the
largest label in depth 1 (call this label x), we get a tree in T(k,b,ny) with some node labelled x' > x-b.

Since x can be arbitrarily large, T(k,b,no) has arbitrarily large trees.

Since the nodes with depth 1 in the trees in Y(k,b,no) have bounded labels, there exists a u such that



no tree in T(k,b,n ) has more than u nodes with depth 2. Let T be any tree in Tk,b,n)). We now
rearrange T by moving all subtrees with roots having depth 2 to depth 1; i.e., the roots of these subtrees
become new children of the root of T. Since there are now no longer any nodes with depth k,
T e 7(k-1,b,n0+u). Therefore, for any tree T in T(k,b,ny) there is a tree T in T(k-1,b,n+u) with the
same number of nodes as T. But since T(k-1,b,n +u) has a maximal-sized tree, T(k,b,ng) must also have a

maximal-sized tree—a contradiction. Therefore, for any k, b, and n, T(k,b,n) contains a tree of m aximal

size.

O
Lemma 2.5: Any tree in T(k,b,n) having maximal size has its node labels arranged in order of a depth-

first (preorder) traversal.

Proof. Assume T is a maximal-sized tree in T(k,b,n) whose node labels are not arranged in order of a
depth-first traversal. We will construct a tree T' € T(k,b,n) having more nodes than T has. From Lemma
2.3, we can assume without loss of generality that the node labels in each level of T are nondecreasing

from left to right. If T has two nodes with the same label, we can clearly add 1 to the labels of one of

these two nodes and all nodes having larger labels. Hence, we can assume that no node labels are

repeated. Furthermore, we can clearly assume that the number of children of any node having depth < k
is the same as the node’s label. Consider a traversal of T in order of increasing node labels, and let s, be
the first node label reached that does not appear in depth-first order. Let t>s, be the label of a node
appearing in a valid position for sy if the traversal were required to be depth-first (see Figure 2-2). Thus,
t is at a lower level than s;. Let A denote the position of s; in T, and let B denote the position of t in
T. Let r be the parent of t, and let s; the leftmost descendant of s, having the same depth as t. Also, let
Sy -+ 0S5 be the nodes between s, and 8 with s, being the largest number in s,

-8 less than t.
Since position B is a valid position for s, r<ls,. Furthermore, all ancestors of r are less than Sg» SO the

subtree rTooted at s, must be to the right of t; hence, t<sj. So we  have

r<s0< s <Si<t<si+1< s <sj.

We make the following modifications to T:

1. Remove node t and the subtrees rooted at t-s; of t’s children (if t has children).

2. Move node s, to position B (since r<sg).

3. Move nodes s,, . . . ,§; up one level in the tree (since Sy5 - - - S are smaller than each of their
siblings).

4. Tnsert node t between nodes s, and s, ;, or into position A if i=0 (since s, <t<s, ,). We now
have room for (s;-sp)+ - - - +(s-s, )+ (t-s;)=t-s, subtrees below s,, . . . St

Lt

5. Insert the subtrees removed in Step 1 into the "holes" left in Step 4.

Notice that since each of the subtrees removed in Step 1 has been moved upward in the tree, there is



now room for more nodes at the bottoms of these subtrees. By adding one node, we get a tree
T'€ Tk,b,n) with more nodes than T. This contradicts the assumption that T is a maximal-sized tree in

7(k,b,n). Since T(k,b,n) has a maximal-sized tree, it must be a tree whose node labels are arranged in

order of a depth-first traversal. 0

Corollary 2.1: Let S(k,b,n,i,x) be the set of subtrees in T(k,b,n) whose root is at depth i and has label x.

The largest element of S(k,b,n,i,x) has its node labels arranged in order of a depth-first (preorder)
traversal.

We can now give our upper bounds, first for VASs, then for p(k,b,n). The idea is to first derive an
upper bound on the largest node label in some tree in T(k,b,n). From this bound and Lemma 2.2, we can

derive bounds on the norms of vectors generated by finite VASs and VASSs. In deriving our bounds, we

use the following functions:

g, (x)=x+b

hl’b(x)=x

b, ,(0)=0

by (x)=(h, ; ,08,))(x), for i>1, x 0
F, ,(1)=0

Fi,b(x):(hi,b"gb)(x'1)(0), for x>1
X, (b,n)=n*b
Xy(b,n)=n*max(log b,1)
X(b,n)=max(n,log b), for i >3

Lemma 2.6: A subtree S with height i < k-1 and root label x in a tree T € T(k,b,n) whose node labels

are arranged in depth-first order has for its largest node label u < h . (%)

Proof. By induction on i. If i==0, then the largest node label in S is x=h1’b(x). Suppose i>0, and
assume that any subtree of depth i-1 and root label y in a tree T € T(n,s,b) whose node labels are
arranged in depth-first order has for its largest node label u, < hi,b(Y)' Now x has no more than x
children, and the label of the 1st child is no more than x+b==g, (x). Since the labels of S are in depth-
first order, the label u, of the jth child, 1<j <x, is no more than b plus the largest label in the subtree
rooted at u, ;. By the induction hypothesis, u < hi,b(“j-1)+b:gb(hi,b(uj-1))’ so u < gb(hi,bogb)(x'l)(x)'
Now the largest label in S is in the subtree rooted at u,, so from the induction hypothesis, the value of
the largest label is u < h; \ (u ) < (hi’bogb)(x)(x)zhi +1p(%)- O
Theorem 2.1: There exist constants ¢ and d (independent of k and b) such that for any k-dimensional
finite VAS (v,,A) with max{zle v(i) :+ vE€{vjJUA} = b, k>2, we have Vv €R(v,,A),
[IVIF < iy (e*X 4 (B lIvglD)-

Proof. Let x==||v,||, and assume without loss of generality that x 54 0. Clearly, for some n there exists a
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tree T € T(k,b,n) with a subtree of height k-1 having root node labelled x. Therefore, from Lemmas 2.2,
2.5, and Corollary 2.1, the maximum [[v|| in R(v,,A) must be bounded by h, p(x). Now h, H(X) =
(08060 — 5, = X+ < 2% = LBl Ao, By (00 = (by 08, 66) <
g¥RxpXay < ge*x*max(log b1) _ f,(c*N\y(b,|[vl)) for some constant c. In order to show the case for
k > 4, we must first show by induction on y that for k > 4, fk_l(y)(c*kk(b,x)) < £ (N (bx)x—+y-1).
Using this, we can show by induction on k that for k 2> 4, hk,b(x)+b < £ (e*x (bX)), from which the

result follows. These two induction proofs are straightforward and are therefore omitted. O

Lemma 2.7: The largest node label in a tree T € T(k,b,n) whose node labels are in depth-first order is no
more than F b(n).

Proof. The root of T has no more than n-1 children, one of which is u; < b. Since the labels of T are in
depth-first order, the label u, of the ith child, 1<i<n, is no more than b plus the largest label in the
subtree rooted at u, ;. Since the subtree rooted at u, has height k-1, from Lemma 2.6, its largest node
label is no more than hk,b(ui-1+b)=hk,bogb(“i-1)=(hk,b°gb)(i)(o)' Therefore, the largest node label in T is

no more than (h, bogb)(n’l)(O)=Fk H(m)- O

Theorem 2.2: There exists a constant ¢ (independent of k, b, and n) such that u(k,b,n) < fk(c*)\k(b,n)).

Proof. From Lemma 2.2, u(k,b,n) is bounded by the largest node label in T(k,b,n), which, from Lemmas

2.5 and 2.7, is no more than Fk,b(n)‘ Now Fl’b(n) = (hl,bogb)(n-l)(o) = (n-1)*b < f,(A,(b,n)). We now

show the result for k==2; for k > 3, a similar induction is used. We proceed by induction on n. F2 b(1)

=0 < g¢*n*max(log b1) _ f,(c*X,(b,n)), Where ¢ is the maximum of 3 and the constant from Theorem

2.1. Assume for some n > 2 that F, (n-1) < ge*(n-1)*maxllog b.1) e F,,(n) = h, (g,((h, b°gb)(n-2)(0)))
*(n. ; 1 b *(_1)* » ] * *;

— hz’b(gb(Fzyb(n'l))) < h2,b(2c (n-1)*max(log ’1)+b) — (b+1)(2° (n-1)*max(log b,1)+b) < o¢n max(log b,1) __

f,(c*X,(b,n)). O

‘We now turn to the lower bound.

Theorem 2.3: For any k > 2, m > 1, there is a VASS in BV(k,1,m*(2*k-1)+2) that can produce a

vector with norm f,(m).

Proof. Consider the VASS V shown in Figure 2-3. V is bounded, because every loop in the state graph
causes one position to decrease each iteration. V contains m copies of Vk‘ Since V2 has 3 states, and Vi
has 2 more states than V. |, V, has 2¥k-1 states, and V contains m*(2*k-1)+2 states. We now show by
induction on i that Vi can produce {0, . .. ,O,fi‘l(n)) when starting from (0, ... ,0,n). Suppose i=2.
Then the loop on q, and g, can be executed n times, yielding (2*n,0). The loop on g, can then produce
(0,2*n)=(0,{,(n)). Now suppose 1>2. Assume V. can produce (0, ... ,0,f. ,(n)) when starting on
(0, . ..,0,n). The first time the loop on q; in v, is executed, it produces (0, . . . ,O,fi_2(l)—1,n-1). As this
loop is repeated, the input to V{lf)l on the j-th iteration is (0, . . . ,O,fi‘z(j)(l),n-j). Therefore, when q, is

reached after n iterations, the vector is (0, ... ,O,fi_z(n)(l),o). The loop on g, can produce
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(0, .. 08, (1) = (0, . .. 0f (m)).

The input to the first copy of V, is (0, ...,0,1), so this copy can produce (0, . . . ’O’fk-l(l))' The

input to copy j can therefore be (0, ... ,O,fk_l(j’l)(l)), and the output can be (0, ... ,O,fk’l(j)(l)).

Therefore V can produce (0, . . . ,O,fk_l(m)(l))z((), - ,0,f, (m)). o

Corollary 2.2: For any k > 2, m > (1), there is a finite VASS in VASS(k,1,m*(4*k-3)) that can produce
a vector with size f, (m). '

We have not been able to find a VAS in VASS(k,/,1) (for any constant [) to match the upper bound
given in Theorem 2.1, although technically a k-dimensional VAS with :(na',x{z:':.c=1 v(i) : vE{v,JUA} =
1 can be shown whose maximum reachable vector has norm Off,_,(n)), where n is the norm of the start
vector. The problem with all such VASs that we have seen is that their constituent vectors contain very

large (i.e., O(f,_,(n))) positive numbers in some positions and very large negative numbers in other

positions, so that the net gain caused by each vector is only 1.

2.2. The Finite Containment and Equivalence Problems

In this subsection we concern ourselves with the complexity of the equivalence and contaimment

problems for finite VASSs. If u is an upper bound on the norm of any vector reachable by a k-

dimensional VASS (or VAS), clearly u* is an upper bound on the number of vectors in the reachability
set. From [19], we can therefore generate the reachability set in time O(u¥). Tt then follows that the
finite containment and equivalence problems can be solved in time O(uzk). Thus, from Theorems 2.1 and
2.2 we have the following result, which represents an improvement over the bound provided by [25].

Theorem 2.4 There exists a positive constant ¢ (independent of k, b, and n) such that the containment

and equivalence problems can be solved in time

1. £ (c*) (b)) for BV(k,b,n), k > 2;

. f{‘(c*n*b) for 2-dimensional finite VASs whose vectors cause increments of no more than b
and whose start vectors have norm n;

3. f, ;(¢*)_;(b,n)) for k-dimensional finite VASs, k > 3, whose vectors cause increments of no
more than b and whose start vectors have norm n.

Now [25] gives an upper bound for the finite containment problem (and, hence, the finite equiv alence
problem) for petri nets; this bound can be shown to be at least £ 1(35(b,n)). Note that since our analysis
for VASs applies also to petri nets, our result improves the upper bound of McAloon [25] by two lewvels in
the primitive recursive hierarchy. A natural question to consider is whether one can establish a similar
lower bound. Certainly the lower bound must in some fashion grow within the hierarchy sirxce the

problems are complete within the Ackermann function [5]. We would like to show that there exists a
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positive constant d such that the problems require f, (d*n) time infinitely often. At this time, however, we

are only able to show the following:

Theorem 2.5: There exist positive constants a, b and ¢ (independent of k and n) such that the

containment and equivalence problems for BV(k,1,n) require fk_a(b*n) time infinitely often whenever k>c.

Proof. The proof is a refinement of the one in {26], and hence only a sketch will be given. In [26], the
complexity of the finite containment problem for VASs was shown to be non-primitive recursive. The
proof was done by reducing the bounded version of Hilbert’s tenth problem to the containment problem;
this is similar to Rabin’s proof of the undecidability of the containment problem for arbitrary "V ASs.

More precisely, let A(k) be a function that majorizes the primitive recursive functions (for instance, fk(k)’

which was defined in the previous section). Mayr and Meyer showed how to reduce the Bowunded

Polynomial Inequality Problem (BPI) (given two r-variable polynomials p, q and a positive integer k,
decide whether V 7 € {0,1,...,A(k)}’, p(7) < q(7)) to the containment problem for two VASs Vp and Vq,
such that the BPI has a solution iff R(Vp)gR(Vq). For an instance of the BPI, Vp (Vq) basically ¢ onsists

of two VASs, say V and V', connected in series. V computes the function A(k), while V' simulates the

computation of the polynomial p (q). Then, according to the result by [1], the complexity of IBPI is

greater than log(log(log(A(ml/ 4)1/ 5))) infinitely often. Therefore, the non-primitive recursive lower bound
for the containment problem for VASs is obtained. Notice that in [26] the complexity is measuared in
terms of the overall size of the VASs, which is, in some sense, rough. A careful analysis will further

indicate that the number of coordinates (i.e., the dimension of the vector) needed in V' depends only on

the number of variables and the order of the polynomial. This, combined with the fact thhat the

polynomials in the BPI can be further restricted to have a fixed number of variables and fixed ord er (see
[1]), gives us that the two instances of the containment problem are in BV(k+c ,1,¢,*(k+Q{|p},la| })), for
fixed constants ¢; and ¢y and some polynomial Q. Since the construction is very much the same as that in
[26], the details are omitted. Let a==c,, b=1/c, and c=max{3,¢,}. The equivalence and containment

problems for BV(k,1,n) require fk_a(b*n) time infinitely often whenever k>c. r

In the proof of the previous theorem note that the construction is such that each position is bounded
by f, (b*n). Let V.(n) denote the set of finite VASSs whose reachability sets are bounded by f(n). Now

given an arbitrary instance (p,q,k) of BPI, we can construct VASSs Vp and Vq in Vk(cz*(k—%-Q{lp],]q]}))
such that (p,q,k) has a solution iff R(Vp)gR(Vq).

Corollary 2.3 There exist positive constants ¢ and d (independent of i and n) such that thhe time

complexity of the containment and equivalence problems for V.(n) are bounded above (below) by f,(d*n)

(tc*)-

With respect to the difficulty of these problems for small fixed values of k, not much is knowmn. For

example, the problems are clearly in PSPACE for U, nBV(l,b,n). One can easily conclude thiat the
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problems are NP-hard (PSPACE-hard) when k>2 (k>4) from results in [30] concerning the
boundedness problem. (Similar gaps in knowledge currently exist for the case of symmetric VASs where
the equivalence problem is known to be PSPACE-complete (NP-hard, in PTIME, respectively) for 6- (4-,

1-, respectively) dimensional VASs [15, 16].) We are, however, able to establish a completeness result for
U BV(1,1,n).

Theorem 2.8: The containment and equivalence problems for UDBV(I,I,n) are Aﬂlz‘-complete.

Proof. To derive the upper bound, we show how to construct a log n space-bounded, 1-alternating ATM
M whose initial state is universal, such that M accepts an input string of two VASSs V and V' in
BV(1,1,n) iff VEV'. (For definitions of ATM’s see [4].) First notice that any reachable configuration of
V (V') can contain a vector with norm at most n; otherwise, a pumpable positive loop exists; this
contradicts the fact that V (V') is bounded. Therefore, to reach a given configuration, one only needs to

consider a path of length c¢*n, for some constant c. We now sketch the computation of M as follows.

A computation of M has two phases--first the universal phase and then the existential phase. 1In the
first phase, M traverses all paths of V (of length at most ¢*n) and records the information of the current
configuration (which is a pair [p,x]) on the first track of the work tape. Note here that all states in the
this phase are universal. Now, from each universal state, M can enter the second phase to simulate the
computation of V'. In the second phase, M (nondeterministically) traverses a path in V' {of lenggth at
most ¢*n) and keeps the information of the current [p,x] on the second track of the work tape. At any
time if the contents of the first and the second tracks are the same, M enters an accepting state. It is

reasonably easy to see that M accepts the input (i.e., the string representing V and V) iff R(V) € R(V).
Furthermore, M needs only logarithmic space.

Now, we show the lower bound. Let M be a log n space-bounded l-alternating ATM whose initial
state is universal. Given an input string we show how to construct two VASSs V and V' in BV(1,1,n) in
such a way that M accepts x iff V=V'. Let |x| denote the length of x. A configuration of M is a 3-tuple
[p,i,s], where p is the current state, i is the input head position and s is the content of the worlk tape
(including the head position). Since M uses only O(log |x|) space, the number of distinct configurations is
polynomial in |x|. A configuration is called a universal (existential, accepting, rejecting) configuration iff
p is a universal (existential, accepting, rejecting) state. Let T be the set of all configurations of ML on x.
Now, V=(<0>,{<0>},p,,8,,) is constructed as follows (see Figure 2-4):

1: S=TU((Tu{6}) X T)

2. py===c,, where ¢, Is the initial configuration of M,
3.6

(2) (g,<0>) € §(p), where p is a universal configuration and M can reach q from p in one
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step,
(b) ([r,x],<<0>) € &(r) for every existential configuration r,

(c) Vr € T ([qr],<0>) € §[p,r]), where p is an existential configuration and M can reach q
from p in one step,

(d) Vr € T ([6,1],<0>) € §[v,r]), where v is an accepting configuration,
(e) Vr€ T ([6,r],<0>) € §([r,r]).

V' is exactly the same as V except that rule 3(e) is removed. Clearly, M accepts x iff every node labelled
[6,1], for some r, can be reached. This, in turn, can happen iff R(V)=R(V'). Furthermore, clearly V and

V' are in BV(1,1,n), where n is polynomial in [M] and |x|. Since the equivalence problem can be reduced

to the containment problem, this completes the proof. O

The last result may be of independent interest since few natural problems complete for AH{Q‘ appear

to be known. See [31, 32| for other examples.

3. 2-dimensional VASSs

The containment and equivalence problems for VASSs are, in general, undecidable 2, 11]. In fact,
using essentially the same proof it can be shown that there exists a constant k such that the contaimment
and equivalence problem are undecidable for UZ’DVASS(k,l,n). In Rabin’s proof, he reduced Hilbert’s tenth
problem, which is well known to be undecidable, to the equivalence problem for VASs. More precisely,
given an arbitrary polynomial he showed how to construct two VASs to compute, in some sense, the
polynomial in such a way that the Diophantine equation has a solution iff the two VASs are equal.
Therefore, the undecidability results of the equivalence and containment problems for VASs are obtained.
In fact, one can further restrict the Diophantine equation to have a fixed order and a fixed number of
variables [8]. In other words, there exists a universal polynomial P which contains a special variable i
such that for an arbitrary integer j it is undecidable whether the Diophantine equation Pj=0, wher e Pj is
the new polynomial obtained by substituting j into the variable i, has a nonnegative integer solution.
Furthermore, a detailed analysis of Rabin’s proof will reveal that the dimension of the VASs depends only
on the order and the number of variables of the polynomial. Consequently, applying the same proof to
the universal polynomial, the containment and equivalence problems are undecidable for Ul’nVASS (k,ln),
for some fixed constant k. However, at this moment the best upper bound for k is still unknown . It is
known, however that the containment and equivalence problems are decidable for k=2 [12]. Im this
section, our goal is to establish a complexity bound for the reachability, containment and equiv alence
problems for 2-dimensional VASSs. In order to do this we establish a bound on the algorithm of Hopcroft
and Pansiot [12], which, when given a 9.dimensional VASS, generates the corresponding SLS

representation of the reachability set. There are at least two reasons one might want to consider these
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problems for 2-dimensional VASSs. First, note that the reachability set is not, in general, semilinear

when the dimension is greater than two [12]. Also, the problems for 2-dimensional VASSs appear to be

easier to work with than they do for other classes of VASs whose reachability sets are also effectively

computable SLSs. Perhaps more importantly, we hope to be better equipped to attack the complexity of

the general reachability problem.

In the subsequent discussion, we closely examine the algorithm provided in [12].

We first show that
b*I*n
this algorithm operates in NTIME(22

) for some constant b independent of I and n on any VASS in

VASS(2,/,n). We then prove that, for any VASS in VASS(2,l,n), there is a DTH\/IE(22 ll) algorithm to

d**n
generate the corresponding SLS representation whose size is bounded by 0(22 ) where ¢ and d are

constants independent of [ and n. This SLS has the additional properties that each of its constituent

linear sets has O(2") periods with norm O(2c’ Fa ") for some constant ¢’ independent of ! and n. These
* &

properties allow us to derive upper bounds of DTH\/IE(Z2
containment problems for VASS(2,,n).

) for the reachability, equivalence, and
Although we are unable to establish the corresponding lower
bound, we are able to show that the search procedure of Hopcroft and Pansiot requires 226&1*n steps.
However, at this time we do not know whether exploring

the entire tree is necessary. It is possible that only a portion of the tree is needed to generate the SL.S. If

Thus, our analysis of their algorithm is tight.

50, some other strategy like breadth-first search might result in a more efficient algorithm. Neither do we
know whether there exists a more efficient algorithm not based on the Hopcroft and Pansiot tree
construction. So far, the best lower bound we know for U, ,VASS(2,/,n) is NP [30]. Hence, there is still
much room for improvement. Now, before continuing to the detailed discussion, the following definitions

are required.

For any  vector v, € N*  and any finite  set P(={v1,...,vm})§Nk, the
m
L{v ,P)z{m:ﬁkl,...,km € N* and T=v+3 .

set
1 k'.v.} 1s called the linear set over the set of pertods P. The

size of the linear set L(v,,P), denoted by |L(vy,P)], is defined to be E

o kXlog, [|v]]. (Le., the number
of bits needed to represent the linear set.)

A finite union of linear sets is called a semilinear set (SLS, for

short). The size of a SLS is the sum of the sizes of its constituent linear sets. The cone generated by Y

and P, denoted by C(vO,P), is the set {x:ﬂkl,...,km € RF ,Ic1 k > 0,and a2=v +E ; ’}

th
Given a VASSz(v A,py;5,6) and a path I in the state graph, I= s —]->s 3. .= s, Where

5;=(s,,v) 1 <i<t1)isin 6 1 is a short loop iff s, =s, and s, 748 (1 <i<j<t). The displacement

of I, denoted by |l|, is Ez’——zl v, Lis a short positive loop (p-loop, for short) iff { is a short loop and lZ7] > 0.

In what follows, our analysis heavily depends on the algorithm given in [12]. Hence, for the sake of

completeness, the algorithm is listed below. However, only a brief description will be given. The reader
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is encouraged to refer to [12] for more details. Given a 2-dimensional VASS V, the main idea behind the
algorithm is to construct a tree in which each node is labelled by a 3-tuple [x,p,Ax], where x EN2, pES
and AXQNQ, to represent the reachability set generated by V. In what follows, each Ax is called a loop
set. Each v in A is called a loop vector. The label [x,p,A ] indicates that {(p,v): v€ LxA )} ©
R(VO,A,pO,S,5). The intuitive idea of why the procedure works is the following. The tree is built inn such
a way that each path, in a sense, corresponds to a computation of the VASS. Each time an execuitable
(valid) p-loop is encountered, that particular p-loop will be added (if necessary) to the loop set since
clearly that loop can be repeated as many times as we want. If, along any path of the tree, there 1is an
ancestor [z,p,Az] of [X,p,Ax] such that A =A and X€L(z,A ), then that particular path terminates at
[x,p,A,]. (This condition will be referred to as the terminating condition.) In [12], it was shown that a
point (p,v) in SXN? is reachable in V iff there exists a node with the label [x,p,A,] such that v € L(x,A,).
(In other words, the reachability set coincides exactly with the SLS associated with the tree construction.)
Furthermore, the tree construction will eventually terminate. Now, in order to put complexity bourads on
this procedure, some measure of the tree is needed. In particular, we will see later that in order to derive

the upper bound of the Hopcroft-Pansiot algorithm, it suffices to consider the following two quantities:

(1) max{|[v||: 3 [x,p,AJET such that v€A },

(2) max{|[x||: [x,p,A JET}.

Intuitively, the first quantity tells us how “large" each linear set can be; while the second qu antity

indicates the number of linear sets required to build the SLS.

Algorithm: (from [12])

Create root labelled [xo,po,@];
while there are unmarked leaves do
begin

Pick an unmarked leaf [x,p,Ax];
Add to A all displacements of short positive loops from p valid at x;
if A is empty and there exists an ancestor [z,p,Az] with z<x,

then add x-z to Az;

if there exists ¢ € N2, ¢==(0,7) or (~,0) such that
(a) ¢ is not colinear to any vector of A_, and
(b) either
(i)  there exists an ancestor [z,p,A ] of [x,p,A,)
such that x-z==c, or
(ii) for some short nonpositive loop from p valid at x
with displacement a and some b € A,
there exists o, § € N such that aa+fb==c
then add c to Ax;
if there exists an ancestor [z,p,AZ] of [x,p,AX] such that
L(z,A,) contains x and A =A_
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then mark [x,p,AX]
else

for each transition p—(q,v) do
begin
Let A ={v,,...,v,}
for each a, a=a v, +..to v, where
(al,...,ak) 1s a minimal k-tuple such that x+a+v > 0,

do construct a son [y,q,Ay] where y==x-+a+v and AX=Ay;
end

if [x,p,Ax] has no son then mark [x,p,Ax];
end

3.1. The Upper Bound

Now, we are ready to derive an upper bound on the algorithm’s complexity. Given a VASS V in
VASS(2,/,n) and some path s in the corresponding tree T, one can easily see the following facts:

# V has at most n states;
e there are at most 2" distinct p-loops in any loop set;

¢ in addition to those p-loops, at most one non-axis vector and 2 axis vectors can oceur in any
of the loop sets in s (in what follows, if they exist, they will be referred to as u;, Y and o>
respectively);

e of all the vectors appearing in the loop sets in s, only u, Y and 7, can have a norm greatexr
than n*2’.

Consider an arbitrary path in the tree generated by the algorithm. Let hul(l,n), hvl(l,n) and h,72(l,n)
denote the maximum norm of all the vectors added before u,, v, and «, are added, respectively. Also, let
hk(l,n) denote the maximum norm of all vectors ever occurring in the system before the k-th loop ~wvector
is added. For two arbitrary nodes d1=[x1,p1,Al] and d2=[X2,p2,A2], d,—d, iff d, is an ancestor of d, in
T. d, is said to be redundant with respect to d,, denoted by d e d,, iff P1=Py A=A, x,x, € L (O’Al)
and dl—»dz. We also say that a node d is redundant iff there exists a d’ such that d'e< d. (Note that,
according to the terminating condition, if d,e< d,, then d, is a leaf) A sequence of mnodes
d;=[x,,p, Al 2 dy=[x,,pp, Al - - - —d =[x ,p,,A] is said to be monotonic (strongly monotorazic) if
xS el - - - <lIx,l (x1§X2§ -+ - £x,). In what follows, we first derive the quantity max{||v||: 3
[x,p,Ax]ET such that VEAX}, which is one of the two values we are most interested in. Hence, we must

derive bounds for |[u, ||, ||v]| and ||v,]|. The next lemma and its corollary provide a bound for IR

Lemma 3.1: h (I,n) < hl(l,n)20(2°*l*n), for some constant ¢ independent of ! and n.
1

Proof. In any path in the tree, no node [x,p,§] can occur such that x,p,0]—[x,p,8] where x¥'<x, unless u

1
is added. Therefore, from Theorem 2.2, hl(l,n)=0(2°*l*“). Since u

, can only be added to an empty loop

set, the result follows. O
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Corollary 3.1: Hulﬂﬁa*Qb*l*“, for some constants a and b independent of [/, and n.

Proof. Let m s.—s be a path in T such that s, is the root and u, is added in s. Clearly any node
S (¢} 0 1

[x,p,A] in 7 must have that ||x||<h (/,;n). From the algorithm, u,=x,x,, for some d,=(x,,p,®] and
d,= [x 2,p,0] in . Thus, according to Lemma 3.1,

=g 11 < el el < (1) =02, The result follows.

we have that

O

As long as the loop set is empty, a path in T corresponds exactly with a path in the associated VASS.
After the first loop vector is added, however, the correspondence no longer remains exact. Therefore, we

must find an upper bound on the gain in norm caused by one step in T.

Lemma 3.2: Let u=[x,p,Ax]ﬂu’z[x’,p’,Ax,] be two consecutive nodes in T. Let r==max{||v|]: v GAX}.
Then Hx’—xl]_<_c*(r*2l)d, for some constants ¢ and d independent of r, and I. (Le., the maximum gain in
one step in T is bounded by c*(r*2hd)

Proof. To show this, first note that given a node u=[x,p,Ax] in T, the successor u’=[x',p’,Ax,] can be

.. k : .
obtained if p—(p’,v) is in § and z'=z+v+3 ;| @, > 0, where sz{vl,...,vk} and (o, Sa ) is a
minimal k-tuple such that X' > 0. (See the algorithm.) According to the result in [3], we know that if
the above linear equation has a nonmnegative solution, there must exist a solution (ﬁl,...,ﬂk) such that
}ﬂilSc'*(max{HvH,HVjH: 1 <j<k})?, which is no greater than *(r*2")2.  Clearly by a direct

substitution, the net gain ||x-x|| is no more than c*(r*Ql)d, for some constants ¢ and d. 0

In deriving bounds for ||v,|| and [[7,/l, the idea is to show that if a monotonic sequence of some

specified length exists, then a strongly monotonic sequence of a certain length must also exist. The

following lemma gives a bound on the length of a strongly monotonic sequence over the same loop set.

Lemma 3.3: Consider a nonempty loop set A::{vl,...,vm}, where v ,...,v_ are arbitrary loop v ectors.

Let P=max{|lv]]: v€A}. I dlz[xl,p,A]-—»d2=[x2,p,A]—+ . ——>dﬂ2+1=[xﬁ2+1,p,A] is a strongly
monotonic sequence, then there exist i and j, 1 £1,j £ B%+1, such that d, o< dj.

Proof. Let w_ and w, be the vectors in A with the maximum and minimum slopes, respectively. It

follows from [12] that the sequence is contained in the cone C(x,,A). Since x, <x,< - -+ Sxg2.0 it

can be shown easily that, for all i, 2_<_i__<_ﬂ2+1, there exist Z, a, and a,, suchh that

X=X +E+a T Wy Furthermore, they satisfy the following conditions:
1 3 3
(1o<sz < <f-1,4-1>, and
(2)Viandj, 1 Si<j< A4, <aya,> < <3

v’

Bp~"
By the pigeon-hole principle, there exist i1 and j, 1<j, such that 2=, Hence,

Xj'x{“’:(a‘j,v'ai,v)*wv+(aj,h'ai,h)*wh’ which is in L(0,A) (actually, in L(0,{w,,w_})). Therefore, de< d;. O

We note here that although an upper bound for max{||x|| : [x,p,A,]} can be derived directly from
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Lemma 3.3, this bound is not tight (i.e., it would cost us additional levels of exponentiation). Hence, we

wish to derive, via the next two lemmas, a better bound for [, 11-

Lemma 3.4: Let 0: d—d’ be a path in T. Let A, be the loop set in d. Assume that A, 5£ @ and no axis
vector exists in A . If d1=[xl,p,A]——>d2=[x2,p,A]—> - —»dt::[xt,p,A] is 2 monotonic sequence in o, then

it is also strongly monotonic.

. . k
Proof. For two arbitrary nodes di and dj, 1<i<j<t, let xj—-xl.=2m_~1 w ., where wm’s are

displacements of short loops. One of the following two cases must be true:

(Case 1:) all w_’s are of the form (x,y), such that x>0 and y>0.

If so, clearly xJ.in or

(Case 2:) all w_’s and all vectors in A 4 are colinear.
In this case, ij.”Z”xiH implies xJ.in.

(Note that for other cases, an axis vector would have been added. See also [12].) This completes the

proof. (]

Lemma 3.5: hq (l,n)Sc'*2d,*l*n, for some constants ¢/ and d’ independent of I and n.
1

Proof. Let s' be the node at which 7, is added. Let Py; Py, -, P, be those nodes (in sequence), along the

path from s, to s', where new loop vectors are added (p,=s'). We define a function f(k), 1<k<t, such

that f(k) is the maximum norm of any vector ever occurring in the system before p, is reached. Comnsider

the following two cases:

(Case 1:) t==1; i.e., 7, is the first loop vector.

Clearly, the result follows from Lemma 3.1.
(Case 2:) t>1.

Clearly, f(1)=h,(/,n). In what follows, we calculate f(k) recursively. Consider the path from
P, to P, (excluding pk+1). During this period the loop set, say A,, remains the same. Let
vy and v, be the vectors with the minimum and maximum slopes in Ay Let B =max{||v||:

vEA, }. According to Corollary 3.1, ﬂ'k_<_a*2b*l*", for some constants a and b. Now, applying

the result of Lemma 3.2, the maximum gain in one step is bounded by al*2b1*l*n, for some
constants a; and b,. (Let 8 denote this amount.) Suppose a node p' contains a vector with
norm 2> f(k)+n*ﬂ3. By the pigeon-hole principle there must exist a monotonic sequence, €:
dj— - _"d,s2+1’ over the same state (see Figure 3-1). Furthermore, according to Lemma
3.4, € is also strongly monotonic. Thus, by Lemma 3.3, the procedure should terminate, which
is clearly a contradiction. Therefore, f(k+1) <f(k)+n*g. Inductively, one can easily get
f(t)_<_h1(l,n)+t*(n*,33). Since t (the number of p-loops) < 2%, we have that f(t) <c™*2d™*n for
some constants ¢/ and d’. The result follows.

Corollary 3.2: |hl{]§c*2d*l*n, for some constants ¢ and d independent of I, and n.
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Proof. ~, can be added either because
(Case 1:) 3 an ancestor [z,p,A ] of [x,p,A ] such that x-z=7,.
Clearly, ||, ||=Ik-zl|<h, (Ln) or
1

Case 2:) 3 o, o' in N, a€A_ and a non-positive loop b, such that aa+a'b==._.
pd 1

In this case, H’yluf_m*(hq (I,n))", for some constants m and r. (Due to the result of (3].)
1

We are now ready to derive a bound on ||v,||, using the following two lemmas:

Lemma 3.8: Consider a loop set A={v,...,v } that contains a vertical (horizontal) axis vector. (We
include the case in which both axis vectors exist.) Let # = max{||v||: v€A}. Let b and f be arbitrary
positive integers. If d1=[x1,p,A]—>d2=[x2,p,A]—> . —»dﬂ*b+1=[xﬁ*b+1,p,A] is a monotonic seqquence
contained in the area {<x,y>: f<x<f+b-1 and 0=y} ({<x,y>: f<y<f+b-1 and 0<x}), then there

exist i and j, 1 <i<j < A*b+1, such that di.< dj‘

Proof. Without loss of generality, we only consider the case with a vertical axis vector. (The other case is
symmetric.) Furthermore, with no loss of generality, we also assume that f=0. Let w_ be thhe axis

vector. Clearly, ||w [|<B. Now, consider b vertical lines L,’s, 0Sk<b-1, where L ={<ky>: vEN}.

By the pigeon-hole principle there must exist some line Lj that contains more than @ points. Let
di ’di "“’di be such a sequence. Clearly, there exist r and s, 1<r<s<p+1, such that X, X =d>* 3, for
12 41 s i
some de€N. Thus, di o« di . O
T 8

Lemma 3.7: hq (l,n)ﬁa'*2b’*l*n, for some constants a' and b’ independent of I and n.
2

Proof. Without loss of generality, assume that v, exists and is a vertical axis vector. Suppose s’ is the
node where 7, is added. Let ﬂzmax{c*Zd*l*n,n*Zl} and b=c’*2d’*l*“, where ¢, d and ¢, d' -are the
constants mentioned in Corollary 3.2 and Lemma 3.5, respectively. (Thus, 8 bounds the largest norm of
any loop vector added before 7, and b bounds the largest norm of any vector appearring before 7, is
added.) Let f (=O(2°"*l*n), for some constant c) be the maximum gain in one step. Let v be the vector
in A with the minimum slope. Let D and D, 1<i<2™ 4% be:

D={<x,y>: 0<x<b, 0<y},

D={<xy>: b+(i-1)*F<x<b+i"g, 0=y}.

See Figure 3-2. Suppose a mode contains a vector with norm greater than ﬁ'*ﬂ*b*n+(ﬁ')2*2n*ﬁ4*n.

Clearly, there must exist a monotonic sequence consisting of ﬁ*b+ﬁ'*2n*ﬂ?’ nodes over the sam e state.

One of the following three cases must be true:

(Case 1:) D contains a monotonic sequence over the same state with f*b+1 nodes —- a
contradiction (according to Lemma 3.6).
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(Case 2:) F i, 1<i<2™4% such that D, contains a monotonic sequence over the same state
with #*4'+1 nodes -- a contradiction (according to Lemma 3.8).

(Case 3:) 3 a monotonic sequence dj— .- —»dzn*ﬂ2, such that d, is in D, for 1<i<2™g?

Note that in the above sequence, the horizontal component is always incremented. Since no
horizontal axis vector exists, this sequence must be also strongly monotonic. (Otherwise, a
horizontal axis vector would be added.) Furthermore, since at most 2" loops will be added,

there must exist i and j, 154, 2“*,62, 1> ﬁz, such that no p-loop is added during the period
from di to dj. This clearly contradicts the conclusion of Lemma 3.3.

Corollary 3.3: ![72!|Sa*2b*l*“, for some constants a and b independent of I, and n.

Proof. Similar to the proof of Corollary 3.2.

According to Corollaries 3.1-3, we have:

Theorem 3.1: Given an arbitrary V in VASS(2,l,n) and its corresponding tree T, max{||v]|: 3

[x,p,AX]ET such that VEAX}=O(2°*l*n), for some constant ¢ independent of V, I, and n.

Now, according to Lemma 3.2 and Theorem 3.1, we have:

* ok

¢
Corollary 8.4: In T, the maximum gain in one step is bounded by c1*2 2 , for some constants ¢, and

¢, independent of [ and n.

Since the above quantity will be used frequently in the subsequent discussion, for ease of expression,
* %k

¢ *l*n
let ﬁ=c1*2 2 hereafter.  We now wish to derive an upper bound on the second quantity,

max{”x”:[x,p,Ax]ET}. We first give the following lemma, which allows us to derive a recurrence
relation for h, (I,n).

Lemma 3.8: Let w=[x,p, A |ow'= x',p,A_J] be a path in T. If ||x'||>((t+1 *8)%*([1x||+1 , then from w
X: X

to w' there must exist a strongly monotonic sequence with t nodes.

Proof. To prove this, we first show that given a path w1=——[xl,pl,Al]—»w2=[x2,p2,A2} such that
I]X2H>(n+1)*ﬂ*[]x1|]>0, then from w, to w,, either

(1) 3 w"=[x",p",A_,] such that [Ix"|| <[lx,|| and x">x,, or

(2) 3 a strongly monotonic sequence consisting of n nodes.

Since the maximum gain in each step is at most £, there must exist a monotonic sequence dl"“’dn*Hx I

1
from w, to w,. Let D={<xy>: 0=<x<|lx,||, 0<y} and D'={<x,y>: 0<y<|Ixll, 0<x}. If (1) is
false, then all d’s, 1<i<n*@, must be in the area D (or D). Then by the pigeon-hole principle, one line

in D (or D) must contain at least n nodes. In this case, (2) is true.

Now, we prove the theorem by induction on t.
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Induction base: t==1. Trivial.
Induction hypothesis: Assume the assertion is true for t=k, k > 1.

Induction step: t==k+1.

Let v=[y,q,Ay] be the first node from w to w' such that ((k+2)*ﬁ)k*(llxn+1)>HyH>((k+1)*ﬂ)k*(Hx\[—}—1)‘

According to the induction hypothesis, there exists a strongly monotonic sequence sl,...,sk=[xk,pk,Ak] on

the path from w to v. Clearly, kaHS((k—l—?)*ﬂ)k*(HXH—t—l). Now, consider the path from s, to w'. Since
|[x']| > (k+2)*B]x, ||, it must be true that either

(a) 3 v'=[y',q’,Ay,] such that ||y'||<|[¥|| and y'>x,, or

(b) 3 a strongly monotonic sequence consisting of k+1 nodes.
In either case, the assertion is true. O

* ik

n
Lemma 3.9: hk+1(l,n) < c*? *(h,(1,n)), for some constants ¢ and d independent of k, {, and n.

Proof. Consider a path o: sy—s' in T such that s is the root and in &' the (k+1)-st loop vector is added.
Let " be the node where the k-th loop vector is added. Let o': s"—s' be the subpath of o starting at s".

It is easy to see that for every node [x,p,Ax] in o' (except the end node s'), Ax-—-z, for some set A, i.e.,
every node in o' has the same loop set.  Clearly, lIs"ll < h(in). Let t==%*n. Now, if
Hs'H>((t+1)*ﬂ)t*hk(1,n), according to Lemma 3.8, there must exist a strongly monotonic sequence 7 d,,
dz’ s dﬂz_'_1 over the same state, say p. Now according to Lemma 3.3, there exist 1 and 3},

1<i<j<p241, d,e< dj -- a contradiction. Therefore, hk+1(l,n)S((t-!—l)*ﬂ)t*hk(l,n), which is bounded by

* 1%

c*o? *hk(l,n), for some constants ¢ and d. This completes the proof. O

c*l*n
Corollary 3.5: hk(l,n):O(Qk*?‘ ), for some constant ¢ independent of k, I, and n.

Since there will be at most 2"+3 vectors in any AX, the following theorem is obtained:

Theorem 3.2: *Fi)r an arbitrary V in VASS(2,,n) and its corresponding tree T, max {||x|]:
d*l*n

[X,p,AX]E'l‘}~:-=0(22 ), for some constant d independent of V, [, and n.

We are now ready to construct an algorithm to generate a SLS representation of the reachability set
of a given VASS. The reader, at this point, should recall that in the original Hopcroft-Pansiot algorithm,
no upper bound is given for the size of the SLS representation, neither does it tell how quick the SLS can
be generated. In what follows, we utilize the results obtained earlier in this section to construct a

modified version of the Hopcroft-Pansiot algorithm. More precisely, we have:

Theorem 3.3: Given a VASS Vz(vo,A,po,S,é) in VASS(2,l,n) and a state p in S, we can construct a SLS

**n

S L:Uik__: . Li(xi’Pi) in DTII\/[E)(ZZc ), for some constant ¢ independent of V, I, and n, such that,
(1) SL={x: (pX)ER(v(:A,P(:S:0)},
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*

d,**n
(2) k=()(22 1 ), for some constant d1 independent of k, [, and n,
d *l*n
(3) Vi, 1<i<k, HXiH=O(22 277, for some constant d, independent of k, I, and n,
(4) vi, 1<i<k, |[P|=0(2"), where |P,| is the number of vectors in P,

(5) VveP,, 1<i<k, ||v]]=0(2d3*l*n), for some constant d, independent of k, I, and n.

Proof. First recall that each node in a Hopcroft-Pansiot tree T is a 3-tuple [x,p,A. ]

wl

According to the
algorithm and Theorems 3.1 and 3.2, V [x,p,Ax] in T,

o A< c1*2n for some constant ¢, (because according to the algorithm at most 2°+3 loop
vectors can exist),

d *I*n
o ||x]| < 62*22 2" for some constants ¢, and d, (Theorem 3.2),

eVVvEA, lvl] < cg"‘Qdi'»*l*n for some constants ¢g and d, (Theorem 3.1). Furthermore, at most

3 loop vectors in A_ can be of that norm (the others are bounded by O(n*2%)).

d. *l*n
As a result, the number of possible distinct nodes in T is bounded by O(2%* ), for some constant d.
However, in the original tree construction ( [12]) nodes are not necessarily distinct. This is due to the fact
that, even if two different paths reach the same node, the rest of both paths still have to be explored

separately (because one path may terminate earlier than the other). Note, however, that since the

*l*

d n
maximum norm of vectors that a path can reach is bounded by (:2"‘22 2 , instead of checking the

termination condition we can explore the entire tree (up to the above bound) so that only distinct nodes

will appear in the tree. The new tree is generated as in the original algorithm with the following

exceptions:
1. An axis vector 7 is added to the loop set only if ||4]| < c3*2d3*l*n;
2. the terminating condition is not checked;

3. a new leaf [y,q,Ay] is added only if
a. [y,q,Ay] does not occur elsewhere in the tree, and
d *l*n
byl Sc,*2®?

C* *
Clearly this procedure can be done in DTIME(22 , for some constant ¢ (since there are at most
Y P

Ik
o221 n) nodes). One can easily see that

e every node in the original tree must also appear in the new tree, and

e for every node d in the new tree, either d is in the original tree or there exists a node d’ in the
original tree such that d'e< d.

Consequently, the two trees represent the same SLS, i.e., (1) is true. The difference is that perhaps a
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more succinct SLS will be generated. Furthermore, it is easy to see that the description of the SLS

satisfies conditions (2)-(5). This completes the proof. n

From Theorem 3.3 we want to show that the reachability, containment and equivalence problerns for
* 7k

c*l*n
VASS(2,l,n) can be solved in DTIME(Z2 ) for some fixed constant c. While the proof for the

reachability problem for VASS(2,,n) is quite straightforward, the complexity results for the equivalence
problem for SLSs [13, 17] do not directly yield the desired upper bound for the containment and
equivalence problems for VASS(2,/,n). However, we will show in the following that a careful application

of the proof techniques in [17] yields the desired upper bound for the containment and equivalence

problems also.

In view of Theorem 3.3, we consider in the following SLSs that are subsets of N where >0 is fixed.

Furthermore, each SLS SL=U?=1L(xi,Pi) satisfies the conditions:
d.*N
(C1) kis O(2% ' ),
. , S4,*N
(C2) ¥i, 1<iZk, [Ix ]| is O(2 ),

(C3)V v€P, 1<i<K, |Iv]] is O(2%™),

where dl’ dz’ d3 are some fixed constants.

c*l*n
The following two lemmas will enable us to obtain the DTII\/IE(Z2 ) upper bound for the

reachability, containment and equivalence problems for VASS(2,l,n).

Lemma 3.10: Let SL, and SL, be two SLSs that satisfy the conditions (C1-C3). Then SL & SL, iff

c*N
there exists a vector w in the symmetric difference of SL, and SL, so that llw]| is O(2% ), where ¢ is

some fixed constant (depending on r, dl, d2 and d3 only).

Lemma 3.11: The membership, containment and equivalence problems for SLSs that satisfy comnditions

c*l*n
(C1-C3) can be solved in DTIME(22 ) where ¢ is a fixed constant (depending onr, d;, d, and d 4 only).

In the following we proceed to show Lemmas 3.10 and 3.11. We will show Lemma 3.10 by applying
the proof techniques in [17]. To this end we reproduce here some important technical notions from the

theory of polyhedra (cf. [33] for a complete treatment). The reader is referred to [17] for the proofs of

several facts that are used in establishing Lemma 3.10.

Let A be an mXr matrix with integer coefficients. Let b=(b(1),...,b(m)) € Z™ and x=(x(1),...,x(r))
be a vector of unknowns. For i=1,...,m, let Ai denote the ith row of the matrix A. If Ai% 0, then the
rational solutions set of the linear equality AixT=b(i) and the linear inequality AiXTSb(i) are called a

hyperplane and a halfspace, respectively. The rational solutions set S of the finite system of linear
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inequalities AxTﬁb is called a polyhedron. If b==0, then S is called a polyhedral cone. If Ai¢0, then
the hyperplane defined by Aixsz(i) is called a boundary plane of S.

The following facts state that every (finitely generated) cone, as defined at the beginning of this

section, is also a polyhedral cone.

Fact 3.12. Let C=C(0,P) € R’ be a cone such that PCN" is finite, and each v€E€P satisfies the
condition that ||vH=O(2d3*N), where d, is some fixed constant. Then C may be represented as a

polyhedral cone AxT<0 so that HA||=O(2C*N), where ¢ is some fixed constant (depending on r zand d
only).

Proof. The proof of Fact 3.12 is similar to that of Lemma A.4 in [17], and is therefore omitted. |

As a corollary of Fact 3.12, we obtain

d,*N
Fact 3.18. Let C=C(x,P) € R’ be a cone such that x € N', PCN" is finite, ||x||=0(2% 2 ), and each

v € P satisfies HvH=O(2d3*N), where d,, d; are some fixed constants. Then C may be represented as a
polyhedral cone AXTSb so that

(1) llall=oz1™),
¢ *N
(2) |[bl|=0(2** ),
where ¢, ¢, are some fixed constants (depending on r, d2, d3 only).
Furthermore, if v € Z is some vector that does not belong to C, then there is some row A, of A such
that for the halfplane H defined by AiXTZb(i)+1 it holds that v € H and HNC==0.

Proof. Similar to the proof of Corollary A.5 in [17].

We are know in position to prove Lemma 3.10.

Proof of Lemma 3.10. Let SL, and SL, be two SLSs in N' that satisfy conditions (C1-C3). Swippose

that the symmetric difference A of SLl and $L2 is not empty. We want to show that A contains a
"small" vector that witnesses the fact that A £ @.

Let w be some vector in A. Without loss of generality, we may assume that w € L\SL2, where
L=L(x,P) is a linear set in SL, and SL2=UL1L(X.1,Pi). Let C=C(x,P) and C=C(x,P) for i=1,...k.
Without loss of generality, let wECln...nCm and wﬁCmHU...UCk, where 1<m<k. TFor each
j=m+1,... .k, let Hj be the halfspace as obtained in Fact 3.13 for w and Cj. Then let C_ denote the
intersection

C,=0Cnc,Nn..NC_NH NH

m+ln"' k
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With these notations, we can show

Fact 1. C, may be represented as a polyhedron of the form C =conv(E)+C(0,F), where ECR', FCN'

are finite sets of nonnegative vectors, conv(E) denotes the convex hull

{EveE gv'”: gv €R, 9‘,20 and Eve E 9.0::1};
and for subsets U, V C RY, U+V={u+v: ueU,v eV},

Furthermore, E and F can be chosen so that
(1) IIFll=0(2t™),
¢ *N
2) [[Ell=0(2*? ),
where ¢,, ¢, are some fixed constants (depending on r, d,, d, and dg, only).

Proof of Fact 1. Similar to the proof of Lemma 2.1 in [17]. O

Now, consider w and C_. We have w€ C, In what follows we will show that in C_ if [lw]| is too
large, i.e., w is "far away" from conv(E), then we can find a "small" witness w! for the fact Az£ @. To
this end, consider the linear sets L(o,p), L(OP), -, L(0,P ) and the cone C(0,F). Obviously,
C(O,F)gC(O,P)ﬂC(O,Pl)ﬂ...ﬁC(O,Pm). Therefore, each v €F may be expressed as a nonnegative linear

combination of < r linearly independent vectors in P!, where P' is any of the sets P, P,, .., P (cf.

m
Caratheodory’s Theorem for cones [33]). Hence, there are nonnegative integers X, )\1, ey )\m such that
v e LOP), \vE L(O,Pl), ay A VE L(O,Pm), where X, X, .., A, may be chosen, by Cramer’s rule, as
some subdeterminants of the matrices formed by vectors in P, Pi, s Pm, respectively. Thus, for some

fixed constant ¢y, A, Apy e A arTe O(2CB*N). From this, it follows that the least multiple X  of X, Xy o

¢ *N
A, is 0(22 47) for some fixed constant c, (even when m may be doubly exponential in N). We therefore
obtain

¢ *n
Fact__ 2. For each v&TF, there exists an integer X of 0(22* ) such  that

AV E I_(O,P)OL(O,PI)O...ﬁL(O,Pm), where ¢, is some fixed constant (depending on 1, d, d, and d only).

Let G={\v: veF}. Each A v is a nsuperperiod" from which w can be subtracted so that a
wsmall® witness w' can be obtained. We formalize this idea in the following. Suppose that |jw|| > ||E||.
Then C_ is an unbounded polyhedron, and F (or equivalently Q) is not empty.

Consider the lattice points in Cw, i.e., elements in CwﬁN". Let ue CwﬁNr. By Caratheodory’s
Theorem for cones (cf. [33]), u may be expressed as u:EyGE G+ Y eqr 6,7 where G, §, € R, G, 8,

> 0, EyEE gyzl, and G' CG is a linearly independent subset. Therefore, u’=u——2z€G, [53_}2 is << u and
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u'€C NN'. Let U denote the set of all such lattice points u’ in C,NN". Obviously, U is finite, and ||U|

*N
can be bounded in terms of [|[E|| and {|G||. It can easily be seen that [0}l is ()(22c5 ) for some fixed

constant ¢,. Furthermore, it holds that CwﬂeruueU,G’g oL(a,G'), where G runs over all subsets of <

r linearly independent vectors in G.

Fact 3. For each u€U, the intersection £(u,GYNL(,P) is a SLS of the form U y e yL(v,G) so that |[Y]] is

*N
0(22 % ") for some fixed constant Cq-

Proof of Fact 3. Similar to the proof of Lemma 2.2 in [17]. O

We are now in position to conclude the proof of Lemma 3.10. Observe that, w € (C_NN)NL (x,P).

So for some y €Y, G'CG, a subset of < r linearly independent vectors, w € L(y,G). Defining w' to be y,

we have that w'€ L(x,P). On the other hand, it is clear that w' g L(xl,Pl)U...UL(xm,Pm), since w would

belong to L(xl,Pl)U...UL(xm,Pm) otherwise. Thus, w'€ L\SLQ, and this completes the proof of Lemma

3.10. 0O

Proof of Lemma 3.11. In view of Lemma 3.10, it suffices to show that the following memb ership

¢*N
problem can be solved in DTH\/HE(22 ), where ¢ is some fixed constant.

Input.

A SLS SL satisfying conditions (C1-C3) and a vector v € N with [lv]]=0 (22 1

some fixed constant ¢

) for
Question. Does v belong to SL?

This membership problem is reduced to the problem of checking the existence of a nonnegative

*N
integer solution of a system of equations AxT=b, where A €Z™ <™ beZ', ||A]l is 0(22 ), m is

0(24% N) and |[b]] is 0(22 ’ ) where d, is the constant in condition (C3), and d, is some fixed comstant

(depending on r and d ) From a result in (3], it follows that if such a system has nonnegative integer

¢ *N
solutions, it has one whose entries are 0(22 2 ) for some fixed constant ¢y By exhaustive search, this,

¢*N
and hence the membership problem mentioned above, can be solved in DTIME(2? ), where ¢ is some

fixed constant. This completes the proof of Lemma 3.11. 0

From Theorem 3.3 and Lemmas 3.10 and 3.11, we have:

Theorem 3.4: For VASS(2,/,n), the reachability, containment and equivalence problems can be solwved in
*

c**n
DTIME(22 ), for some constant ¢ independent of ! and n.
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3.2. The Lower Bound

In what follows, we show that the upper bound we obtained for the Hopcroft-Pansiot algorithm in
Section 3.1 is tight.

Theorem 3.5: There exists a VASS in VASS(2,l,3*n+4) whose Hopcroft-Pansiot tree can reach a vector
d**n

with norm 22 , for some positive constant d independent of [ and n. Furthermore, the longest path in

c*l*n
the tree can have at least 92 nodes for some positive constant ¢ independent of and n.
Proof. Consider the VASS in Figure 3-3. (Without loss of generality, assume n is even.) Now consider

the path shown in Figure 3-4. The computation proceeds by phases, where each phase contains n-+1

stages (the last stage consists of states b, and b,). For example, in stage j of phase i (assume j is even),

. 1* H . . o, . .
the system starts at state a, with the vector <20™t)*Li 0> First, the transition aj—»(aj,<-1,1 >) is

involved i times in order to obtain the vector <2(i*n+j)*l,i>. After that, aj——>(aj.,<-1,2l>) will be applied

repeatedly until the vector <0,2(i*n+j+1)*l+i> is obtained. Finally, aj—-»(aj+1,<0,0>) is used to enter

3 * 1%
the next stage. Proceeding in this manner, the vector < gli+1)* "> will be obtained in state a_. The
g 11

function of by, by and their associated transitions is to increment the norm of the vector by 1 before the

end of a phase. Now, one can easily see the following facts:

e V is in VASS(2,/,3*n+4).

e No non-axis vector can exist in the loop set.

(Since there is no p-loop and the first vector
added is an axis vector.)

e The two axis vectors (in sequence) are <2n*l,0> and <0,2“*l>, respectively. (They are
added when entering stage 1 of phase 1.)

e No redundant nodes can exist in the same stage. (This is because in the same stage one
component is incremented while the other one is decremented.)

e No redundant nodes exist between different phases during phases 0 through of*n_y. (Let v, and
Vi i<j, be two vectors in different phases. It must be the case that ijH-HviH;—b*Ql*n—}‘r,
where 0<r<2”n for some b. As a result, v; can not be in L(vi,{<2“*l,0>,<0,2n*l>}).)

Consequently, the computation can proceed, in a zigzag fashion (see Figure 3-5), gt*n phases without

d*[*n

having redundant nodes. We can then conclude that the system can produce a vector of size 22 , for

c*l*n

some positive constant d. Furthermore, the length of the path described above is 22 for some positive

constant c. 0

Acknowledgment: We would like to thank Professor Vidal-Naquet for pointing out reference [25] .
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Figure 2-1: Swapping nodes ¢ and d.

Figure 2-2: Swapping nodes sg and t.
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Figure 2-3: A VASS in BV(k,1,m*(2xk-1)+2).
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Figure 3-5: A pictorial description of the path in Figure 3-4.







